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ABSTRACT

The ability to preserve local geometry of highly nonlinear manifolds in high
dimensional spaces and properly unfold them into lower dimensional hyperplanes
is the key to the success of manifold computing, nonlinear dimensionality reduction
(NLDR) and visualization. This paper proposes a novel method, called elastic
locally isometric smoothness (ELIS), to empower deep neural networks with such
an ability. ELIS requires that a desired metric between points should be preserved
across layers in order to preserve local geometry; such a smoothness constraint
effectively regularizes vector-based transformations to become well-behaved local
metric-preserving homeomorphisms. Moreover, ELIS requires that the smoothness
should be imposed in a way to render sufficient flexibility for tackling complicated
nonlinearity and non-Euclideanity; this is achieved layer-wisely via nonlinearity in
both the similarity and activation functions. The ELIS method incorporates a class
of suitable nonlinear similarity functions into a two-way divergence loss and uses
hyperparameter continuation in finding optimal solutions. Extensive experiments,
comparisons, and ablation study demonstrate that ELIS can deliver results not
only superior to UMAP and t-SNE for and visualization but also better than other
leading counterparts of manifold and autoencoder learning for NLDR and manifold
data generation.

1 INTRODUCTION

Manifold learning aims to find from a set of higher dimensional data its embedding or represen-
tation in a low dimensional latent space. Nonlinear dimensionality reduction (NLDR) aims to
construct a transformation that is generalizable to unseen data. It is hoped that the lower dimensional
representation can be used in conjunction with a simple metric such as the Euclidean distance for
downstream tasks such as classification and visualization. Manifold data generation performs the
inverse transformation to generate data from samples in the latent space. We call this collection of
manifold related problems manifold computing. The basis for manifold computing is the manifold
assumption (Mikhail Belkin, 2002; Fefferman et al., 2016).

Great advances have been made in the past two decades in manifold computing and visualization.
ISOMAP (Tenenbaum et al., 2000) and LLE (locally linear embedding) (Roweis & Saul, 2000) are
classic methods for manifold learning. More recent developments include local geometry-based
method (Gashler et al., 2008; Zhang & Wang, 2007; Chen & Buja, 2009; McQueen et al., 2016),
graph spectral analysis (Donoho & Grimes, 2003) and latent variable models (Saul, 2020). The most
popular high dimensional data visualization methods to date are t-SNE (Maaten, 2014) and UMAP
(McInnes et al., 2018), with wide applications such as bio-science and technology (Becht et al., 2019;
Dorrity et al., 2020). While the aforementioned are traditional machine learning, deep learning-based
methods include autoencoders (Hinton & Salakhutdinov, 2006; Moor et al., 2020). The problem can
be considered from the viewpoints of geometry deep learning (Bronstein et al., 2017)) and topology
data analysis (Wasserman, 2018; Moor et al., 2020).

The ability to preserve geometric structure of nonlinear manifolds and properly unfold them into lower
dimensional hyperplanes is the key to the success of manifold-based computing and visualization.
Recently, Markov-Lipschitz deep learning (MLDL) (Li et al., 2020) is proposed as a general
framework for manifold learning, NLDR, visualization and manifold data generation. The idea is
to impose the constraint of geometric isometry across neural network layers to preserve the local
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geometric structure of manifold data. This effectively transforms a vector-based transformation
of conventional neural networks into a local distance-preserving homeomorphism. Such local
homeomorphisms avoid the transformation from collapse, twisting, or crossing, so as to improve
generalization, stability, and robustness. Locally isometric smoothness (LIS) (Li et al., 2020),
which imposes straight distance-preserving, is proposed as a method in the MLDL framework. LIS
has demonstrated significant advantages in manifold learning and NLDR.

This paper proposes a more advanced method in the MLDL framework, called elastic locally
isometric smoothness (ELIS), aimed to empower deep neural networks with ability to tackle the
high nonlinearity and non-Euclideanity challenges arising from complicated manifolds in high
dimension spaces that LIS is unable to cope with. Whereas LIS preserves the straight distances
between neighboring points, ELIS is based on a similarity metric that is nonlinear in distance and a
two-way divergence loss (of nearby neighbors and far-away pairs, respectively); this renders more
flexibility and capacity in tackling the challenges yet under the control of the ELIS regularization.
As the result, ELIS bridges gaps between non-Euclidean manifolds in the input space and resulting
Euclidean hyperplanes in the learned lower dimensional latent space, with geometric structure of
the manifolds preserved. Both ELIS and LIS can be considered as a form of graph neural networks
(GNN) (Scarselli et al., 2009) but without the aggregation generally present in GNNs. They are more
like what is called “manifold learning 2.0” (Bronstein, 2020).

Table 1: Functional Capability of Different Methods

ELIS,LIS AE,VAE,TopoAE ISOMAP,LLE,UMAP,t-SNE

Manifold learning without decoder Yes No Yes
Learned NLDR applicable to test data Yes Yes No
Generate data of learned manifolds Yes No No
Compatible with other NN architectures Yes No No
Scalable to large datasets Yes Yes No

The distinctive features of ELIS (and LIS) in comparison with related methods are summarized in
Table 1. ELIS-based neural networks can accomplish all the functionalities in the general MLDL
framework, for which none of the methods can achieve. Extensive experiments, comparisons, and
ablation study demonstrate that ELIS-based neural networks produce results not only superior to
the SOTA t-SNE and UMAP for NLDR and visualization but also better than other algorithms of
manifold and autoencoder learning, including LIS, for NLDR and manifold data generation. The
main contributions of this paper are summarized below:

(1) Proposing the ELIS constraint in the MLDL framework, based on a similarity metric which
is nonlinear in distance. It inherits the metric-preserving property of LIS so that the resulting
layer-wise transformation is geometrically smooth, hence topologically homeomorphic,
yet possesses more flexibility than LIS in handling highly nonlinear manifolds in high
dimensional spaces.

(2) Proposing conditions for a class of nonlinear similarity functions for converting from
distance to similarity, in conjunction with a two-way divergence loss. This ensures the
metric-preserving and neighbor-confining properties.

(3) Proposing two instances of ELIS-based neural networks: an ELIS encoder for manifold
learning and visualization and an ELIS autoencoder for manifold reconstruction and data
generation.

(4) Providing several SOTA results that surpass UMAP and other leading algorithms.

In the following, Section 2 introduces LIS and presents ELIS formulations, and the Section 3 presents
extensive experiments. The code is provided in the Supplementary Material.

2 ELASTIC LOCALLY ISOMETRIC SMOOTHNESS

Both ELIS and LIS are formulated in the MLDL framework (illustrated in Fig.A1 in Appendix)
which is aimed to regularize neural transformations through imposing the ELIS constraint between
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layers to achieve certain well-behaving properties. However, the ELIS formulation tackles challenges
of highly nonlinear manifold data in high dimensional spaces using a more flexible and effective way,
much inspired by t-SNE (Maaten, 2014) and UMAP (McInnes et al., 2018). Let X = {x1, . . . , xM}
be a set of M samples in the input space RN with the index set S = {1, . . . ,M}. These samples
may come from one or several lower dimensional manifoldsMX ⊂ RN . WhenMX is Riemannian,
its tangent subspace Tx(MX) at any x ∈ MX is locally isomorphic to an Euclidean space of
dimensionality dim(MX) < N . Therefore, we can use a cascade of nonlinear neural transformations
to "unfold" nonlinear manifolds in a high dimensional input space into hyper-planar regions in a
lower dimensional latent space.

Both ELIS and LIS aim to accomplish the following 4 tasks, of which few neural networks can
do all: (1) Manifold learning: to learn an embedding in a latent spaceMZ ⊂ Rn, where n < N ,
based on the local structure of X . (2) Representation Learning: to learn the underlying mapping
Φ : MX =⇒ MZ for the embedding that is generalizable to unseen data x 6∈ X,x ∈ MX . (3)
Visualization: to visualize the embedding in 2D or 3D space. (4) Manifold generation: to find the
inverse mapping Φ−1 :MZ =⇒MX and generate new data onMX from samples inMZ . ELIS
is aimed to surpass LIS.

2.1 THE LIS CONSTRAINT AND NEURAL NETWORKS

The LIS constraint is aimed to best preserve the local distances of the data between two metric spaces,
encouraging a vector-based neural transformation Φ(X |W ), where W is the transformation matrix
of the neural network, to become a well-behaved local distance-preserving homeomorphism. This can
be achieved by adding the following LIS loss (Li et al., 2020), imposed between two layers (metric
spaces) l and l′

L(l,l′)
LIS (W ) =

∑
i∈S

∑
j∈N (l)

i

∣∣∣d(x
(l)
i , x

(l)
j )− d(x

(l′)
i , x

(l′)
j ))

∣∣∣ (1)

where d : X ×X → R≥0 is a dissimilarity metric, x(l
′)

i = Φ(x
(l)
i |W ) is the result of the effective

transformation Φ from layer l to l′, and Ni is the set of neighbors of i. Without prior knowledge, dij
is usually computed as the Euclidean distance, albeit it may not well reflect the reality. It is hoped that
after a series of proper nonlinear transformations, the input data is transformed into an embedding in
the latent space such that the Euclidean distance make more sense in describing mutual relationships
between points. In this work, we aim to find such transformations.

The LIS loss effectively minimizes the bi-Lipschitz constant of Φ. It is through the neighborhood
system, N = {Ni | i ∈ S}, that the influence of a point on the others is propagated to afar. For
this reason, the collection of random variable x(l) constitutes a Markov random field. Equ. (1) is
defined w.r.t. Ni (Markovianity) and aimed to minimizing the bi-Lipschitz constant, hence the name
Markov-Lipschitz (Li et al., 2020).

The basic LIS loss is augmented by an auxiliary "push-way" term (Li et al., 2020)

L(l,l′)
push(W ) = −

∑
i∈S

∑
j 6∈j∈N (l)

i

π[dl′(x
(l′)
i , x

(l′)
j ) < B] dl′(x

(l′)
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(l′)
j ) (2)

in which π[·] ∈ {0, 1} is the indicator function and B is a bound. This term is aimed to help "unfold"
nonlinear manifolds, by exerting a spring force to push away from each other those pairs (i, j) which
are non-neighbors at layer l but nearby (distance smaller than B) at layer l′.

These two losses are combined to form a LIS-based encoder loss for manifold learning and dimension
reduction

LEnc =
∑
(l,l′)

L(l,l′)
LIS (W ) + µL(l,l′)

push(W ) (3)

where µ is a weight and (l, l′) is summed over a set of designated layer pairs (currently designed
manually). A LIS-based autoencoder can be formulated by applying the LIS constraint between
layers within the decoder and between the encoder and decoder layers. LIS-based neural networks
have significant advantages (Li et al., 2020).
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2.2 THE ELIS CONSTRAINT

The proposed ELIS constraint is aimed to tackle difficulties in “flattening" highly nonlinear manifolds
in a high dimensional space into hyperplanes in a lower dimensional space. It imposes a more flexible
nonlinear similarity-preserving constraint as opposed to the distance-preserving (isometry) constraint
of Vanila LIS. More specifically, ELIS transforms a distance into a similarity metric using a nonlinear
function and defines a KL loss based on similarities between nearby pairs and far-away pairs. This
makes the metric-preserving constraint of ELIS more flexible than the straight distance-preserving of
LIS to accomplish the challenging task.

Moreover, ELIS requires that the smoothness should be imposed in a way to render sufficient
flexibility for tackling complicated nonlinearity and non-Euclideanity; this is achieved layer-wisely
via nonlinearity in both the similarity and activation functions.

Converting distance to similarity. Following UMAP, we assume that X(l) is fixed (e.g., the input
layer) and X(l′) at subsequent layers l′ are computed as a result of manifold learning. The nonlinear
similarities between xi and xj at each layer is computed as follows. First, define an nearest neighbor
(NN)-normalized distance

di|j
def
= d(xi, xj)− ρi ≥ 0 (4)

where ρi = d(xi, xnn(i)) in which xnn(i) denotes the nearest neighbor of xi. Then, di|j is converted
to a similarity metric ui|j = g(di|j) ∈ [0, 1] where g is a nonlinear function.

We require that g(η) satisfy the following necessary conditions ∀η = di|j ≥ 0:

Condition (1) – it is monotonically decreasing, g′(η) < 0 for η > 0;
Condition (2) – its first derivative diminishes in the limit, limη→∞ |g′(η)| = 0.

The first condition ensues a monotonic and inverse relationship between the distance and the similarity.
The second condition effectively leads to a neighborhood system bounded softly as opposed to the
"hard" bounded neighborhoods in the LIS and provides proper control on contributions of neighboring
points to the back-propagation of neural network learning.

We further require that the g(η) to be a function of η2 – for convenience not necessity, such that
its first derivative take the form g′(η) = 2ηh(η) where h(η) is also a function of η2. h(η) can
be called influence function because it controls how the other neighboring point xj can influence
xi. Condition (2) above restricts the influence from "far-away" point xj on xi (between which the
distance ηij = ‖xi − xj‖ is relatively large) to diminish in the back-propagation process. This
provides a properly weighted neighborhood system w.r.t. which the influence between points is
limited with certain scope adaptively.

Specifically for ELIS, we define the following σi-data-adaptive, ν-parameterized nonlinear similarity

ui|j(σi, ν) = g(di|j | σi, ν) = Cν

(
1 +

d2i|j

σi ν

)−(ν+1)

, (5)

where ν ∈ R+ is similar to the degree of freedom (DoF) parameter in the t-distribution,

Cν = 2π

(
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

))2

(6)

is a function of ν which sets the limit limν→+∞ g(0 | σi, ν) = 1 (∀σi > 0)), and the data-adaptive
parameter σi > 0, playing a calibration role, is estimated from the data by best fitting the equation∑

j 6=i

ui|j(σi, ν) = log2Q (7)

for the perplexity-like hyperparameter Q given. While other choices satisfying the aforementioned
necessary conditions, including the normalized Gaussian and Cauchy functions used in t-SNE
(Maaten, 2014) and the fitted polynomial function used in UMAP (McInnes et al., 2018), can also
work for ELIS, we find Equ. (5) a better choice not only because it produces better results but also
because we can use the ν parameter as a continuation tool for preventing the training from converging
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to bad local minima and for controlling separation margin between different manifolds, as will be
shown in the ablation study.

Computing similarities uij and u′ij . Because the symmetry ui|j = uj|i does not hold due to
differences in σi for the input layer (l), the following symmetrization is performed

uij = uj|i + ui|j − uj|iui|j . (8)
On the other hand, for the subsequent latent layers, the computation of σi and ρi for each i would
bring about huge computational costs. To overcome this problem, we directly set σ′i = 1 and ρ′i = 0
(this also ensures the symmetry u′i|j = u′j|i). While σi and ρi are needed to deal with unevenness
and outliers of the data for the input layer, the necessity becomes not so demanding as the layer
goes deeper after layers of nonlinear manifold unfolding. From u

(l)
ij of layer l can be constructed a

weighted graph G(S, X(l), U (l)) consisting of a set S of nodes with node attributes X(l) and edge
attributes (weights) U (l) = {u(l)ij ≥ ε > 0 | ∀i, j ∈ S}. The global structure of a manifold is
discovered from local geometry of data through the graph G.

Formulating the ELIS losse. ELIS transforms the distance metric dij into a similarity metric using
a nonlinear function uij = g(dij) and defines the ELIS loss between layers l and l′, in terms of
similarities u(l)ij | i, j ∈ S, i 6= j} at layers l and its counterpart U (l′) = {u(l

′)
ij | i, j ∈ S, i 6= j}

at layers l′. The ELIS loss is defined by what we call the two-way divergence (a.k.a. the fuzzy
information for discrimination (Bhandari & Pal, 1993) and the fuzzy set cross entropy in UMAP
(McInnes et al., 2018))

L(l,l′)
ELIS(W | X(l), X(l′)) =

∑
i,j∈S,i6=j

u
(l)
ij log

u
(l)
ij

u
(l′)
ij

+ (1− u(l)ij ) log
1− u(l)ij
1− u(l

′ )
ij

(9)

The first term is the directed divergence of the two fuzzy sets of similarities, in lieu of the LIS’
distance-preserving term of Equ. (1); the second term can be considered as the directed divergence of
the two corresponding complement fuzzy sets, replacing the push-way term of Equ. (2).

Equ.(9) is called the "two-way divergence" because the first term on the right side of the equation
imposes similarity-based attraction forces between nearby (intra-manifold) pairs whereas the second
term exerts dissimilarity-based repulsion forces between far-away (inter-manifold) pairs. In other
words, intra-manifold points are transformed to a cluster in the latent space, mainly as the result
of the first term whereas inter-manifold point pairs push away from each other to different clusters,
mainly due to the second term.

Note also that ELIS applies the two terms in a soft, adaptive way via its weighted neighborhood
graph where the edges are effectively restricted by pairs of corresponding nodes (data points) between
which the absolute gradients

∣∣∣∇WL(l,l′)
ELIS(W | X(l), X(l′))

∣∣∣ ≥ ε > 0 are nonzero, in contrast to the
"hard" neighborhood system in LIS.

The ELIS loss can be rearranged as follows

L(l,l
′
)

ELIS(W | X(l), X(l
′
)) =

∑
i,j∈S,i6=j

u
(l)
ij log u

(l)
ij + (1− u(l)ij ) log(1− u(l)ij )

− u(l)ij log u
(l′)
ij − (1− u(l)ij ) log(1− u(l

′
)

ij ) (10)

When X(l) (hence u(l)ij ) fixed, the optimization only needs to minimize second part involving u(l
′)

ij .

2.3 ELIS ENCODER AND AUTOENCODER

The ELIS encoder consists of a cascade of nonlinear forward neural transformations constrained
by the ELIS loss, aimed for manifold learning and NLDR. An ELIS (and LIS) encoder can learn an
NLDR transformation without the need for a decoder (as required by autoencoders), and this encoder
can generalize to unseen data (that ISOMAP, LLE, t-SNE and UMAP cannot). The total loss for the
ELIS encoder is the sum of all the ELIS losses over a prescribed set of layer pairs (l, l′)

LEnc(W ) =
∑
(l,l′)

α(l,l′)L
(l,l′)
ELIS(W ) (11)
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where α(l,l′) weight the relative importance of L(l,l′)
ELIS .

The ELIS autoencoder has two purposes: (1) to further regularize or optimize the ELIS encoder-
based manifold learning by using an ELIS decoder, and (2) to enable generation of new data of
the learned manifolds by the trained ELIS decoder. The ELIS autoencoder structure consists of
the ELIS encoder and decoder in cascade. The ELIS decoder is aimed to approximate the inverse
transformations of the ELIS encoder and is made to be entirely symmetric to the ELIS encoder in its
network structure. The overall weight matrices becomes W = [WEnc,WDec]. The loss function is
composed of three terms:

LAE(W ) = LEnc(WEnc) + LDec(WDec) + LRec(W ) (12)

where LEnc(WEnc) is the same as Equ. (11), LDec(WDec) is defined in the same way following the
symmetry, and the reconstruction loss LRec(W ) is the summed over all the corresponding layers

LRec(W ) =

L−1∑
l=0

γl

M∑
i=1

‖ xi(l) − x̂(l)i ‖
2 (13)

where x̂(l)i are the data points at the corresponding layer of the decoder and γl are the weights. The
constraints due to LRec(W ) and LTie(W ) are illustrated by the dashed lines in Fig. A1 in Appendix.

3 EXPERIMENTS

The following experiments are aimed to evaluate ELIS in comparison with other five algorithms:
UMAP (McInnes et al., 2018), t-SNE (Maaten, 2014) (for visualization), MLLE (Zhang & Wang,
2007), TopoAE (Moor et al., 2020) and LIS (Li et al., 2020) in terms of visual inspection and
numerical metrics for manifold computing, visualization and data generation. Nine datasets are used,
including five toy datasets: (1) SwissRoll (3-D), (2) S-Curve (3-D), (3) Servered Sphere (3-D), (4)
SpheresA (101-D) (see (Moor et al., 2020) for the description) and (5) SpheresB (101-D, a modified
composition from SpheresA); and four real-world datasets: (6) Coil20 (16384-D) and (7) Coil100
(49152-D) (Nene et al., 1996), (8) MNIST (784-D) (LeCun, 2013), and (9) Fashion-MNIST (784-D)
(Xiao et al., 2017). The toy datasets are used because their geometric and topological structures are
clear for the evaluation. The SpheresA dataset (Moor et al., 2020)is composed of 1 large sphere
enclosing 10 small ones in 101-D space. SpheresB differs from SpheresA in that its large sphere
consists of only 500 samples (whereas that in SpheresA has 5000) – the data is so sparse that the
smallest within-sphere distance on the larger sphere can be greater than that between the larger sphere
and some small ones. 5 performance metrics are used for the evaluation, whose exact definitions are
given in Appendix A.2.

The pseudo-codes of the ELIS encoder and autoencoder and hyperparameter settings are described
in Appendix A.1. The implementation uses the PyTorch 1.6.1 library running on Ubuntu 18.04 on
NVIDIA v100 GPU. The time is spent mainly in the computation of neighbors. At present, the
ELIS algorithms computes the neighborhood for every point pair, hence have the complexity of
O(M2) for each cross-layer pair (l, l′). The complexity can be reduced to O(M1.14) if using the
nearest-neighbor-descent algorithm of UMAP (McInnes et al., 2018).

3.1 MANIFOLD LEARNING AND GENERATION

Manifold Learning. Table 2 compares performances of the five NLDR methods where bold numbers
are the best results, and underline the second best. The ELIS encoder has overall the best performance.
Fig. 1 visualizes some representative results, and more results are given in Table. A2, Fig. A2 - Fig. A4
in Appendix A.3.

Next, we delve into embedding details of of the Coil20 objects resulting from the ELIS encoder
(ELIS-Enc) and UMAP in Fig. 2. First, all the object embeddings in the ELIS-Enc result form
closed loops for the 360 degree rotations (refer to Fig. A5 for the embedding-object correspondence).
Second, the quality of the ELIS-derived embeddings enables us to infer some symmetries of the
objects in the 3D space. Four types of such symmetries are explored and discussed in Appendix A.3.
The UMAP result, in contrast, does not possess such quality.
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Table 2: Comparison in performance metrics for four datasets

ELIS-Enc LIS-Enc UMAP t-SNE TopoAE MLLE

Swiss Roll Cont 1.0000 1.0000 0.9962 0.9969 0.9716 0.9956
Trust 1.0000 1.0000 0.9983 0.9993 0.9809 0.9948

SpheresB

Cont 0.9276 0.9255 0.9109 0.9155 0.9245 0.8943
ACC(SVM) 0.9273 0.9100 0.9100 0.8478 0.9581 0.0965
ACC(NN) 0.9991 0.9969 0.8469 0.9365 0.9949 0.8265
AUC 0.9711 0.9318 0.9570 0.9570 0.9870 0.9459

Coil20

Cont 0.9956 0.9973 0.9962 0.9927 0.9901 0.9395
ACC(SVM) 0.8941 0.8301 0.8472 0.8014 0.7078 0.1556
NNACC 0.9965 0.9354 0.8917 0.9965 0.8160 0.6410
AUC 0.9770 0.9537 0.9842 0.9582 0.8916 0.8824

MNIST

Cont 0.9639 0.9749 0.9646 0.9630 0.9618 0.9183
ACC(SVM) 0.9699 0.7468 0.9690 0.9525 0.7450 0.1100
ACC(NN) 0.9568 0.7035 0.9528 0.9567 0.7773 0.7423
AUC 0.9725 0.8779 0.9691 0.9314 0.8000 0.8575

Figure 1: Comparison of visualization results for four datasets

Manifold Data Generation. Fig. 3 compares images generated from interpolated points between
two nearest neighbors on the embedding using three autoencoders in comparison. The images
generated by the ELIS-AE have clear boundaries and look sharper than those produced by the other
two autoencoders. Results for several other objects are shown in Fig. A6 in Appendix A.4.

3.2 ABLATION STUDY

Cross-layer ELIS constraint. The cross-layer ELIS constraint is weighted by α(l, l′) as in Equ. (11).
Four weight schemes (1) Head-Tail, (2) Head-Mids, (3) Mids-Tail and (4) Head-Mids + Mids-Tail are
designed for an L-layer encoder, as described in details in Appendix A.5. The results are compared
in Table. A3 and Fig. A7. Overall, the "Head-Mids + Mids-Tail" scheme, which imposes the most
extensive cross-layer ELIS constraints and also needs more computation, achieves the best results.
This justifies the use of the proposed ELIS method for performance improvements.

Effect of final ν value. The final ν value has significant influence on the within-manifold and
between-manifold scatters. Fig. A8 and Fig. A9 in Appendix A.5 demonstrate the effect of varying ν
in the input space and varying ν in the latent space on the results, respectively.

Continuation in ν. Continuation in hyperparameter ν in latent space is used during the ELIS
encoder learning process. The algorithm starts with a small ν in latent space to include more global

7



Under review as a conference paper at ICLR 2021

Figure 2: 2D embeddings of Coil20: ELIS encoder vs UMAP, and four manifold groups in terms of
symmetry.

Figure 3: Comparison in manifold data generation.

information. Then it gradually increases the value to focus more locally. The continuation strategy
results in significant better solutions as shown in Fig. A10 in Appendix A.5.

The major merits of ELIS. Finally, we summarize the comparative results of the experiments in the
following table.

ELIS LIS UMAP t-SNE MLLE TopoAE

Succeed in unfolding toy data Yes Yes No No Yes No

Perfect manifold structures on Coil Yes No Maybe No No No

High Accuracy Most No Some Some No No

Good Reconstruction Quality Yes Maybe N/A N/A No No

4 CONCLUSION

The proposed ELIS method preserves the nonlinear similarity metric locally across layers of deep
neural networks by optimizing two-way divergence loss. It effectively tackles difficulties in deep
manifold computing and visualization with the local geometry-preserving property. Empirical results,
comparisons, and ablation study demonstrate that ELIS is not only superior to UMAP and t-SNE
for NLDR and visualization but also better than other leading manifold and autoencoder learning
algorithms for NLDR and manifold data reconstruction and generation. Future work includes the
following: (1) extending the unsupervised version of MLDL to self-supervise, semi-supervised and
supervised tasks; (2) further formulating MLDL so that cross-layer link hyperparameters α become
part of learnable hyperparameters.
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APPENDIX

A.1 THE MLDL FRAMEWORK AND ELIS

Markov-Lipschitz deep learning (MLDL) framework. The MLDL framework is illustrated in
Fig.A1 (from Li et al. (2020)). The ML-AutoEncoder (of LIS or ELIS type) transforms the input X
to an embedding X(L) at layer L (the latent layer) using the ML-Encoder, and then reconstruct X̂
using the ML-Decoder. Whereas a standard neural network consists of a cascade of transformations
φ(l) (blue arrows), an MLDL network imposes the constraint between any two layers as appropriate
(shown in orange arcs and dashed lines) in the form of cross-layer loss functions weighted by α(l,l′).
This encourages φ(l) to become well-behaved local homeomorphisms. The latent features X(L)

extracted by the learned ML-Encoder can be used for downstream tasks such as visualization and
classification as well as manifold data generation using the learned ML-Decoder.

Figure A1: Illustration of Markov-Lipschitz deep learning (MLDL) framework using an ML-
AutoEncoder (best viewed in color).

The pseudo-codes for the ELIS encoder and the ELIS autoencoder, related hyperparameter, and a
parameter continuation method are described below.

Algorithm 1: ELIS Encoder

Input : Data:X(0), learning rate lr, epochs E, number of encoder layers L, Weight
hyperparameter α, νList, Q,

Calculate d(0)i|j with (4)

Calculate σ(0)
i with (7)

Calculate u(0)ij with (8)

Initialize the neural network {Φ(1)
Enc( · |W

(1)
Enc), Φ

(2)
Enc( · |W

(2)
Enc), · · · ,Φ(L)

Enc( · |W
(L)
Enc)}

while i = 0; i < E; i++ do
ν ←− νList[i]
while l = 1; l <= L; l++ do

Calculate l layer’s embedding X(l) ←− Φ
(l)
Enc(X

(l−1)|W (l)
Enc)

Calculate u(l)ij with (5) and (8)
end
while l′ = l; l′ <= L; l′++ do

Calculate the ELIS losses between layer l and lyaer l′, L(l,l′)
Enc with (10)

end

Update parameters: W ←−W − lr ·
∑L
l=1

∑L
l′=l α

(l,l′) ∂L
(l,l′)
Enc

∂W
end

11
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Algorithm 2: ELIS AutoEncoder

Input : Data:X(0), learning rate lr, epochs E, number of encoder layers L, Weight
hyperparameter α γ, νList, Q

Calculate d(0)i|j with (4)

Calculate σ(0)
i with (7)

Calculate u(0)ij with (8)

Initialize the neural network {Φ(1)
Enc( · |W

(1)
Enc), Φ

(2)
Enc( · |W

(2)
Enc), · · · ,Φ(L)

Enc( · |W
(L)
Enc),

Φ
(1)
Dec( · |W

(1)
Dec), Φ

(2)
Dec( · |W

(2)
Dec), · · · ,Φ(L)

Dec( · |W
(L)
Dec)}

while i = 0; i < E; i++ do
ν ←− νList[i]
while l = 1; l ≤ 2L; l++ do

if l ≤ L then
Calculate l layer’s encoder embedding X(l) ←− Φ

(l)
Enc(X

(l−1)|W (l)
Enc);

else
Calculate l layer’s decoder embedding X(l) ←− Φ

(l)
Dec(X

(l−1)|W (l)
Dec);

end
Calculate u(l)ij with (5) and (8)

end
while l′ = l; l′ <= L; l′++ do

Calculate the ELIS losses between layer l and lyaer l′, L(l,l′)
ELIS with (10)

end
Calculate the reconstruction loss between layer l and lyaer 2L− l, L(l,2L−l)

Rec with (13)

Update parameters: W ←−W − lr(
∑L
l=1

∑L
l′=l α

(l,l′) ∂L
(l,l′)
Enc

∂W +
∑L
l=1 γ

(l,2L−l) ∂L
(l,2L−l)
Rec

∂W )
end

Hyperparameters. Table. A1 summarizes the ELIS hyperparameter setting for different datasets.
Other hyperparameters are set the same for all datasets: learning rate lr = 0.01 and number of epochs
E = 5000. The LeakyReLU is used as the activation function.

Table A1: Hyperparameters of ELIS for different datasets

Dataset Point Network Structure (Number of parameters) Q in Equ. (7) Batchsize

Swiss Roll 800 3, 500, 500, 2 (0.252M) 10 800
S-Curve 800 3, 500, 500, 2 (0.252M) 10 800
Servered Sphere 800 3, 500, 500, 2 (0.252M) 10 800
SpheresA 10000 101, 500, 500, 2 (0.301M) 10 10000
SpheresB 5500 101, 500, 500, 2 (0.301M) 10 5500
Coli20 1440 16384, 500, 500, 2 (8.443M) 10 1440
Coli100 7200 49152, 1000, 500, 250,2 (24.82M) 10 2400
MNIST 60000 784, 1000, 500, 300, 2 (1.434M) 15 4000
Fashion-MNIST 60000 784, 1000, 500, 2 (1.285M) 10 4000

Continuation in ν(l
′). In the training process, the parameter ν(l

′)) in computing sample similarities
for the latent layer is graduated from a small number to a large number, e.g. ν(l

′) : 0.01 → 100

(see Equ. (5)), though fixed at a large value, e.g. ν(l
′) = 100 for the input layer. Empirically, the

continuation helps training converge to a good solution; the reasons behind are to be explained in a
future work.
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A.2 DEFINITIONS OF PERFORMANCE METRICS

1. Cont (Continuity) is asymmetric to Trust (from space X(l′) to space X(l)):

Cont =
1

k2 − k1 + 1

k2∑
k=k1

1− 2

Mk(2M − 3k − 1)

M∑
i=1

∑
j∈N (l)

i,k,j 6∈N
(l′)
i,k

(r
(l′)
i,j − k)


where r(l

′)
i,j is the rank of x(l

′)
j in the k-NN of x(l

′)
i . M is the size of dataset. N (l′)

i,k is the set of

indices to the k-NN of x(l
′)

i . k1 and k2 are the lower and upper bounds of the k-NN. For sphereA
and sphereB, we focus more on global performance, so set k1 = [M/14], k2 = [M/7]. For other
datasets, we set k1 = 5, k2 = 10.

2. Trust (Trustworthiness) measures how well the k nearest neighbors of a point are preserved when
going from space X(l) to space X(l′):

Trust =
1

k2 − k1 + 1

k2∑
k=k1

1− 2

Mk(2M − 3k − 1)

M∑
i=1

∑
j∈N (l′)

i,k ,j 6∈N
(l)
i,k

(r
(l)
i,j − k)


where r(l)i,j is the rank of x(l)j in the k-NN of x(l)i .

3. ACC (svm)

The ACC (svm) is calculated as follows.
(1) Compute nonlinear dimensionality reduction methods to obtain 2-dimensional embeddings.
(2) Partition the data by 5-fold cross-validation.
(3) For each fold, train the linear kernel SVM classifier using the training set and test it in the test set.
(4) Calculate the mean value of the classification accuracy.

4. ACC (NN) is defined as follows:

ACC(NN) =

∑M
i π

[
Yi = YN (L)

i,1

]
M

π[·] is the exponential function. Yi is the label of sample i, YN (L)
i,1

is the label of sample N (L)
i,1 , where

N
(L)
i,1 is the nearest neighbor point of node i in layer L.

5. AUC is defined as follows:

AUC(f) =

∑
p0∈P0

∑
p1∈P1 π [p0 > p1]

|P0| · |P1|

P0 =

{
d
(L)
ij −min d

(L)
ij

max d
(L)
ij −min d

(L)
ij

|i, j ∈ {1, 2, 3 · · · ,M}, Yi = Yj

}

P1 =

{
d
(L)
ij −min d

(L)
ij

max d
(L)
ij −min d

(L)
ij

|i, j ∈ {1, 2, 3 · · · ,M}, Yi 6= Yj

}

Where d(L)ij is the distance in layer L. P0 is the set of positive sample pair, P1 is the set of negative
sample pair.
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A.3 MANIFOLD LEARNING AND NLDR

Manifold Learning Results. This subsection shows more results of manifold learning and NLDR
obtained by using the ELIS-Enc and the ELIS-AE, in comparison with the other methods, on training
and testing datasets. Some typical embedding results of manifold learning using the three autoencoder
methods are visualized in Fig. A2, where t-SNE and UMAP are not included because these non-
transformational methods are unable to generalize to test datasets. LIS-Enc and TopoAE learned poor

Figure A2: Comparison of visualization results of autoencoders on training and testing sets

results on the training set, so it did not work well on the test set either. ELIS-AE, as a autoencoder-
based mehtod, have a huge advantage in terms of generalization performance, because it can handle
the test data. And it is very easy to apply to specific tasks such as classification, regression and
clustering.

Table. A2 compares performance metrics on 8 datasets, where the ACC(SVM), ACC(NN) and AUC
are abscent for the SwissRoll and SeveredSphere because these datasets have no class label.

Fig. A3 and Fig. A4 shows the visualization resules of the toy and real-world datasets on the training
datasets. For Swiss roll, Servered Sphere, and S-Curve, ELIS-Enc, LIS-Enc and MLLE all maintained
the topology of the original data, however, MLLE method did not hold the relative Euclidean distance
(The resulting embedding is square instead of rectangular). For SpheresA, ELIS-Enc, LIS-Enc, and
TopoAE show the "big sphere enclosing 10 small spheres" in 2D embedding, but for SpheresB only

14
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Table A2: Comparison in performance metrics with 5 difference methods in eight datasets

ELIS-Enc LIS-Enc UMAP t-SNE TopoAE MLLE

Swiss Roll Cont 1.0000 1.0000 0.9962 0.9969 0.9716 0.9956
Trust 1.0000 1.0000 0.9983 0.9993 0.9809 0.9948

SeveredSphere Cont 0.9997 0.9932 0.9967 0.9985 0.9854 0.9958
Trust 0.9997 0.9755 0.9989 0.9995 0.9891 0.9836

SpheresA

Cont 0.7850 0.7892 0.7147 0.7548 0.8064 0.7272
ACC(SVM) 0.5213 0.5000 0.5550 0.4992 0.4982 0.5000
ACC(NN) 0.9985 0.9912 0.5406 0.7837 0.9944 0.5205
AUC 0.5698 0.3362 0.5816 0.5603 0.3328 0.5961

SpheresB

Cont 0.9242 0.9255 0.9109 0.9155 0.9245 0.8943
ACC(SVM) 0.9558 0.9100 0.9100 0.8478 0.9581 0.0965
ACC(NN) 0.9987 0.9969 0.8469 0.9365 0.9949 0.8265
AUC 0.9780 0.9318 0.9570 0.9570 0.9870 0.9459

Coil20

Cont 0.9956 0.9973 0.9962 0.9927 0.9901 0.9395
ACC(SVM) 0.8941 0.8301 0.8472 0.8014 0.7078 0.1556
NNACC 0.9965 0.9354 0.8917 0.9965 0.8160 0.6410
AUC 0.9780 0.9537 0.9842 0.9582 0.8916 0.8824

Coil100

Cont 0.9936 0.9967 0.9955 0.9950 0.9903 0.7898
ACC(SVM) 0.9372 0.7319 0.8299 0.8278 0.5540 0.0363
ACC(NN) 0.9976 0.8163 0.9232 0.9951 0.4797 0.3350
AUC 0.9770 0.9667 0.9819 0.9759 0.8735 0.7322

MNIST

Cont 0.9639 0.9749 0.9646 0.9630 0.9618 0.9183
ACC(SVM) 0.9699 0.7468 0.9690 0.9525 0.7450 0.1100
ACC(NN) 0.9568 0.7035 0.9528 0.9567 0.7773 0.7423
AUC 0.9725 0.8779 0.9691 0.9314 0.8000 0.8575

Fashion
-MNIST

Cont 0.9848 0.9901 0.9836 0.9777 0.9864 0.9298
ACC(SVM) 0.7125 0.6908 0.7030 0.5518 0.6067 0.1058
ACC(NN) 0.7092 0.6427 0.7253 0.7787 0.5718 0.6145
AUC 0.9121 0.8843 0.9165 0.8256 0.8310 0.7908

ELIS-Enc and LIS-Enc shows the "enclosing" phenomenon. For Coil20 and Coil100, ELIS-Enc,
UMAP and TSNE can produce non-intersecting embeddings. However, the ELIS-Enc results are
distinguishable and do not cut any of the manifolds. For MNIST and Fashion-MNIST, Both the
UMAP and ELIS-Enc methods output the good embeding, But in terms of performance metrics,
ELIS-Enc has sufficient advantages.

Symmetry of the objects and ELIS-Enc’s embedding in Coil20. For Coil20, information about
the symmetry of the objects in the picture can be obtained by analyzing the embedding generated by
ELIS-Enc. Details of the ELIS-Enc embedding of the Coil20 are shown in Fig. A5.

We divided the Coil20’s manifolds into four patterns based on the symmetry of the objects in the
image and the shape of the manifold.

(1) Objects that are single plane mirror symmetric have elongated ellipse embedding shapes;
For objects with single plane mirror symmetry, an angle can be found from which an image
taken by rotating to the left is approximately equal to an image taken by rotating to the
right. The corresponding two-dimensional manifolds are therefore elongated ellipse (The
endpoints of the two long axes of the ellipse correspond to the two images obtained by
taking pictures along the plane of symmetry.).

(2) Objects that are rotational symmetric have round embedding shapes; For rotational sym-
metric objects, the resulting pictures are always very similar no matter what angle they are
taken from, so that the resulting two-dimensional manifold is squeezed inward into a circle.

(3) Objects that are double vertical mirror symmetric and have nested double ring embeddings;
For objects with double vertical mirror symmetry, every 180 degrees of rotation, the resulting
image reappears (the reappeared image is very similar to the one from 180 degrees ago, and
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Figure A3: Comparison of visualization results for toy dataset on training set

is very close in two-dimensional space), thus the resulting manifold consists of two nested
rings.

(4) Object’s symmetry is not evident.
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Figure A4: Comparison of visualization results for real-world dataset on training set

Figure A5: Details of the ELIS-Enc’s embedding of the Coil20 and four manifold patterns

17
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A.4 MANIFOLD DATA GENERATION

The manifold generation task generates a complete manifold structure from finite manifold samples.
In this experiment,the test steps are as follows:

(1) Training a network (includes encoder and decoder) that generating 2-dimensional embed-
ding;

(2) Performing linear interpolation in the embeddings;
(3) Mapping the interpolation result back to the data space via the decoder.

Generation results for comparison with the TopoAE and LIS-AE are shown in Fig. A6. The same
network structure was used in the experiments.

Figure A6: Comparison in visualization with LIS-AE and TopoAE in manifold generation. The left
side is three embedding result, and black point in manifolds is the location of the interpolation. The
right side is the interpolation results. there are 12 images in the right of the figure, the leftmost and
the rightmost images are the original images, and ten images in the middle are the generation results
with geodesic distance.

ELIS-AE has an advantage over the other two methods. Both LIS-AE and TopoAE methods do not
learn a satisfactory embedding, so the interpolation results are poor. The embedding in LIS-AE has
overlapping manifolds, so it generates images belonging to other popular methods (e.g. manifold A).
The TopoAE’s embedding is messy, so the decoder reconstructs fuzzy images.
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A.5 ABLATION STUDY

Cross-layer ELIS constraint. The effect of the ELIS-Enc constraint is determined by the weights
α(l, l′) as in Equ. (11). We set the weights α(l,l′) in either of four schemes (where Head, Tail and
Mids are used to denote input layer, latent layer and intermediate layers) for an L-layer encoder:

(1) Head-Tail: weight α(0,L) = 1 (the constraint is imposed between the input layer and the
latent layer);

(2) Head-Mids: weights α(0,l) = 1/L where l ∈ {1, 2, · · · , L} (the constraints are imposed
between the input layer and each of intermediate layers);

(3) Mids-Tail: weights α(l,L) = 1/L where l ∈ {1, 2, · · · , L} (the constraints are imposed
between the latent layer and each of intermediate layers);

(4) Head-Mids + Mids-Tail: weights α(0,l) = α(l,L) = 1/2L where l ∈ {1, 2, · · · , L} (combi-
nation of Head-Mids and Mids-Tail).

In this ablation study, a 10-layer neural network is used and the width of the network is determined
depending on the dataset. (Swiss Roll:[3, 50, 45, 35, 30, 25, 20, 15, 10, 5, 2], SpheresA:[101,
50, 45, 35, 30, 25, 20, 15, 10, 5, 2], SpheresB:[101, 500, 400, 300, 300, 200, 200, 100, 100, 2],
COIL20:[16384, 50, 45, 35, 30, 25, 20, 15, 10, 5, 2])

The evaluation metrics for four different cross-layer schemes are presented in Table. A3. The results
of different cross-layer schemes are shown in Fig. A7.

Figure A7: Comparison in visualisation of four different cross-layer schemes.

The visualization results and metrics show that the cross-layer scheme (4) has better results in a
10-layer network. The network is very difficult to train if the ELIS loss acts only on the first and last
layers (cross-layer scheme (1) ). The network will be easier to train if ELIS losses acts from the first
layer and all intermediate layers (cross-layer scheme (2)). The ELIS losses in the middle and last
layers (cross-layer scheme (3)) does not improve the performance of the embedding if used alone.
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Table A3: Comparison in performance metrics of four different cross-layer schemes.

Cont Trust ACC(SVM) ACC(NN) AUC

Swiss Roll

(1) - - - - -
(2) 0.9999 0.9999 - - -
(3) - - - - -
(4) 0.9999 0.9999 - - -

SpheresA

(1) - - - - -
(2) 0.9402 0.8832 0.9149 0.9478 0.9696
(3) - - - - -
(4) 0.9376 0.8858 0.9529 0.9784 0.9721

SpheresB

(1) 0.9111 0.6373 0.5225 1.0000 0.5486
(2) 0.9087 0.6341 0.5145 1.0000 0.5489
(3) 0.8520 0.6299 0.5388 1.0000 0.4474
(4) 0.8167 0.6432 0.8740 0.9936 0.7461

Coil20

(1) - - - - -
(2) 0.9955 0.9852 0.8454 0.9792 0.9721
(3) 0.9904 0.9876 0.8459 0.9847 0.9524
(4) 0.9947 0.9901 0.8867 0.9986 0.9735

However, if used in conjunction with the cross-layer scheme (4), it will improve the metric of the
resulting latent space.
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Effect of ν value. Fig. A8 and Fig. A9 show the effect of data space hyperparameter and latent space
hyperparameter on embedding results.

Figure A8: Embedding results with varying ν in input space.

ν in input space controls the range of sensations in data space. if input space’s ν is small, the
derivative of the probabilistic mapping function of the input layer will be small. The probability will
be insensitive to distance in data space. In other words, ELIS-Enc will degradation into LIS-Enc. If
more attention is paid to the global information of the input data, raise ν. If more attention is paid to
local information about the input data, lower input space’s ν. By default, ELIS-Enc does not change
this hyperparameter, but defaults to input space’s ν = 100.

ν in latent space controls degree of display in latent space (show detailed information or show global
information). if latent space’s ν is small, ELIS will tend to display global information. If latent
space’s ν is large, ELIS-Enc will tend to display the local information. Fig. A9 shows, from left to
right, a process that goes from showing global information to showing excessive local information.
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Figure A9: Embedding results with varying ν in latent space.
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Continuation strategy. Continuation in hyperparameter latent space’s ν is used during the ELIS
encoder learning process. The algorithm starts with a small latent space’s ν value to include more
global information. Then it gradually increases the value to focus more locally. The necessity of
parameter continuation is shown in Fig. A10.

Figure A10: Ablation study of with and without parameter continuation in latent space ν. (The upper
row shows results obtained via parameter continuation ν = 0.001 → ν = 100 in latent space, the
lower row shows results with a fixed ν = 100)

Experiments prove that the effect of parameter continuation (ν = 0.001→ ν = 100 in latent space)
is very obvious. There is a big improvement in Swiss Roll, Coil20 and MNIST.
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