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Abstract

At present, in the field of Visual Question An-001
swering (VQA), a model’s ability to compre-002
hend various modalities is crucial for accu-003
rate answer reasoning. However, recent stud-004
ies have uncovered prevailing language biases005
in VQA, where reasoning frequently relies006
on incorrect associations between questions007
and answers, rather than genuine multi-modal008
knowledge-based reasoning. Thus, it is of great009
challenge to reveal the accurate relationship010
between image and question. The key idea011
of this work is inspired by the process of an-012
swering questions of human beings, where peo-013
ple always gradually reduce the focus area in014
the image with the aid of question information015
until the final related area is retained. More016
specifically, we introduce a novel attention al-017
gorithm, named the Forgotten Attention Algo-018
rithm (FAA), where this algorithm gradually019
"forgets" some visual contents after several020
rounds. This deliberate forgetting process con-021
centrates the model’s "attention" on the image022
region that is the most relevant to the ques-023
tion. As a result, it can enhance the integra-024
tion of image content and thus mitigate lan-025
guage biases. We conducted comprehensive026
experiments on the VQA-CP v2, VQA v2, and027
VQA-VS datasets to validate the efficiency and028
robustness of the algorithm.029

1 Introduction030

In recent years, Visual Question Answering (VQA)031

has become one of the prominent tasks in the field032

of deep learning (Hudson and Manning, 2019a),033

achieving significant accomplishments in various034

applications, such as intelligent service systems035

(Luo et al., 2023; Wang et al., 2022). However,036

recent research has found that many existing VQA037

methods tend to rely on false associations between038

questions and answers, without sufficiently extract-039

ing accurate visual information from images to040

answer questions. For example, when answering041

questions "What color?", some VQA models are 042

inclined to use the most common answers from 043

training data of that type, like "yellow," rather than 044

extracting genuine color information from images. 045

Additionally, some studies (et al., 2021; Liu et al., 046

2022) have indicated deficiencies in the existing 047

methods’ understanding of images, resulting in an- 048

swers generated by the model relying on image 049

regions with low relevance to the questions. In 050

other words, specific methods often provide correct 051

answers based on incorrect image regions, which 052

does not genuinely reflect the model’s performance 053

in the question-answering task. Consequently, the 054

factors affecting the robustness of VQA models can 055

be summarized into two primary aspects: inherent 056

biases in the language distribution of training and 057

testing datasets, and the improper shortcut biases 058

caused by the inadequate utilization of visual infor- 059

mation (Liu et al., 2023). 060

The state-of-the-art and noteworthy methods 061

primarily revolve around data augmentation tech- 062

niques and attention-based approaches. Data aug- 063

mentation methods (Chen et al., 2020) aim to en- 064

hance a model’s understanding of critical features 065

within the data by expanding the dataset with sam- 066

ples, such as counterfactual instances and addi- 067

tional annotations (Liang et al., 2020; Gokhale et 068

al., 2020), which help eliminate biases and enhance 069

robustness (Agarwal, 2020; Wen et al., 2021) by 070

obtaining more critical sample features and supple- 071

mentary information. However, it is still of great in- 072

terest and challenge to remove the language biases 073

in VQA model without resorting to data augmenta- 074

tion (Niu et al., 2021). Regarding attention-based 075

methods(et al., 2017), the majority currently in- 076

tegrate these into pre-trained models for efficient 077

feature fusion (Tan and Bansal, 2019; Yu et al., 078

2019; Lu et al., 2016; Lu et al., 2022; Anderson, 079

2018), with limited emphasis on fully utilizing vi- 080

sual information. 081

Therefore, we believe that effectively utilizing 082
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What are the people doing?
Wrong Answer: Sitting
 
Right Answer: Cycling

Figure 1: Due to the presence of biases, the influence of the size of prominent objects in the image on model
reasoning leads to incorrect answers, while the image regions relevant to the answers often occupy a small portion.
FAA achieves this by masking irrelevant regions in the image, allowing the model to focus on image details for
inference.

image content without data augmentation is an ef-083

fective approach to mitigating language biases. In084

Fig. 1, it is evident that prominent objects (i.e.,085

the bench) often dominate the model’s attention,086

causing it to overlook the finer image area that is087

relevant to the question (i.e., the people). This ob-088

servation poses a new challenge: how to focus on089

the right image area that is the most relevant to the090

question. To address this problem, we are inspired091

by the process of answering questions of human092

beings, where people always gradually reduce the093

focus area in the image with the aid of question094

information until the final related area is retained.095

In this paper, specifically, we introduce a novel096

attention algorithm, named the Forgotten Atten-097

tion Algorithm (FAA), where this algorithm iter-098

atively "forgets" some visual contents after each099

round, that is, disregarding irrelevant image infor-100

mation. Through multiple iterations, the model pro-101

gressively identifies more relevant regions within102

the image. As shown in Fig. 1, FAA gradually103

masks less relevant regions, resulting in effectively104

harnessing related image information. The retained105

image is then utilized for the final answer reason-106

ing, thus alleviating the influence of salient objects107

in the image that are not related to the question.108

Overall, this paper’s contributions are delineated109

as follows:110

1. We introduce a novel forgetfulness attention111

algorithm (FAA) aimed at mitigating biases112

in VQA. The FAA achieves robust VQA by113

focusing on forgetting unimportant informa-114

tion and reinforcing the role of correct visual115

content in reasoning.116

2. On VQA-CP v2, our enhancements in lever-117

aging visual information led to optimal per-118

formance. Notably, without additional anno- 119

tations, our approach attained a 20.78% im- 120

provement compared to the UpDn baseline 121

model. Code is available at:https://github. 122

com/EASONGLLL/FAA-VQA. 123

2 Related work 124

2.1 Visual Question Answering 125

The VQA task demands accurate model responses 126

to image-related questions. Since its inception, this 127

field has seen the emergence of various pertinent 128

datasets and multimodal fusion techniques, such 129

as VQA v2(Antol et al., 2015), GQA(Hudson and 130

Manning, 2019b), CLEVR(Johnson et al., 2016), 131

OK-VQA(Marino et al., 2019), and VideoQA(Tu 132

et al., 2013) rooted in video datasets. Presently, 133

methods based on single-stream and dual-stream 134

architectures(Yang et al., 2019; Wang et al., 2019; 135

Izacard and Grave, 2021; Rajpurkar et al., 2018; 136

Chen et al., 2020) achieve high accuracy by exten- 137

sively pretraining on abundant samples. 138

2.2 Language Bias 139

In recent research, researchers have proposed a 140

range of debiasing methods to address language 141

bias concerning existing defined bias issues. These 142

methods include adversarial-based techniques (Ra- 143

makrishnan et al., 2018), regularization approaches 144

(Niu et al., 2021; Han et al., 2021; Abbasnejad 145

et al., 2020; Cho et al., 2023; Basu et al., 2023), 146

and data augmentation strategies (Chen et al., 2020; 147

Wen et al., 2021). Our approach focuses on address- 148

ing bias issues from the perspective of the visual 149

modality. 150
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2.3 Attention Mechanism151

In the context of Visual Question Answering152

(VQA), attention mechanisms are employed to inte-153

grate information from different modalities (et al.,154

2017), allowing models to focus on the most rele-155

vant regions between images and texts. Presently,156

attention-based methodologies include linear atten-157

tion (et al., 2016), co-attention (Lu et al., 2016),158

detection attention (et al., 2017), and relational159

attention (Wu et al., 2018). Consequently, in160

our approach, we explore the integration of atten-161

tion mechanisms into debiasing methods in VQA,162

strengthening the model’s retrieval capabilities be-163

tween images and questions. Leveraging attention164

mechanisms enhances the role of visual informa-165

tion, ultimately aiding in debiasing strategies.166

3 Method167

We now describe the architecture and algorithmic168

flow of FAA. As shown in Fig. 2, the left side illus-169

trates the primary structure of the UpDn baseline170

model (Anderson, 2018), responsible for extract-171

ing visual-language features. On the right side,172

there are stacked Attention_Layers that itera-173

tively mask irrelevant features and make answer174

predictions.175

3.1 Visual Information Combination176

On the left side of Fig. 2, we utilize the UpDn177

encoding layer to extract features. For a given text,178

the UpDn leverages a standard GRU to encode each179

question, generating a question vector. Regarding180

the provided image, UpDn uses the detected visual181

features as input. The visual feature set is repre-182

sented as F = {f1, ..fi.., fn}, where fi denotes183

the feature of the i-th object in the image. In our184

method, we also incorporate factors such as spatial185

position. We re-encode all the outputs from Faster-186

RCNN (Ren et al., 2017) into new visual features.187

The visual input V is represented as Eq. (1),188

V = V isual_Encoder(F, S,Cls,Ari), (1)189

where V isual_Encoder represents the visual en-190

coder responsible for re-encoding the four types191

of features into visual input. These four types of192

features are represented as visual feature vectors193

F , spatial features S, classification scores Cls, and194

attribute information Ari. During the initialization195

phase, this re-encoded visual data V is introduced196

as the visual input for the VQA process.197

Algorithm 1: Forgetting Attention Algo-
rithm
Input :Representation of Object

Detection Outputs:F ,S, Cls, Ari;
Text coded representation:Q;
Number of layers of attention
stack:N ; Attention threshold:α.

Output :Predicted answer probability:A.

Initialize:V ← [F ,S, Cls, Ari], k ← 3.
Function FAA(V , Q):

while n ≤ N do
attv, attq ← SelfAttention(V,Q)
V 1, Q1 ← attv ⊙ V, attq ⊙Q
V 2, Q2 ←
CrossAttention(V 1, Q1)

Att← V 2 ⊙Q2

if Att ≤ α then
Vmask ← 1;

else
Vmask ← 0;

V 3 ← Vmask ⊕ V 2

V,Q← V 3, Q2

A ← V 3, Q2

return A

3.2 Attention Layers 198

In the right side of Fig. 2, we have stacked N 199

layers of Attention_Layer to achieve visual in- 200

formation masking and retrieval. Specifically, the 201

Attention_Layer module consists of three main 202

components: 203

1. Initial Impression. After obtaining visual and 204

text features, the next step in our process is 205

to employ the Self_Attention mechanism. 206

This mechanism helps identify the most criti- 207

cal components within each modality, similar 208

to how humans instinctively react when first 209

encountering an image or text. We establish 210

the model’s initial assessment of the pivotal 211

image regions and word vectors within the 212

provided features. As shown in Algorithm 1, 213

it is defined as follows, 214

attv = Self(V ),

attq = Self(Q),

V 1 = attv ∗ V,
Q1 = attq ∗Q,

(2) 215

where attv and attq represent the initial at- 216

tention. V 1 and Q1 represent the features ob- 217
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Figure 2: Our proposed FAA follows the architecture of the UpDn baseline model, comprising the feature extraction
stage of the UpDn model and the attention layers. The attention layers aim to retrieve information from the encoded
question and image features, facilitating a multi-round retrieval process. In each round of retrieval, an image mask
matrix is constructed to mask out the information deemed irrelevant by the model during this round, retaining
crucial information for subsequent reasoning.

tained after fusing the initial attention with the218

original data.219

2. Cross-Modal Retrieval. With the obtained220

features V 1 and Q1, we consider using221

the Cross_Attention mechanism (Tan and222

Bansal, 2019) to explore information across223

modalities. This step is analogous to how224

humans associate objects with words. We per-225

form cross-modal information retrieval sepa-226

rately in the image and text domains. This is227

defined as Eq. (3),228

V 2 = CrossAttv→q(Q
1, V 1),

Q2 = CrossAttq→v(V
1, Q1),

(3)229

where V 2 and Q2 represent the feature out-230

puts after conducting cross-modal retrieval for231

the image and text, respectively. Cross_Att232

respectively represents the cross-modal infor-233

mation retrieval layer, with ’image’ and ’ques-234

tion’ as the primary modalities.235

3. Masking Matrix. After cross-modal retrieval,236

we calculate the masking matrix for V 2 and237

Q2. Initially, we employ the Top-Down atten-238

tion mechanism (Anderson, 2018) to obtain239

an attention weight matrix Att, which is then240

compared to a predefined threshold α to de-241

termine the masking matrix. As depicted in242

Algorithm 1, this is defined as Eq. (4),243

Att = V 2 ∗Q2,

Vmask = Mask(Att ≤ α),

V 3 = Vmask ⊕ V 2,

(4)244

where Vmask represents the masking matrix, 245

and Mask() denotes the process in which Att 246

is compared to α in Algorithm 1. The value 247

of α is determined by the mean of attention. 248

V 3 represents the features obtained by merg- 249

ing the masking matrix with visual features. 250

⊕ denotes the linear fusion of two types of 251

features. 252

Specifically, in each Attention_Layer, we es- 253

tablish a masking matrix based on the magnitude 254

of attention weights, which masks regions in the 255

image that contribute less to the answer. Through 256

N such Attention_Layers, we allow the model 257

to progressively identify precise regions with high 258

relevance to the given question. 259

4 Experiments 260

4.1 Comparisons with State-of-the-Arts 261

The experimental results on the VQA-CP v2, VQA 262

v2 and VQA-VS(Si et al., 2022) dataset are dis- 263

played in Table 1 and Table 2. Within the table, we 264

list some excellent debiasing endeavors for com- 265

parison. 266

1. We evaluate our approach on three baseline 267

models (UpDn and RUBi), achieving enhance- 268

ments of approximately 19% and 13% com- 269

pared to these models. 270

2. When compared to other attention-based 271

(SCR, AttAlign, HINT) debiasing methods 272

using the same baseline model, our approach 273

delivers performance enhancements in ques- 274

tion types requiring more extensive visual in- 275
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Table 1: The results of VQA-CP v2 test set and VQA v2 val set are presented in the following table. Each column
illustrates the Best performances of each method, excluding data augmentation techniques.

Data set VQA-CP v2 test VQA v2 val

Method Base All Y/N Num. Other All Y/N Num. Other

GVQA - 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65
SAN - 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84
UpDn - 39.96 43.01 12.07 45.82 63.48 81.18 42.14 55.66

HINT UpDn 46.73 67.27 10.61 45.88 63.38 81.18 42.99 55.56
SCR UpDn 49.45 72.36 10.93 48.02 62.30 78.80 41.60 54.50
RUBi UpDn 44.23 67.05 17.48 39.61 - - - -
LMH UpDn 52.01 72.58 31.12 46.97 56.35 65.06 37.63 54.69
AttAlign UpDn 39.37 43.02 11.89 45.00 63.24 80.99 42.55 55.22
GGE-DQ-tog UpDn 57.32 87.04 27.75 49.59 59.11 73.27 39.99 54.39
GenB UpDn 59.15 88.03 40.05 49.25 62.74 86.18 43.859 47.03
RMLVQA UpDn 60.41 89.98 45.96 48.74 59.99 76.68 37.54 53.26
FAA(Ours) UpDn 60.74 83.99 41.45 53.85 62.86 78.65 51.73 54.13

Methods of data augmentation and additional annotation:

CVL UpDn 42.12 45.72 12.45 48.34 - - - -
RandImg UpDn 55.37 83.39 41.60 44.20 - - - -
CSS UpDn 58.95 84.37 49.42 48.24 59.91 77.25 39.77 55.11
Mutant UpDn 61.72 88.90 49.68 50.58 62.56 82.07 42.52 53.28
D-VQA UpDn 61.91 88.93 52.32 50.39 64.96 82.18 44.05 57.54
KDDAug UpDn 60.24 86.13 55.08 48.08 - - - -
FAA(Ours) CSS 61.10 83.27 37.82 54.21 - - - -

formation, particularly in "Num." and "Other"276

question types.277

3. We extend the application of FAA to data aug-278

mentation methods like CSS, resulting in per-279

formance enhancement when combined with280

CSS.281

4. FAA consistently maintains stability and ex-282

hibits a certain level of precision and general-283

ization on the VQA v2 dataset.284

5. Within the VQA-VS dataset, FAA demon-285

strates distinct advantages over models em-286

ploying the same baseline. Additionally, FAA287

exhibits considerable performance when han-288

dling a broader spectrum of bias types.289

4.2 Qualitative results290

As depicted in Figure 3, the original image, after291

two rounds of attentional operations, masks out292

irrelevant areas based on attentional weights in the293

(1), ultimately identifying the target region relevant294

to the answer.295

In Figure 3, more examples are given to ana- 296

lyze the effect of forgotten attention on changes 297

in image areas. For example, in the example of 298

the (2), the image of the animal is the area where 299

the zebra is located, and there is overlap between 300

some areas that are unrelated to the problem and 301

the zebra, which is covered by the FAA to some 302

extent, but most of the zebra area is still captured 303

by the model. Similarly, in the (3) and (4), the areas 304

of the sign is somewhat obscured, but the model 305

still understands the semantics of the remaining 306

areas of the image and gives the correct answer. 307

In the (5), the final answer area is well preserved 308

due to the size of the relevant image area. In the 309

(6), we give an error example. Although the model 310

correctly answers the relevant questions, the model 311

still locates the wrong image region due to similar 312

semantic information in the image. 313

4.3 Abalation Experiments 314

Forgotten Sequence The concept of forgetting at- 315

tention in this paper is based on the process of 316

human answering relevant questions. The ablation 317
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Table 2: Regarding the experimental outcomes of FAA on the VQA-VS dataset, we have presented the relevant
experimental performance reports associated with this dataset. Each column displays the performance results of the
corresponding best and second-performing models.

VQA-VS OOD Test Sets

Model Base Language-based Visual-based multi-modality
mean

QT KW KWP QT+KW KO KOP QT+KO KW+KO QT+KW+KO

UpDn 32.43 45.10 56.06 55.29 33.39 41.31 46.45 54.29 56.92 46.80
+LMH UpDn 33.36 43.97 54.76 53.23 33.72 41.39 46.15 51.14 54.97 45.85

LXMERT - 36.46 51.95 64.17 64.22 37.69 46.40 53.54 62.46 67.44 53.70

FAA(Ours) UpDn 32.45 44.6 56.27 54.96 34.75 43.98 44.47 55.69 55.6 46.97

Q: What sport is this ? 

Prediction: baseball

Answer: baseball

Attention Layer 1 Attention Layer 2

(1)

Q: Can you see this animal at
the zoo? 

Prediction: yes

Answer: yes

Attention Layer 1 Attention Layer 2

(2)

Q: What color is the stop
sign? 

Prediction: red

Answer: red

Attention Layer 1 Attention Layer 2

(3)

Q: What color are the walls ?

Prediction: white

Answer: white

Attention Layer 1 Attention Layer 2

(4)

Q: What is the man holding ?

Prediction: cell phone

Answer: cell phone

Attention Layer 1 Attention Layer 2

(5)

Q: How many colors is the
building on the right painted? 

Prediction: 1
Answer: 1

Attention Layer 1 Attention Layer 2

(6)

Figure 3: The results of qualitative analysis show the
flow of our model when making predictions by masking
different image regions so that the model focuses on the
effective ones

Table 3: Impact of forgetten order on performance.

VQA-CP v2 test

Order Base All Y/N Num. Other

FAA UpDn 60.74 83.99 41.45 53.85
Reverse UpDn 37.86 78.00 15.34 23.00
Linear UpDn 27.13 71.99 6.18 9.37

experiment considers the order of forgetting in the318

algorithm to verify the validity of the concept. The319

table shows the effect of three different sequences320

of attention on the performance of the model:321

1. In the method of this article, we follow the322

normal attention process, pay attention to the323

image areas that are most relevant to the prob-324

lem, and forget the results obtained from the325

irrelevant areas.326

2. In contrast to the normal attention flow, the327

Table 4: Performance corresponding to different atten-
tion thresholds

VQA-CP v2 test

Thresholds Base All Y/N Num. Other

0.5 UpDn 56.84 83.29 43.87 46.54
0.6 UpDn 60.74 83.99 41.45 53.85
0.7 UpDn 59.75 82.85 35.21 54.38

model first notices the areas of the image that 328

are less relevant to the problem, assigns higher 329

weights to them, and finally forgets the areas 330

of the image with lower weights. 331

3. The feature areas in the image are arranged in 332

the original linear order, and the model forgets 333

the relevant features in the same order. 334

By comparing the model performance of differ- 335

ent forgetting sequences, we were able to observe 336

that the FAA achieved excellent performance by 337

forgetting irrelevant regions, while the other forget- 338

ting sequences resulted in decreased performance. 339

This suggests that the human attentional forgetting 340

mechanism on which the FAA is based works. 341

Attention Threshold Selection In this method, 342

we set thresholds to allow the model to filter im- 343

age regions to determine which are forgotten and 344

which are retained. Different threshold sizes make 345

the model achieve different performance when for- 346

getting the image region. If the threshold is too 347

high, the model will forget most of the image re- 348

gion, resulting in the model being unable to obtain 349

useful information from the image, while if the 350

threshold is too low, the model will retain useless 351

information, thus degrading the algorithm to a com- 352

mon attention algorithm. Therefore, this section 353

sets up a comparative analysis of different thresh- 354

old sizes to determine the appropriate parameter as 355
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Table 5: The impact of different feature combinations
on VQA modeling.

Visual Spatial CLS Attribute All

1 ✓ 56.34
2 ✓ ✓ 55.30
3 ✓ ✓ ✓ 54.53
4 ✓ ✓ ✓ ✓ 59.02

Table 6: The performance under different number of
attention layers.

Layers All Yes/No Num. Other Time/Epoch

1 56.95 83.77 42.99 46.72 1048s
2 60.74 83.99 41.45 53.85 1303s
3 57.67 82.66 46.44 47.66 1380s
4 58.56 80.81 50.68 47.26 1532s
5 56.21 84.48 35.66 47.03 1540s

the forgetting threshold. As shown in the table 4,356

the corresponding experimental results of the three357

threshold sizes selected by us are reported.358

Considering the three different choices of atten-359

tion threshold, in the original attention scheme of360

UpDn, the contribution degree of different image361

regions to the answer is realized by the assigned362

weight, whose value is between 0 and 1. Therefore,363

we choose the sizes of 0.5, 0.6 and 0.7 for experi-364

mental comparison. The final experimental results365

show that when the threshold size is 0.6, the ex-366

perimental effect reaches the optimal performance,367

and the forgetting ability of the model reaches the368

equilibrium.369

Visual Information. As shown in Table 5, In our370

method, the output after Faster RCNN detection is371

combined as the visual input of the model in this372

paper. Specifically, we fuse each of the four com-373

binations as new visual feature inputs, confirming374

the benefit of diverse visual information in model375

comprehension.376

Layers Of Attention. As shown in Table 6, We377

set up different levels of attention in the method378

to perform validation experiments. Specifically,379

when humans answer questions by focusing on dif-380

ferent areas in the image, they may go through381

multiple target shifts to determine the final area,382

while in the simulation of a computer, this oper-383

ation can be achieved by setting the number of384

layers of attention. In this experiment, we set up385

a total of five different layers, as you can see the386

model performs the best with three attention layers.387

Table 7: Ablation experiments involving FAA and the
CSS method

Method All Yes/No Num. Other

Q-CSS 56.19 80.83 40.33 47.63
CSS 58.17 84.57 46.99 47.40

FAA+Q-CSS 58.31 80.83 48.90 49.10
FAA+CSS 60.09 88.55 53.16 47.09

Table 8: Experiment on the evaluation metric CGD
using the FAA method on the VQA-CP v2 dataset. Best
results are displayed in each column.

Method CGR CGW CGD

UpDn 44.27 40.63 3.91
RUBi 39.60 33.33 6.27
CSS 46.70 37.89 8.87

GGE-DQ-iter 44.35 27.91 16.44
GGE-DQ-tog 42.74 27.47 15.27
FAA(Ours) 45.09 27.54 17.56

This configuration significantly improves perfor- 388

mance during inference compared to fewer layers. 389

However, increasing the number of layers yields a 390

slightly worse overall accuracy as well as increas- 391

ing inference time by nearly 200 seconds. Thus, 392

we settle on three attention layers. Regarding accu- 393

racy degradation, we believe that this phenomenon 394

arises due to the fact that the model recognizes 395

incorrect visual information and masks relevant 396

regions, thus hindering accurate answer retrieval. 397

Q-CSS. In our approach, we opted for a single- 398

word replacement strategy, combined with FAA. 399

The experimental results in Table 7 encompass a 400

partial replication of the Q-CSS strategy from the 401

CSS method and the QV-CSS strategy, incorporat- 402

ing FAA into both Q-CSS and CSS. Notably, our 403

approach exhibits approximately 2% improvement 404

in accuracy over Q-CSS and CSS. 405

4.4 Analysis of Other Metrics 406

In our approach, we aim to increase the role of 407

visual content in reasoning. To assess its effective- 408

ness, we use additional metrics. In Table 8, we 409

compare our results with other methods using the 410

CGD metric. For a more detailed understanding of 411

CGD, please refer to (Han et al., 2021; Shrestha et 412

al., 2020). Compared to GGE(Han et al., 2021), 413

our approach performs better in terms of CGD, in- 414

dicating improved utilization of visual information 415
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for answer prediction.416

5 Conclusion417

In this paper, we introduce a novel attention mecha-418

nism, the Forget Attention Algorithm (FAA), aimed419

at mitigating language bias. We regard language420

bias as a lack of model comprehension of visual421

content. We artificially mask the image content in422

our method using a "forgetting" strategy, enabling423

the model to mimic human attention flow in each424

iteration for multi-step reasoning. We experiment425

with our method on datasets VQA v2, VQA-CP v2,426

and VQA-VS to validate its effectiveness.427

6 Limitations428

Q: How many colors is the
building on the right painted? 

Prediction: 1
Answer: 1

Attention Layer 1 Attention Layer 2

Figure 4: The answer is correct but relies on incorrect
visual content.

Firstly, as shown in the Fig. 4, the limitations of429

the forgetting attention are reflected in the reliance430

on model knowledge during prediction. When the431

contents of the images are similar and the model432

fails to notice detailed information, it focuses on433

incorrect areas. Secondly, if the model focuses on434

the wrong areas in the initial rounds, subsequent435

corrections cannot be effectively made. The model436

will continue to search for answers within these437

incorrect regions.438
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