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Abstract

At present, in the field of Visual Question An-
swering (VQA), a model’s ability to compre-
hend various modalities is crucial for accu-
rate answer reasoning. However, recent stud-
ies have uncovered prevailing language biases
in VQA, where reasoning frequently relies
on incorrect associations between questions
and answers, rather than genuine multi-modal
knowledge-based reasoning. Thus, it is of great
challenge to reveal the accurate relationship
between image and question. The key idea
of this work is inspired by the process of an-
swering questions of human beings, where peo-
ple always gradually reduce the focus area in
the image with the aid of question information
until the final related area is retained. More
specifically, we introduce a novel attention al-
gorithm, named the Forgotten Attention Algo-
rithm (FAA), where this algorithm gradually
"forgets'' some visual contents after several
rounds. This deliberate forgetting process con-
centrates the model’s "attention" on the image
region that is the most relevant to the ques-
tion. As a result, it can enhance the integra-
tion of image content and thus mitigate lan-
guage biases. We conducted comprehensive
experiments on the VQA-CP v2, VQA v2, and
VQA-VS datasets to validate the efficiency and
robustness of the algorithm.

1 Introduction

In recent years, Visual Question Answering (VQA)
has become one of the prominent tasks in the field
of deep learning (Hudson and Manning, 2019a),
achieving significant accomplishments in various
applications, such as intelligent service systems
(Luo et al., 2023; Wang et al., 2022). However,
recent research has found that many existing VQA
methods tend to rely on false associations between
questions and answers, without sufficiently extract-
ing accurate visual information from images to
answer questions. For example, when answering

questions "What color?", some VQA models are
inclined to use the most common answers from
training data of that type, like "yellow," rather than
extracting genuine color information from images.
Additionally, some studies (et al., 2021; Liu et al.,
2022) have indicated deficiencies in the existing
methods’ understanding of images, resulting in an-
swers generated by the model relying on image
regions with low relevance to the questions. In
other words, specific methods often provide correct
answers based on incorrect image regions, which
does not genuinely reflect the model’s performance
in the question-answering task. Consequently, the
factors affecting the robustness of VQA models can
be summarized into two primary aspects: inherent
biases in the language distribution of training and
testing datasets, and the improper shortcut biases
caused by the inadequate utilization of visual infor-
mation (Liu et al., 2023).

The state-of-the-art and noteworthy methods
primarily revolve around data augmentation tech-
niques and attention-based approaches. Data aug-
mentation methods (Chen et al., 2020) aim to en-
hance a model’s understanding of critical features
within the data by expanding the dataset with sam-
ples, such as counterfactual instances and addi-
tional annotations (Liang et al., 2020; Gokhale et
al., 2020), which help eliminate biases and enhance
robustness (Agarwal, 2020; Wen et al., 2021) by
obtaining more critical sample features and supple-
mentary information. However, it is still of great in-
terest and challenge to remove the language biases
in VQA model without resorting to data augmenta-
tion (Niu et al., 2021). Regarding attention-based
methods(et al., 2017), the majority currently in-
tegrate these into pre-trained models for efficient
feature fusion (Tan and Bansal, 2019; Yu et al.,
2019; Lu et al., 2016; Lu et al., 2022; Anderson,
2018), with limited emphasis on fully utilizing vi-
sual information.

Therefore, we believe that effectively utilizing



What are the people doing?

Wrong Answer: Sitting

Right Answer: Cycling

Figure 1: Due to the presence of biases, the influence of the size of prominent objects in the image on model
reasoning leads to incorrect answers, while the image regions relevant to the answers often occupy a small portion.
FAA achieves this by masking irrelevant regions in the image, allowing the model to focus on image details for

inference.

image content without data augmentation is an ef-
fective approach to mitigating language biases. In
Fig. 1, it is evident that prominent objects (i.e.,
the bench) often dominate the model’s attention,
causing it to overlook the finer image area that is
relevant to the question (i.e., the people). This ob-
servation poses a new challenge: how to focus on
the right image area that is the most relevant to the
question. To address this problem, we are inspired
by the process of answering questions of human
beings, where people always gradually reduce the
focus area in the image with the aid of question
information until the final related area is retained.

In this paper, specifically, we introduce a novel
attention algorithm, named the Forgotten Atten-
tion Algorithm (FAA), where this algorithm iter-
atively ""forgets'' some visual contents after each
round, that is, disregarding irrelevant image infor-
mation. Through multiple iterations, the model pro-
gressively identifies more relevant regions within
the image. As shown in Fig. 1, FAA gradually
masks less relevant regions, resulting in effectively
harnessing related image information. The retained
image is then utilized for the final answer reason-
ing, thus alleviating the influence of salient objects
in the image that are not related to the question.

Overall, this paper’s contributions are delineated
as follows:

1. We introduce a novel forgetfulness attention
algorithm (FAA) aimed at mitigating biases
in VQA. The FAA achieves robust VQA by
focusing on forgetting unimportant informa-
tion and reinforcing the role of correct visual
content in reasoning.

2. On VQA-CP v2, our enhancements in lever-
aging visual information led to optimal per-

formance. Notably, without additional anno-
tations, our approach attained a 20.78% im-
provement compared to the UpDn baseline
model. Code is available at:https://github.
com/EASONGLLL/FAA-VQA.

2 Related work

2.1 Visual Question Answering

The VQA task demands accurate model responses
to image-related questions. Since its inception, this
field has seen the emergence of various pertinent
datasets and multimodal fusion techniques, such
as VQA v2(Antol et al., 2015), GQA(Hudson and
Manning, 2019b), CLEVR(Johnson et al., 2016),
OK-VQA(Marino et al., 2019), and VideoQA(Tu
et al., 2013) rooted in video datasets. Presently,
methods based on single-stream and dual-stream
architectures(Yang et al., 2019; Wang et al., 2019;
Izacard and Grave, 2021; Rajpurkar et al., 2018;
Chen et al., 2020) achieve high accuracy by exten-
sively pretraining on abundant samples.

2.2 Language Bias

In recent research, researchers have proposed a
range of debiasing methods to address language
bias concerning existing defined bias issues. These
methods include adversarial-based techniques (Ra-
makrishnan et al., 2018), regularization approaches
(Niu et al., 2021; Han et al., 2021; Abbasnejad
et al., 2020; Cho et al., 2023; Basu et al., 2023),
and data augmentation strategies (Chen et al., 2020;
Wen et al., 2021). Our approach focuses on address-
ing bias issues from the perspective of the visual
modality.
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2.3 Attention Mechanism

In the context of Visual Question Answering
(VQA), attention mechanisms are employed to inte-
grate information from different modalities (et al.,
2017), allowing models to focus on the most rele-
vant regions between images and texts. Presently,
attention-based methodologies include linear atten-
tion (et al., 2016), co-attention (Lu et al., 2016),
detection attention (et al., 2017), and relational
attention (Wu et al., 2018). Consequently, in
our approach, we explore the integration of atten-
tion mechanisms into debiasing methods in VQA,
strengthening the model’s retrieval capabilities be-
tween images and questions. Leveraging attention
mechanisms enhances the role of visual informa-
tion, ultimately aiding in debiasing strategies.

3 Method

We now describe the architecture and algorithmic
flow of FAA. As shown in Fig. 2, the left side illus-
trates the primary structure of the UpDn baseline
model (Anderson, 2018), responsible for extract-
ing visual-language features. On the right side,
there are stacked Attention_Layers that itera-
tively mask irrelevant features and make answer
predictions.

3.1 Visual Information Combination

On the left side of Fig. 2, we utilize the UpDn
encoding layer to extract features. For a given text,
the UpDn leverages a standard GRU to encode each
question, generating a question vector. Regarding
the provided image, UpDn uses the detected visual
features as input. The visual feature set is repre-
sented as F' = {f1,..fi.., fn}, Where f; denotes
the feature of the i-th object in the image. In our
method, we also incorporate factors such as spatial
position. We re-encode all the outputs from Faster-
RCNN (Ren et al., 2017) into new visual features.
The visual input V is represented as Eq. (1),

V = Visual_Encoder(F,S,Cls, Ari), (1)

where Visual_Encoder represents the visual en-
coder responsible for re-encoding the four types
of features into visual input. These four types of
features are represented as visual feature vectors
F, spatial features .S, classification scores C'ls, and
attribute information Ari. During the initialization
phase, this re-encoded visual data V' is introduced
as the visual input for the VQA process.

Algorithm 1: Forgetting Attention Algo-
rithm
Input

:Representation of Object
Detection Outputs: F, S, Cls, Ari;
Text coded representation:(Q);
Number of layers of attention
stack: NV ; Attention threshold:c.

Output : Predicted answer probability:.A.

Initialize:V < [F, S, Cls, Ari|, k < 3.
Function FAA(V, Q):
while n < N do
att,, atty <— Sel f Attention(V, Q)
VE Q! «+ att, © V,att, © Q
V2 Q%
CrossAttention(V', Q')
Att + V2 0 Q?
if Att < « then
‘ Vinask < 15
else
L Vinask < 0;
V3 Viypask ® V2
L V,Q <« V3, Q?
| A V3,Q?
return A

3.2 Attention Layers

In the right side of Fig. 2, we have stacked N
layers of Attention_Layer to achieve visual in-
formation masking and retrieval. Specifically, the
Attention_Layer module consists of three main
components:

1. Initial Impression. After obtaining visual and
text features, the next step in our process is
to employ the Self_Attention mechanism.
This mechanism helps identify the most criti-
cal components within each modality, similar
to how humans instinctively react when first
encountering an image or text. We establish
the model’s initial assessment of the pivotal
image regions and word vectors within the
provided features. As shown in Algorithm 1,
it is defined as follows,

att, = Self(V),
atty = Self(Q),
Vi=att, xV,
Q' = att, * Q,

where att, and att, represent the initial at-
tention. V! and Q! represent the features ob-
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Figure 2: Our proposed FAA follows the architecture of the UpDn baseline model, comprising the feature extraction
stage of the UpDn model and the attention layers. The attention layers aim to retrieve information from the encoded
question and image features, facilitating a multi-round retrieval process. In each round of retrieval, an image mask
matrix is constructed to mask out the information deemed irrelevant by the model during this round, retaining

crucial information for subsequent reasoning.

tained after fusing the initial attention with the
original data.

2. Cross-Modal Retrieval. With the obtained
features V! and Q!, we consider using
the Cross_Attention mechanism (Tan and
Bansal, 2019) to explore information across
modalities. This step is analogous to how
humans associate objects with words. We per-
form cross-modal information retrieval sepa-
rately in the image and text domains. This is
defined as Eq. (3),

V? = CrossAtt, ,,(Q', V1),

Q* = CrossAtt,,(V',Qb), ©)
where V2 and Q? represent the feature out-
puts after conducting cross-modal retrieval for
the image and text, respectively. Cross_Att
respectively represents the cross-modal infor-
mation retrieval layer, with *image’ and ’ques-
tion’ as the primary modalities.

3. Masking Matrix. After cross-modal retrieval,
we calculate the masking matrix for V2 and
Q?. Initially, we employ the Top-Down atten-
tion mechanism (Anderson, 2018) to obtain
an attention weight matrix At¢t, which is then
compared to a predefined threshold « to de-
termine the masking matrix. As depicted in
Algorithm 1, this is defined as Eq. (4),

Att = V%« Q?,
Vinask = Mask(Att < «),
V3 = Vmask @ V27

“)

where V.51 represents the masking matrix,
and M ask() denotes the process in which Att
is compared to « in Algorithm 1. The value
of « is determined by the mean of attention.
V3 represents the features obtained by merg-
ing the masking matrix with visual features.
@ denotes the linear fusion of two types of
features.

Specifically, in each Attention_Layer, we es-
tablish a masking matrix based on the magnitude
of attention weights, which masks regions in the
image that contribute less to the answer. Through
N such Attention_Layers, we allow the model
to progressively identify precise regions with high
relevance to the given question.

4 Experiments

4.1 Comparisons with State-of-the-Arts

The experimental results on the VQA-CP v2, VQA
v2 and VQA-VS(Si et al., 2022) dataset are dis-
played in Table 1 and Table 2. Within the table, we
list some excellent debiasing endeavors for com-
parison.

1. We evaluate our approach on three baseline
models (UpDn and RUBI), achieving enhance-
ments of approximately 19% and 13% com-
pared to these models.

2. When compared to other attention-based
(SCR, AttAlign, HINT) debiasing methods
using the same baseline model, our approach
delivers performance enhancements in ques-
tion types requiring more extensive visual in-



Table 1: The results of VQA-CP v2 test set and VQA v2 val set are presented in the following table. Each column
illustrates the Best performances of each method, excluding data augmentation techniques.

Data set VQA-CP v2 test VQA v2 val

Method Base All Y/N Num. Other All Y/N Num. Other
GVQA - 31.30 57.99 13.68 22.14 48.24  72.03 31.17 34.65
SAN - 2496 38.35 11.14 21.74 5241 70.06 39.28 47.84
UpDn - 39.96 43.01 12.07 45.82 6348 81.18 42.14  55.66
HINT UpDn 46.73 67.27 10.61 45.88 63.38 81.18 42.99 55.56
SCR UpDn 4945 7236 10.93 48.02 62.30 78.80 41.60 54.50
RUBI UpDn 4423 67.05 17.48 39.61 - - - -
LMH UpDn 52.01 7258 31.12 46.97 56.35 65.06 37.63 54.69
AttAlign UpDn 39.37 43.02 11.89 45.00 63.24 80.99  42.55 55.22
GGE-DQ-tog UpDn 57.32 87.04 27.75 49.59 59.11  73.27 39.99 54.39
GenB UpDn 59.15 88.03 40.05 49.25 62.74 86.18 43.859 47.03
RMLVQA UpDn 60.41 89.98 45.96 48.74 59.99  76.68 37.54 5326
FAA(Ours) UpDn 60.74 8399 41.45 53.85 62.86  78.65 51.73 54.13

Methods of data augmentation and additional annotation:

CVL UpDn 42.12 4572 1245 48.34 - - - -
RandImg UpDn 5537 8339 41.60 44.20 - - - -
CSS UpDn 58.95 8437 4942 48.24 5991 77.25 39.77 55.11
Mutant UpDn 61.72 8890 49.68 50.58 62.56 82.07 42.52  53.28
D-VQA UpDn 6191 8893 52.32 50.39 6496 82.18  44.05 57.54
KDDAug UpDn 60.24 86.13 55.08 48.08 - - - -
FAA(Ours) CSS 61.10 83.27 37.82 54.21 - - - -

formation, particularly in "Num." and "Other"
question types.

3. We extend the application of FAA to data aug-
mentation methods like CSS, resulting in per-
formance enhancement when combined with
CSS.

4. FAA consistently maintains stability and ex-
hibits a certain level of precision and general-
ization on the VQA v2 dataset.

5. Within the VQA-VS dataset, FAA demon-
strates distinct advantages over models em-
ploying the same baseline. Additionally, FAA
exhibits considerable performance when han-
dling a broader spectrum of bias types.

4.2 Qualitative results

As depicted in Figure 3, the original image, after
two rounds of attentional operations, masks out
irrelevant areas based on attentional weights in the
(1), ultimately identifying the target region relevant
to the answer.

In Figure 3, more examples are given to ana-
lyze the effect of forgotten attention on changes
in image areas. For example, in the example of
the (2), the image of the animal is the area where
the zebra is located, and there is overlap between
some areas that are unrelated to the problem and
the zebra, which is covered by the FAA to some
extent, but most of the zebra area is still captured
by the model. Similarly, in the (3) and (4), the areas
of the sign is somewhat obscured, but the model
still understands the semantics of the remaining
areas of the image and gives the correct answer.
In the (5), the final answer area is well preserved
due to the size of the relevant image area. In the
(6), we give an error example. Although the model
correctly answers the relevant questions, the model
still locates the wrong image region due to similar
semantic information in the image.

4.3 Abalation Experiments

Forgotten Sequence The concept of forgetting at-
tention in this paper is based on the process of
human answering relevant questions. The ablation



Table 2: Regarding the experimental outcomes of FAA on the VQA-VS dataset, we have presented the relevant
experimental performance reports associated with this dataset. Each column displays the performance results of the
corresponding best and second-performing models.

VQA-VS OOD Test Sets

Model Base Language-based Visual-based multi-modality mean
QT KW KWP QT+KW KO KOP QT+KO KW+KO QT+KW+KO

UpDn 3243  45.10 56.06 5529 3339 4131 4645 54.29 56.92 46.80

+LMH UpDn 3336 4397 54.76 5323 3372 4139  46.15 51.14 54.97 45.85

LXMERT - 36.46 5195 64.17 6422 37.69 4640 53.54 62.46 67.44 53.70

FAA(Ours) UpDn 3245 446 5627 5496 3475 4398 4447 55.69 55.6 46.97

(&) (6)

Figure 3: The results of qualitative analysis show the
flow of our model when making predictions by masking
different image regions so that the model focuses on the
effective ones

Table 3: Impact of forgetten order on performance.

VQA-CP v2 test

Table 4: Performance corresponding to different atten-
tion thresholds

VQA-CP v2 test

Thresholds Base All Y/N  Num. Other
0.5 UpDn 56.84 83.29 43.87 46.54
0.6 UpDn 60.74 83.99 41.45 53.85
0.7 UpDn 59.75 82.85 35.21 54.38

model first notices the areas of the image that
are less relevant to the problem, assigns higher
weights to them, and finally forgets the areas
of the image with lower weights.

3. The feature areas in the image are arranged in
the original linear order, and the model forgets
the relevant features in the same order.

By comparing the model performance of differ-
ent forgetting sequences, we were able to observe
that the FAA achieved excellent performance by
forgetting irrelevant regions, while the other forget-

Order Base All YN Num. Other ting sequences resulted in decreased performance.

FAA  UpDn 60.74 83.99 41.45 53.85 This suggests that the human attentional forgetting
Reverse UpDn 37.86 78.00 15.34 23.00 mechanism on which the FAA is based works.
Linear UpDn 27.13 7199 6.18 9.37 Attention Threshold Selection In this method,

experiment considers the order of forgetting in the
algorithm to verify the validity of the concept. The
table shows the effect of three different sequences
of attention on the performance of the model:

1. In the method of this article, we follow the
normal attention process, pay attention to the
image areas that are most relevant to the prob-
lem, and forget the results obtained from the
irrelevant areas.

2. In contrast to the normal attention flow, the

we set thresholds to allow the model to filter im-
age regions to determine which are forgotten and
which are retained. Different threshold sizes make
the model achieve different performance when for-
getting the image region. If the threshold is too
high, the model will forget most of the image re-
gion, resulting in the model being unable to obtain
useful information from the image, while if the
threshold is too low, the model will retain useless
information, thus degrading the algorithm to a com-
mon attention algorithm. Therefore, this section
sets up a comparative analysis of different thresh-
old sizes to determine the appropriate parameter as



Table 5: The impact of different feature combinations
on VQA modeling.

Table 7: Ablation experiments involving FAA and the
CSS method

Visual Spatial CLS Attribute  All Method All  Yes/No Num. Other
1 v 56.34 Q-CSS 56.19 80.83 4033 47.63
2 v v 55.30 CSS 58.17 84.57 4699 47.40
3 v v v 54.53 FAA+Q-CSS 58.31 80.83 4890 49.10
4 v v v v 59.02 FAA+CSS 60.09 8855 53.16 47.09

Table 6: The performance under different number of
attention layers.

Layers All  Yes/No Num. Other Time/Epoch
1 56.95 83.77 4299 46.72 1048s
2 60.74 8399 41.45 53.85 1303s
3 57.67 82.66 46.44 47.66 1380s
4 5856 80.81 50.68 47.26 1532s
5 56.21 8448 35.66 47.03 1540s

the forgetting threshold. As shown in the table 4,
the corresponding experimental results of the three
threshold sizes selected by us are reported.

Considering the three different choices of atten-
tion threshold, in the original attention scheme of
UpDn, the contribution degree of different image
regions to the answer is realized by the assigned
weight, whose value is between 0 and 1. Therefore,
we choose the sizes of 0.5, 0.6 and 0.7 for experi-
mental comparison. The final experimental results
show that when the threshold size is 0.6, the ex-
perimental effect reaches the optimal performance,
and the forgetting ability of the model reaches the
equilibrium.

Visual Information. As shown in Table 5, In our
method, the output after Faster RCNN detection is
combined as the visual input of the model in this
paper. Specifically, we fuse each of the four com-
binations as new visual feature inputs, confirming
the benefit of diverse visual information in model
comprehension.

Layers Of Attention. As shown in Table 6, We
set up different levels of attention in the method
to perform validation experiments. Specifically,
when humans answer questions by focusing on dif-
ferent areas in the image, they may go through
multiple target shifts to determine the final area,
while in the simulation of a computer, this oper-
ation can be achieved by setting the number of
layers of attention. In this experiment, we set up
a total of five different layers, as you can see the
model performs the best with three attention layers.

Table 8: Experiment on the evaluation metric CGD
using the FAA method on the VQA-CP v2 dataset. Best
results are displayed in each column.

Method CGR CGW CGD
UpDn 44.27 40.63 391
RUBIi 39.60 33.33 6.27

CSS 46.70 37.89 8.87
GGE-DQ-iter 44.35 2791 16.44
GGE-DQ-tog 42.74 27.47 15.27

FAA(Ours) 45.09 27.54 17.56

This configuration significantly improves perfor-
mance during inference compared to fewer layers.
However, increasing the number of layers yields a
slightly worse overall accuracy as well as increas-
ing inference time by nearly 200 seconds. Thus,
we settle on three attention layers. Regarding accu-
racy degradation, we believe that this phenomenon
arises due to the fact that the model recognizes
incorrect visual information and masks relevant
regions, thus hindering accurate answer retrieval.
Q-CSS. In our approach, we opted for a single-
word replacement strategy, combined with FAA.
The experimental results in Table 7 encompass a
partial replication of the Q-CSS strategy from the
CSS method and the QV-CSS strategy, incorporat-
ing FAA into both Q-CSS and CSS. Notably, our
approach exhibits approximately 2% improvement
in accuracy over Q-CSS and CSS.

4.4 Analysis of Other Metrics

In our approach, we aim to increase the role of
visual content in reasoning. To assess its effective-
ness, we use additional metrics. In Table 8, we
compare our results with other methods using the
CGD metric. For a more detailed understanding of
CGD, please refer to (Han et al., 2021; Shrestha et
al., 2020). Compared to GGE(Han et al., 2021),
our approach performs better in terms of CGD, in-
dicating improved utilization of visual information



for answer prediction.

5 Conclusion

In this paper, we introduce a novel attention mecha-
nism, the Forget Attention Algorithm (FAA), aimed
at mitigating language bias. We regard language
bias as a lack of model comprehension of visual
content. We artificially mask the image content in
our method using a "forgetting" strategy, enabling
the model to mimic human attention flow in each
iteration for multi-step reasoning. We experiment
with our method on datasets VQA v2, VQA-CP v2,
and VQA-VS to validate its effectiveness.

6 Limitations

Figure 4: The answer is correct but relies on incorrect
visual content.

Firstly, as shown in the Fig. 4, the limitations of
the forgetting attention are reflected in the reliance
on model knowledge during prediction. When the
contents of the images are similar and the model
fails to notice detailed information, it focuses on
incorrect areas. Secondly, if the model focuses on
the wrong areas in the initial rounds, subsequent
corrections cannot be effectively made. The model
will continue to search for answers within these
incorrect regions.
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