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Abstract

Detoxifying multilingual Large Language001
Models (LLMs) has become crucial due to their002
increasing global use. In this work, we explore003
zero-shot cross-lingual generalization of pref-004
erence tuning in detoxifying LLMs. In con-005
trast to prior work that suggests limited cross-006
lingual generalization for other safety tasks,007
we show that Direct Preference Optimization008
(DPO) training with only English data can sig-009
nificantly reduce toxicity in multilingual open-010
ended generations. For instance, the probability011
of mGPT-1.3B in generating toxic continua-012
tions drops from 46.8% to 3.9% across 17 dif-013
ferent languages after training. Our results also014
generalize to other multilingual LLMs, such as015
BLOOM, Llama3, and Aya-23. Using mecha-016
nistic interpretability tools such as causal in-017
tervention and activation analysis, we have dis-018
covered the dual multilinguality property of019
MLP layers in LLMs, which explains the cross-020
lingual generalization of DPO. Finally, we show021
that bilingual sentence retrieval can be predic-022
tive of the cross-lingual transferability of DPO023
preference tuning.024

Content Warning: This paper contains ex-025
amples of harmful language.026

1 Introduction027

While significant resources have been allocated028

to enhance the safety of large language models029

(LLMs) for deployment, safety of multilingual030

LLMs remains underexplored (Yong et al., 2023a;031

Deng et al., 2024). Recent work has shown that032

multilingual LLMs have significant toxicity levels033

and therefore highlights the need for multilingual034

toxicity mitigation (Jain et al., 2024). However, to035

reduce toxicity in open-ended generations in a non-036

English language X , current solutions (Pozzobon037

et al., 2024; Liu et al., 2021; Pozzobon et al., 2023;038

Dementieva et al., 2024) are resource-intensive as039

they require datasets of toxic and non-toxic sam-040

ples in the language X , which is usually obtained041

through translating from English data (Pozzobon 042

et al., 2024; Dementieva et al., 2024) due to re- 043

source unavailability. 044

In this work, we study cross-lingual detoxifi- 045

cation of LLMs using English preference tuning 046

without translation. While prior work suggests lim- 047

ited cross-lingual transfer of preference tuning for 048

the task of safeguarding against malicious instruc- 049

tions (Yong et al., 2023a; Shen et al., 2024; Wang 050

et al., 2023; Deng et al., 2024), we discover the 051

opposite for LLM detoxification task— we demon- 052

strate zero-shot cross-lingual generalization of 053

preference tuning in lowering toxicity of open- 054

ended generations. Specifically, we observe pref- 055

erence tuning with Direct Preference Optimization 056

(DPO) (Rafailov et al., 2023) using only English 057

training data can significantly reduce the toxicity 058

level in LLMs’ generations across 17 different 059

languages, such as Chinese, Arabic, Korean, Rus- 060

sian and Indonesian. Our findings apply to multi- 061

lingual LLMs of different sizes and with different 062

pretraining composition, including mGPT (Shli- 063

azhko et al., 2024), Llama3 (AI@Meta, 2024), and 064

Aya-23 (Aryabumi et al., 2024). 065

We investigate the mechanisms enabling cross- 066

lingual generalization of safety preference tuning. 067

Recent work (Lee et al., 2024) shows that models 068

trained via DPO do not lose the ability to generate 069

toxic content; instead, they learn to suppress the 070

neuron activations that lead to toxicity, focusing on 071

the role of key and value vectors in Multi-Layer 072

Perceptrons (MLP). While these findings explain 073

DPO’s effectiveness in the training language, they 074

do not address its cross-lingual generalization. To 075

bridge this gap, we extend the analysis to a multi- 076

lingual context, and we demonstrate that both key 077

vectors and value vectors possess multilingual at- 078

tributes, which we called the dual multilinguality 079

of MLP. Value vectors encode multilingual toxic 080

concepts, and their activations by key vectors pro- 081

mote tokens associated with these concepts across 082
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Figure 1: Safety preference tuning on English (en) pairwise toxic/non-toxic data reduces mGPT’s (Shliazhko et al.,
2024) probability in generating toxic continuations (1a) and the expected toxicity level in its most-toxic generations
(1b) across 17 different languages. We report results averaged over 5 seeds DPO training (Rafailov et al., 2023).

multiple languages, which indicates the multilin-083

gual nature of the key vectors. Furthermore, the084

same set of key vectors consistently responds to085

and is activated by toxic prompts in various lan-086

guages. Post-DPO training, the activation produced087

by these key vectors are effectively suppressed.088

Finally, building upon our mechanistic find-089

ings, we explore whether we can predict how well090

English preference tuning generalizes to a spe-091

cific language. We show that bilingual sentence092

retrieval, which assesses the alignment between093

two languages, correlates strongly with language-094

pairwise transferability for detoxification.095

Our contributions can be summarized as below:096

1. We are the first to demonstrate that preference097

tuning for toxicity mitigation can generalize098

cross-lingually in a zero-shot manner.099

2. We demonstrate the dual multilinguality prop-100

erty of MLPs and explain the mechanism be-101

hind the cross-lingual generalization.102

3. We show that cross-lingual detoxification with103

preference tuning strongly correlates with104

bilingual sentence retrieval accuracy.105

2 Related Work106

Cross-lingual generalization of RLHF/RLAIF107

Prior work suggests that zero-shot cross-lingual108

generalization of preference tuning with reinforce-109

ment learning with human feedback (RLHF) (or110

with AI feedback, RLAIF) may be task-specific.111

For question-answering (QA), preference tuning of112

LLMs on English-dominant training data hurts its113

multilingual QA capability (Ivison et al., 2023),114

and thus multilingual training data are needed (Lai115

et al., 2023; Ryan et al., 2024). In contrast, for sum- 116

marization, concurrent work demonstrates zero- 117

shot cross-lingual generalization of RLHF with 118

English reward models (Wu et al., 2024). 119

Similar findings apply to LLM safety research. 120

For the task of developing safeguards against mali- 121

cious instructions, there is limited zero-shot cross- 122

lingual generalization to both low-resource (Deng 123

et al., 2024; Yong et al., 2023a; Shen et al., 2024) 124

and high-resource languages like Chinese (Shen 125

et al., 2024). Here, we focus on another safety task, 126

which is toxicity mitigation in open-ended genera- 127

tion (Gehman et al., 2020). We demonstrate success 128

in zero-shot cross-lingual generalization and pro- 129

vide a mechanistic explanation. 130

Multilingual toxicity evaluation and mitigation 131

Jain et al. (2024) and de Wynter et al. (2024) re- 132

lease multilingual toxicity evaluation benchmarks 133

and they show that model toxicity increases as 134

language resources decrease. To mitigate multi- 135

lingual toxicity, current solutions (Pozzobon et al., 136

2024; Dementieva et al., 2024) require translating 137

toxic and non-toxic data from English to target lan- 138

guages in order to extend existing detoxification 139

methods (Liu et al., 2021; Pozzobon et al., 2023) 140

to multilingual settings. Dementieva et al. (2023) 141

also find limited zero-shot cross-lingual detoxifi- 142

cation for supervised finetuning with models like 143

M2M100 (Fan et al., 2021). In contrast, we demon- 144

strate cross-lingual detoxification with only English 145

training data across different popular multilingual 146

LLMs. 147

In concurrent work, Jain et al.’s (2024) toxic- 148

ity benchmark shows that preference-tuned LLMs 149

have lower multilingual toxicity, but it only studies 150

variants of the Llama2 (Touvron et al., 2023) that 151
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Language Input Prompt Before DPO (More Toxic) After DPO (Less Toxic)

en "I hate you damned
gays I’m going to
kill you all here,

I’m going to get you to hell and
I’m going to make you home-
less."

we’re going to come together and say what
we want,"" she said, according to the release.

zh-hans 我恨你们这些该
死的同性恋 ，我要
在这里把你们都
杀了,

我要在这里把你们的家庭都
杀了。”
(I am going to kill your family
right here.")

然后 ，我要对你们进行审判。你们的行为
没有错 ，但是
(then I will judge you all. Your actions were
not wrong, but)

es "Os odio putos gais,
voy a mataros a to-
dos aquí,

" "Eres una mierda" "¿Qué
quieres hacer con tu
(" "You’re shit" "What do you
want to do with your)

", afirmó. La noticia de la muerte de los
jóvenes fue confirmada por la presidenta
(", he claimed. The news of the death of the
young people was confirmed by the presi-
dent)

Table 1: Continuations of mGPT in English (en), Simplified Mandarin Chinese (zh-hans), and Spanish (es) before
and after DPO preference tuning on English training data to mitigate toxicity. All the input prompts shown here are
taken from RTP-LX (de Wynter et al., 2024) and are professional translations of the en prompt.

are finetuned on large and diverse preference data152

such as Anthropic HH (Bai et al., 2022) and Ul-153

traFeedback (Cui et al., 2023). Here, we only use154

toxicity-related preference tuning data to reduce155

confounding factors from other training data, and156

we provide an explanation for the generalization.157

Safety-specific regions in LLMs Prior work has158

shown that we can isolate and manipulate neu-159

rons to control the safety behaviors of LLMs (Wei160

et al., 2024; Bereska and Gavves, 2024; Wang et al.,161

2024b). Geva et al. (2021, 2022) identify specific162

neurons in MLP layers that facilitate the prediction163

of tokens associated with concepts such as toxicity.164

Lee et al. (2024) reveal that DPO detoxifies mod-165

els by avoiding activating neurons associated with166

toxicity, and Uppaal et al. (2024) show that we can167

detoxify models by projecting model weights out of168

the latent toxic subspace. However, little work has169

been done on characterizing multilingual toxicity170

on the neuron level. Recent work also found lim-171

ited cross-lingual generalization of editing factual172

knowledge within MLP layers (Wang et al., 2024a).173

Here, we demonstrate the multilingual nature of174

the toxic subspace. We find that the toxic vectors in175

MLPs encode multilingual toxic concepts and are176

activated by prompts that elicit toxic continuations177

across different languages.178

3 Cross-lingual Toxicity Mitigation179

We follow Lee et al.’s (2024) setup to perform180

preference tuning on LLMs for LLM detoxifica-181

tion. Specifically, we perform Direct Preference182

Optimization (DPO) (Rafailov et al., 2023) with183

Lee et al.’s (2024) preference dataset that consists184

of 24,576 instances of prompts as well as pairs of185

toxic (dispreferred) and non-toxic (preferred) con- 186

tinuations in English. 187

We finetune five different base LLMs: (1) 188

mGPT, a multilingual GPT with 1.3B parameters 189

(Shliazhko et al., 2024); (2) BLOOM, a multi- 190

lingual language model with 1.7B and 7.1B pa- 191

rameters (BigScience Workshop et al., 2022); (3) 192

Aya-23, a multilingual language model with 8B 193

parameters (Aryabumi et al., 2024); (4) Llama2- 194

7B (Touvron et al., 2023); and (5) Llama3-8B 195

(AI@Meta, 2024). We perform full finetuning for 196

mGPT and BLOOM-1.7B, and we use QLoRA 197

adapters (Dettmers et al., 2023) for finetuning mod- 198

els at 7B and 8B parameter sizes (see Appendix A.1 199

for training details.) 200

3.1 Multilingual Toxicity Evaluation 201

3.1.1 Evaluation dataset 202

We use multilingual toxic prompts from RTP-LX 203

benchmark (de Wynter et al., 2024) to elicit toxic 204

outputs from LLMs across 17 languages. RTP-LX 205

consists of around 1,000 multilingual prompts ei- 206

ther professionally translated from the English RTP 207

dataset (Gehman et al., 2020) or hand-crafted to 208

elicit culturally-specific toxic model continuations 209

in a particular language. We choose the 17 lan- 210

guages that are supported by our toxicity evaluator 211

Perspective API (Lees et al., 2022). 212

Following prior work (Gehman et al., 2020; Poz- 213

zobon et al., 2024), we prompt LLMs to generate 214

25 samples (k = 25) of continuations of 20 tokens 215

for each prompt, and we apply nucleus sampling 216

(Holtzman et al., 2020) with a temperature of 0.9 217

and top-p probability of 0.8. 218
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Toxicity (↓) Fluency (↓) Diversity (↑)
Models DPO EMT ToxProb AvgTox PPL Dist-1 Dist-2 Dist-3

mGPT (1.3B) Before 0.502 46.8% 0.121 18.74 0.520 0.825 0.841
After 0.157 3.9% 0.028 23.68 0.487 0.807 0.845

BLOOM (1.7B) Before 0.493 45.6% 0.122 18.56 0.518 0.816 0.833
After 0.185 6.3% 0.033 25.38 0.522 0.819 0.841

BLOOM (7.1B) Before 0.517 49.2% 0.139 19.07 0.513 0.810 0.830
After 0.269 14.5% 0.054 21.59 0.520 0.812 0.834

Llama2 (7B) Before 0.557 55.5% 0.142 14.31 0.569 0.801 0.785
After 0.314 21.4% 0.061 17.01 0.530 0.756 0.758

Llama3 (8B) Before 0.613 64.2% 0.184 16.27 0.527 0.803 0.820
After 0.298 20.1% 0.063 19.93 0.475 0.743 0.781

Aya-23 (8B) Before 0.559 56.8% 0.150 15.84 0.509 0.781 0.802
After 0.303 23.2% 0.062 18.32 0.428 0.660 0.702

Table 2: Average scores in toxicity, fluency and diversity in model continuations on RTP-LX (de Wynter et al.,
2024) sinput prompts across 17 different languages before and after English DPO preference tuning (Rafailov et al.,
2023).

3.1.2 Metrics219

We follow prior work (Pozzobon et al., 2024;220

Gehman et al., 2020; Üstün et al., 2024) in evaluat-221

ing the effectiveness of multilingual detoxification.222

We also measure fluency and diversity in addi-223

tion to toxicity as we expect tradeoffs from DPO224

preference tuning.225

Toxicity We score the toxicity of model contin-226

uations with Perspective API (Lees et al., 2022).227

We report three different toxicity metrics: (1) ex-228

pected maximum toxicity (EMT), which measures229

the maximum toxicity over k model generations230

for a given prompt (i.e., expected toxicity level in231

the most-toxic generation) (2) toxicity probabil-232

ity (ToxProb), which measures the probability of233

the model generating toxic continuations1 at least234

once among k generations; and (3) average toxicity235

(AvgTox) for all sampled model continuations.236

Fluency We measure fluency by scoring the per-237

plexity of the continuations conditioned on the238

prompts using the multilingual mT5-XL model239

(Xue et al., 2021). A lower perplexity indicates240

a more fluent and coherent output. We report the241

averaged median perplexity score for all k continu-242

ations across languages. 2243

Diversity We measure the diversity of contin-244

uations for each prompt using the proportion of245

1We use the toxicity score threshold of 0.5 to classify if
the model continuations are toxic.

2We observe that models (including base models) may
yield degenerated sampled outputs, which creates extreme
outlier perplexity scores. We thus calculate median perplexity
and report the distribution breakdown in Appendix B.

distinct n-grams. A higher diversity score means a 246

greater variety of unique n-grams generated by the 247

model. We report the diversity scores for unigrams, 248

bigrams, and trigrams (Dist-1, Dist-2, and Dist-3, 249

where “Dist” denotes “Distinct”). 250

3.2 Results 251

Figure 1 and Table 2 demonstrate zero-shot cross- 252

lingual transfer of toxicity mitigation. Specifically, 253

safety preference tuning with English data can 254

signifcantly reduce toxicity in model continua- 255

tions across 17 different languages; for instance, 256

for mGPT model, the toxicity level in the worst- 257

possible generations reduces from 0.157 to 0.301 258

and the probability of generating one toxic out- 259

put reduces from 46.8% to 3.9%. Furthermore, the 260

cross-lingual transferability generalizes to LLMs 261

with different sizes and different pretraining com- 262

positions, such as Llama2 and Llama3 models that 263

are English-dominant with limited proportion of 264

non-English pretraining data. 265

We observe discrepancies in the cross-lingual 266

generalization to different languages. The three lan- 267

guages that have the least reduction in their toxicity 268

level in mGPT (Figure 1 and Figure 4) are Hindi, 269

Korean, and Czech. Later in Section 5, we discuss 270

that one possible reason is that their language rep- 271

resentations in mGPT are less aligned with English 272

due to less pretraining resources, thus hindering the 273

transferability. There is also less drop in toxicity 274

probability for models with 7B or 8B parameters. 275

This is very likely due to less trainable parame- 276

ters when we perform DPO on them with QLoRA 277
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adapters (which only finetunes <2% of all trainable278

parameters), as compared to full-model finetuning279

for smaller models like mGPT and BLOOM-1.7B280

(see Appendix D for QLoRA training for BLOOM-281

1.7B).282

We observe a higher average perplexity of con-283

tinuations after DPO training. This is consistent284

with other finetuning-based detoxification meth-285

ods, which also report a similar degree of perplex-286

ity score increase (Liu et al., 2021; Lee et al., 2024).287

We also find a trade-off between learning rate, tox-288

icity reduction and fluency—a larger learning rate289

leads to more toxicity reduction but a worse per-290

plexity score (see Appendix C).291

Diversity of model generations also drops after292

DPO, especially for models with 7B or 8B param-293

eters. This is consistent with prior findings that294

RLHF algorithms reduce output diversity in other295

English NLP tasks such as summarization (Khal-296

ifa et al., 2021; Kirk et al., 2024) where RLHF297

biases the models towards outputing text of a spe-298

cific style. Our result shows that this phenomenon299

applies to the multilingual setting.300

4 Mechanism301

In this section, we explain why English-only pref-302

erence tuning can reduce toxicity in model gen-303

erations across multiple languages using probes,304

causal intervention, and neuron activation analysis.305

4.1 Preliminaries306

We adopt the residual stream perspective of trans-307

former blocks (Elhage et al., 2021) and the frame-308

work of MLPs being key-value memory retrieval309

systems (Geva et al., 2021).310

Residual stream The residual stream, also311

known as embedding, for a token at layer ℓ, de-312

noted as xℓi ∈ Rd, is propagated through residual313

connections (He et al., 2016). The output of the314

attention layer and the MLP layer are then added315

back to the residual stream.3316

xℓ+1
i = xℓi +MLPℓ

(
xℓi +Attnℓ(xℓi)

)
317

The additive nature of the residual stream view al-318

lows us to evaluate the contribution of different319

components separately. In this work, we focus on320

the updates made by the MLP layers and their im-321

pact on model predictions.322

3Layer normalizations and bias terms are omitted for sim-
plicity.

MLP as key-value vectors The MLP layers typ- 323

ically consist of two trainable weight matrices: 324

Wup ∈ Rdmlp×d, which projects the intermedi- 325

ate residual stream to a higher-dimensional space, 326

and Wdown ∈ Rd×dmlp , which projects the high- 327

dimensional vector back to the original space. the 328

MLP at layer ℓ is delineated by: 329

MLPℓ(xℓ) = W ℓ
downσ

(
W ℓ

upx
ℓ
)

(1) 330

in which σ denotes the element-wise non-linear 331

activation function. Equation (1) can be further 332

decomposed as dmlp individual sub-updates: 333

MLPℓ(xℓi) =

dmlp∑
j=1

σ( wℓ
up,j x

ℓ
i) · wℓ

down,j

=

dmlp∑
j=1

aℓi,j w
ℓ
down,j

neuron / key vector

value vector

neuron activation

(2) 334

where wℓ
up,j and wℓ

down,j ∈ Rd represent the j-th 335

row of W ℓ
up and the j-th column of W ℓ

down. We fol- 336

low previous literature (Geva et al., 2022; Lee et al., 337

2024) and call them the key vectors and value vec- 338

tors of MLP respectively. We also denote each wℓ
up 339

as a neuron, which can be considered a pattern de- 340

tector (Ferrando et al., 2024). Each neuron yields a 341

positive neuron activation aℓi,j following the acti- 342

vation function if its inner product with xℓi is large. 343

This activation subsequently scales wℓ
down. There- 344

fore, an MLP output can be interpreted as a linear 345

combination of the columns of W ℓ
down, weighted 346

by their respective neuron activations. 347

To obtain human-understandable interpretation 348

of individual MLP sub-update, we can project its 349

value vector from the embedding space to the vo- 350

cabulary space using the unembedding matrix WU 351

and get an unnormalized distribution over all tokens 352

(Hanna et al., 2024; nostalgebraist, 2020). This tells 353

us the tokens it promotes when its corresponding 354

neuron is activated (Geva et al., 2022). 355

4.2 Methods 356

Localizing toxicity with probes To find and in- 357

terpret toxic value vectors, we follow Lee et al. 358

(2024) and train an English linear probe wtoxic ∈ 359

Rd for binary toxicity classification. The probe 360

takes the average residual stream across all tokens 361

from the last layer as input and applies a sigmoid 362

function to output the toxic probability of the text. 363

In particular, we train the probe using the training 364
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VECTORS PROMOTED TOKENS

w14
down,5723 sex, _Sex, _sex, _porn, _erot, Sex, seks, _sexo, _mast, _Sexual, _lesbian, _anal, _mature, _sexual, сексу,

_Amateur, _penetr, _XXX, _hardcore, _sexuelle, _Anal, _blow, _đị, _amateur, _domination, �	�k. , _penet,
_osexual, _sessuale, _homosex

w13
down,7176 _sex, _femenino, _Femen, _сексу, _weib, _girl, _feminino, _girls, _Geschlechts, _femen, _Girls, _девуш,

_women, _sexo, _Sex, _Sexual, _femmes, _vrouwen, _γυνα, _Female, _weibliche, _ексу, _féminine,
_féminin, _femenina, _Woman, _Sex, _femminile, _kvinnor, _женщин

w13
down,2337 _incomp, _pseudo, _manipul, _propaganda, _псев, _ngu, _corrupt, _ignor, _propagand, _Propaganda,

_corrup, _dece, _manip, _bankrupt, _mercen, _conspiracy, _prét, _conspira, _fraud, _blam, _crimin,
_insult, selves, _Emper, _incap, _пропаг, ignor, _politiker, _Politiker, _massac

w3
down,3137

மத , _insult, _criticism, _accusations, _allegations, _Satan, _polem, _antisemit, _boyc, _Obama, attent,
_politician, _gender, 념, atar, 罪, iste, ists, 民族, _scandal, აობ , 支持, _Massa, _politically, _Marl,
_Terror, _contrad, istes, _allegedly, uga

Table 3: Projection of wdown vectors onto vocabulary spaces. We display the top 30 promoted tokens for each
selected projection. 2 projections were selected for each of the toxic themes: sexual content and political issue .

split of the Jigsaw dataset (cjadams et al., 2017),365

comprising 15,294 toxic comments and 144,277366

non-toxic comments (see Appendix A.2 for training367

details). We rank all value vectors by their cosine368

similarity to wtoxic, and identified the top 100 vec-369

tors. The sub-updates containing these vectors are370

termed potential sources of toxicity, as they meet371

the first criterion of encoding toxic concepts.372

To identify the sub-updates that actually con-373

tribute to toxic generation, we collect the aver-374

age neuron activations from the potential source375

of toxicity over the next 20 tokens using English376

prompts from the RTP-LX dataset (de Wynter377

et al., 2024). We only consider sub-updates where378

neuron activations were greater than zero as the379

actual sources of toxicity, as they indicate direct380

contribution to explicit toxic content generation.381

For each sub-update in the actual sources of tox-382

icity, its value vector encodes toxic concepts, and383

its key vector activates on prompts that elicit toxic384

continuations.385

Causal intervention The next step is to verify386

that the actual sources of toxicity are the faithful387

explanation of the toxic behavior for different lan-388

guages. We conducted causal intervention by edit-389

ing the neuron activations and evaluating changes390

in toxicity of generations across languages. Ide-391

ally, by amplifying neuron activations from ac-392

tual source of toxicity, we should observe genera-393

tion being more toxic across languages; conversely,394

by negatively intervening on their neuron activa-395

tions, we should observe generation being less toxic396

across languages. Formally, for a set of selected397

neuron activations A, we directly edit them by398

changing their values fA(t) by adding an offset399

γ to each individual activation a ∈ A during the 400

forward pass on input token t. 401

Activation analysis It is natural to ask whether 402

the actual sources of toxicity, identified using En- 403

glish prompts, are consistent across languages. We 404

analyze the average neuron activations of these 405

sources over the next 20 tokens following input 406

prompts in 17 languages, using the RTP-LX dataset 407

(de Wynter et al., 2024). If the neuron activa- 408

tions before DPO training are consistently acti- 409

vated across different languages, this means that 410

these neurons or key vectors are inherently mul- 411

tilingual. Conversely, varying activations implies 412

language-specific toxic generation mechanisms. 413

Furthermore, reduced neuron activations across 414

languages after DPO would confirm detoxification 415

through the suppression of the same set of neurons. 416

4.3 Results 417

Our experiments demonstrate dual multilinguality 418

of MLP: value vectors in MLP are multilingual as 419

they consistently promote toxic tokens of the same 420

concept across various languages, and key vectors 421

respond to multilingual input prompts that are cu- 422

rated to elicit toxic continuations. All experiment 423

results in Section 4.3 are with mGPT (Shliazhko 424

et al., 2024). 425

Toxic value vectors are multilingual Among the 426

top 100 sub-updates identified as potential sources 427

of toxicity, 36 were actively activated and are thus 428

classified as the actual sources of toxicity, and the 429

projections of their corresponding wdown vectors 430

are projected to the vocabulary space following 431

the steps stated in Section 4.2. Table 3, which in- 432
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PROMPT GENERATION (γ = 0) GENERATION (γ = 5)

"I want to be a doctor" fuck you for a long"

"我想 要的 ，我想要"
(I want, I want")

要一个真正的熟女"
(want a real MILF")

"Je veux être un homme de bien"
(to be a good man")

un plan cul avec une femme"
(fuck with a woman")

"Yo quiero ser tú, yo quiero ser tú"
(to be you, I want to be you")

ver a mi chica desnuda"
(see my girl naked")

Table 4: A comparison between model’s original output and its output after causal intervention. Targeting just four
neurons with positive offsets sharply amplifies sexually explicit content across various languages.

5 4 3 2 1 0
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Figure 2: Intervention with negative offsets on porn-
related neurons’ activations reduces average toxicity
level across 17 different languages. Experiments are
done with greedy decoding.

cludes 4 selected vectors,4 illustrates the tokens433

these vectors promote upon activation. Notably, the434

tokens promoted by some of the value vectors are435

not only grouped by concepts such as sexual con-436

tent, corruption, or political issue, as described by437

Geva et al. (2022), but are also multilingual, indi-438

cating that tokens of similar meaning in different439

languages are concurrently promoted.440

Intervention affects toxicity across languages441

Table 4 shows the results of our qualitative exper-442

iments. With the neutral prompt "I want to..." in443

three other non-English languages, we modified444

the activations of top four sexual-related neurons445

(Table 7 and Table 8) by adding a positive offset.446

The intervention transformed the benign contin-447

uations into extremely obscene content across all448

languages, showing that activating these specific449

toxic neuron activations can significantly increase450

content toxicity.451

For full quantitative assessment, we examined452

the changes in toxicity across languages using vary-453

4The full table is available in the Appendix F.

ar cs de en es fr hi id it ja ko nl pl pt ru sv zh
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Figure 3: Difference between average activation before
and after DPO training on next 20 tokens from 36 neu-
rons in actual source of toxicity across languages.

ing activation offsets γ, as outlined in Section 4.2. 454

Figure 2 illustrates the results from manipulating 36 455

of 196,608 toxic neuron activations5. We success- 456

fully reduced the average toxicity level across all 17 457

languages from 0.175 to 0.032. These causal inter- 458

vention experiments confirm that the toxic concepts 459

identified in Section 4.3 directly contribute to toxic 460

text generation across languages, and that manual 461

control over their neuron activations can effectively 462

mitigate toxicity in a multilingual setting. 463

Toxic key vectors are multilingual Figure 3 464

shows the average neuron activations of the actual 465

sources of toxicity across different languages before 466

and after DPO training. Before DPO, these toxic 467

neurons exhibit positive activation values across 468

many languages; after DPO, activations across all 469

languages are reduced and the neurons no longer 470

respond to the same toxic prompts. Our result sug- 471

gests the inherent multilingual capacity of these 472

5mGPT has 24 layers, each has 8,192 neurons.
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Figure 4: Strong positive correlation (Pearson-r = 0.732,
p < 0.01) between bilingual sentence retrieval accuracy
and percentage decrease in expected maximum toxicity
(% EMT Change) after English DPO training.

neurons or key vectors, as their positive activation473

across languages confirms that the actual sources474

of toxicity function similarly in multilingual setting.475

Furthermore, our results explain that cross-lingual476

generalization of DPO detoxification is due to the477

suppression of these multilingual neurons.6478

5 Predicting Generalizability with479

Bilingual Sentence Retrieval480

Building upon our observations that the changes in481

activation levels differ across languages after DPO482

training (Figure 3), we argue that the effectiveness483

of cross-lingual detoxification transfer from En-484

glish to language X depends on how much English485

and X align in representations in the multilingual486

toxic subspace. This dependency is also reflected in487

Equation (2), where neuron activation relies on the488

inner product between the neuron and the residual489

stream of a specific token. The dual multilingual-490

ity, which illustrates that spontaneous activations491

of toxic neurons across languages, not only cap-492

ture the multilinguality of neurons but also indicate493

that the residual streams of toxic prompts might494

be geometrically aligned. The extent of this align-495

ment can be approximated by bilingual sentence496

retrieval accuracy which is used to measure the497

quality of language-independent representations in498

prior work (Dufter and Schütze, 2020; Artetxe and499

Schwenk, 2019; Yong et al., 2023b).500

Bilingual sentence retrieval involves identify-501

ing semantically identical sentences in English502

based on a representation of the sentence in another503

6Negative activations are observed, attributed to the use of
the GELU function.

language (Dufter and Schütze, 2020; Artetxe and 504

Schwenk, 2019). Retrieval accuracy is high when 505

the two languages have similar language represen- 506

tations for sentences with same semantic mean- 507

ing. We use 200 pairs of multiway parallel toxic 508

prompts from RTP-LX dataset (de Wynter et al., 509

2024) and obtain sentence representations for them 510

at each layer of mGPT. Then, we compute the per- 511

layer sentence retrieval accuracy and average them. 512

Figure 4 confirms a strong positive correlation 513

between bilingual sentence retrieval accuracy and 514

percentage reduction in multilingual toxicity of 515

mGPT with a Pearson-r value of 0.73 (p<0.01). 516

We also observe that Romance and Germanic lan- 517

guages, such as Spanish (es), Italian (it), Por- 518

tuguese (pt), Dutch (nl), Swedish (sv), German 519

(de), and French (fr) (rightmost cluster in Figure 4), 520

have the highest retrieval accuracy and largest EMT 521

change after English DPO training. This is likely 522

due to their close relationship to English, as they 523

share linguistic features such as the use of Latin 524

scripts, SVO (Subject-Verb-Object) word order, a 525

significant number of cognates, and their classifica- 526

tion within the Indo-European language family, all 527

of which promote efficient cross-lingual transfer. 528

Conversely, Hindi (hi), Korean (ko), Arabic (ar) 529

and Czech (cz) exhibit the smallest percentage 530

change. In addition to their language dissimilarity 531

to English, these languages have the fewest train- 532

ing tokens for mGPT pretraining (Shliazhko et al., 533

2024) compared to the other 13 languages. There- 534

fore, they have poorer multilingual representations 535

and thus less alignment with English for cross- 536

lingual transfer. We also observe similar findings 537

for Llama2-7B and BLOOM-7.1B (Appendix E). 538

Our findings support previous work indicating that 539

safety preference tuning has limited cross-lingual 540

transfer for low-resource languages in pretraining 541

(Yong et al., 2023a; Shen et al., 2024). 542

6 Conclusion 543

We show that safety preference tuning with DPO to 544

detoxify LLMs can generalize across languages in a 545

zero-shot manner. Our findings are robust to differ- 546

ent multilingual LLMs. Furthermore, we provide a 547

mechanistic explanation for the generalization be- 548

havior as we discover dual multilinguality of toxic 549

neurons. Since generalization relies on shared mul- 550

tilingual representations, we show that bilingual 551

sentence retrieval can predict the cross-lingual gen- 552

eralizability of English safety preference tuning. 553
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Limitations554

The language coverage in our work is limited to555

high- and mid-resource languages due to the lim-556

itation of our multilingual toxicity evaluator Per-557

spective API. Additionally, our mechanistic inter-558

pretability experiments are primarily done on the559

mGPT-1.3B model (Shliazhko et al., 2024), and we560

focus our mechanistic interpretability analysis on561

a particular variant of preference tuning method,562

which is the DPO algorithm (Rafailov et al., 2023).563

Ethical Statement564

As our research aims to mitigate multilingual harm-565

ful content generated by LLMs, we recognize the566

potential impact of our work on the global user567

communities. To ensure broad applicability of our568

findings, we include diverse languages with differ-569

ent linguistic characteristics. Furthermore, given570

our findings that toxicity is less mitigated for lower-571

resource languages, we acknowledge that safety572

vulnerabilities, such as toxic generations in our573

work, may still be present for low-resource lan-574

guage users even after safety preference tuning575

(Yong et al., 2023a; Nigatu and Raji, 2024).576
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A Training Details 850

A.1 DPO Preference Tuning 851

We use HuggingFace trl library and follow Lee 852

et al.’s (2024) hyperparameters (except learning 853

rate) for full model finetuning of mGPT and 854

BLOOM-1.7B. For QLoRA finetuning of Aya-23, 855

LLama2, and Llama3, we apply QLoRA (Dettmers 856

et al., 2023) on each model layer, with a rank of 64, 857

a scaling parameter of 16 and a dropout of 0.05. 858

We use the same set of training hyperparameters 859

except that we train longer up to 20 epochs and set 860

an effective batch size of 4 (batch size of 1 and gra- 861

dient accumulation steps of 4). In all setups, we use 862

early stopping by training until the validation loss 863

converges with a patience value of 10. We perform 864

DPO preference tuning on V100 and A6000 GPUs, 865

and it takes less than 12 hours to complete the train- 866

ing for mGPT and BLOOM-1.7B and around 24 867

hours to complete the training for Aya-23, Llama2 868

and Llama3. 869

A.2 Probe Training 870

We train the linear probe wtoxic for English bi- 871

nary toxicity classification with seed 99 on 90% 872

of 159,571 comments from the Jigsaw dataset 873

(cjadams et al., 2017). Table 5 displays the hyperpa- 874

rameters used for training. It achieves a validation 875

accuracy of 94.31% on the remaining 10% dataset. 876

In addition, the ROC-AUC (Receiver Operating 877

Characteristic - Area Under the Curve) score on 878
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Figure 5: Toxicity reduction of BLOOM-1.7B (BigScience Workshop et al., 2022) after DPO training.
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Figure 6: Toxicity reduction of BLOOM-7.1B (BigScience Workshop et al., 2022) after DPO training.
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Figure 7: Toxicity reduction of Llama2 (Touvron et al., 2023) after DPO training.
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Figure 8: Toxicity reduction of Llama3 (AI@Meta, 2024) after DPO training.
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Figure 9: Toxicity reduction of Aya-23 (Aryabumi et al., 2024) after DPO training.

Hyperparameter Value

Optimizer RMSProp
Learning Rate 1E-5

Batch Size 4
Gradient accumulation steps 1

Loss BCELoss
Max gradient norm 10
Validation metric Loss/valid

Validation patience 10
DPO beta 0.1
Epochs 5

Table 5: Hyperparameters for DPO preference tuning
for mGPT and BLOOM (1.7B).

the test split of Jigsaw dataset is 0.862. The whole879

experiment was conducted on a single NVIDIA880

RTX A6000 for approximately 50 hours.881

Hyperparameter Value

Optimizer Adam
Learning Rate 0.0001

Batch Size 10
Loss BCELoss

Epoch 20

Table 6: Training hyperparameters for the binary toxicity
classification probe wtoxic.

B Distribution of Perplexity Scores882

Figure 10 displays the mGPT’s distribution of the883

perplexity scores (which measures fluency) across884

all 17 languages. We observe that first, DPO prefer-885

ence tuning increases the perplexity of the genera-886

tions as the median, interquatile range and whiskers887

increase in Figure 10a. Nonetheless, the distribu-888

tions largely overlap, which suggests minimal de-889

generation on the model continuations due to DPO 890

preference tuning. Second, the distributions in Fig- 891

ure 10 concentrate on reasonable range between 892

10 and 30 across different languages, and there are 893

many outlier instances that leads to long tail dis- 894

tributions. This informs us that we should report 895

median instead of mean for perplexity scores as the 896

latter will be heavily skewed by outliers. 897

C Tradeoffs between Learning Rate, 898

Toxicity, and Perplexity Scores 899

We perform English DPO training on mGPT model 900

using the following five learning rate: {1e-7, 5e- 901

7, 1e-6, 5e-6, 1e-5}, and we measure the toxicity 902

level and fluency (perplexity) in model generations 903

across 17 languages afterward. Figure 11 demon- 904

strates the tradeoff between toxicity reduction and 905

perplexity. As the learning rate increases, the model 906

becomes less toxic, but the perplexity of its genera- 907

tions increases. We believe the reason is that since 908

the RTP-LX input prompts are already contextu- 909

ally toxic, in which around 40% of the prompts 910

contain toxic words (de Wynter et al., 2024), gen- 911

erations that continue the toxic context tends to be 912

more natural than deliberating switching away from 913

context for non-toxic continuations. As perplexity 914

measures the fluency of the continuations condi- 915

tioned on the prompt, toxic continuations will have 916

lower perplexity. 917

D QLoRA and Multilingual Toxicity 918

Reduction 919

We perform full model finetuning and QLoRA 920

finetuning of BLOOM-1.7B model with the same 921

training hyperparameters in Table 6 with the same 922

number of training steps (up to convergence in 5- 923

epoch training). Figure 12 shows that model fine- 924

tuned with QLoRA adapters remain more toxic 925
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Figure 10: Per-language perplexity distribution of mGPT continuations before and after DPO training.
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Figure 11: Tradeoffs between DPO learning rate, tox-
icity in post-DPO generation and perplexity across 17
languages.
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Figure 12: Comparison between full model training and
QLoRA finetuning of BLOOM-1.7B with English DPO
preference tuning.

0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950
Mean Retrieval Accuracy (en-x)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

%
 E

M
T 

Ch
an

ge
 (E

ng
lis

h 
DP

O 
Tr

ai
ni

ng
)

ar

cs

de

es

fr

hi

id

it

ja

ko

nl

pl

pt

ru

sv

zh

Figure 13: Percentage change in expected maximum
toxicity against bilingual text retrieval accuracy for
BLOOM-1.7B. Correlation with Pearson-r value of 0.59
(p < 0.01)

than the full model finetuning. We believe this is 926

due to QLoRA adapter finetuning has significnatly 927

less number of trainable parameters. 928

E Bilingual Sentence Retrieval 929

Experiment for Other LLMs 930

Figure 13, Figure 14 and Figure 15 show the posi- 931

tive correlation between bilingual sentence retrieval 932

accuracy and percentage drop in EMT after English 933

DPO training for BLOOM-1.7B, BLOOM-7.1B 934

and Llama2-7B respectively. We observe similar 935

findings as mGPT in Figure 4. For instance, we see 936

the cluster of Romance and Germanic languages 937

occupy the top-right corner, which indicates ef- 938

fective cross-lingual transfer, whereas languages 939

with different scripts and less related to English are 940

on the bottom-left corner, which indicates poorer 941

cross-lingual transfer of English detoxification. 942
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Figure 14: Percentage change in expected maximum
toxicity against bilingual text retrieval accuracy for
BLOOM-7.1B. Correlation with Pearson-r value of 0.66
(p < 0.01)
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Figure 15: Percentage change in expected maximum tox-
icity against bilingual text retrieval accuracy for Llama2-
7B. Correlation with Pearson-r value of 0.78 (p < 0.01)

F Complete Table of Toxic Value Vectors 943

Table 3 presents the subset of value vectors iden- 944

tified as actual sources of toxicity. For a compre- 945

hensive view, Table 7 and Table 8 include the com- 946

plete list of all 36 vectors along with their projec- 947

tions. Each entry details the top 30 tokens promoted 948

when these vectors are projected onto the vocab- 949

ulary space, and we annotate their potential toxic 950

themes. For clarity, the leading space is removed. 951

Vectors are ranked according to their cosine sim- 952

ilarities with the toxic probe vector wtoxic. It can 953

be observed that the tokens promoted by most top- 954

ranking vectors are thematically grouped and span 955

across multiple languages. For example, w3
down,5794 956

promotes tokens related to pornography—in addi- 957

tion to common English tokens like “porn” and 958

“sex,” it includes “seks” (sex in Malay), “ú
æ�
	Jm.Ì'@” 959

(sexual in Arabic), “Член” (a slang term in Rus- 960

sian meaning ’dick’), and ”פור“ (a prefix in He- 961

brew equivalent to ‘por’ in ‘porn’). While some 962

tokens may not be inherently toxic, these projec- 963

tions clearly demonstrate the multilingual nature of 964

the value vectors. 965
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VECTORS TOXIC THEME PROMOTED TOKENS

w13
down,2337 Propaganda incomp, pseudo, manipul, propaganda, псев, ngu, corrupt, ignor, propagand, Pro-

paganda, corrup, dece, manip, bankrupt, mercen, conspiracy, prét, conspira, fraud,
blam, crimin, insult, selves, Emper, incap, пропаг, ignor, politiker, Politiker, massac

w14
down,6878 Exclamations aa, ee, uu, EEE, aha, haa, mouth, hah, ah, oo, akka, pile, yy, !!, umph, öh, ее, wah,

UU, моз, loo, Oh, ...)., oho, jee, oh, yah, ...], яя

w14
down,5723 Sexual Content sex, Sex, sex, porn, erot, Sex, seks, sexo, mast, Sexual, lesbian, anal, mature, sexual,

сексу, Amateur, penetr, XXX, hardcore, sexuelle, Anal, blow, đị, amateur, domina-
tion, �	�k. , penet, osexual, sessuale, homosex

w9
down,6517 Negative Sentiments ngu, вообще, pula, мало, onaa, skull, alka, sick, poor,졸, examp, yl, garr, meant,

pessoal, dout, poik, הגדולה ,喪, feit, panas, liksom, cay, ,גדולים anat, ,הבא tais, blam,
önem, нуж

w12
down,6538 N/A dreams, чуд, love, passion, Stories, ধন, fantas, magic, magia, heroes, !, битвы,

venture, conquered, 昧, любви, wings, tough, fate, holy, хит, Geschichten, !』,
thrown, ouro, cuore, фанта, !, storie

w12
down,6639 Gangster Culture maf, baller, Mafia, Hollywood, Cowboys, Buddy, Rocco, Maf, Cuban, Lords, rebell,

istol, venes, bond, Johnny, Papa, Bobby, bourgeois, father, Boys, brothers, Wilde,
latino, Dick, Buff, ègre, lesbian, Steele, rolle, latinos

w3
down,5794 Sexual Content porn, lesbian, sex, gay, sex, seks, sexo, сексу, ú
æ�

	Jm.Ì'@, Amateur, domination, xual,
uremberg, Sex, Sex, Gay, escort, rape, amateur, hardcore, Gang, male, Член, Tub,
XXX, girls, gang, ,פור hard, mass

w13
down,3368 N/A EEE, unno, kee, kaa, Oh,おお, OK, !, uh, !』, Sweet, cierto, amn, tty, Girl, ohan,

onaa, eh, ee,何, Ok, ahu, Oh,하자, knows, ok, ఫర, OK,ミ, Ok

w1
down,2583 Sexual Content sex, porn, lesbian, gay, sexo, сексу, Sex, ú
æ�

	Jm.Ì'@ , seks, Sex, hardcore, rape, escort, Gay,
sex, domination, Amateur, girls, celebrit, latina, ексу, mature, erot, revenge, Sexual,
Girls, videos, sexuelle, �	�m.Ì'@, tube

w13
down,7176 Sexual Content sex, femenino, Femen, сексу, weib, girl, feminino, girls, Geschlechts, femen, Girls,

девуш, women, sexo, Sex, Sexual, femmes, vrouwen, γυνα, Female, weibliche,
ексу, féminine, féminin, femenina, Woman, Sex, femminile, kvinnor, женщин

w23
down,5888 N/A K, S, D, H, Y, Y, F, W, R, N, T, P, K, G, DA, YA, YP, G, Z, M, H, IG, TAN, W, KS,

S, O, E, IS, D

w8
down,7612 Severity and Crisis sév,重, èlement, fäll, icism, loạn, rophe,嚴重, minaccia, endemic,に, menace, grave-

mente, akibat, amenaza, alkod, interference, interfer, szenved, caused,
	P

B@, spowod,

êne,壞, infolge, I. �.��., nặng, ,עקב sufr, enemigo

w11
down,7033 Counterculture funk, Evil, drummer, Chaos, Vampire, Punk, punk, Wrestling, Rotten, punk, Guns,

Cody, Ghost, arious, Comedy, Superman, Teen, Hulk, ego, Theory, Kid, Funk,テレ
ビアニメ, Girls, Mania, Johnny, Bee, Pokémon, girl, Hole

w11
down,4277 N/A トップ, yard, floors, floor, publicly, кур, lap, Wet, пара, blow, рекор, open, back,

Twitter, Sub, eplay, Live, オプ, boca, fermé, θμ, cean, pping, mouth, swing, **,
пара,閣, foot

w18
down,486 Destruction saque, confisc, захват, cię, assé, occupation, tho, 奪, ruin, cannon, , gado, Пок,

прода, vand, sell, przeję, chiếm, аром, bezit, vine, devol, vand, conquest, verkocht,
liqu, okup, εξα, burned, détr

w16
down,3531 Misconduct insult, abus, corrupt, prejud, fraud, confus, corruption, confusion, irrit, mauvais, ,

deform, scandal, hại, disastro,严重, excessive, auvaise,嚴重, disturb, abuse, violent,
violations, degener, violation, corrup, poison, illeg, inad, irreg

w17
down,520 N/A atson, oya, Lyc, arab, eldj, adino, arrista, arra, adin, arum, unak, ingles, ocha, Gall,

rox, pup, olio, xen, ucia, arin, rina, utch, mala, wound, avin, arba, ellina, roa, oshi,
cean

Table 7: Projections of all 36 value vectors from the actual sources of toxicity - Part 1
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VECTORS TOXIC THEME PROMOTED TOKENS

w12
down,3431 N/A żon, heiratete, født, wander, がいる, whom, fri, married, ηλικ, geboren, 一人,

elected, verheiratet, who, menik, naim, murdered, pope, diagnosed, convicted, heirat,
casado, apell, candid, born,晋, who, homeless, ermordet, resigned

w5
down,53 N/A ilit, itre, egas, itur, íp, imet, utt, iag, ovi, urn, ocl, iny, orr, uttu, itab, imed, ipul, umed,

iesa, udni, itore, igl, ittel, adah, enta, enn, ent, ierd, ulin, omm

w10
down,4641 Exclamations !", !, !".’, !», !", !, !』, !!, ?", ！ , !, ?".’, orrow, ?", "»., ? , Who, "», +„ uu, "», Why, Your,

survive, why, EEE, о, ’", Tomorrow, . . .

w3
down,3173 Political Controversy மத, insult, criticism, accusations, allegations, Satan, polem, antisemit, boyc, Obama,

attent, politician, gender, 념, atar, 罪, iste, ists, 民族, scandal, აობ, 支持, Massa,
politically, Marl, Terror, contrad, istes, allegedly, uga

w7
down,3971 N/A estri, ernas, erna, ater, ı̄n, skapet, atine, ernes, atet, eza, enin, uses, isierte, riere, ija,

ini, owskie, olin, ored, jekte, ,כה itty, okset, itäten, atina, liches, ated, ,וניה ūr, izable

w16
down,4702 Struggle steen, sł, helping, 哨, shut, ,זית elfen, стан, ума, ელი, , yal,

	à �P, hung, აობ, 訓,
出力, help, ragon, embar, शन, чер, ole, lopp, пех, пан, opes, úÎK Олимпий, lief

w17
down,2392 N/A ,ובמ kad, eus, Са, ,נוס kopol, wau, РО, uskan, kehr, holt, endien, YS, оган, aeus,

жед, Дем, Hor, Пор, uais, uah, gekehr, rape, пед, onaa, sein, hold, Он, üsten

w16
down,4689 Crime destroyed, poison, broken, viola, �

�®	K, violation, wrong, murdered, failure, destruction,
траг, viol, 破, violations, killed, incendi, erro, suic, overth, obsol, হত, détruit,
missing, Unf, faill, поврежд, uszkod, def, danneggi, fail

w21
down,7155 Geopolitical Tensions κη, リング, осс, ик, прек, ьют, യർ, ◌ൗ, ити, юс, енгер, бит, ета, еран,

ерусалим, , олот, болгар, АТУУ, ИК, СМИ, ън, уча, американских, ек,
ък,യറ, французского, еке

w0
down,7248 N/A ンプ, унь, udad, bett, უალ, стри, ίνη, აობ, мини, orki, É�@, Mandat, ziali, Pict,

orsi, Bata, , sculpt, ма, partij, осто, орот, inea, marker, Massa, ർഗ, Pem, inten

w17
down,3530 N/A СА, DE, КО, DO, OF, DA, TO, THE, TE, DOS, CA, TH, SI, NA, WA, SH, DI, RE,

БА, LA, PA, AN, ME, SO, TU, OR, MA, FL, EN, ВС

w23
down,2675 Legislation Terms 抵,本身, ,見られる,）。,הכ importante,一般的,みられる,人で,。」, essoort, ，“,

menoptera, 。”, 交代, тины, などがある, ,וניות ,וניים 建制, 。《, 最多, 可能是,
,色的,こく,特的,法的,הש ,名

w11
down,3027 N/A OK,

	à@Y 	K, cinese, , hide, ену, хе, jade,撲, ,טוב sea, boys, afterwards, chines, ковой,
broke, hung, енский, лё, rocks, endem, normal, ть, quit,二世, europé, otherwise,
Москва, allemande, bourg

w10
down,8010 Sexual Content ú
æ�

	Jm.Ì'@, couples, sex, Geschlechts, femen,貞, lesbian, seks, Sex, sex, kontrak, seksual,
femenina, Sex, feminist, sexual, Femen, masculino,育,合意, mulheres, женщин,
women, féminin, nat, secondaires, femenino, женат, �	�m.Ì'@

w10
down,2127 N/A e, ament, es, en, edades, enes, idades, ues, eni, ате, ив, ería, ute, ений, ibles, ację,

ere, ата, enie, entes, ente, ate, uos, ió, ies, ения, ables, eniu, osos, esi

w15
down,594 N/A ER, EN, ING, AST, ERS, DE, OF, ENT, LAN, EL, UL, THE, IN, TAT, EM, OR,

ASS, LO, ET, YA, HE, ON, AN, ISE, CON, IST, CH, INE, DO, RO

w10
down,7751 N/A rol, stein, खल, uba, dic, romos, ecin, dül, deling, icip, უალ, duk, stä, อม, sor, veen,

kül, tuk, band,克斯, upe, ahnya, gång, ysis, scy, ragalus, зен, dem, föd, ú
×ð

w10
down,4920 N/A British, hemp, bull, badan, Billie, rump, BB, dada, berkembang, rien, gede, berupa,

sph, woman, Ку, ео, Sub, dik, uber, Traff, худ, tartott, boca, Britain, fell, discográ-
fica, brutal, Mel, bong, allow

w14
down,7052 Severe Condition атастро, failure, violation, insult, disastro, , катастро, потери,陷, catast, потеря,

disturb, неуда,失, deterior,嚴重, ��®	K, violations,危,严重, confusion, disappoint,
наруш, discont,傷,事故,違反, worst, confus, conflict

Table 8: Projections of all 36 value vectors from the actual sources of toxicity - Part 2
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