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ABSTRACT

Large Language Model (LLM) demonstrated tremendously useful applications in
nowadays fast-evolving Al driven technology. As the model sizes grow bigger,
the demand for bigger and faster GPU is required. Another way to alleviate this
issue is by improving the compression of the trained model through quantization
so that lower VRAM devices can run. Quantization paradigms like GPTQ, PB-
LLM, BiLLM (Hessian based with structural searching) are successful quantize
mechanisms. In this paper, we propose OOC, a technique to pick an ”odd” group
to improve the quantization clarity so that the model can have better reasoning
capability overall. In addition, we define Bit Family (A"™, A™a%) to classify
compression rate of current and past quantizing techniques, thus providing a more
objective way to rank different methodologies in literature. Thirdly, to avoid com-
promising the quantization speed due to the scanning process overhead, we devel-
oped a specialized fused GPU kernel (k-OOC) where it can be 9x faster than the
original GPTQ implementation (single-flow mode) and 22x faster than the naive
OOC implementation (double-flow mode) due to the incorporation of techniques
called Row-Flow-Selection Parallel and Input Batching. We measured perplex-
ity (PPL) of k-OOC (2 bits) with 14 major models like OPT, LLAMA, and Bloom
(125M to 70B parameters) and popular datasets ( Wikitext2, C4, and PTB). We
managed to improved the PPL of small model by 8.9% and of big model by 4.1%
compared to the baseline of GPTQ (2 bits).

1 INTRODUCTION

Popular successful LLM models are often based on transformer architecture (Vaswani, 2017). If
only considering the Full Precision at Float 16 (4 bytes) per weight, some of those models like OPT
(Zhang et al., [2022; Radford et al., [2019), LlaMA (Touvron et al., 2023, and BLOOM (Le Scao
et al., 2023) can reach 60-70 billion parameters, costing more than 100GB just to load the models
onto the GPUs. It is a legitimate need to compress these models using quantization (popularized by
(Dettmers et al.,|2022))). A natural approach is model compression like in the work of |Hoefler et al.
(2021)), however, methods like Quantization-Aware Training (QAT) and Post-Training Quantization
(PTQ) are more favorable because of its inference quality. PTQ is trending more because it is one-
shot and does not require any grad calculation (back-propagation). A few notable PTQ works are
done by Nagel et al.|(2021); Nahshan et al.|(2021);|Yao et al.|(2022)). Some PTQ methods are based
solely on the curvature of the Hessian Matrix (Frantar & Alistarh| [2022; Frantar et al., 2022; |Huang
et al.,2024; Yuan et al.,|2024)), and the idea of calculating the salient metric from Hessian Matrix of
each column in a weight matrix W dates back to the second-order model pruning techniques (Hassibi
et al., 1993} LeCun et al.||1989) and recently improved upon by (Frantar et al., 2021} |Yu et al.,[2022).
After quantizing a model, the new weights are normally bench-marked against some datasets using
the perplexity (PPL) metric (Arora & Rangarajan, [2016)). Wikitext2 (Wikipedia articles by Merity
et al| (2016)), C4 (web-scraped English passages by Raffel et al.| (2020)), and PTB (Wall Street
Journal articles by |[Marcus et al.|(1993))) are of the most relevant sources.

A compression rate is a critical metric that classifies and evaluates different techniques, and can
be measured by how many bits on average are used to store the information of a quantized weight
matrix. However, this concept has not been formalized or taken into account holistically in previous
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works, and only briefly mentioned Huang et al.| (2024); [Yuan et al.| (2024). This leads to the case
where some works “incorrectly” claimed to achieve a lot lower compression rate than what the ac-
tual rate is. In this work, we introduced 3 main contributions: a) define Quantization Bit Family
to comprehensively classify compression rate, based on the observation that those rate can be math-
ematically estimated (A" A™ in section , regardless of the model/ layer/ modules size; b)
Based on that framework, GPTQ with 2 bits per weight is currently one of the lowest compression
rate with A“™ = 2.1, thus we aim to create a technique called OOC to improve the PPL score while
maintaining in the same A" family; c) from the insight that each row of the weight matrix W can
be quantized independently, we introduce the kernel version of OOC, called k-OOC, that speed up
the original GPTQ, and also help to deal with the additional cost of running OOC.

1.1 RELATED WORKS

In the realm of large model quantization, three major and recent PTQ works that are good for
benchmarking against are GPTQ (Frantar et al.|, 2022)), PB-LLM (Yuan et al., [2024), and BiLLM
(Huang et al., |2024). GPTQ is an efficient quantization method that can quantize the large mod-
els like OPT-175B in ~4 hours, and can quantized with 3 or 4 bits per weight without affect-
ing the original PPL too much. With the goal of exploring how far a model can be compressed,
this work bench-marked against GPTQ most extreme regime of its variation, GPTQ(2) for 2 bits
per weight. There were a few ways that a list of number A = [a1, as, as, ..., a,] can be quan-
tized. The simplest method is Round-To-Nearest (RTN) (Yao et al., [2022; Dettmers et al., [2022)
or the sign method where fi (a) = sign(a) x scale,Va € A, where a typical choice for scale
is scale=|A|. EI Another way is to use GPTQ quantization using n bits, where min(A) and
max(A) form a range where it is possible to divide up this range into 2" — 1 buckets. The imag-
inary “zero” O position is the number of buckets it takes for min(A) to each absolute 0. Hence,

férro (@) = (clamp(|z/scale] + ©,0,2" — 1) — ©) x scale. Lastly, [Rastegari et al| (2016)
uses XNOR quantize function defined as ngOR(m) = sign(z — A) x scale + A,Vz € A, where

scale = |z — Al

It is beneficial to process W of size [k, d] in group chunk g < d (typically g = 128). The reason
is to have a more localized “mean” and scale that resemble the group rather than resemble the
whole row. Therefore, it can improve the quantization quality. This method is employed by many
previous works like [Huang et al.| (2024); Frantar et al. (2022); Yuan et al.| (2024); |Yu et al.| (2022).
As later mention in the section this costs more flag bits per row ([d/g| more flags per row), but
yield higher performance as previously shown in the literature. Error corrections for the subsequent
groups are calculated as in eq. (I). The “st” and “ed” in eq. (I)) are start and end of the current group
that the matrix are being quantized on, where “ed:” indicates the range of indices at or after “ed”
(similar to Python annotation of array). “diag” is to get the diagonal of the Hessian.

Wl ed:] = (W[, st : ed) — W[, st : ed]) x diag(H|st : ed, st : ed]) x H '[st : ed,ed :] (1)

GPTQ quantizes in group (¢ = 128) and uses Hessian metric to conduct two folds of error cor-
rection. The first fold is “within-group™: G = [j1,J2,...,J4], the error on j,, will be cor-
rected for all j; where ¢ € [m + 1,g). The second fold is ‘between-group™: for every group
Go = [0,9);G1 = [9,29),...,Gn = [gn,d), where the error on G,, will be corrected for all
following group G; where ¢ € [m + 1, [d/g]] before continuing to quantize. BiLLM and PB-LLM
are built on top of GPTQ, but only correct “between-group” and not “within” group, (this scheme is
denoted as “Matrix-No Group” scheme). In addition, different from GPTQ, PB-LLM and BiLLM
make a certain percentage of the groups (treatment groups) to become higher precision. PB-LLM
uses the salient score to decide on which the treatment groups are, while Bi-LLM uses “High Order
Residual” scheme which chooses based on not only salience but also the bell-shape distribution of
the weights. As a result, we uses parameters to refers to those works, as in PB-LLM(8,1,0.1) and
BiLLM(2,2,0.1). Refer to table[d|for meaning of those parameters. Secondly, PB-LLM and BiLLM
only does between” but not ’within” group. *. Because error correction applies to what come after,
it also has an ordering side-effect . We conduct a small experiment to confirm that we do need both
corrections (Matrix-Group) for this work and the order of correction should be kept as default (no
column sorting based on salience). Refer to table[§]and fig.[7]in appendix[A.4] Lastly, there is kernel

A is used for denoting “mean” value of A in this paper.
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that helps with the inference after the model being quantized like in LUT-GEMM (Park et al.| [2022)
or GPTQ [Frantar et al.| (2022). However, in terms of creating a GPU kernel that is for quantization,
to the best of our knowledge, currently ours (k-OOC) is the first of its kind.

2 PROBLEM STATEMENTS

Hessian based quantization of a weight matrix W in a linear module A(X, W) = X x W7 is to
find a compressed version of W called W, so that the loss function L(W,W,, X) is minimized

(eq. ( .) miny, (L, W, Wy, X) = L(W, W, X) has an approximate closed form in eq. @ Where

each each row of its can be calculated according to eq. (3) and H = 2X7 X. See appendix
for derivation.

LW, Wy, X) = [|[XWT - X x WT||§ @)
d
I; =Y (HidW2) = T = Z Z Wi — quant(W;:))?) 3)

=1

L(W, W,, X) can be used as a predictor on L(WW, W,, X' ) where X" is a batch of unseen test points.
Furthermore, previous literature described S(W, 4, j) = H;; Y y WjQi as the salient score of column
i of matrix W, and since W; # AW ;, this salient metric is only used as a ad-hoc estimator of the
fj. Secondly, schemes like GPTQ, PB-LLM, and BiLLM have different way to defining function
W, = f9(W). The first problem statement is to create a quantize function f9 to minimize the error
L on a group of unseen X, using the knowledge of L and curvature of L through H, under some
quantize budget or Bit Family constraints (see section [3.1).

The quantizing problem expands to layer and model level, as module level quantized result cannot be
used to predict the PPL of the whole model. A quantize process starts with a model M, comprising of
a list of layers L={IL!, .2, IL3,..}. Layer L. comprises of a list of modules I[Jrlmdulef{]]_q, IL;, L%}
and so on. Only linear modules are considered in this process. The “quantize train input” Lllnpm X

modules inputs to each of ]L

then quantized independently with Lmodule inputs USING fGPTQ(l) After quantizing, the input X is feed
through the layer again (now with new weights) create the new output Lomput lenpm Lompm, and the
process continues until it reaches the last layer. However, when fGPTQ(l) is replaced with foky, and

is first feed into L, to capture the inputs L} Each of those modules are

'modules

fr?ew yields smaller loss for all modules than ngTQ(l)’ the final module MI( fr?ew) might not have better

PPL compared to M( fdpy 0 ). Such relationship of module-wise and layer/model-wise quantization
has not been fully explore % in past literature. Method to solve this accurately and efficiently without
compromising the quantize speed is discussed in section

3 METHODOLOGY

3.1 BIT FAMILY: THE EFFECTIVE NUMBER OF COMPRESSION BITS

The aforementioned “gn method uses 1 flag to capture the “scale”, because the “mean” is always
fixed at 0. By the same token, f;’( ~or (in PB-LLM), uses 2 sets of {mean,scale}’s, namely {meany,
scalep } and {meany, scale; }, to apply on different fragments of . {meany, scaley} is used for high
precision (quantized with high # of bits) and {mean,, scale;} for lower precision (low # of bits).
Hence, this scheme uses 4 flags. Lastly, BILLM uses 3 sets of {mean,scale}’s, hence comprising
6 flags. Each of the flag is typically a Half float number (16 bits), thus the total number of flag bit

count for BILLM is 6 x 16 = 96 bits. On the other hand, the scale in fg; PTO®) is a Half float, but

the marking of imaginary zero O uses the same number of bits as b, hence the total number of flag
bit count is b + 16.

When calculating the final effective bits of a quantized post-training algorithm, apart from the flags
bit count, mark bit count (referred to as “index storing” bits in (Yu et al. 2022))) should be taken
into consideration. In PB-LLM and BiLLM schemes, the high and low precision are applying on
different section of the array, hence it is required to mark the array of which portion is high/low
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precision. For matrix W of size [k, d], it requires kd mark bits. High Order Residual scheme in
BiLLM quantizes 10% of W with high precision; the rest 90% is further split into 2 ranges based
on salience: 45% is for the lower salience and the other 45% for the higher. In total, it requires
100% x kd x 1 4+ 90% x kd x 1 = 1.9 x n mark bits. The average bit count A is defined as
[quantization bit + flag bit count + mark bit count]/(# elements), and A™** and Alim together
defines a bit family. The appendix [A.T| summarizes the details of the notations used in calculating
the bit family.

For instance, for ¢ = 128, f = 16, table Elproves that bit family ARR \i050,=(2 — 0.1) + (6 x
16)/128 + 0.1 x 2+ 0.9 = 3.75 and AR | \s.1.0.1=2.75. However, Huang et al.| (2024) reported
that BiLLM(2,2,0.1) has 1.1 effective bit rate, because considered the mark/ flag bit count F’ and D
separately. |Yu et al.|(2022))’s estimation of A{;ﬁ_LLM(& 10.1) a8 2.7 is close to 2.75, but missed the flags

bit count F'. On the other hand, Ag‘}‘}TQ(z): % + 2 = 2.1 Hence, even when BiLLM(2,1,10%) has
better PPL score than GPTQ(2), it is not objective to compare them because they are of different bit
families. GPTQ(2) is a lot more compressed than BiLLM(2,2,0.1) and PB-LLM(8,1,0.1). For those

reasons, we do not consider BILLM(2,2,0.1) or PB-LLM(8,1,0.1) SOTA for A"™ < 2.1 family.

3.2 GPTQ-OOC: FINDING THE ODD ONE GROUP TO MAKE CLEARER PRECISION

Section shows that the mark bit count affects the bit family (compression rate) tremendously
for BiLLM and PB-LLM algorithm. Instead, it is beneficial to save storage by quantizing with
fg; PTQ() while incorporating the enhance higher (clearer) precision to a few columns in a selected
group. The insight is that quantizing p portion of one group of W into a higher precision with
fé PTQ(h) (where the rest 1 —p portion of that group and other groups are quantized in low resolution
with fg PTQ( l)) does not affect the bit family. Mark bit size M is unchanged as 0. The bit family

of this proposed extension GPTQ(h,/,p) is in eq. (3. h, ! stands for the # of bits used for high/low
precision.

o J 20 DR L (A=) + Dk (pght (A= po))k
O I{;d ) others kd ) kd
A= M+ Foga+ Fanen+ B = S [POED poh 1T toa) g
d d d d
; . I+ im

= AEProhip) = Jim A= Tf +1= AdBrqu o)
See derivation of eq. () in appendix[A.2.3] Equation () shows
the core idea of GPTQ(h,/,p) that it maintains the same bit fam-
ily as GPTQ(!) even with the introduction of a h (high) preci- 2.26 - h
sion. The one caveat is that the last few components of A in 594 —e— 2
eq. can degrade when d is small. OPT-125M has d,,;, = ’ 3
768 = Anar = Ag=76s = 2.16. Figureﬂ]shows changes of 2224 —e— 14
A with respect to d and h when keeping the other parameters o 5 54 | -3
constant (p=0.1, [ = 2, and g=128). To keep it in the same ?
bucket as AGErop) = 2.1, the chart suggests to pick h = 2 to 2187
maintain the worst case of bit family Agprqn001)= 2-16 and 2.16 1 °\'=\
theoretical limit bit family of Al(i‘ynl;TQ(Z,Z,O.l): 2.1. Picking an 5141 LR L T —
odd group out of [d/g] groups is not a trivial problem due to 0K 5K 10K 15K 20K
run-time constraint (PTQ method should be faster than QAT, d

ideally less than 4 hours from previous benchmarks). The so-

lution is discussed in section [3.3] . - imax
Figure 1: Changes in AGGcx, 2 109

with respect to d and h. The small-
3.3 ROW-FLOW-SELECTION est value of d = 768 corresponds

PARALLEL, INPUT BATCHING to the smallest model OPT-125M
, AND SPECIALIZED GPU FUSED KERNEL FOR OOC tested in this work.

Equation shows that each row j of L can be calculated
independently of another row. This is also true for any quan-
tize function f9 €[ fdpro» fpp.im: foim] (Row Parallel). A
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CUDA device with capability 9 can execute 32 blocks concurrently for each multiprocessor (SM)
(nvi). For instance, NVIDIA H100 has 132 SMs, hence can compute Py, =132x32=4,224 units

(rows) simultaneously. An information needed to compute fq(W}gid) where gid is the group id is

the original weight W, diagonal of the Hessian diag(H), H ' calculated by the fast Choslesky
decomposition (Krishnamoorthy & Menon, [2013)), and the pointer to the result and error matrix W,
and E. There is another level of parallelism is to use maximum number of threads per SM (2048 in
the case of H100), which can leads to Py, ..,=132x2048= 270,336 units (rows) calculated at once.
Only the block parallelism (1 thread per block) is considered in this work due to SRAM cache size
limit (49KB) per blocks (see explanation in appendix [A.3). Secondly, only quantizing of rows of
W is parallelized, quantizing different groups (in [d/g]| groups) cannot be parallelized, due to their
sequential dependency. eq. (I) shows that later groups are depending on earlier group for error
correction.

ngTQ(h’l’p) only operates on one selected group (called clear group as quantized with higher # of

bits), where the rest of the groups are quantized with ngTQ(l). To pick the the best selection of an
odd clear group, a brute-force method can be employed. However, it is also possible to use selection
parallel similar to the row parallel. Yet, even with such parallelism, it is not practical to scan through
all the groups due to time cost, but to focus on certain groups. A scan ratio s, where ¢pq, = s[d/g]
groups are scanned (brute-forced) to determine whether upgrading the group to clearer precision
yields lower error L. When s < 1, picking which groups to scan can be based on the salient metric
of the group, Sy~ (W, group_id) = 3,y ia S(W. ©), for all group_id € [0, [d/g]), etc. picking top
s[d/g] groups with Sy~ () sorted in descending order. All ¢;y,4, matrices of W, is audited against
a “probe” input point (can be the last item of X to save bandwidth), etc. picking the W, that yields
the lowest L(Wy, Xprobe) according to eq. (@) Therefore, s should be added as the fourth hyper
parameters, as in GPTQ(h,/,p,s).

OOC(h,l,p,s) is defined as a quantize scheme where it picks the best model out of one cre-
ated from fipro, and from the extension ngTQ(h,l,p’s) using some validation dataset. In or-
der to achieve that, it needs to run quantize process twice, each with different f? and sets

of L}nput and Li)utpm flowing through the process. Hence, we define each run as a workflow.
q

Figure describes OOC scheme visually. The generic quantize function becomes f. .. .
(W, [ X4, X4]) —>[qu 4 qu %], where f1, f are different quantize functions. For the OOC scheme,
itis f3oc (W .[X gpromXoptomips))— [IWIFTD, W29 Theoretically, this double work-
flow can be extended into triple or quadruple workflow, but the memory consumption of storing the
input and different W, needs to be taken into consideration (Refer to section . From the perspec-
tive of block-parallelism aforementioned, double workflow can also be parallelized (flow parallel),
by sharing aforementioned Py ., units.

The sequential (no row-flow-selection parallel) version of OOC scheme p-OOC-Naive is described
in Algorithm appendix [A.3] (“p” stands for Python to indicate non-kernel fashion, as kernel is done
in C++). p-OOC-Naive has 4 nested for-loops, where 3 of them (in highlight) can be avoided
using the row-flow-selection parallel k-OOC in Algorithm algorithm [2| For a fairer comparison,
we also create p-OOC-Batch variation where we only incorporate Selection Parallel, and not Row
or Flow Parallel. Differing from Flow Parallel, where the result W, of each flow (referred to as
“artifacts”) are kept (first on GPU, then offloaded to CPU to save GPU space) during the whole
model quantize process, Selection Parallel results are discarded after the module being quantized.
Another implementation detail is that it is not possible to store all artifacts of ¢4, groups in GPU
memory at once, as for large model (up to 70B), a small ratio s can lead to Out-Of-Memory. We
derive a formula to calculate a smaller chunk ¢ < ¢;,4, 0Of those groups to be scanned in section@
Figure [2b| visualizes the data-flow of this specialized fused kernel k-OOC. For this GPU kernel to
launch, all inputs and outputs have to already have allocated spots in memory. For Flow Parallel,
artifacts include: 1) inputs of each flow XGPTQ(Z) and X GPTQ(h.Lp) (each has its derivatives like H !,

diag(H)), and 2) outputs of each flows (W, E). This explains why H LB, W, have first dimension
of n = 2 (numbers of flows) in the figure. For Selection Parallel, ¢ selection artifacts need to be
allocated, which explains the next dimension of W, and E is c. Each selection and flow uses the
same W, hence storing W n, ¢, k, d] is not necessary. Input X to each selection per flow is the same,
rendering the Hessian inverse H ~! the same and no dimension of ¢ in H~!. Diagonal of H is not
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(a) Two independent workflows with their own inputs through the set of layers. The input is first passed to each
module (the “forward” method) to capture the inputs for quantization and then forwarded again during “retest”
to capture the new output to pass to the next layer as input.
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(b) Specialized GPU kernel for the OOC algorithm where a combination of [row, flow, clear group id selection]
are processed in parallel, which leads to improved quantization speed. n stands for the number of workflows.
c stands for the number of “clear group id” to scanned through at once. Thick arrow indicates the read/write
from/to high-latency HBM storage and thin arrow indicate low-latency read/write from/to block share cache
memory.

Figure 2: The core pillars of k-OOC technique is the creation of double workflows in fig. [2a and
batching those workflows inputs for parallel processing in a novel GPU kernel in fig. @

shown in the figure; by the same logic, its dimension is [n, d]. This artifacts creation is called Input
Batching.

3.4 K-OOC GPU MEMORY CONSIDERATION AND CHUNK SIZE CALCULATION

It is required to store the new quantization the artifacts of Flow and Selection Parallel (W, E, H -1
and Hg;44) at all time to maximize parallelism, a careful handling of GPU memory is necessary.
Recommended steps are 1) loading model all weights on CPU and 2) only load to GPU the weight
of the current layers being quantized. After quantization, those new weights (W) should be offload
to CPU again to save space. When quantizing small models, one GPU can handle all tasks: 1) load
the input, 2) do the first forward pass using W to capture the input to each module, 3) calculate
the inverse hessian, 4) quantize the model, 5) do the second forward pass to recalculate the new
output using W, (ﬁg.@). However, for large models (more than 3B parameters), step 4) should be

offloaded to another GPU. Secondly, the formula to find a ¢ < ¢, that the artifacts of c selections
T/ f—[kd+n(md+mk+kd+d+d?)]
n(1+kd+2mk+2kd)

isc= . The quantities in the equation are explained in the same order
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in table[5] f = 4 is the bytes size of each item in those matrices. 7" is the total GPU HBM memory
in bytes (etc. 80GB for H100).

4 EXPERIMENTS

4.1 DATASET AND EXPERIMENT SETUPS

As we want to be comparable to bit family of Ag%lTQ(Z):Aglg{(FQ(z): 2.1, focmao.s 1S experi-
mented using different values of s € [0.1,0.2,0.5,1]. Choices of s does not affect A™** or
Al but affects PPL and quantize time cost. Specifically, 00C(2,2,0.1,0.1) means it is an ensem-
ble double-flow scheme that combine the result of GPTQ(2) and GPTQ(2,2,0.1,0.1). For brevity,
00C(2,2,0.1,s) is referred to as OOC(s) in the report. Quantizing happens on 2 GPUs NVIDIA
H100 80GB HBM3. Due to GPU memory constraints, we cannot experiment with triple or quadru-
ple workflow. Secondly, 3 datasets C4, Wikitext2, and PTB are utilized to measure PPL. To keep
conformity, 256 data samples (each with 2048 tokens) from each dataset is used. To create quan-
tized Model M(C4), this work uses 50% of X4 dataset as quantize input set || 10% as Valida-
tion set, and 40% as Test set. 14 models experimented are of 3 family types: OPT, LLaMA, and
BLOOM, ranging from 125M to 70B parameters. Any size up to 3B is considered “small”, while
up to 70B is considered “large” (fig. 3| and fig. [5). We also use 40% of the Xyyiiexiy and of Xprg
to evaluate M(C4) (table [I). We also create and report PPL of M(Wikitext2) and M(PTB) (ta-
ble [7] and table [6). Thirdly, for speed measuring, we compare the sole effect of Row Parallel,
by comparing the original GPTQ implementation with k-OOC(0). It is justified comparison be-
cause the workload of OOC(0)=00C(2,2,0.1,0)=ensemble(GPTQ(2), GPTQ(2,2,0.1,0))=GPTQ(2)
as GPTQ(2,2,0.1,0)=GPTQ(2) (we do not convert 10% of any groups into clearer precision). For
Row-Flow-Selection combined parallelism, we compare k-OOC(s) with p-OOC-Naive(s) and p-
OOC-Batch(s) (table[2)). Lastly, memory consumption of k-OOC(s) for different s (including s = 0)
is tested and reported in fig. [6]

4.2 RESULTS

We summarize all PPL score comparison in table [3] The average improvement on PPL for all
small models are bigger than for large models (8.9% vs 4.1%), and it is expected as large mod-
els are more tuned and have good PPL to begin with. The only exception is for My exo Where
it has better PPL on large v.s. small models (thanks to the s=0.5, see table E] It is expected
that the average PPL improvement on test set is lower than validation set (8.9% v.s. 9.7%), as val-
idation set compares min(PPL(fdprq), Val set), PPL(fdpromao.1s» Val set)) with PPL(fdpro0,,
Val set).  With fdoc =ensemble(fdpronm) faproeaos)> test set compares PPL(fgoq), Test
set) with PPL(f&proq)> Test set). It is likely that f5oq, performs better than fpron, On test
set, but not always as shown in table [l| toward bottom of the table (“PTB T” and “WIK T”
rows). Also in table E], BiLLM(2,2,0.1) performs better than GPTQ(2) and k-OOC(s) but as
AR M220.1)=375> A8Bc(22.0.1.6=2-1, the comparison is not justified.

Quantization speed is an important metric in judging quantization algorithm quality. Figure[d]shows
that k-OOC almost always performs faster than p-OOC-Naive and p-OOC-Batch, especially by a
big margin for s € [0.0,0.1,0.2] and by less margin for s € [0.5,0.1]. Table [2| quantifies this
gap numerically: in the single-flow (s=0.0), it shows that k-OOC improves up to 9x/4x the speed
of GPTQ for small/large models just using the Row Parallel technique alone. In the double-flow,
k-OOC can gain up to 22x speed up for small model, but the gain diminishes for large model. This
is expected as the chunk-size degrades to ~ 1 when the dimensions of W is big (see fig. [8). Finally,
fig.[6] shows that k-OOC uses more memory than GPTQ, especially in the s > 0 cases.

2Post-Training Quantization process does not need as many data as regular training or fine-tuning

3Marker “-” indicates the test is not run for that case. “T” stands for “test” and “V” stands for “validation”.
For instance, “WIK T” means “Wikitext2 Test set’. See table E] and table /| for results of training on Wikitext2
and PTB
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Method Bit |Eval OPT OPT BLOOM OPT BLOOM OPT BLOOM OPT LLAMA BLOOM OPT LLAMA OPT LLAMA
Fam|on 125M 350M  560M 1.3B 1.7B 2.7B 3B 6.7B 7B 7B1 13B 13B 30B 70B

GPTQ 2.1 [C4V |148.50 152.33 7649 4340 44.12 35.04 27.08 1631 30.34  19.09 14.08  13.61 10.73 9.53
k-OOC(0.1)[2.1 |C4V [135.96 119.21 65.03 4340 4049 30.44  26.16 16.11 2643  19.09 13.94  13.4510.70 9.53
k-00C(0.2)|2.1 |C4V [125.47 149.31 68.71 4340  37.86 30.96 2697 15.81 28.12 19.09 13.94  13.61 10.68 9.53
k-00C(0.5)|2.1 |C4V [133.05109.38 66.25 42.16 4326 3043 26.82 16.05 30.34 1891 13.89 1333 - -
k-O0C(1.0)[2.1 |C4V [122.19 130.70  67.20 4340 4142 3228 2647 16.16 2736 19.00 14.00  13.27 - -

FP16 16 |C4T | 22.14 1873 21.70 1320 1598 11.82 1432 10.51 6.00 1242 9.87 5.53 9.26 4.58
GPTQ 2.1 |C4T |174.25181.01  82.06 49.64 4627 3794 2829 17.38 2422  19.1514.89 12,50 11.51 8.52
k-O0C(0.1)|2.1 |C4T [163.14 141.95  69.74 49.64  42.67 33.04 2730 17.08 21.95 19.15 14.69  12.14 11.49 8.52
k-00C(0.2)|2.1 |C4T [146.22 175.56  71.50 49.64  39.35 33.04 27.79 16.77 23.76 19.15 14.71 12.50 11.49 8.52
k-O0C(0.5)[2.1 |C4T [163.44133.88 7243 47.61 4620 3253 27.52 17.04 2422 18831459 1218 - -
k-O0C(1.0)|2.1 |C4T (143.74 152.22  71.21 49.64 43.76 3488  27.40 17.03 22.95 19.10 1473 12.17 - -
FP16 16 |[PTBT| 39.66 31.70 4448 20.39 30.52 18.02 25.76 15.79 38.10 2122 1456  51.12 1405  24.16
GPTQ 2.1 |PTB T |622.33 752.43 376.85 157.54 16231 107.34  87.67 31.14 7549.46  42.32 28.53 406.20 19.67  47.98
k-OO0C(0.1)|2.1 |PTB T [539.55 397.34  279.29 157.54 180.50 83.93  84.37 30.24 11053.28  42.3227.21 37443 19.65 47.98
k-O0C(0.2)[2.1 |PTB T [477.50 772.19 268.88 157.54 144.88 90.25  89.51 28.35 15142.11 42.32 2692 40620 19.40  47.98
k-O0C(0.5)|2.1 |PTB T [589.36 461.88 280.91 130.42 158.73 81.47 83.46 30.00 7549.46  42.83 2821 420.46 - -
k-OOC(1.0)[2.1 |PTB T (423.89 487.73 329.00 157.54 171.44 9186  86.47 29.31 18848.80  42.76 27.84 335.47 - -

FP16 16 |WIKT| 27.89 22.12 2326 1477 1584 12.57 13.88 10.93 5.65 11.70 10.21 5.05 9.60 3.48
PB-LLM(¥)|2.75|WIK T - - - 265.52 - 124.35 - 105.16 69.20 -81.92 151.09 25.14  28.37
BiLLM(**) 3.75|WIK T - - - 69.97 - 4955 - 3536 3248 -18.82  16.77 12.71 8.41

GPTQ 2.1 (WIKT|378.49 508.79 131.32 101.14  68.38 7495 3475 2154 4649  20.26 23.01 1521 13.25 9.09
k-OOC(0.1)[2.1 |WIK T|(347.73 319.90 114.24 101.14  59.49 58.81  33.80 20.81 36.66  20.26 21.73  15.73 13.20 9.09
k-O0C(0.2)[2.1 |WIK T|303.53 480.37 116.72 101.14  53.59 61.66 3231 20.89 114.08  20.26 22.04 1521 13.39 9.09
k-00C(0.5)|2.1 |WIK T[513.89 297.54 117.65 8348 6426 57.68 33.43 2093 46.49  20.19 21.01 1547 - -
k-OO0C(1.0)[2.1 |WIK T|[300.29 375.04 116.91 101.14  61.17 70.19  31.78 21.13 3831 20132212 14.89 - -

Table 1: Perplexity (PPL) of k-OOC (Ours) compared against GPTQ(2) and Full Precision (Float
16). The lower the PPL, the better the model. It is quantized-trained on the C4 dataset and tested
on all 3 datasets. k-OOC(0.1) is short for k-O0C(2,2,0.1,0.1) . The table shows that all variations
of k-OOC at least out-performs the GPTQ(2). The best performance compared against GPTQ(2)
among different “Scan” percentages is in bold. (*) and (*¥*) are reports from (Huang et al., 2024)
and (Yuan et al.,[2024) for PB-LLM(8,1,0.1) and BiLLM(2,2,0.1) for reference.
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Figure 4: Average time (in secs) taken to quantize a layer sliced by different model (size and family)
and different implementations of the OOC scheme. The speed is measured on H100s. It shows that
the kernel version k-OOC costs less time compared to p-OOC-Naive and p-OOC-Batch. When the
Scan percent=0.0, the p-OOC-Naive / p-OOC-Batch becomes the original GPTQ implementation in
(Frantar et al., 2022). There is no difference between the Naive and Batch in this case, because the
# of work flow is both 1.)

5 CONCLUSION AND LIMITATION

In this work, we developed the first world specialized fused GPU kernel for PTQ process, where
it can reach 9x faster than the original féPTQ(l) implementation due to the usage of Row Parallel

technique. Secondly, we introduced an extension to GPTQ(!) called fg)PTQ(h,l,p,s)’ where it upgrades
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Figure 3: Perplexity of small models (up to 3B parameters) sliced by s, Train Dataset, and Eval
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Dataset, and Methods. See fig. E|for PPL of bigger models.

Quantization Small Models (Up to 3B) / Scan Percent Large Models (Up to 70B) / Scan Percent

Implementation 0.0 0.1 02 05 1.0 0.0 0.1 0.2 05 1.0
p-OOC-Naive x1.00 x1.00 x1.00 x1.00 x1.00 - - - - -
p-OOC-Batch x1.00 x4.07 x6.26 x9.62  x12.49 | x1.00 x1.00 x1.00 x1.00 x1.00
k-O0C x9.86 (Faster) x16.24 x17.68 x20.90  x22.84 x4.01 x1.27 x1.18 x1.06 x1.03

Table 2: Speed up of k-OOC (algorithm to the two Python implementations (p-OOC-Batch and

p-OOC-Naive).

Scan |C4 Val C4 Test PTB Val PTB Test |WIKITEXT2 Val|WIKITEXT2 Test| Validation Test

Percent | small Large|Small Large| Small Large| Small Large| Small Large| Small Large| Small Large| Small Large
0.1 10.0% 2.4%|9.6% 2.2%| 9.2% 0.9%| 6.4% 1.0%| 6.9% 1.0%| 5.1% 0.8%| 8.7% 1.4%| 7.1% 1.3%
0.2 77% 1.7%|8.8% 1.0%(13.2% 1.9%(11.7% 1.6%| 7.3% 20.5%| 5.5% 16.4%| 9.4% 8.0%| 8.7% 6.3%
0.5 10.1% 1.2%|9.3% 1.6%| 5.5% 2.3%| 6.3% 23%|11.1%  18.0%|10.0% 18.0%| 8.9% 7.2%| 8.5% 7.3%
1.0 8.6% 2.9%|9.0% 2.2%(13.5% 1.4%(12.3% 1.2%|13.3% 1.2%(12.3% 1.3%(11.8% 1.8%(11.2% 1.6%
Average| 9.1% 2.0%|9.2% 1.8%(10.4% 1.6%| 9.2% 1.5%| 9.7% 10.2%| 8.2% 9.1%| 9.7% 4.6% | 8.9% 4.1%

Table 3: Final PPL improvement of k-OOC(s) compare to the GPTQ baseline in terms of percentage.
“Small/ Large” stands for the size of the models (Up to 3B is consider “small”). Scan percentage
tested are s={0.1,0.2,0.5, 1}

one group into higher precision by using two bit sizes h and [. However, due to error correction and
model-wise aggregation, ngTQ(h!l!p,S) can sometimes degrade compare to ngTQ(l)’ we ensemble the
two to create the final OOC(h,l,p,s) and incorporate row-flow-selection parallel into the earlier GPU
kernel to improve speed. Empirically, we show that OOC(2,2,0.1,s) performs better than GPTQ(2)
by 8.9% on small models and 4.1% on big models while still maintaining a good speed. We managed
to quantize the big LLaMA 70B with s € [0.1,0.2] under 2.5 hours. A limitation of this work is
that the used parallelism scheme is GPU block parallelism where thread parallelism can further
improve the speed. However, the true bottle neck lies in the memory consumption of OOC, where a
technique of not materializing W,’s and £’s for all selections at once on GPU is needed. However,
E is essential for the error correction process of Hessian-base PTQ, so it remains the hard question
and will be a topic for future work.
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Algorithm

Description and Bit Family calculation

GPTQ(b)

W is quantized at b bits per item. 1 flag is used per group per
(b+1f) 4 xk

_ . b+1f. _ . __ bkg
row. Hence F = T = g,M—O,B— T

b= A =lm(F + B) = 2L + b= Anos

PB-LLM(h,l,p)

The method combines p% high and (1-p)% low precision. For high precision,
it uses the GPTQ(h) above but with 1 flag per row (not per group). For low
precision, it uses XNOR| method (2 flags per group per row). It needs kd bit to

mark high/low precision. Hence, Floyy = W _ %; Fhign = W _
hilfo g = kd — s and B = (REoplbd _ pp (1 py) 5 Alim —

m(M + Fiow + Fhigh + B) = 14+ 22 + 2L 4 ph 4 (1 — p)l = Apnaz

BiLLM(h,l,p)

The method further splits the low range into 2 parts. Hence it combines p%
at h bits, (1-p)/2% for upper low at [ bits, and (1-p)/2% for lower low at [
bits. 4 flags per group per row is for high precision. For each range of low
precision, 2 flags per group per row are used. Hence, there are 8 degrees of
freedom (8 flags) in total. It requires kd bit to mark high/low precision and

.. _ kd+(1-p)kd _
another pkd to mark upper/lower low precision. Hence, M = ———=— =

2 — p; Fhigh = %,me = Qé]—f.B =0.1h+0.9] = A" =lim(M + Figh +
F10w+B): (2_p)+w +ph+(1_p)l:Amaa;

A APPENDIX

Table 4: Bit Family calculation for 3 main algorithms

A.1 BIT FAMILY NOTATION

“Bit Family” notations

k,d The dimension of the weight matrix that needs to be quantized

The number of bit that is used for a flag (Typically Half float f = 16 bits)

The group size that is processed at one time which also defines the range at which
quantization stats (mean, scale) are calculated on. d/g is equals the number of groups
per row

h,1,b The number of bits for “high”, “low”, and “regular” precision tiers that are used to
quantize numbers in the GPTQ, PB-LLM, and BiLLM schemes

D The proportion within each group to quantize with high precision (typically p = 10%)

F(k,d) Average flag bit count, etc. number of bits per slot to store the flags for W of size

[, d]

M(k,d)  Average mark bit count, etc. number of bits per slot to mark which items are of
high/low precision for W of size [k, d]

B(k,d)  Average number of bits per slot to quantize W, not including F and D

Amaer Max Average number of bits per slot. A=M+F+B — A,,,,, = maxy, ¢(M+F+B)

Alim Average Final Bit Family at limit. Alm = lim A(k,d) =
limy,d—o0 [M(K,d)+F(k,d)+B(k,d)]

12
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A.2 EQUATION DERIVATIONS
A.2.1 THE SALIENT METRIC L

Using Taylor expansion on eq. (2), we have:
1
LW, Wy, X) = LW + AW, X) = L(W) + [|[v(W)AWT + §AWv2(W)AWT\|§ (6)

In eq. (6), V(W) is the Jacobian matrix of L with respect to W, and v2(TV) is the Hessian matrix
of L. The hessian has a closed form of V(W) = 2X7 X, independent of W. When W, = W,
LW,Wy, X) = LW, W, X) = || XWT — XWT||3 = 0, hence L(W, W, X) is minimal, which
leads to V(W) = 0. The first two terms of eq. (6) becomes zeros, and min(L) becomes:

L(W, X) = min (L(W, W, X)) - nV1Vin(||AWqXTXAWqT| |§) 7)

q

An insight is that each row j of L can be calculated independently from other rows.

A.2.2 SALIENT SCORE AND L

Previous literature simplified the relationship between non diagonal entries in the Hessian matrix to
0. From equation eq. (7):

(Hy Hy .. Hig| [AW)
. Hyy Hey .. H AW;
Li=[aw, AW . aw| | 7 2 7
_Hdl Hdg Hdd_ _AWjd_
(Hy 0 . o | [aw,)
0 Hy .. 0| |AW; d
~ {Ale AWJ’Q AWjd} > 72 :Z(HiiAWJ2i>
P
I 0 0 Hdd_ _AWjd_
. k d k d
j Li=1 j Li=1

A.2.3 OOC AVERAGE NUMBER OF BITS PER SLOT A(k, d)

2(h+ f)k (d/g =)+ k. (pgh + (d — pg)l)k

FO = ;Fo ers — B =
ad kd h kd kd
2(h+f) I+f 1+f pgh Id lpg
=M Fo Foers B = — —_— _ =
C + Foad + Fothers + ] + p; 7 ] 7 7
I+ f 2(h+f) pgh 1+f lpg
P— l S —
g +| a4 4 d}

A.2.4 CHUNK SIZE ¢ CALCULATION

f x (kd + nmd + nmk + nckd + nkd + nckd + nd + nd® + nckd + nc + nemk + nemk) =T
= nc(l + kd + 2mk + 2kd) + kd + n(md + mk + kd + d + d*) = T/ f
_ T/f*[kd+ﬂ(md+mk+kd+d+d2)]

n(1 + kd + 2mk + 2kd) ®

= C

13
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Figure 5: Perplexity of big models (up to 70B parameters) sliced by s, Train Dataset, and Eval
Dataset, and Methods.

A.3 OOC PSEUDO CODE AND IMPLEMENTATION DETAILS

There are two memory access scheme in GPU: low-latency Block shared memory (SRAM) and
high-latency High Bandwidth Memory (HBM-DRAM) accesses. The inputs are originally loaded
onto HBM, hence read/write to them is slow. Therefore, during calculating f?(W), the system is
benefit from caching I/ngld into SRAM, because it will be read many times for calculation of the
“mean” and “scale” in foppo for example. In the detail implementation of GPTQ, there are about
9 lists (each with the size of ¢ = 128 of 8 byte float numbers, should be cached. Hence, with the
limit shared memory size per block of 49KB, only ~ 5 threads per block can be run. Compared to
1 thread per block (implemented in this paper), this extra threads per block might not yield much
speed up, but worthy of exploration for future work.

Matrices Location Dimensions
in algorithm 2]
w 1 kxd
Probe input 2 nxmxd
Probe output before quant 3 nxmxk
W, 4 nxcxkxd
Best W, 5 nxkxd
E 6 nxcxkxd
Diagonal of H 7 nxd
Inverse H 8 nxdxd
Error correction 9 nxcxkxd
Norms of all clear group ids in chunk | 10 nxc
Probe output after quant 11 nxecxmxk
Probe output differences 12 nxexmxk

Table 5: Dimensions of different quantities used in the k-OOC algorithm. This is to calculate the
final “chunk size” A so that the everything is fit in one GPU.

A.4 EXTRA EXPERIMENTS
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Algorithm 1 OOC: Quantizing a Matrix W under OOC scheme using naive implementation. The
3 highlighted for-loops are the bottleneck of this algorithm.

function GPTQ(W, diag, H!,selected_group_id,g, high, low, Xcs)
k,d=W.shape
Wy = O
= Ok
for group_id <+ range(0, num_group) do
start=group-idx g
end=(group-id+1)x g
if group_id=selected_group_id then
precision<— high
else
precision<— low
end if
for row j < k do
Wy lj, start:end], E[j ,start:end|=quantize(W;, diag, H —1 group_id, precision)
end for
Wl:, end:] -= E[:,start:end] x H —1[ start:end, end:] > Error correction
end for
return W, L(W, Wy, Xest) > L(W, Wy, Xiest) is the loss difference between W vs. W,
end function

function OOC_INTERNAL(W, diag, H’l, Xirain, SCan_groups, g, high, low)
H~'=cholesky_inverse(H)
min_loss¢— oo
bestw, - None
for odd_group € scan_groups do
W,, loss= GPTQ(W, diag, H ™!, odd_group, g, Xwain[—1])
if loss<min_loss then
min_loss< loss
bestw,=Wq
end if
end for
return besty,
end function

function OOC(W ,work_flows, g, high, low)
for work flow € work_flows do

Xiain=work_flow[ ‘X’ ]
s=work_flow[‘s’]
H=2XL, X Xuain
// Calculate the salient metric S’ per group.
num_group=[d/g]
S=[S'(W, group_id) for group_id € [0, num_group)]
S=sorted(S, descending=True)

S=S[:,s xnum_group] > Only take the top s portion of the groups
work_flow[ ‘result’ ]=00C _internal(W, diag(H ), H ', Xixain» S, g, high, low)
end for

return work_flow
end function

15
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Algorithm 2 k-OOC: Quantizing a Matrix W under OOC scheme using a specialized GPU kernel
as described in section[3.3]

function QUANTIZING_KERNEL(W, diagpatch, H, baich s Xprobe_batchs Sbatch 8> high, low)
row _id=block.idx > Called/ calculated on GPU2
flow_id=block.idy
option_id=block.idz
scan_group=Xy,obe_batch[flow_id][option_id]
if group_id=scan_group then
precision<— high
else
precision<— low
end if
quantize(row_id, W, diagpascn, H ~*,group_id, W,l[flow_id, option_id], E[flow_id, option_id],
precision)
return 0
end function

function OOC_KERNEL(W ,diagpych, H L atchs Xprobe._batchs Sbatch> &> high, low)

k,d=W.shape > Called on CPU, calculated on GPU 1
num_flows=Sp4¢.r .shape[0]
max_num_options=max(Spq¢cr.shape[1])
Wq = O[num,ﬂows, max_num-options, k,d] > @
E= O[num,ﬂows, max_num_options, k,d] > @
for group_id < range(0, num_group) do

start=group-idx g

end=(group_id+1)x g

GPU Kernel call quantize_kernel(W, diagyqich, H, l;ich,group_id, Shatchs Wq, E)

on grid of dimensions <k,num_flows, max_num_options>>

Wl end:] -= E[:,:,:,start:end] X H~:, start:end, end:] > Error correction (9
end for
bestyy, =select(Wq, L(W, W,, Xpmbefbmch) > 3,0,00,00,02
return bestyy, > L(W, Wy, Xprobe_batch) 1 the loss difference between W vs. W,

end function

function OOC(W ,work_flows, g, high, low) > (D, called on CPU, calculated on GPU 1
work_flow_map={}
for flow_id, work_flow € work_flows do > A fast For-loop for preparing the input.

Xirain=work_flow[ ‘X’]

s=work _flow[‘s’]

H=2XT. X Xiin

// Calculate the salient metric S’ per group.
num_group=[d/g]

S=[S'(W. group_id) for group_id € [0, num_group)]
S=sorted(S, descending=True)

S=S[:,s xnum_group] > Only take the top s% of the groups
work_flow_map[flow_id]={ ‘H’:H, ‘probe’: Xuin[-1], ‘S’: S }
end for
H _1batch:[cholesky_inverse(h) for h in flatten(work_flow_map, ‘H’)]
diagpych=[diag(h) for h in flatten(work_flow_map, ‘H’)] >,
Xprobe_bach=fatten(work_flow_map, ‘probe’) > Q@

Spacn=flatten(work_flow_map, ‘S”)
result=00C _internal(W, diagpacn,H L atchs Xoprobe_batchs Sbatchs g, high, low)
return map_result_to_work_flows(result)

end function
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Figure 6: Memory consumption of k-OOC v.s. other GPTQ (k-OOC(0.0)).

Method Bit (Eval OPT OPT BLOOM OPT BLOOM OPT BLOOM OPT LLAMA BLOOM LLAMA

Fam|on 125M 350M  560M 1.3B 1.7B 2.7B 3B 6.7B 7B 7B1 70B
GPTQ 2.1 (WIKV|216.97 234.01  78.69 45.65 3534 32.67 23.7316.12 3996 1597 6.30
k-OOC(0.1)[2.1 |WIK V[177.38 234.01  68.22 4240 34413103 23.191596  39.96 15.71 6.21
k-00C(0.2)|2.1 |WIK V[201.50 234.01  65.10 44.62  31.4929.77  22.67 15.66 17.22 15.69 -
k-00C(0.5)|2.1 |WIK V|[176.24 188.98  66.10 43.39  33.6229.40  22.82 15.83 20.00 15.61 -
k-O0C(1.0)[2.1 |WIK V|[164.97 182.50  65.05 41.59  33.2528.67  23.06 15.90 - - -
GPTQ 2.1 [C4T |302.57 214.83 116.46 93.07 56.16 58.18  33.0522.02  31.36  20.62 8.46
k-OOC(0.1)[2.1 |C4T (20571 214.83 105.07 78.57 57.03 5520 44542124 3136 2041 8.50
k-00C(0.2)(2.1 |C4T [225.49 214.83  95.63 93.00 45.08 50.59 34.0721.30  27.52 2045 -
k-O0C(0.5)[2.1 |C4T [196.10 199.42  98.25 79.45 55456491  34.0521.01 2856  20.40 -
k-OOC(1.0)[2.1 |C4T [180.84 176.30  93.24 7346  49.3355.75  31.63 21.33 - - -
GPTQ 2.1 |PTBT [520.55 391.55 303.53 138.64 141.01 88.13  80.18 32.00 10572.99  41.40  42.24
k-OOC(0.1)[2.1 |PTBT [467.44 391.55 342.21 119.17 171.94 74.53  78.19 30.85 10572.99  40.36  61.02
k-00C(0.2)|2.1 |PTB T [603.23 391.55 301.07 121.96 112.55 78.57  79.42 29.43 13684.60  39.91 -
k-OO0C(0.5)[2.1 |PTB T [465.09 431.88 318.12 116.63 135.06 79.60  82.99 29.57 8872.44  39.32 -
k-OOC(1.0)[2.1 |PTB T [428.53 498.04 232.51 119.56 11523 81.11  78.95 30.56 - - -
GPTQ 2.1 (WIKT|206.00 213.67  80.48 45.54  36.00 31.70  24.21 1642  37.52  16.73 6.94
k-OOC(0.1)[2.1 |WIK T [177.65 213.67  70.31 4348  35.8530.83 23.74 16.28 3752 1652 6.87
k-00C(0.2)|2.1 |WIK T |[196.89 213.67  67.36 45.19  33.1329.49 23.6316.07 2039 1651 -
k-00C(0.5)|12.1 |WIKT|[161.28 182.86  68.06 43.39 35232894  23.49 16.13 18.69  16.37 -
k-O0C(1.0)[2.1 |WIK T [156.00 171.90  68.28 41.87 3422 28.29  23.46 16.20 - - -

Table 6: Perplexity of k-OOC (Ours) compared against GPTQ and Full Precision (Float 16). It
is quantized-trained on the Wikitext2 dataset and tested on all 3 datasets. The table shows that all
variations of k-OOC at least out-performs the GPTQ. The best performance out of selection of

“Scan” percentage is in bold. Marker

@ 9

indicates the test is not run for that case. To save space,

the “Eval on” column uses truncated eval dataset name: “T” stands for “test” and “V” stands for
validation. For instance, “WIK T” means “Wikitext2 Test set’.
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Method Bit |Eval OPT OPT BLOOM OPT BLOOM OPT BLOOM OPT BLOOM LLAMA
Fam|on 125M 350M  560M 1.3B 1.7B 2.7B 3B 6.7B 7B1 70B

GPTQ 2.1 |PTB V|198.16 448.65 115.95 4530  50.67 34.92  36.33 21.70  23.79  23.57
k-OOC(0.1)[2.1 |PTB V|166.47 350.78 100.74 41.88 4894 3492  35.32 21.41 2348  23.57
k-00C(0.2)|2.1 |PTB V[198.16 173.92  94.71 43.89  46.96 3492 3557 21.12 2354 -
k-00C(0.5)|2.1 |PTB V[170.02 437.23 104.50 43.11  48.94 3441  354920.92 2355 -
k-OOC(1.0)[2.1 |PTB V[162.11 237.35  95.60 44.11 47.36 34.65  35.74 21.40 - -

GPTQ 2.1 [C4T |353.58 436.71 153.45116.00  73.06 66.79 128.52 25.07  34.28 9.41
k-OOC(0.1)[2.1 |C4T (31633 387.90 115.71 100.04 6322 66.79  41.08 24.34  40.68 9.41
k-00C(0.2)|2.1 |C4T |[353.58 209.86 139.66 91.50  61.70 66.79  41.5524.05  27.57 -
k-O0C(0.5)|2.1 |C4T |[295.34 347.18 138.23 94.53  62.44 56.04  39.312439 24.10 -
k-OOC(1.0)[2.1 |C4T [316.78 243.66 153.90 97.52  62.79 59.34  72.78 24.56 - -

GPTQ 2.1 |PTB T |209.82 368.59 127.87 48.16  60.02 36.31  42.79 22.01 29.05 31.79
k-OOC(0.1)[2.1 |PTB T [191.50 334.35 112.64 4442  57.76 36.31 41.2121.65 28.66  31.79
k-00C(0.2)|2.1 |PTB T [209.82 176.33 106.68 46.52  56.20 36.31  41.31 2147  28.82 -
k-O0C(0.5)[2.1 |PTB T [186.58 352.50 112.25 45.13  56.79 35.96  41.26 21.41  28.53 -
k-OOC(1.0)[2.1 |PTB T [178.00 211.05 107.59 46.88  56.51 36.21 41.19 21.75 - -

GPTQ 2.1 |WIK T|777.08 945.00 203.12 152.08  82.30 81.62 42422453 2671 10.28
k-OOC(0.1)[2.1 |WIK T|627.71 704.28 161.72 127.33 6729 81.62 45752430 2265 10.28
k-00C(0.2)|2.1 |WIK T|777.08 433.39 156.98 13420  64.08 81.62  40.64 24.17  22.70 -
k-O0C(0.5)[2.1 |WIK T|488.09 778.83 158.85 142.38  71.46 71.77  38.6525.19  22.35 -
k-OOC(1.0)[2.1 |WIK T|631.77 436.25 170.17 157.46  69.79 71.17  41.44 24.62 - -

Table 7: Perplexity of k-OOC (Ours) compared against GPTQ and Full Precision (Float 16). It is
quantized-trained on the PTB dataset, and tested on all 3 datasets. The table shows that all varia-
tions of k-OOC at least out-performs the GPTQ. The best performance out of selection of “Scan”
percentage is in bold. Marker “-” indicates the test is not run for that case. To save space, the “Eval
on” column uses truncated eval dataset name: “T” stands for “test” and “V” stands for validation.
For instance, “WIK T means “Wikitext2 Test set’.

OPT Model 125m 1.3B 2.7B
No Matrix-No Group Default order - 374+0 91+0
Default order 50625 13745 7544

Matrix-Group Salient descending 903+28 13247 80+3
Salient ascending | 2,489+181 7,736+441 9,974+279

Table 8: Perplexity PPL measured for having/ not having Error correction (denoted as “Matrix-
Group” and “No Matrix-No Group” correspondingly). See definition in section [I.1] It shows that
PPL for having Error correction is lower (better). Measurement for different order of error correc-
tion (high salient first v.s. high salient last) is also shown. “Default” (no ranking) v.s. “Salient
Descending” is comparable, but “Salient Ascending” degrade the model completely. This explains
“Default” order with “Matrix-Group” are selected for the main experimentation in this work.
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