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A B S T R A C T

Codebook collapse is a common problem in training deep generative models with discrete representation spaces
like Vector Quantized Variational Autoencoders (VQ-VAEs). We observe that the same problem arises for the
alternatively designed discrete variational autoencoders (dVAEs) whose encoder directly learns a distribution
over the codebook embeddings to represent the data. We hypothesize that using the softmax function to
obtain a probability distribution causes the codebook collapse by assigning overconfident probabilities to
the best matching codebook elements. In this paper, we propose a novel way to incorporate evidential
deep learning (EDL) through a hierarchical Bayesian modeling instead of softmax to combat the codebook
collapse problem of dVAE. We evidentially monitor the significance of attaining the probability distribution
over the codebook embeddings, in contrast to softmax usage. Our experiments using various datasets show
that our model, called EdVAE, mitigates codebook collapse while improving the reconstruction performance,
and enhances the codebook usage compared to dVAE and VQ-VAE based models. Our code can be found at
https://github.com/ituvisionlab/EdVAE.
1. Introduction

Generative modeling of images has been one of the popular research
themes that aided in advancement of deep neural networks, particularly
in enhancement of unsupervised learning models like Variational Au-
toencoders (VAEs) [1], Generative Adversarial Networks (GANs) [2],
and Diffusion models [3]. VAEs [1] and their variant models have
shown promise as solutions to numerous problems in generative mod-
eling such as disentanglement of the representations [4], discretization
of the representations [5,6], and high-quality image generation [7,8].
Although most of the VAE models assume a continuous latent space to
represent the data, discrete representations are more suitable to express
categories that modulate the observation space [5]. Supporting this
rationale, recent celebrated large generative models like VQGAN [9],
LDM [10], and DALL-E 1 [6] also rely on discrete latent spaces learned
by discrete VAEs to describe the image data.

It is customary to form the latent space as a codebook consisting
of discrete latent embeddings, where those embeddings are learned to
represent the data. VQ-VAE [5,11] and its variants [9,12] are discrete
VAEs that quantize the encoded representation of the data by an
encoder with the nearest latent embedding in the learnable codebook in
a deterministic way. VQ-VAEs achieve considerably high reconstruction
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and generation performances. However, they are observed to suffer
from the codebook collapse problem defined as the under-usage of the
codebook embeddings, causing a redundancy in the codebook and
limiting the expressive power of the generative model. As the deter-
ministic quantization is the most likely cause of the codebook collapse
problem in VQ-VAEs [13], probabilistic approaches [13], optimization
changes [14] as well as codebook reset [15,16] and hyperparameter
tuning [16] are employed in VQ-VAEs to combat the codebook collapse
problem.

Unlike VQ-VAEs, the encoder of another discrete VAE, which is
called dVAE [6], learns a distribution over the codebook embeddings
for each latent in the representation. That means, instead of quantizing
a latent with a single, deterministically selected codebook embedding,
the encoder of dVAE incorporates stochasticity to the selection of the
embeddings where the learned distribution is modeled as a Categorical
distribution. We find out that dVAE also suffers from the codebook
collapse problem even though stochasticity is involved. One of our
hypotheses is that attaining the probability masses for codebook em-
beddings using a softmax function induces a codebook collapse in
dVAE, as we demonstrate in this paper.
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Softmax notoriously overestimates the probability mass of the pre-
diction, which in turn led to exploration of different alternatives to
softmax, especially in classification tasks [17,18]. Among those ap-
proaches, the widely adopted EDL [18] places a Dirichlet distribution
whose concentration parameters over the class probabilities are learned
by the encoder. In EDL, the class predictions are considered as the
subjective opinions, and the evidences leading to those opinions are
collected from the data, which are explicitly used as the concentration
parameters of the Dirichlet distribution. To define such a framework,
the softmax layer of the encoder is removed, and the logits of the
encoder are used as the concentration parameters whose mean values
are used as the predicted class probabilities. EDL can be also viewed as
a generative model where the class labels follow a normal distribution
whose mean is set by the uninformative Dirichlet prior over the class
probabilities [19].

In this work, we find out that the root cause of the codebook
collapse in dVAE can be framed as the artificial intelligence counterpart
of the cognitive psychological phenomenon called the confirmation
bias [20]. This bias is developed cumulatively during the whole training
process as the model overconfidently relates new observations to those
already seen ones. We demonstrate by way of experiments that the
spiky softmax probabilities lead to the confirmation bias problem.
In order to mitigate the latter, we introduce an uncertainty-aware
mechanism to map the inputs to the codebook embeddings by virtue
of an evidential formulation. To that end, dVAE encoder collects ev-
idences from the data, and the codebook embeddings that represent
the data are selected based on those evidences. While the highest
evidence increases the probability of the corresponding embedding to
be selected, the collected evidences lead to a smoother probability
distribution compared to softmax probabilities which leads to a diver-
sified codebook usage. We reformulate the original EDL framework,
and build a hierarchical Bayesian extension of dVAE. We summarize
our contributions as follows: (1) We introduce an original extension of
dVAE that is a hierarchical Bayesian model using Dirichlet-Categorical
distributions by virtue of EDL incorporation. (2) We report evidence
of the confirmation bias problem caused by the softmax probabilities
used in dVAE. (3) We observe that the EDL integration improves the
codebook usage of dVAE, which is measured by the perplexity.

In our work, we set the baseline results of dVAE for various datasets,
and surpass the baseline measures with our model called Evidential
dVAE (EdVAE) in terms of reconstruction performance, codebook us-
age, and image generation performance in most of the settings. We
also compare EdVAE with state-of-the-art VQ-VAE based models using
various experimental settings to demonstrate that our model performs
close to or better than the VQ-VAE based methods.

2. Related work

Codebook Collapse on VQ-VAEs: Vector quantization, which is
useful for various tasks including image compression [21,22], is the
backbone of the VQ-VAE [5]. While deterministically trained VQ-
VAEs show favorable performance on image reconstruction and gener-
ation [9,11], text decoding [23], music generation [16], and motion
generation [24], some of the VQ-VAE variants use stochasticity and
other tricks during the training, especially to alleviate the codebook
collapse problem.

Codebook reset trick [15] replaces the unused codebook embed-
dings with the perturbed version of the most used codebook embedding
during the training, and increases the number of embeddings used
from the codebook. New perspectives on comprehending VQ-VAEs such
as affine re-parameterization of the codebook embeddings, alternated
optimization during the training, and synchronized update rule for the
quantized representation are proposed by Huh et al. [14] to address the
problems of VQ-VAEs including the codebook collapse.

To incorporate stochasticity, a soft expectation maximization (EM)
algorithm is reformulated based on the hard EM modeling of the
2
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vector quantization [25]. GS-VQ-VAE [26] uses the Euclidean distance
between the encoder’s output and the codebook as the parameters of a
Categorical distribution, and the codebook embeddings are selected by
sampling. SQ-VAE [13] defines stochastic quantization and dequanti-
zation processes which are parameterized by probability distributions.
Those stochastic processes enable codebook usage implicitly without
needing additional tricks such as codebook resetting.

Although the codebook collapse problem of the VQ-VAEs is studied
in detail with observed success, it is still an open question for dVAEs.
The dVAEs are employed instead of VQ-VAEs in [6] to obtain an
image representation for the text-to-image generation problem. As the
dVAEs have shown great potential in such complicated tasks, specifying
existing problems of dVAE and providing relevant solutions are poised
to bring both methodological and practical benefits.

To that end, our work proposes a novel way to combat the codebook
collapse problem of the dVAEs. While the proposed methods for VQ-
VAEs have the same objective of mitigating the codebook collapse
problem like our method, our intuition differs since we focus on the
properties of the distribution learned over the codebook, and try to
attain a better distribution. On the other hand, other methods focus
on the internal dynamics of the VQ-VAE model and its training.

Hierarchical Bayesian Models: Hierarchical Bayesian models have
iverse variants like belief networks [27], Bayesian neural networks
28], applied in healthcare, finance, and machine learning. Hierarchical
AEs are the realization of hierarchical Bayesian modeling in the con-

ext of deep generative models. Some hierarchical VAEs, exemplified
y models like the Ladder VAE [29], leverage a layered structure to
apture hierarchical dependencies in data. In contrast, models like
Q-VAE-2 [11] adopt a different approach to hierarchical VAEs. VQ-
AE-2 focuses on discrete latent codes organized hierarchically within
codebook. However, our model exhibits a hierarchical structure by
odeling uncertainty in the parameters of the Categorical distribution,

nd it involves sampling latent variables from these distributions.
Evidential Deep Learning: The foundational work by Sensoy et al.

18] has been pivotal in advancing uncertainty quantification in deep
earning, and its methodology for modeling uncertainty inspires subse-
uent research. Soleimany et al. [30] applies EDL to molecular property
rediction, Bao et al. [31] explores its use in open-set action recogni-
ion, and Wang et al. [32] focuses on uncertainty estimation for stereo
atching. These works collectively demonstrate the versatility and

mpact of the EDL framework, showcasing its influence across diverse
omains. In our work, we employ EDL within a VAE-based framework
or the first time. This innovative incorporation leads to a hierarchical
ayesian model using Dirichlet-Categorical distributions.

. Background

.1. Discrete variational autoencoders

Discrete VAEs aim to model the high-dimensional data 𝑥 with the
ow-dimensional and discrete latent representation 𝑧 by maximizing the
LBO of the log-likelihood of the data:

ELBO = E𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)] − KL[𝑞(𝑧|𝑥)∥𝑝(𝑧)], (1)

here 𝑝(𝑥|𝑧) is the generative model which is designed as a decoder,
(𝑧|𝑥) is the approximated posterior which is designed as an encoder,
nd 𝑝(𝑧) is a prior.

In discrete VAEs, 𝑑 dimensional 𝑧 is sampled from a Categorical dis-
ribution over the possible values of 𝑧 as 𝑧 ∼ 𝐶𝑎𝑡(𝑧|𝜋). Encoder returns
nnormalized log probabilities 𝑙 = [𝑙1,… , 𝑙𝑑 ] and 𝜋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙) is used
o obtain the probability masses of this Categorical distribution. Then,
is fed into the decoder to reconstruct 𝑥.

As the discrete variables sampled from a Categorical distribution do
ot permit an end-to-end training, methods for continuous relaxation
f the discrete variables are proposed, introducing the Gumbel-Softmax

rick [33,34]. Gumbel-Softmax trick briefly introduces Gumbel noises
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𝑔 = [𝑔1,… , 𝑔𝑑 ], 𝑔𝑖 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1) into 𝑙 to introduce randomness so that:

𝑧 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑 (𝑙 + 𝑔) ∼ 𝐶𝑎𝑡(𝑧|𝜋), (2)

holds. While Eq. (2) is the first step to take a differentiable sample from
a Categorical distribution, taking the 𝑎𝑟𝑔𝑚𝑎𝑥 is also non-differentiable.
Therefore, softmax operation with a temperature parameter 𝜏:

𝑧𝑚 = 𝑒
𝑙𝑚+𝑔𝑚
𝜏

∑𝑘
𝑗=1 𝑒

𝑙𝑗+𝑔𝑗
𝜏

, (3)

where 𝑚 ∈ {1,… , 𝑑} can be used to approximate 𝑎𝑟𝑔𝑚𝑎𝑥 operation, and
𝜏 controls how closely the Gumbel-Softmax distribution approximates
the Categorical distribution, resulting in a differentiable 𝑧.

VQ-VAE is a discrete VAE variant where a learnable codebook
 ∈ R𝐾×𝐷 consisting 𝐾 number of 𝐷 dimensional embeddings is
trained to represent a dataset. In VQ-VAE, discrete latent variables are
used to retrieve embeddings from  so that these embeddings can
represent 𝑥. These discrete latent variables are obtained as follows: an
encoder constructs a continuous latent representation 𝑧𝑒(𝑥) ∈ R𝑁×𝑁×𝐷

spanned by 𝑁 × 𝑁 matrices, and the discrete latent 𝑧 ∈ R𝑁×𝑁×𝐾

is deterministically obtained using the one-hot representations of the
closest embeddings’ indices  for each 𝑁 × 𝑁 spatial location using
Euclidean distance as follows:

𝑞(𝑧𝑖 = one-hot(k)|𝑥) =
{

1 if 𝑘 = argmin𝑗‖𝑧𝑒(𝑥)𝑖 − 𝑒𝑗‖2
0 otherwise

where 𝑖 ∈ {1,… , 𝑁 ×𝑁}, 𝑘 ∈ {1,… , 𝐾}, 𝑧𝑒(𝑥)𝑖 ∈ R𝐷 is the 𝑖th vector
in 𝑧𝑒(𝑥), and 𝑒𝑗 ∈ R𝐷 is a codebook embedding. Then, a quantized
representation 𝑧𝑞(𝑥) = 𝑧 ∗  is obtained using the indices 𝑧s to retrieve
the corresponding codebook embeddings. The operator * performs
tensor-matrix multiplication where each 𝑧𝑖 for each spatial position will
retrieve the related codebook vectors from codebook matrix . Lastly,
the quantized representation 𝑧𝑞(𝑥) ∈ R𝑁×𝑁×𝐷 is fed into the decoder to
reconstruct 𝑥. The value of 𝑁 changes depending on the downsampling
amount of the encoder (see Appendix C for encoder design).

Unlike VQ-VAEs, dVAE [6] compresses 𝑥 into 𝑧𝑒(𝑥) ∈ R𝑁×𝑁×𝐾

which is taken as the unnormalized log probabilities of a Categorical
distribution over 𝐾 different codebook embeddings for each 𝑁 × 𝑁
spatial location. Then, the quantizing discrete codebook indices are
sampled as follows:

𝜋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑒(𝑥)), 𝑧 ∼ 𝐶𝑎𝑡(𝑧|𝜋), 𝑧𝑞(𝑥) = 𝑧 ∗ . (4)

While VQ-VAE obtains the discrete latent 𝑧 deterministically, dVAE
samples them as in Eq. (4). dVAE also incorporates Gumbel-Softmax
relaxation for differentiability of the sampled discrete variables 𝑧s
in Eqs. (2) and (3).

3.2. Hierarchical Bayesian models

A Hierarchical Bayesian model is defined as a chain of random
variables following a hierarchical structure, where each level represents
a different level of abstraction or variability in the data. Given a data
set 𝑋 = {𝑥𝑖|𝑖 = 1,… , 𝐿} of 𝐿 observations, assume the generation of
this data set is governed by two groups of local latent variables 𝑈 and
𝑍 that are independent across data points. The joint distribution reads:

𝑝(𝑋,𝑍,𝑈 ) = 𝑝(𝑋|𝑍,𝑈 )𝑝(𝑍|𝑈 )𝑝(𝑈 ) =
𝐿
∏

𝑖
𝑝(𝑥𝑖|𝑧𝑖, 𝑢𝑖)𝑝(𝑧𝑖|𝑢𝑖)𝑝(𝑢𝑖),

where the first equality follows from the assumed hierarchy starting
from the root node 𝑈 going down through 𝑍 to 𝑋, and the second from
the independence assumption of the latent variables. The resulting data
generating process can then be written as:
3

𝑢𝑖 ∼ 𝑝(𝑢𝑖), 𝑧𝑖|𝑢𝑖 ∼ 𝑝(𝑧𝑖|𝑢𝑖), 𝑥𝑖|𝑧𝑖, 𝑢𝑖 ∼ 𝑝(𝑥𝑖|𝑧𝑖, 𝑢𝑖).
𝑧𝑖 could be a high level conceptual representation of 𝑥𝑖, e.g. determi-
nant features of an object and 𝑢𝑖 an even higher level representation,
such as properties of object groups. The fact that these variables are
linked via probability distributions also accounts for random factors in
a way that accumulates downward in the hierarchy.

A hierarchical deep generative network represents the conditional
relationships in this data generating process as Neural Networks (NNs).
For instance, Hierarchical VAEs do that by introducing hierarchical
layers of latent variables and mapping the conditional distributions
𝑝(𝑥𝑖|𝑧𝑖, 𝑢𝑖), 𝑝(𝑧𝑖|𝑢𝑖), and 𝑝(𝑢𝑖) to the parameters of NNs. Specifically,
the encoder network maps the observed data 𝑥𝑖 to latent variables 𝑧𝑖
and 𝑢𝑖, while the decoder network reconstructs the data from sampled
latent variables. The hierarchical structure facilitates the learning of
increasingly abstract representations of the data.

3.3. Evidential deep learning as a hierarchical Bayesian model

EDL enhances the NNs in order to allow for probabilistic uncertainty
quantification for various tasks such as classification [18] or regres-
sion [35]. As the deterministic NNs output a point estimate for the
given input which does not comprise uncertainty over the decision,
the EDL changes this behavior such that the output of the NN is a set
of probabilities that represent the likelihood of each possible outcome,
by using the evidential logic. EDL implements a hierarchical Bayesian
model for a feed-forward classification task as:

𝑢𝑖|𝑥𝑖 ∼ 𝑝(𝑢𝑖|𝑥𝑖), 𝑧𝑖|𝑢𝑖 ∼ 𝑝(𝑧𝑖|𝑢𝑖), 𝑦𝑖|𝑧𝑖 ∼ 𝑝(𝑦𝑖|𝑧𝑖) (5)

where the hyperprior 𝑢𝑖 is conditioned on an input observation 𝑥𝑖, and
𝑦𝑖 is the class label of 𝑥𝑖. EDL’s loss function can be cast as a variational
inference problem where 𝑞(𝑢, 𝑧|𝑥) = 𝑝(𝑧|𝑢)𝑝(𝑢|𝑥).

4. Method

In this work, we enhance the dVAE model with an evidential
perspective to mitigate the codebook collapse problem. To establish
a stronger connection between the motivation and the proposed ap-
proach, it is essential to delve deeper into the root cause of codebook
collapse. This issue arises when the model consistently relies on pre-
viously used codebook embeddings throughout training. Conceptually,
the phenomenon of confirmation bias aligns with the codebook collapse
problem. Over the course of training, the model gradually develops a
bias, excessively associating new observations with previously encoun-
tered ones due to overconfidence. Given that the softmax function
has been acknowledged to exhibit overconfidence issues [17,18], our
motivation stems from the need to address the overconfidence chal-
lenge. Leveraging EDL, a framework demonstrated to alleviate the
overconfidence problem associated with the softmax function, becomes
a compelling solution. To sum up, overconfidence is the key connection
between the evidential perspective and the codebook collapse problem,
and EdVAE strategically leverages EDL’s capabilities to counteract the
codebook collapse.

Overview of the proposed method is shown in Fig. 1. The encoder
𝜃 ’s continuous latent space 𝑧𝑒(𝑥) ∈ 𝑅𝑁×𝑁×𝐾 spanned by 𝑁 ×𝑁 matri-
es as explained in Section 3.1 is in agreement with the goal of learning
distribution over 𝐾 number of embeddings. Originally, 𝑧𝑒(𝑥) in Fig. 1

is passed to a softmax activation to obtain the parameters 𝜋s of the Cat-
egorical distribution that models the codebook embedding assignment
in dVAE as explained in Section 3.1. In EdVAE, we define a higher-level
Dirichlet prior over 𝜋s, and treat 𝑧𝑒(𝑥) as the concentration parameters
𝛼𝜃 to be learned of this distribution. Therefore, EDL approach builds a
hierarchical Bayesian model of dVAE. In Fig. 1, the areas highlighted
by blue and gray show the hierarchy between the distributions. Unlike
dVAE which has a single level of Categorical distribution as highlighted
by gray, we employ a hierarchical level in EdVAE highlighted by blue,
in order to incorporate randomness with well quantified uncertainty
over the selection process of the codebook embeddings by virtue of
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Fig. 1. Overview of the method. An illustrative codebook is defined as  ∈ 𝑅8×4 where 8 is the number of the codebook embeddings, 4 is the dimensionality of each embedding.
For each 16 spatial positions in 𝑧𝑒(𝑥) where 𝑁 is 4, we define a Dirichlet prior over the parameters of the Categorical distributions which models the codebook embedding
assignment to each spatial position. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Dirichlet prior. EDL incorporation models a second-order uncertainty
in EdVAE such that 𝛼𝜃 represents how confident this prediction is, and
𝜋 predicts which codebook element can best reconstruct the input.
The incorporated uncertainty awareness is expected to increase the
codebook usage in EdVAE which is highly limited in dVAE due to
the softmax operation. The intuition behind this expectation origi-
nates from the definition of the codebook collapse. New codebook
elements are employed whenever the existing ones cannot explain the
newcoming observation. Codebook collapse occurs when the model’s
prediction is wrong on whether the learned representations are capable
of reconstructing the new observation or not. Therefore, employing
uncertainty awareness over the codebook embedding selection enables
the model to use unused codebook embeddings when it is uncertain
about the codebook embedding selection. To validate this, we conduct
an experiment revealing a correlation between uncertainty values and
perplexity in CIFAR10, and this correlation supports our intuition (see
Section 5.2.2).

4.1. EdVAE design

In order to incorporate an evidential mechanism into the dVAE
model, the forward model and the design choices should be properly
arranged. When we design our forward model, we follow a similar
form to the latent variable modeling of EDL as described in Section 3.3
where 𝑝(𝑢𝑖|𝑥) in Eq. (5) is modeled as a Dirichlet distribution over
the Categorical distribution 𝑝(𝑧𝑖|𝑢𝑖). The concentration parameters, 𝛼𝜃 ,
of the Dirichlet distribution are defined to be greater than or equal
to 1. Therefore, 𝑧𝑒(𝑥) is passed through an exp(.) operation to obtain
evidences, and 1 is added to obtain the concentration parameters as
follows:

𝛼𝜃(𝑥) = exp(𝑧𝑒(𝑥)) + 1. (6)

We define our forward model to be:

𝑝(𝜋) = 𝑖𝑟(𝜋|1,… , 1), (7)

𝑃𝑟(𝑧|𝜋) = 𝑎𝑡(𝑧|𝜋), (8)

𝑝(𝑥|, 𝑧 = 𝑘) =  (𝑥|𝜙(, 𝑧), 𝜎2𝐼). (9)

In dVAE, the prior is defined as a uniform distribution over the code-
book embeddings. Eq. (7) demonstrates our prior design as a Dirichlet
distribution that generates uniform distributions over the codebook
embeddings on average, and 𝜋 = [𝜋 ,… , 𝜋 ]. Eq. (8) shows that we
4

1 𝐾
Algorithm 1 Training algorithm of EdVAE
Input: Dataset xtrain
Output: Reconstructed xtrain
Initialize the encoder  [0]

𝜃 , the decoder [0]
𝜙 , the codebook [0],

and the temperature parameter 𝜏[0] = 1.0
for 𝑡 = 1, 2,… , 𝑇 do

𝑥 ← Random minibatch from xtrain
𝑧𝑒(𝑥) ←  [𝑡−1]

𝜃 (𝑥)
𝛼𝜃 ← 𝑒𝑧𝑒(𝑥) + 1
𝜋 ∼ ir(𝜋|𝛼𝜃)
𝑧 ∼ RelaxedOneHotCategorical(temperature = 𝜏[𝑡−1],probs = 𝜋)
�̂� ← [𝑡−1]

𝜙 (, 𝑧)
𝑔 ← ∇,𝜃,𝜙([𝑡−1], 𝜃[𝑡−1], 𝜙[𝑡−1])

with sampled 𝑥 and �̂�
[𝑡], 𝜃[𝑡], 𝜙[𝑡] ← Update parameters using 𝑔
𝜏[𝑡] ← CosineAnneal(𝜏[𝑡−1], 𝑡)

end for

model the embedding selection as a Categorical distribution where 𝑧 is
the index of the sampled codebook embedding from , and the param-
eters 𝜋s of the Categorical distribution are sampled from the Dirichlet
prior. During the training, we obtain samples from the Categorical dis-
tribution using Gumbel-Softmax relaxation to backpropagate gradients
to the encoder. We decay the temperature parameter of the Gumbel-
Softmax to 0 as described in [33] so that the soft quantization operation
turns into the hard quantization. Therefore, there may be multiple
embedding dimensions that are chosen independently due to the tem-
perature value at train-time. At test-time, we perform hard quantization
and simply take a single sample from Eq. (8). The algorithms of the
training and the inference of EdVAE are given in Algorithms 1 and
2, respectively. 𝑡 denotes the index of the training iterations, and 𝑏
denotes the batch index in the inference. RelaxedOneHotCategorical(.)
distribution is differentiable, and the samples from this distribution
are soft one-hot vectors. On the other hand, Categorical(.) distribution
is not differentiable which is not required during the inference. The
samples from this distribution are hard one-hot vectors which indicate
one-to-one quantizations.

In Eq. (9), we define our likelihood 𝑝(𝑥|, 𝑧 = 𝑘) as a Normal
distribution, and 𝜙 denotes the decoder network. The input of the
decoder can be formed 𝑧 (𝑥) = 𝑧 ∗  as explained in Section 3.1.
𝑞
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Algorithm 2 Inference algorithm of EdVAE
Input: Dataset xtest
Output: Reconstructed xtest
Freeze the parameters of the trained encoder 𝜃 , the trained decoder
𝜙,
and the trained codebook 
for 𝑏 = 1, 2,… , 𝐵 do

𝑥𝑏 ← Minibatch from xtest
𝑧𝑒(𝑥) ← 𝜃(𝑥)
𝛼𝜃 ← 𝑒𝑧𝑒(𝑥) + 1
𝜋 ∼ ir(𝜋|𝛼𝜃)
𝑧 ∼ Categorical(probs = 𝜋)
�̂�← 𝜙(, 𝑧)

end for

We approximate the intractable true posterior 𝑝(𝜋, 𝑧|𝑥) by structured
ariational inference. Thanks to the Dirichlet-Categorical conjugacy, we
se the following approximate distribution that accounts for the full
actorization of the codebook elements and the uncertainty on their
robabilities:

(𝜋, 𝑧|𝑥) = 𝑎𝑡(𝑧|𝜋)𝑖𝑟(𝜋|𝛼1𝜃 (𝑥),… , 𝛼𝐾𝜃 (𝑥)). (10)

where 𝛼𝜃(𝑥) =
[

𝛼1𝜃 (𝑥),… , 𝛼𝐾𝜃 (𝑥)
]

. Our hierarchical Bayesian model has
a Normal distributed likelihood function the mean of which takes
codebook elements chosen by the Categorical distribution as the input
and maps them to the image space. It follows the Bayesian structure ex-
plained in Section 3.2. Even though the Dirichlet-Categorical conjugacy
does not grant us an analytical solution for the posterior distribution,
it simplifies the computations of the ELBO detailed in Appendix B.

As a result of our derivations, ELBO to be maximized during the
training is:

(, 𝜃, 𝜙) = E𝑃𝑟(𝑧|𝜋)
[

E𝑞(𝜋|𝑥)[log 𝑝(𝑥|, 𝑧)]
]

−KL(𝑞(𝜋|𝑥)∥𝑝(𝜋)). (11)

The second term in Eq. (11) is the Kullback–Leibler divergence between
two Dirichlet distributions, hence has the analytical solution as derived
in Appendix A. After further derivations given in Appendix B over the
first term in Eq. (11), our loss function is derived in Eq. (12):

(, 𝜃, 𝜙) = E𝑞(𝜋|𝑥)
[

(𝑥 −𝜙(, 𝑧))2
]

− 𝛽KL(𝑖𝑟(𝜋|𝛼𝜃(𝑥))∥𝑖𝑟(𝜋|1,… , 1))

(12)

which is optimized to increase the likelihood, while decreasing the KL
distance regularized with 𝛽 coefficient [4] between the amortized pos-
terior and the prior. We can perform the optimization in an end-to-end
manner as we turn the only non-differentiable part in our hierarchical
model that is sampling from a Categorical distribution into a differ-
entiable operation RelaxedOneHotCategorical with Gumbel-Softmax as
explained in Section 3.1 and shown in Algorithm 1. Therefore, we
use Adam optimizer with an initial learning rate 1𝑒−3 to optimize our
model.

The first term in Eq. (12) indicates the reconstruction error in terms
of mean squared error (MSE) between the input and the reconstruction.
The objective goal of the model is to obtain a lower reconstruction
error presuming that a well representing latent space is constructed.
The second term indicates that the Dirichlet distribution which defines
a distribution over the Categorical distributions should converge to
a generated distribution in a uniform shape on average in order to
represent the codebook embedding selection in a diverse way. When
the distribution over the codebook embeddings is uniform, codebook
usage is maximized as the probabilities of each codebook embedding
to be selected become similar in value. Therefore, while the first term
in Eq. (12) aids directly in building the representation capacity of the
5

latent space, the second term in Eq. (12) indirectly supports that goal
via a diversified codebook usage. We use a 𝛽 coefficient to balance the
reconstruction performance and the codebook usage.

EdVAE introduces a hierarchical structure by learning a Dirichlet
distribution over the parameters of a Categorical distribution, with
latent variables sampled from this distribution. This approach suits the
hierarchical Bayesian modeling basics we present in Section 3.2 while
it differs from other hierarchical VAEs in several aspects. Firstly, the hi-
erarchy is expressed through probabilistic modeling of the parameters,
rather than through discrete latent codes or layered representations,
in order to increase the codebook entropy. Secondly, while the model
captures uncertainty in the parameters, it does not explicitly learn
hierarchical representations of the data. Lastly, variational inference
involves approximating the posterior distribution over latent variables
through the learned Dirichlet-Categorical relationship. Overall, EdVAE
introduces a unique approach to hierarchical VAEs, emphasizing prob-
abilistic modeling of parameters and differing from others in terms of
representation learning and variational inference strategies.

5. Experiments

5.1. Experimental settings

We perform experiments on CIFAR10 [36], CelebA [37], and LSUN
Church [38] datasets to demonstrate the performance of EdVAE com-
pared to the baseline dVAE and VQ-VAE based methods. We use
VQ-VAE-EMA which updates the codebook embeddings with exponen-
tial moving averages, and GS-VQ-VAE as the basic VQ-VAE models
along with the state-of-the-art VQ-VAE based methods including SQ-
VAE and VQ-STE++ mitigating codebook collapse problem. We use
the same architectures and hyperparameters described in the original
papers and official implementations for a fair comparison. We repeat all
of our experiments using three different seeds. Hyperparameter choices
and architectural designs are further detailed in Appendix C.

5.2. Evaluations

5.2.1. Effects of the softmax distribution
Our hypothesis is that the spiky softmax distribution over the code-

book embeddings develops confirmation bias, and the confirmation bias
causes a codebook collapse. We test our hypothesis by comparing the
average entropy of the probability distributions learned by the encoders
of dVAE and EdVAE during the training using CIFAR10 dataset. Low
entropy indicates a spiky distribution while high entropy represents
a distribution closer to a uniform shape, which is the desired case
for a diverse codebook usage. A spiky probability distribution yields
a confirmation bias because the codebook embedding with the highest
probability mass is favorably selected. On the other hand, when the
Categorical distribution has a flatter probability distribution, a variety
of codebook embeddings might be sampled to represent the same data
for its different details, which leads to an enriched codebook and an
enhanced codebook usage.

Fig. 2(a) visualizes the average entropy of the probabilities during
the training. We measure the entropy of each probability distribution
over the codebook embeddings sample-wise, meaning that each sample
consists of 𝑁 ×𝑁 number of entropy values calculated for each spatial
position. We gather all 𝐿 × 𝑁 × 𝑁 entropy values at on the entire
dataset where 𝐿 is the number of training samples, and plot the average
entropy of the probabilities with mean and standard deviation. We find
out that EdVAE’s mean values of the entropy are higher than those
of dVAE’s, and this performance gain in terms of entropy is preserved
during the training. Furthermore, we observe higher standard deviation
for EdVAE in contrast to dVAE, which indicates that dVAE squeezes the
probability masses into a smaller interval for all positions while the
entropy values of EdVAE have a wider range aiding a relatively liberal

codebook usage.
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Fig. 2. Entropy visualization of the probability distributions for CIFAR10. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 3. EdVAE training on CIFAR10: perplexity values increase during the training due to the increase in uncertainty values.
Fig. 2(b) visualizes the entropy changes of the probabilities for each
spatial position in the same sample during the training. All iterations
have the same color bar for both models to observe the change effec-
tively. Heat map visualization is useful to monitor the entropy of the
probabilities within a single sample, and EdVAE obtains higher entropy
values for most of the spatial positions compared to those of dVAE
during the training.

We note that while the prior works [13,15] induce high entropy
via regularizers, the feature introduced by our ELBO formulation inher-
ently achieves the same effect as a result of our modeling assumptions
that harness the power of the Dirichlet distribution.

While the spiky softmax distribution is the main problem, one might
think to increase the stochasticity of sampling from the Categorical
distribution with a higher temperature value to reduce the effects
of overestimated probabilities. In order to test this assumption, we
use higher temperature values with dVAE on CIFAR10 and CelebA
datasets (see Appendix D.1 for details). We show that the perplexity
does not increase with a high temperature, and including randomness
insensibly does not always affect the training in a good way. Our
method incorporates stochasticity such that we learn how to perturb
probabilities from the input. Learning a distribution over Categorical
distributions from the input directly makes the model more reliable and
resistant to hyperparameter change.

5.2.2. Uncertainty vs. Perplexity
We anticipate that introducing uncertainty awareness will enhance

codebook usage, addressing limitations in dVAE caused by the soft-
max operation. Our intuition is rooted in the definition of codebook
collapse—new elements are introduced when existing ones fail to ex-
plain observations. In order to validate our intuition, we monitor
the training of CIFAR10 and present an interval of the training until
saturation in Fig. 3.
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Table 1
Comparison of the models in terms of perplexity (↑) using a codebook 512×16.

Method CIFAR10 CelebA LSUN Church

VQ-VAE-EMA [5] 412.67 ± 2.05 405.33 ± 5.88 379.67 ± 3.09
GS-VQ-VAE [26] 208.33 ± 6.03 193.33 ± 10.68 189.67 ± 5.02
SQ-VAE [13] 407.33 ± 7.32 𝟒𝟎𝟗.𝟑𝟑 ± 𝟐.𝟎𝟓 374.00 ± 2.16
VQ-STE++ [14] 414.33 ± 9.10 370.33 ± 4.11 375.67 ± 5.58
dVAE [6] 190.33 ± 13.02 254.67 ± 11.08 363.33 ± 4.07

EdVAE 𝟒𝟐𝟎.𝟑𝟑 ± 𝟒.𝟒𝟗 371.33 ± 2.86 𝟑𝟖𝟓.𝟔𝟕 ± 𝟓.𝟔𝟑

Table 2
Comparison of the models in terms of MSE (×103, ↓) using a codebook 512×16.

Method CIFAR10 CelebA LSUN Church

VQ-VAE-EMA [5] 3.21 ± 0.05 1.07 ± 0.06 1.71 ± 0.05
GS-VQ-VAE [26] 3.63 ± 0.01 1.32 ± 0.02 1.84 ± 0.06
SQ-VAE [13] 4.01 ± 0.03 1.05 ± 0.02 1.79 ± 0.03
VQ-STE++ [14] 3.82 ± 0.1 1.11 ± 0.08 1.83 ± 0.03
dVAE [6] 3.42 ± 0.08 1.01 ± 0.08 1.60 ± 0.01

EdVAE 𝟐.𝟗𝟗 ± 𝟎.𝟎𝟒 𝟎.𝟖𝟗 ± 𝟎.𝟎𝟏 𝟏.𝟓𝟖 ± 𝟎.𝟎𝟏

We observe a correlation between the perplexity values and the
uncertainty values during the training. The trend of perplexity values
perfectly matches the trend of uncertainty values. This correlation em-
phasizes that our model dynamically adjusts codebook usage based on
its uncertainty, preventing codebook collapse by utilizing embeddings
effectively.

5.2.3. Perplexity and reconstruction performance
In order to evaluate the codebook usage of all models, we leverage

on the perplexity metric whose upper bound is equal to the number of
the codebook embeddings. Therefore, we directly compare the number
of used embeddings for all models. Perplexity results of all models
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Fig. 4. Reconstructions from (a) CIFAR10, (b) CelebA.
Fig. 5. Reconstructions from LSUN Church.
Table 3
Comparison of the models in terms of FID (↓).

Method CIFAR10 CelebA LSUN Church

VQ-VAE-EMA [5] 57.04 ± 2.32 34.30 ± 2.41 71.22 ± 2.72
GS-VQ-VAE [26] 56.35 ± 2.17 33.12 ± 1.30 72.52 ± 3.25
SQ-VAE [13] 54.17 ± 2.85 33.03 ± 1.04 𝟔𝟑.𝟒𝟏 ± 𝟐.𝟑𝟔
VQ-STE++ [14] 55.53 ± 1.97 32.98 ± 2.27 71.03 ± 1.95
dVAE [6] 58.85 ± 0.93 37.29 ± 3.14 71.32 ± 0.71

EdVAE 𝟓𝟏.𝟖𝟐 ± 𝟏.𝟓𝟖 𝟑𝟐.𝟓𝟏 ± 𝟏.𝟏𝟑 69.63 ± 1.29

are presented in Table 1. Additionally, since the reconstruction perfor-
mance should not be lost while increasing the diversity of the codebook
embeddings used in the latent representation, we also evaluate all
models in terms of MSE. Numerical results are presented in Table 2.
While we obtain the lowest MSE values for all datasets, we outperform
the other methods for CIFAR10 and LSUN Church datasets in terms of
perplexity. Whereas SQ-VAE achieves the highest perplexity result for
CelebA dataset, EdVAE performs close to SQ-VAE’s perplexity, while
obtaining a better reconstruction performance than SQ-VAE and the
other methods. Moreover, EdVAE outperforms dVAE substantially in
perplexity. It is important to note that EdVAE not only mitigates the
codebook collapse problem of dVAE, but also outperforms the VQ-VAE
based methods.

We evaluate our model and the other models visually for a qualita-
tive evaluation assessment. Figs. 4(a), 4(b), and 5 compare all of the
models’ reconstruction performance on CIFAR10, CelebA, and LSUN
Church datasets, respectively. We observe that while our model re-
constructs most of the finer details such as the shape of eye or gaze
7

direction better than the other models in CelebA, we also include some
examples where some of the finer details such as the shape of the nose
and the mouth are depicted by one of the opponent models better than
our model. For LSUN Church examples, we observe that our model’s
reconstructions depict the colors and the shapes in the source images
better than the other models.

5.2.4. Effects of codebook design
We emphasize the critical role of codebook design using CIFAR10

and CelebA datasets in Fig. 6. It is important to have a model that
uses most of the codebook embeddings even with a larger codebook.
Therefore, we evaluate EdVAE’s and other methods’ performance using
various codebook sizes and dimensionalities. In order to observe the
effects of size and dimensionality separately, we fix the dimensionality
to 16 while we use different codebook sizes ranging from 128 to
2048. Then, we fix the size to 512 while we use different codebook
dimensionalities ranging from 8 to 256.

Fig. 6 shows that EdVAE outperforms the other methods in most of
the setting where we use different codebook sizes. EdVAE’s perplexity
is not affected negatively when the codebook size increases, and it
obtains the lowest MSE values in most of the settings for both of the
datasets. Therefore, EdVAE is suitable to work with a larger codebook.
When the codebook dimensionality changes, we observe that EdVAE
outperforms the other methods or obtains compatible results. While the
other methods seem sensitive to the codebook design, EdVAE does not
need a carefully designed codebook which eases the process of model
construction.
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Fig. 6. Impact of codebook design on perplexity and MSE, using CIFAR10 and CelebA datasets. The black ‘‘codebook size’’ line indicates the upper bound for the perplexity.
Fig. 7. Generated samples from CelebA dataset.
Table 4
Comparison of the models in terms of Precision & Recall (↑).

Method CIFAR10 CelebA LSUN Church

VQ-VAE-EMA [5] 0.47, 0.32 0.44, 0.35 0.19, 0.15
GS-VQ-VAE [26] 0.45, 0.34 0.39, 0.32 0.20, 0.14
SQ-VAE [13] 0.52, 0.30 𝟎.𝟓𝟐, 𝟎.𝟑𝟕 0.23, 0.17
VQ-STE++ [14] 0.51, 0.32 0.47, 0.36 0.24, 0.15
dVAE [6] 0.43, 0.34 0.41, 0.30 0.20, 0.15

EdVAE 𝟎.𝟓𝟒, 𝟎.𝟑𝟓 0.48, 0.35 𝟎.𝟐𝟖, 𝟎.𝟏𝟖

5.2.5. Approximated prior

Image generation is a downstream task over which we evaluate the
performance of the discrete latent spaces learned by the discrete VAEs.
As the prior used during the training of 𝜃 , 𝜙, and  is a uniform
distribution, i.e. an uninformative prior, it should be updated to accu-
rately reflect the true distribution over the discrete latents. Therefore,
we fit an autoregressive distribution over the discrete latents of the
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training samples, for which we follow PixelSNAIL [39]. PixelSNAIL is
also used in VQ-VAE-2 instead of PixelCNN [40] that is used in VQ-VAE
and SQ-VAE.

We report FID and Precision-Recall in Tables 3 and 4 to evaluate
the quality of the generated images that are created autoregressively
after a training over the discrete codebook indices attained from a given
model, respectively. The FID results imply that EdVAE performs better
than the other models in all datasets except LSUN Church, while it
outperforms other models in terms of Precision-Recall in all datasets
except CelebA. These results elucidate the point that the discrete latent
spaces learned by EdVAE helps to attain a reinforced representation
capacity for the latent space, which is a desirable goal for the image
generation task. Figs. 7 and 8 present generated samples using the
discrete latents of all models for CelebA and LSUN Church datasets,
respectively. While all of the models manage to generate realistic
images, structural consistency and semantic diversity in EdVAE’s results
are noticeable and in line with the numerical results. Fig. 9 present
additional EdVAE samples to advocate EdVAE’s performance.
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Fig. 8. Generated samples from LSUN Church dataset.
Fig. 9. Generated samples using the learned prior over the discrete indices produced by EdVAE.
6. Conclusion

The proposed EdVAE extends dVAE with a hierarchical Bayesian
modeling to mitigate the codebook collapse problem of the latter. We
demonstrate the essence of the problem, that is the confirmation bias
caused by the spiky softmax distribution, and reformulate the optimiza-
tion with an evidential view in order to acquire a hierarchy between
the probability distributions aiding uncertainty-aware codebook usage.
We show that our method outperforms the former methods in most of
the settings in terms of reconstruction and codebook usage metrics.

Although the proposed method improves the codebook usage for
dVAE family, there is still room for improvements both numerically
and experimentally. We evaluate our method over small to medium size
datasets compared to datasets like ImageNet [41]. As our work is the
first to state the codebook collapse problem of dVAE and to propose a
solution to it, it sets a baseline that can be extended to obtain improved
outcomes in different models and datasets. We mainly provide evidence
for the utility of our method for relatively structured datasets like
CelebA or LSUN Church, and exploring the best parameterization for
more diverse datasets like ImageNet would be a possible direction of
our future work.
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Appendix A. Kullback–Leibler divergence between two Dirichlet
distribution

For two Dirichlet distributions 𝑖𝑟(𝜋|𝛼𝜃(𝑥)) and 𝑖𝑟(𝜋|1,… , 1) over
𝐾-dimensional probability 𝜋, the following equality holds

KL(𝑖𝑟(𝜋|𝛼𝜃(𝑥))∥𝑖𝑟(𝜋|1,… , 1))

= log

(

𝛤
(
∑

𝑘 𝛼
𝑘
𝜃 (𝑥)

)

𝛤 (𝐾)
∏

𝑘 𝛤 (𝛼
𝑘
𝜃 (𝑥))

)

+
𝐾
∑

𝑘=1
(𝛼𝑘𝜃 (𝑥) − 1)

(

𝜓(𝛼𝑘𝜃 (𝑥)) − 𝜓
(
∑

𝑘 𝛼
𝑘
𝜃 (𝑥)

)

)

.

where 𝛤 (.) and 𝜓(𝛼) ∶= d
d𝛼 log𝛤 (𝛼) are the gamma and digamma func-

ions, respectively.

ppendix B. Derivation details

As we define in Section 4, our forward model is:

𝑝(𝜋) = 𝑖𝑟(𝜋|1,… , 1), (B.1)

𝑃𝑟(𝑧|𝜋) = 𝑎𝑡(𝑧|𝜋), (B.2)

𝑝(𝑥|, 𝑧 = 𝑘) =  (𝑥|𝜙(, 𝑧), 𝜎2𝐼). (B.3)

and the approximate posterior is:

𝑞(𝜋, 𝑧|𝑥) = 𝑎𝑡(𝑧|𝜋)𝑖𝑟(𝜋|𝛼1𝜃 (𝑥),… , 𝛼𝐾𝜃 (𝑥)). (B.4)

We derive the ELBO to be maximized during the training as:

log 𝑝(𝑥|, 𝜃, 𝜙) = logE𝑞(𝜋,𝑧|𝑥)
[

𝑝(𝑥|, 𝑧)𝑃𝑟(𝑧|𝜋)𝑝(𝜋)
𝑞(𝜋, 𝑧|𝑥)

]

(B.5)

= logE𝑞(𝜋,𝑧|𝑥)
[

𝑝(𝑥|, 𝑧)���𝑃𝑟(𝑧|𝜋)𝑝(𝜋)
���𝑃𝑟(𝑧|𝜋)𝑞(𝜋|𝑥)

]

(B.6)

≥ E𝑃𝑟(𝑧|𝜋)
[

E𝑞(𝜋|𝑥)[log 𝑝(𝑥|, 𝑧)] − E𝑞(𝜋|𝑥)[log 𝑞(𝜋|𝑥)∕𝑝(𝜋)]
]

(B.7)

= E𝑃𝑟(𝑧|𝜋)
[

E𝑞(𝜋|𝑥)[log 𝑝(𝑥|, 𝑧)]
]

−KL(𝑞(𝜋|𝑥)‖𝑝(𝜋)). (B.8)

The codebook can be viewed as  = [𝑚1,… , 𝑚𝐾 ] where 𝑚𝑘s are the
codebook embeddings. The input of the decoder 𝑧𝑞(𝑥) = 𝑘 = 𝑧 ∗ 
consists of the codebook embeddings 𝑚𝑘s as shown in Fig. 1. 𝑘 is
retrieved using the indices 𝑧s sampled as 𝑧 ∼ 𝑎𝑡(𝑧|𝜋) via * operator
which performs tensor-matrix multiplication. Therefore, we can use
𝜙(𝑘) instead of 𝜙(, 𝑧) for the remaining of the derivations.

The first term in Eq. (B.8) can be further derived as:

E𝑃𝑟(𝑧|𝜋)
[

E𝑞(𝜋|𝑥)[log 𝑝(𝑥|, 𝑧)]
]

= −1
2
log 𝜎2

− 1
2𝜎2

∑

𝑘
𝑞(𝜋𝑘|𝑥)(𝑥 −𝜙(𝑘))2 (B.9)

∝ E𝑞(𝜋|𝑥)

[

∑

𝑘
𝜋𝑘(𝑥 −𝜙(𝑘))2

]

(B.10)

= E𝑞(𝜋|𝑥)

[

∑

𝑘
𝜋𝑘(𝑥𝑇 𝑥 − 2𝑥𝑇𝜙(𝑘) +𝑇

𝜙 (𝑘)𝜙(𝑘))

]

(B.11)

= 𝑥𝑇 𝑥 − 2𝑥𝑇E𝑞(𝜋|𝑥)

[

∑

𝑘
𝜋𝑘𝜙(𝑘)

]

+ E𝑞(𝜋|𝑥)

[

∑

𝑘
𝜋𝑘𝑇

𝜙 (𝑘)𝜙(𝑘)

]

(B.12)

= 𝑥𝑇 𝑥 − 2𝑥𝑇
∑

𝑘
E𝑞(𝜋|𝑥)

[

𝜋𝑘
]

𝜙(𝑘) + E𝑞(𝜋|𝑥)

[

∑

𝑘
𝜋𝑘𝑇

𝜙 (𝑘)𝜙(𝑘)

]

10

(B.13)
= 𝑥𝑇 𝑥 − 2𝑥𝑇
∑

𝑘

𝛼𝑘𝜃 (𝑥)
𝑆

𝜙
(

𝑘
)

+ E𝑞(𝜋|𝑥)

[

∑

𝑘
𝜋𝑘𝑇

𝜙 (𝑘)𝜙(𝑘)

]

(B.14)

= 𝑥𝑇 𝑥 − 2𝑥𝑇
∑

𝑘

𝛼𝑘𝜃 (𝑥)
𝑆

𝜙
(

𝑘
)

+
∑

𝑘
E𝑞(𝜋|𝑥)

[

𝜋𝑘
]

𝑇
𝜙 (𝑘)𝜙(𝑘)

(B.15)

= 𝑥𝑇 𝑥 − 2𝑥𝑇
∑

𝑘

𝛼𝑘𝜃 (𝑥)
𝑆

𝜙
(

𝑘
)

+
∑

𝑘

𝛼𝑘𝜃 (𝑥)
𝑆

𝑇
𝜙 (𝑘)𝜙(𝑘) (B.16)

= E𝑧∼𝜋
[

(𝑥 −𝜙(𝑘))𝑇 (𝑥 −𝜙(𝑘))
]

(B.17)

= E𝑧∼𝜋
[

‖𝑥 −𝜙(𝑘)‖22
]

. (B.18)

We define 𝑆 =
∑

𝑘 𝛼
𝑘
𝜃 (𝑥), and 𝜋 = [𝜋1,… , 𝜋𝐾 ]. E𝑞(𝜋|𝑥)[𝜋] in Eq. (B.15)

of the ELBO derivation is equal to 𝛼𝑘𝜃 (𝑥)∕𝑆 in Eq. (B.16) using the
properties of the Dirichlet distribution. Therefore, 𝜋𝑘 = 𝛼𝑘𝜃 (𝑥)∕𝑆 holds.
After we obtain the probabilities 𝜋s, we can get samples 𝑧 ∼ 𝐶𝑎𝑡(𝑧|𝜋)
using the Gumbel-Softmax trick that is explained in Section 3.1.

Appendix C. Experimental details

We use PyTorch framework in our implementation. We train all of
the models for 150K iterations on all datasets, using a single NVIDIA
A100 GPU. Our computation time for training EdVAE for 150K itera-
tions varies within 12–21 h based on the image size of the data, and
training PixelSNAIL over the latents for 500 epochs is 9 h. We use 128
as the batch size, and the Adam optimizer with an initial learning rate
1𝑒−3, and follow the cosine annealing schedule to anneal the learning
rate from 1𝑒−3 to 1.25𝑒−6 over the first 50K iterations. We rerun all of
our experiments using the seed values of 42, 1773, and 1.

We anneal the 𝛽 coefficient starting from 0 over the first 5K iter-
ations with cosine annealing schedule. Based on the model and the
dataset, the upper bound for the 𝛽 coefficient varies as the KL terms
are different in different models, and the 𝛽 coefficient decides the
reconstruction vs. KL term tradeoff. We also follow the temperature
annealing schedule 𝜏 = exp(−10−5.𝑡) for the Gumbel-Softmax where 𝜏
denotes the temperature, and 𝑡 denotes the global training step. We
initialize the codebook embeddings of these models using a Gaussian
normal distribution. In EdVAE, we clamp the encoder’s output 𝑧𝑒(𝑥)
to be maximum 20 before converting it to the 𝛼𝜃 parameters for the
training stability. We observe that after we obtain the training stability,
we clamp too few variables which does not affect the integrity of the
latent variables. We provide detailed analysis for the effects of logits
clamping in Appendix D.2.

As datasets, we use CIFAR10, CelebA, and LSUN Church. CIFAR10
consists of 60,000 32 × 32 RGB images in 10 classes. Each class consists
of the same amount of images. We use the default train/test split of the
dataset. CelebA dataset consists of more than 200,000 celebrity images.
We use the default train/val/test split of the dataset. As preprocessing,
we perform center cropping of 140 × 140, and resize the cropped
images to 64 × 64 using bilinear interpolation. LSUN Church consists
of 126,000 256 × 256 RGB images of various churches. We use the
default train/test split of the dataset. We resize the images to 128 × 128
resolution using bilinear interpolation to use.

For VQ-VAE-EMA and GS-VQ-VAE, we use the same architecture
and hyperparameters as suggested in [5]. We set the 𝛽 coefficient
for VQ-VAE-EMA’s loss to 0.25, and the weight decay parameter for
the EMA to 0.99. We initialize the codebook embeddings using a
uniform distribution as in [5]. For GS-VQ-VAE, the upper bound for
the annealed 𝛽 coefficient of the KL divergence is set to 5𝑒−6 for all
atasets.

For SQ-VAE and VQ-STE++, we use the proposed architectures and
yperparameters, and replicate their results.

As dVAE is the baseline model for EdVAE, we describe the archi-
ecture of dVAE and EdVAE in detail. The common building blocks
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Table C.5
Notations of network layers used on all models.

Notation Description

Conv(7×7)𝑛 2D Conv layer (out_ch = 𝑛, kernel = 7, stride = 1, padding = 3)
Conv(4×4)𝑛 2D Conv layer (out_ch = 𝑛, kernel = 4, stride = 2, padding = 1)
Conv(3×3)𝑛 2D Conv layer (out_ch = 𝑛, kernel = 3, stride = 1, padding = 1)
Conv(1×1)𝑛 2D Convl layer (out_ch = 𝑛, kernel = 1, stride = 1, padding = 1)
MaxPool 2D Max pooling layer (kernel_size = 2)
Upsample 2D upsampling layer (scale_factor = 2)
EncResBlock𝑛 3 × (ReLU → Conv(3×3)𝑛 ) → ReLU → Conv(1×1)𝑛 + identity
DecResBlock𝑛 ReLU → Conv(1×1)𝑛 → 3 × (ReLU → Conv(3×3)𝑛 ) + identity

used in the encoders and the decoders are given in Table C.5. For the
following architectures, 𝑤 and ℎ denote the width and the height of the
images. For CIFAR10 𝑤 = ℎ = 32, for CelebA 𝑤 = ℎ = 64, and for LSUN
Church 𝑤 = ℎ = 128. We use a codebook  ∈ 𝑅512×16 for all of our
experiments.

As the encoder of dVAE and EdVAE return a distribution over the
codebook, the last dimensions of the encoders’ outputs 𝑧𝑒(𝑥)s are all
equal to 512 for all datasets. After the quantization of 𝑧𝑒(𝑥)s, the last
dimensions of the decoders’ inputs 𝑧𝑞(𝑥)s are all equal to 16 for all
datasets.

Encoder: 𝑥 ∈ R𝑤×ℎ×3 → Conv(kw×kw)
𝑛 →

[

EncResBlock𝑛
]

2 →
MaxPool →

[

EncResBlock2∗𝑛
]

2 → MaxPool →
[

EncResBlock4∗𝑛
]

2 →

Conv(1×1)4∗𝑛 → 𝑧𝑒(𝑥) ∈ R𝑤∕4×ℎ∕4×4∗𝑛

Decoder: 𝑧𝑞(𝑥) ∈ R𝑤∕4×ℎ∕4×16 →
[

DecResBlock4∗𝑛
]

2 → UpSample →
[

DecResBlock2∗𝑛
]

2 → UpSample →
[

DecResBlock𝑛
]

2 → ReLU →

Conv(1×1)3 → �̂� ∈ R𝑤×ℎ×3

where 𝑛 is equal to 128 for all datasets, and 4 ∗ 𝑛 is equal to the
number of the codebook embeddings. kw denotes the kernel size of the
convolution layer. For CIFAR10 and CelebA kw = 3, for LSUN Church
kw = 7.

Lastly, the upper bound for the annealed 𝛽 coefficient of the KL
divergence in dVAE is set to 5𝑒−5 for all datasets. On the other hand, we
set the upper bound for the annealed 𝛽 coefficient of the KL divergence
to 5𝑒−7 for CIFAR10 while we use 1𝑒−7 for the remaining datasets in
EdVAE. We discuss the effects of the 𝛽 coefficient in Appendix D.3.

Appendix D. Additional experiments

D.1. Higher temperature usage with dVAE

We use temperature values of 2 and 5 in our current experiments,
and observe that perplexity value obtained as 190 for CIFAR10 dataset
slightly decreases to 170 and 180, respectively. Similarly, for CelebA
dataset, perplexity value obtained as 255 decreases to 217 using tem-
perature 2, and increases to 296 using temperature 5. The performance
of dVAE is sensitive to temperature hyperparameter, and perplexity
does not always increase with a high temperature. Therefore, using
higher temperature is not an appropriate solution.
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Table D.6
Test perplexities using various max clamping values.

Max clamping value 10 15 20 25 30

CIFAR10 351 421 425 411 1
CelebA 319 376 386 1 1
LSUN Church 363 375 393 1 1

D.2. Effects of logits clamping

To obtain the parameters of the Dirichlet distribution, 𝛼s, we follow
a common approach of logits clamping to stabilize the training since
the exponential of logits might be really large. We conduct an ablation
study to observe the effects of logits clamping, and present our findings
in Table D.6.

We observe that clamping the logits with smaller max values clamps
some of the values in logits, and limits the range of positive values
logits can have. This situation limits the representativeness of the logits,
and leads to lower perplexities. On the other hand, using larger max
values for clamping causes divergence in the training as the exponential
of logits gets large, and the model cannot be trained. Therefore, the
logits should be clamped eventually with proper values. If a proper max
value can be selected, clamping acts as a regularizer at the beginning
of the training, and the encoder naturally outputs logits with no values
greater than the max clamping value after a few iterations. If the
training is already stabilized, the max clamping value does not affect
the performance dramatically as both 15 and 20 lead to similar results.
Therefore, using 20 as the max value can be a mutual design choice.

D.3. Effects of 𝛽 coefficient

We conduct additional experiments to observe 𝛽 coefficient’s effects
on the performance. We perform several experiments by changing the
𝛽 coefficient within [1e−7, 1e−4]. We repeat our experiments for
dVAE and EdVAE using all of the datasets, and present our findings
in Fig. D.10.

We observe that our method is more sensitive to 𝛽 coefficient than
dVAE, and EdVAE diverges when the 𝛽 coefficient increases. We think
that the key factor to this sensitivity is the complexity introduced by
the KL distance between our newly introduced posterior and prior,
compared to the KL distance in dVAE. Therefore, fine-tuning 𝛽 emerges.
Even though our original KL term brings some sensitivity to training
and it requires a hyper-parameter tuning like most of the AI models,
its contribution to the performance is non-negligible and essential.

Besides, the best performing 𝛽 coefficient for CIFAR10 dataset is
slightly higher than the best performing 𝛽 coefficient of CelebA and
LSUN Church datasets. Our intuition for this difference is that, recon-
structing images with lower resolution as in CIFAR10 is less challenging
than reconstructing images with higher resolution as in CelebA and
LSUN Church. Therefore, increasing the 𝛽 coefficient from 1e−7 to
5e−7 improves the performance in CIFAR10 without hurting the re-
construction vs. KL term tradeoff. On the other hand, 1e−7 to 5e−7
conversion slightly decreases the performance in CelebA and LSUN
Church datasets since the reconstruction of the higher resolution images
affects the reconstruction vs. KL term tradeoff.
Fig. D.10. Effects of 𝛽 coefficient to the performance.
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