
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TYPEDTHINKER: TYPED THINKING IMPROVES LARGE
LANGUAGE MODEL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite significant advancements in the reasoning capabilities of Large Language
Models (LLMs), the lack of diverse reasoning solutions often makes them trapped
in a limited solution search area. We propose TypedThinker, a reasoning
framework that diversifies LLMs’ reasoning solutions by incorporating multiple
reasoning types (deductive, inductive, abductive, and analogical). Our analysis
across four benchmarks reveals that each reasoning type uniquely solves a dis-
tinct set of problems, highlighting the importance of diverse thinking approaches.
TypedThinker addresses two key challenges: identifying appropriate reasoning
types for given problems and effectively implementing specific reasoning types.
Through self-training on successful experiences, TypedThinker learns an im-
plicit policy for reasoning type selection and application. Experimental results
demonstrate significant improvements over baseline models, with accuracy in-
creases of 3.4% for Mistral 7B and 16.7% for LLaMA3 8B across four reasoning
benchmarks. Notably, TypedThinker shows effective generalization to new
datasets and can further enhance the reasoning capability of models like GPT-4o.

1 INTRODUCTION

Large Language Models (LLMs) exhibited promising capabilities in reasoning, such as solving
logical reasoning and mathematical problems (Bai et al., 2022; OpenAI, 2023). Plenty of work has
been done to improve the reasoning capabilities by adding reasoning thoughts (Wei et al., 2022) and
making these thoughts more elaborated (Fu et al., 2023; Zheng et al., 2024). However, the exploration
of novel reasoning thoughts is understudied. The lack of diversity in reasoning makes LLMs easily
trapped in a fixed mindset, which limits their performance in solving difficult problems.

Current research efforts to enhance reasoning diversity remain unsatisfactory. AlphaCode (Li et al.,
2022; Leblond et al., 2023) randomizes the difficulty level and categorical tags of the code problems
in the prompt to encourage diversity. However, its dependency on manually curated attributes makes it
challenging to scale and apply beyond coding problems. On the other hand, increasing the temperature
is an easy way to generate superficially diverse outputs, but it often fails to produce high-quality
reasoning solutions with significant differences. For example, repeated sampling (Brown et al., 2024)
generates 100,000 solutions per problem with temperature 0.6, but their solutions 1 are mostly based
on deductive reasoning, which starts from the problem context to infer the answer step by step.

Encouraging LLMs to apply more types of reasoning can make them think more diversely. Besides
deductive reasoning, there are other reasoning types such as inductive (Flach and Kakas, 2000),
abductive (Douven, 2011), and analogical reasoning (Bartha, 2013). These reasoning types reflect
different mental methods of drawing conclusions, leading to diverse thinking processes. This is also
inspired by human cognitive processes, where individuals selectively apply contextually appropriate
logical reasoning strategies (Halpern, 2014; Bronkhorst et al., 2020). For example, when some
answer candidates are given for a free-response math problem, humans are more likely to verify the
correctness of each option instead of solving it from the given conditions. This reflects human’s
implicit mental shift in the type of reasoning from deductive to abductive.

To investigate how different reasoning types affect the LLMs’ performance in solving reasoning
problems, we calculate the percentage of problems that can only be solved by one particular reasoning

1Their results can be found at: https://huggingface.co/datasets/ScalingIntelligence/monkey_business.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

type in Figure 1. Specifically, we generate 10 samples for each reasoning type with the Mistral 7B
instruct (Jiang et al., 2023) on four benchmarks: LogiQA (Liu et al., 2023a) and BBH (Suzgun et al.,
2022), GSM8k (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021). We consider that one
problem is solved by a reasoning type if at least one correct solution is found among the 10 samples of
this reasoning type. For example, the blue region in Figure 1 reflects the percentage of problems that
can only be solved by inductive reasoning, which is surprisingly effective on the MATH benchmark.
It means that without inductive reasoning, LLMs can hardly find a correct solution for these 11.03%
problems. As we can see, each reasoning type has a unique set of problems that can be solved by it,
highlighting the importance of divergent thinking based on the reasoning types to enlarge the solvable
problem set. More analysis can be found in Section 4.2.

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

LogiQA BBH GSM8k MATH

Pe
rc
en

ta
ge Abductive

Analogical
Inductive
Deductive

Figure 1: The percentage distribution of each reasoning
type for problems. The y-axis indicates the percentage
of problems that can be only solved by one specific type.

Integrating diverse reasoning strategies into
LLMs’ problem-solving capabilities has two
main challenges. First, as shown in Figure 1,
it is important to select the appropriate reason-
ing type for a given problem, otherwise, it may
mislead the LLMs with the wrong thinking di-
rection. Besides, it may be difficult for LLMs
to follow a specific reasoning type to solve the
problem. Therefore, we propose a novel ap-
proach TypedThinker with the implicit pol-
icy to select and conduct the appropriate reason-
ing types and the explicit collection of demon-
stration to retrieve relevant experiences to aid
problem-solving. TypedThinker uses the
meta-thinker and the reasoner, to select the
reasoning types and conduct the selected types of reasoning. It also maintains an explicit collection
of demonstration to retrieve relevant knowledge and experiences. To learn the implicit policy for
reasoning types, TypedThinker is optimized based on its own successful experiences. For each
problem in the training set, it estimates the effectiveness score of each reasoning type based on the
success rate during sampling. The meta-thinker is fine-tuned on these empirical effectiveness scores
to learn reasoning type selection for each problem. These successful reasoning experiences are also
used to enhance the reasoner’s capability of following a specific reasoning type in problem-solving.
During the self-training process, TypedThinker updates the implicit policy of the meta-thinker to
select reasoning types and the policy of the reasoner to apply this type, while storing the successful
reasoning experiences in the explicit collection of demonstration for retrieval.

Experimental results show that TypedThinker improves Mistral 7B instruct by 3.4% and LLaMA3
8B instruct (Touvron et al., 2023) by 16.7% on two logical benchmarks, LogiQA and BBH, and
two mathematics benchmarks, GSM8k and MATH. We further demonstrate that TypedThinker
can directly be applied to the new benchmark Contexthub (Hua et al., 2024) and outperforms other
baselines. Moreover, we show that the meta-thinker based on the weak 7B model can enhance the
performance of GPT-4o without distilling knowledge from strong LLMs, which also sheds light on
the weak-to-strong generalization (Burns et al., 2024).

2 RELATED WORK

Logical Reasoning Logical reasoning includes various methods to emulate human-like thought
processes (Wason and Johnson-Laird, 1972; Dowden, 2018; Nunes, 2012). Deductive reasoning
focuses on deriving specific conclusions from general principles or premises, ensuring that conclusions
logically follow if the premises are true (Johnson-Laird, 2010). In contrast, inductive reasoning
involves generalizing from specific instances to broader principles, often used to identify patterns and
make predictions based on empirical data (Flach and Kakas, 2000). Abductive reasoning, considered
more creative and open-ended, involves forming hypotheses to explain observations, often generating
the most plausible explanation rather than a guaranteed conclusion (Douven, 2011). Analogical
reasoning is concerned with the comparison between two or more objects and drawing a conclusion
based on the similarity (Bartha, 2013). Previous LLMs studies on logical reasoning mainly focus on
benchmarking its performance in different reasoning types (Bang et al., 2023; Dougrez-Lewis et al.,
2024; Luo et al., 2023; Yu et al., 2024), or applying one reasoning type to solve the corresponding

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Explicit Collection of Demonstration

Experience 1: (Problem 1, Deductive, Solution 1)

Experience N: (Problem N, Abductive, Solution N)

…

Deductive Inductive Abductive

Implicit Policy of Reasoning

Abductive
Experience

Meta
thinker

Analogical
s = 0.3 s = 0.1 s = 0.6 s = 0

Abductive
Reasoner

Reasoner

Problem

Figure 2: TypedThinker consists of three components: the meta-thinker
to select the reasoning types, the explicit collection of demonstrations to re-
trieve relevant experience, and the reasoner to conduct the specific reasoning.
The meta-thinker is fine-tuned to predict an effective score s ∈ [0, 1] for
each reasoning type.

LLM Sample with
reasoning types

Filter incorrect trajectories
Filter ineffective types

Solutions

Reasoner

Explicit Memory Meta-thinker

Store
Finetune

Finetune

Empirical
Score

Initialize

Figure 3: Learning the implicit
policy and explicit memory by
self-training.

reasoning problems, such as using inductive reasoning for inductive reasoning problems (Wang et al.,
2023a; Shao et al., 2024; Yang et al., 2024). Instead, this paper mainly focuses on the selection and
application of the appropriate reasoning type when solving a general logic or math problem.

Reasoning in Large Language Models Plenty of studies have been done to enhance the reasoning
capability of LLMs. Chain-of-thoughts methods focus on creating better instructions to improve the
quality of the reasoning process, such as Complex CoT (Fu et al., 2023), Tree of Thought (ToT) (Yao
et al., 2023) and Graph of Thought (Besta et al., 2024). Refinement-based methods revise LLMs
solutions by the feedback from themselves or others model (Akyürek et al., 2023; Wang and Li,
2023). Search-based methods use the reward model to search the best reasoning path (Lightman et al.;
Liu et al., 2023b; Hao et al., 2023). While most focus on creating high-quality reasoning paths, the
diversity of thinking attracted more attention recently. Studies have investigated the diversity brought
by repeated sampling (Brown et al., 2024) or multi-agent discussion with different prompts (Du
et al., 2023; Liang et al., 2023; Suzgun and Kalai, 2024). Our paper aims to diversify thinking by
incorporating suitable reasoning types for each instance.

Self-improvement and Self-training in LLMs Recent works explore the self-improvement capability
of LLMs, by finetuning LLMs on their high-quality generations (Wang et al., 2023b; Huang et al.,
2023; Toshniwal et al., 2024). This process can be extended to multiple iterations Gülçehre et al.
(2023); Aksitov et al.. Benefiting the LLMs’ ability to follow instructions, researchers also ask LLMs
to provide feedback themselves and improve their responses without finetuning (Peng et al., 2023;
Shinn et al., 2023). This can be further enhanced by using their own feedback as the reward model
to provide better signals for finetuning (Yuan et al., 2024; Kumar et al., 2024). In this paper, we
focus on stimulating their capabilities to conduct various reasoning types and use these experiences
to diversify their thinking in reasoning type selection and following.

3 TYPEDTHINKER: DIVERSIFY THINKING WITH TYPED REASONING

In this paper, we focus on four logical reasoning types: deductive, inductive, abductive, and analogical
reasoning defined in (Nunes, 2012). For each reasoning type, we provide a short definition and a
simple example to demonstrate the inference rules, which are listed in Table 8 in the Appendix. Based
on that, we introduce a reasoning framework TypedThinker to diversify LLMs’ thinking with
different reasoning types. As shown in Figure 2, there are three components in TypedThinker:
the meta-thinker to select reasoning type, the finetuned reasoner to conduct specific reasoning, and
explicit collection of demonstration to retrieve experience. TypedThinker optimizes the implicit
policy of the meta-thinker and reasoner and updates the explicit collection of demonstration based on
self-training.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 TYPED REASONING WITH IMPLICIT POLICY AND EXPLICIT DEMONSTRATION

Let D = {(x1, y1), · · · , (xN , yN)} be a set of N problems, where xi and yi is the problem and the
ground-truth answer of the i−th instance. We define a reasoning type space F that includes an empty
type and four types of reasoning: deductive, inductive, abductive, and analogical. The goal is to
model the selection and implementation of various reasoning types as implicit and explicit collection
of demonstration, thus enhancing LLMs’ performance in reasoning tasks.

Meta-thinker for the reasoning type identification. Given a problem x, the goal of the meta-thinker
is to select an appropriate set of reasoning types to solve the problem. Specifically, it predicts
an effectiveness score sk ∈ [0, 1] for each reasoning type fk ∈ F , which can be represented as
sx,k = πθ(x, fk). sx,k = 0 indicates that the problem x can hardly be solved by the reasoning
type fk with a limited sampling times 2. Note that the effectiveness scores of different types are
independent of each other and their sums are not necessary to be 1. The most effective reasoning type
is defined as f∗(x) = argmaxfk∈F sx,k. Meanwhile, we can obtain a set of reasoning types with a
non-zero effective ratio, which we call the effective set: F (x) = {fk|sx,k > 0}. We initialize πθ

with the pre-trained LLM and later fine-tune the parameters θ during the self-training. The prompt is
listed in Appendix A.1.

Explicit collection of demonstration TypedThinker collects a set of demonstration M =⋃
fk∈F Mk for each type of reasoning during training, and retrieves the most relevant ones dur-

ing inference. For each problem in the training set, we keep one correct solution per reasoning type if
applicable, resulting in a set of at most |D|×|F| solutions. If multiple solutions exist for one problem,
we keep the longest to get a more detailed context. The entry in the collection of demonstration Mk

is represented as a tuple of (xk
r , sol

k
r). Here solkr is the concrete reasoning process of the reasoning

type fk, including the predicted answer. During inference stage, given a new problem x and its
reasoning type fk, it retrieves a set of relevant experience dkx = {(xk

r , sol
k
r) ∈ Mk|L(xk

r ,x) < δ}.
L is the distance function measuring relevancy between two problems and δ ∈ [0, 1] is the relevancy
threshold. We use the cosine similarity between the semantic embeddings as the distance function.
The retrieved experiences are used as the few-shot examples of the reasoner.

Reasoner to perform the reasoning according to the type. The reasoner applies the reasoning type
fk to the problem x and provides a detailed reasoning path for its predicted answer ŷ. The reasoner
is based on LLM to conduct reasoning and the instruction is composed of (x, fk, dk), where the dk

is the retrieved relevant successful experience. The reasoner can be further optimized via instruction
tuning to enhance the capability of conducting a specific type of reasoning.

To conclude, TypedThinker collects demonstrations of each reasoning type from the training
set. During inference, TypedThinker uses the meta-thinker πθ to predict an effective score sk
for each reasoning type. It then retrieves the most relevant reasoning demonstration dk from the
fixed explicit collection corresponding to the reasoning type fk. Finally, the corresponding reasoners
conduct the specific type of reasoning fk with the help of demonstration. There are two approaches
to aggregating multiple solutions of different reasoning types. One is to greedily resample several
times based on the most effective reasoning type f∗ and use self-consistency (Wang et al., 2022) to
enhance the answer. The other is to sample solutions for all effective reasoning types F , and apply a
weighted vote with the effective score as the coefficient. By default, we use the greedy approach for
TypedThinker, and we discuss the weighted vote in Section 4.4.

3.2 OPTIMIZE IMPLICIT POLICY FOR REASONING TYPE SELECTION AND FOLLOWING

We use a self-training framework to optimize the meta-thinker πθ and the reasoner while updating the
explicit collection of demonstration with the collected experience. The pipeline is demonstrated in
Figure 3. The green lines represent the parametric optimization process, while the blue line represents
the non-parameter update.

Diversify Reasoning Experiences with Types To inspire LLMs’ knowledge of solving problems
with different reasoning types, the definition (Table 8) and manually-written few-shot examples with
detailed reasoning paths (Table 16) are used for prompting solutions for each reasoning type. For
each problem in the training set, we use a temperature of 1 to sample 10 solutions per reasoning

2In this paper, we sample at most 10 times for one problem.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

type. These solutions are then filtered by the correctness of the final answers. To guarantee that these
solutions belong to their reasoning type, we apply a reverse check on the remaining solutions. For the
experience (x, sol, y) of the reasoning type fk, we prompt the model to predict its reasoning type
f̂k. If fk = f̂k, we think this experience indicates the methodology of this reasoning type and keep
it. Otherwise, it will be removed. Finally, we get an experience dataset D with multiple reasoning
types. The experiences are grouped by their reasoning type and are stored in the explicit collection of
demonstration M .

Optimize the Implicit policy of Meta-thinker and Reasoner Given a problem x, the meta-thinker
πθ predicts a score sx,k to indicate how likely this reasoning type can solve this problem. This can be
estimated by the experience in the training set. We assume that if one reasoning type is more effective
in solving this problem, it will generate more correct solutions among the same sampling times.
Therefore, given there are nk successful experiences of the reasoning type fk among m samples,
we define the empirical effectiveness score based on its success rate: sx,k = nk/m. This empirical
effectiveness score calculated on the experience dataset D is then used for finetuning the meta-thinker.
We reconstruct the tuple (x, fk, sx,k) into the instruction-following pair via the prompt in Section
A.1 for supervised finetuning. Meanwhile, we finetune a reasoner with the experience to enhance its
capability to conduct a specific type of reasoning.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We investigate two open-source LLMs Mistral 7B instruct (Jiang et al., 2023) and LLaMA3 8B
instruct (Touvron et al., 2023) on two logical benchmarks (LogiQA, BBH) and two mathematics
benchmarks (GSM8K and MATH). For each LLM, we set up the following baselines: (i) Few-shot
baseline with 3 in-context examples. We use the few-shot examples provided in Suzgun et al. (2022)
for BBH, and text-based few-shot examples in Toshniwal et al. (2024) for GSM8k and MATH since
we do not consider the code interpreter in this paper. We also manually write few-shot examples for
LogiQA, (ii) CoT Selection: Select the best reasoning type by prompting. We let the LLM identify
the best reasoning type and then apply the selected type to the problem. (iii) Self-Discover (Zhou
et al., 2024) generates a task-level reasoning structure by prompting LLMs to select relevant modules
from a list of seed modules and adapt the selected module to task-specific descriptions. We follow
their official implementation 3 and use the backbone LLMs to generate one reasoning structure from
an exemplar training instance of each task. This reasoning structure is then applied to all instances in
this task. (iv) Zero-shot Mixture of Reasoning (MoR): apply all possible reasoning types and use the
majority vote to get the final answer 4. The LLM is instructed with the definition and demonstration in
Table 8. (v) Few-shot MoR: Similar to the zero-shot MoR except for each reasoning type, 3 few-shot
examples are provided in the prompt. (vi) TypedThinker: use the most effective reasoning type
f∗. The +SC baselines indicate the majority vote over 5 responses.

The temperature is set to 0.7 for all baselines as suggested by Wang et al. (2022). The maximum
output length is set to 1000 tokens. We use SentenceTransformer5(Reimers and Gurevych, 2019)
to retrieve top-3 similar experiences and the threshold is set to δ = 0.5. We use accuracy as the
measurement of task performance. The model response is compared with the ground truth based on
the exact match for logic problems. The script in Toshniwal et al. (2024) calculates the mathematical
equivalent of mathematics benchmarks. The training details are put in Appendix A.3.

4.2 HOW DO REASONING TYPES ENCOURAGE DIVERGENT THINKING DURING GENERATION?

We first investigate the role of reasoning types in LLMs’ self-training. We group problems of the
collected experience dataset D based on their empirical effective set F (x) = {fk|sx,k > 0}, and the
empirical effectiveness score is defined in Section 3.2. The problems in the same group can be solved
with the same set of reasoning types. We focus on the effective set with only one reasoning type and
count the size of these groups. The size indicates how many problems that can only be solved by one

3https://github.com/kailashsp/SELF-DISCOVER
4For answers with the same votes, we choose the first one in alphabetical order.
5https://www.sbert.net/

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

specific reasoning type, showing the advantage of including this reasoning type. We illustrate their
percentage on the whole dataset in Figure 1. We find that even if we use temperature = 1 to sample
10 times to diversify the solutions, a lot of problems still have only one effective reasoning type. It
indicates that given an inappropriate reasoning type, the diversity brought by repeated sampling with
a high temperature cannot help the LLM solve this problem.

Meanwhile, although these reasoning types have similar performance on the whole dataset (shown
in Table 6 in Appendix), the problems they can solve do not completely overlap. None of the
percentages of the reasoning type is zero, indicating that for each reasoning type, there is a unique set
of problems that can only solved by it. It indicates that these reasoning types have their advantages
over different problems, highlighting the importance of considering the appropriate reasoning types
during problem-solving.

We further compare the diversity of the solutions before and after adding the reasoning types in Table
10 of Appendix A.4. We can find that introducing different reasoning types can bring more diversity
to the solution set than repeated sampling with a high temperature.

Table 1: TypedThinker achieves the best performance in both single response and the majority vote setting
on two logical benchmarks and two math benchmarks. @5 indicates the result is based on the majority vote
over 5 responses. +SC indicates the self-consistency method. MoR indicates the Mixture of Reasoning, which
employs all reasoning types (including an empty type) and votes for the final output. Avg. indicates the average
accuracy over four benchmarks.

Mistral 7B LLaMA3 8B

LogiQA BBH GSM8K MATH Avg. LogiQA BBH GSM8K MATH Avg.

Few-shot 0.485 0.346 0.369 0.074 0.318 0.566 0.318 0.472 0.105 0.365
+ SC @5 0.532 0.441 0.444 0.136 0.388 0.573 0.364 0.457 0.134 0.382

CoT Selection 0.474 0.361 0.372 0.095 0.325 0.552 0.370 0.353 0.094 0.342
+ SC @5 0.503 0.429 0.466 0.132 0.382 0.583 0.424 0.460 0.134 0.400

Self-Discover 0.386 0.340 0.141 0.056 0.231 0.493 0.425 0.587 0.200 0.426
+ SC @ 5 0.476 0.391 0.208 0.082 0.289 0.540 0.543 0.701 0.278 0.515

Zero-shot MoR @5 0.528 0.414 0.313 0.108 0.341 0.558 0.448 0.261 0.075 0.335
Few-shot MoR @5 0.509 0.456 0.460 0.127 0.388 0.568 0.428 0.470 0.133 0.400

TypedThinker 0.554 0.423 0.386 0.092 0.364 0.550 0.533 0.535 0.193 0.453
+ SC @5 0.570 0.469 0.500 0.149 0.422 0.620 0.591 0.723 0.263 0.549

4.3 WHAT KINDS OF BENEFITS CAN TYPEDTHINKER BRING?

As we can see in Table 1, our TypedThinker achieves the best performance among baselines. The
improvement is more obvious in LLaMA3 8B, which is more powerful than Mistral 7B. It shows
that LLMs with a better capability in reasoning and instruction-following can benefit more from
the self-training of TypedThinker. Additionally, there are several key insights from the detailed
comparison with different baselines.

Appropriate reasoning types improve the reasoning performance. The main difference between
Fewshot and CoT Selection without the majority vote is the reasoning type selection. For CoT
Selection, the model is first prompted to predict a reasoning type and then apply it, while the
Fewshot baseline directly solves the problem. However, we find that the CoT Selection struggles
with the reasoning type selection. Given the option to choose from four reasoning types or none,
it chooses none over 60% of the time. The rest of the time, it selects more than 50% deductive,
while only 34% of them can be effectively solved by deductive reasoning during the sampling.
The mismatch in reasoning types results in poor performance. Facilitating with a trained meta-
thinker, TypedThinker is more accurate in selecting the reasoning type, which helps it improve
performance under the single response setting. Self-Discover, which uses a shared reasoning structure
for all instances of the task, performs poorly, especially for the weaker model Mistral 7B. This may be
due to the difficulty these models face in identifying a reusable shared high-level reasoning structure
for diverse instances, especially in datasets like LogiQA, where reasoning structures are highly varied.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Precise prediction is more effective than an inappropriate mixture. The zero-shot MoR and
few-shot MoR apply all types of reasoning to the given problem and use a majority vote to get the
final answer. Compared with the other two majority vote baselines Few-shot + SC @5 and CoT
Selection + SC @5, these methods fall behind on several benchmarks, especially on MATH. We find
that the performance drop typically happens when there are only one or two reasoning types that
are effective for this problem. In such cases, the majority of incorrect answers dominate, resulting
in fewer votes for the correct one. As we can see in Figure 1, plenty of problems on the MATH
benchmark can only be solved by inductive reasoning. In such cases, if the CoT Selection correctly
predicts the inductive reasoning for them, the CoT Selection + SC @5 can benefit from the majority
vote and have a better performance. This highlights the importance of predicting the effectiveness of
reasoning types before aggregating them.

Experience of how to conduct a specific type of reasoning is important. The performance
difference between zero-shot and few-shot MoR illustrates the impact of the reasoning demonstration.
When prompted solely with the definition, LLMs struggle to understand how to apply the reasoning
type to specific problems. It can be improved by human-written few-shot examples in few-shot
MoR. However, it still falls behind the non-parametric retrieval and the parametric reasoner in
TypedThinker, both of which enhance the capability of conducting a specific reasoning type.
Additionally, poor performance in Self-Discover also indicates that, without demonstration, the
complex reasoning structures will introduce excessive complexity, confusing the models.

Table 2: Ablation Study on the Mistral 7B based TypedThinker’s components. We remove one component
each time. The results are based on the best reasoning type and calculated for the single response per query. The
negative scores indicate the performance drop, and the largest scores are shown in bold.

LogiQA BBH GSM8K MATH

TypedThinker 0.554 0.423 0.386 0.092
w/o Finetuned Reasoner -0.076 -0.041 -0.102 -0.018
w/o Meta-thinker -0.025 -0.036 -0.152 -0.024
w/o Memory -0.082 -0.051 -0.033 0.013

4.4 WHAT CONTRIBUTES TO TYPEDTHINKER’S EFFECTIVENESS?

We conduct several investigations to enhance the understanding of our proposed method.

Ablation study The ablation studies are conducted on three key components in TypedThinker.
Each time one component is removed. It includes (i) w/o Fine-tuned Reasoner: it is replaced with
the base LLM (ii) w/o Meta-thinker: it is replaced with a CoT selection (iii) w/o collection of
demonstration: the explicit collection is replaced with the human-written few-shot examples of each
reasoning type. In Table 2, we can find the meta-thinker is the most important module for the math
benchmarks, while the explicit collection is more effective on two logical benchmarks. The fine-
tuned reasoner also contributes a lot to the performance improvement. We also observe that explicit
collection does not always bring benefits: the performance on MATH even increases when we remove
it. We find that the retrieved examples usually have a similar context but different numbers. The math
calculation in the retrieved chain-of-thoughts solutions will mislead the reasoner. This is consistent
with the observations of Toshniwal et al. (2024) that the solutions with masked computations are
more beneficial to the math problems. For logical problems, there are fewer calculations and the
retrieved solutions focus more on the reasoning process.

Meta-thinker’s predictions achieve a high correlation with the empirical effectiveness score. We
evaluate the performance of the meta-thinker by the correlation between the predicted effectiveness
score and the empirical one (which we view as the ground truth). We split the collected experience
dataset D by problems and use 0.9 of them to train the meta-thinker and 0.1 for testing. We use
Kendall’s τ coefficient to evaluate the correlation. It measures rank correlation, essentially assessing
the similarity of orderings when data is ranked. A higher Kendall’s τ coefficient indicates that when
the ground truth assigns a high effectiveness score to a reasoning type, the meta-thinker also ranks it
high, thereby validating the reliability of the predicted scores. We compare the performance under
three settings: the meta-thinker trained only on the logical domain, only in the math domain, and
jointly trained on the unified domains (including both logic and math data). The meta-thinker trained

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Deductive Inductive Analogical Abductive

Ke
nd

al
l's

 ta
u

co
ef

fic
ie

nt

Logic Domain Math Domain Unified Domains

Figure 4: Kendall’s τ coefficient between the predic-
tion confidence score with the ground truth. All results
have the p-value < 0.05. The unified policy shows
the best correlation on all reasoning types.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

LogiQA BBH GSM8K MATH

Ac
cu

ra
cy

Logic Domain Math Domain Unified Domains

Figure 5: Task performance of TypedThinkerwith
meta-thinkers trained on different domains. The uni-
fied one performs best in most cases except the MATH
benchmark, where the pure math setting dominates.

on the unified domain achieves the highest correlation. This suggests that training on a dataset
with multiple domains enhances the meta-thinker’s ability to accurately rank and predict suitable
reasoning types, thereby improving its overall performance. We also calculate the accuracy between
the predicted optimal reasoning type and the empirical one for the unified setting. The average
accuracy on four benchmarks is 68.3% (LogiQA 75.4%, BBH 75.6%, GSM8k 72.1%, and MATH
47.7%). Note that the meta-thinker can predict an incorrect optimal reasoning type fk while still
generating a correct solution. It is because the predicted reasoning type can belong to the effective set
F = {fk|sx,k > 0}, indicating the reasoning type can also help solve the problem.

Unified meta-thinkers perform well in most cases. We further investigate the effectiveness of
these policies by facilitating TypedThinker with these meta-thinkers. The results are based on the
Mistral 7B TypedThinker without SC. The results in Figure 5 show that the unified meta-thinker
has the best performance in most cases. However, in the more difficult MATH dataset, the specific
meta-thinker trained in the math domain can help it be more powerful. To conclude, the unified
meta-thinker has reasonable performance in all its domains, while for difficult problems it may
slightly underperform the specific meta-thinker trained in this domain.

Table 3: TypedThinker’s performance with the most ef-
fective reasoning type f∗ v.s. weighted votes on the effective
set F .

LogicQA BBH GSM8K Math Average

Mistral 7B

SC @5 on f∗ 0.570 0.469 0.500 0.149 0.422
weighted on F 0.581 0.453 0.501 0.127 0.416

LLaMA3 8B

SC @5 on f∗ 0.620 0.591 0.723 0.263 0.549
weighted on F 0.609 0.579 0.703 0.234 0.531

Table 4: TypedThinker performs best on
the unseen benchmark Contexthub. Here the
results are based on the majority vote over 5
responses (+SC @5).

Mistral 7B LLaMA3 8B

Few-shot 0.419 0.378
CoT Selection 0.415 0.369
Zero-shot MoR 0.415 0.357
Few-shot MoR 0.432 0.398

TypedThinker 0.452 0.403

Optimal reasoning type v.s. weighted vote on the effective set In the main experiment, we use the
optimal reasoning type f∗ which has the highest effectiveness score for reasoning. As discussed in
Section 3.1, we can also use a majority vote on the effective set F with the effectiveness score as
the coefficient. Specifically, if one solution is based on a reasoning type with a higher effectiveness
score, its vote gets a larger weight. The results are shown in Figure 3. We can see that the weighted
vote can balance different reasoning types on LogiQA and GSM8k for the Mistral-7B-based model.
However, on the other two benchmarks, the TypedThinker + SC @5 has a better performance.
It indicates that accurate selection is more important if one or two reasoning types dominate the
benchmark. For example, as we have shown in Figure 1, there are a lot of problems that can only
be solved by inductive reasoning, indicating the other types will mislead the final answer. In such
cases, the self-consistency of inductive reasoning is more powerful than the weighted vote. However,
when we have a more accurate meta-thinker that can identify the correct reasoning type and a more

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

powerful reasoner that can follow the specific reasoning type, for example, models initialized by
LLaMA3, the advantage of TypedThinker + SC is more obvious.

4.5 CAN TYPEDTHINKER BE APPLIED TO NEW DOMAINS OR NEW LLMS WITHOUT
FINETUNING?

It is essential to evaluate the generalization capability of TypedThinker. We assess it from two
aspects: (i) TypedThinker’s performance on new domains; and (ii) other LLMs’ performance
after facilitated with our finetuned meta-thinker and the explicit collection of demonstration.

TypedThinker generalizes well to the unseen domain. We use a new propositional logic
benchmark Contexthub (Hua et al., 2024) for evaluation. It is a recently released dataset, which has
never been seen by Mistral and LLaMA3 models during the pre-training. It contains problems from
12 categories with 4 levels of difficulty. We select the difficulty of level 4 to test the complex logic
reasoning capabilities. We use the experiences collected from LogiQA as the explicit collection of
demonstration. The meta-thinker and the reasoner are fine-tuned on four training benchmarks. The
results in Table 4 show that TypedThinker outperforms other baselines on this unseen domain
as well, indicating that it can generalize well to new domains. One interesting thing is Mistral 7B
baselines significantly outperform LLaMA3 8B on this benchmark and its superior capabilities make
it benefit more from our TypedThinker.

Facilitating LLMs with TypedThinker makes them more powerful. Our TypedThinker
framework is orthogonal to the backbone LLMs and can be adapted to new LLMs. There are two
ways to use a new LLM in the TypedThinker framework: one is to conduct the self-training
process, like the two LLMs used in our main experiments (Mistral 7B and LLaMA3 8B); the
other is to use our fine-tuned meta-thinker for reasoning type selection and the explicit collection
of demonstration for retrieval while using the new LLM as the reasoner without finetuning. The
first way can make the LLM more powerful (as shown in the performance comparison between
TypedThinker and TypedThinker w/o Finetuned Reasoner in Table 2), but the latter one is
more flexible. Here we use the second way to evaluate the direct transferability to new LLMs. We
choose one of the most powerful LLMs GPT-4o and one math-specific 7B model MetaMath (Yu
et al., 2023). MetaMath is a Mistral-7B-based model trained with more than 400k synthesized math
data distilled from GPT-3.5-Turbo. We randomly sample 100 examples from each benchmark for
GPT-4o. For MetaMath, we use the whole test set. The results are shown in Table 5 and Table 6.
Compared with Mistral 7B in Table 1, the high-quality and large scale of synthesized data from
GPT-3.5-Turbo enhances MetaMath’s capabilities in math problems. TypedThinker can further
improve its performance by reasoning type selection and explicit collection. Meanwhile, although
the superior performance of GPT-4o on two math datasets leaves little space for improvement, the
results on logic benchmarks (LogiQA and BBH) demonstrate that the meta-thinker trained with the
small 7B model also enhances its performance. These findings confirm that our approach is not only
effective in improving smaller LLMs but also transferable to larger models, further validating the
generalization capability of TypedThinker.

Table 5: GPT-4o’s performance is improved with our meta-
reasoner. We use the finetuned Mistral 7B meta-thinker to predict
the reasoning type.

LogiQA BBH GSM8k MATH

GPT-4o 0.76 0.84 0.97 0.89
+ SC @ 5 0.80 0.85 0.98 0.90

TypedThinker 0.80 0.86 0.95 0.88
+ SC @5 0.81 0.90 0.96 0.91

Table 6: TypedThinker can also en-
hance the performance of the math-specific
7B model such as MetaMath.

GSM8k MATH

MetaMath 0.690 0.209
+ SC @ 5 0.704 0.220

TypedThinker 0.696 0.220
+ SC @ 5 0.736 0.246

4.6 CASE STUDY

Here is one example of TypedThinker on the LogiQA benchmark in Table 7. This problem
states a phenomenon that a higher altitude leads to a lower atmospheric pressure. Based on this
observation, it is easy for humans to use inductive reasoning and get a general conclusion about the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

inverse cause-and-effect relationship. It is also natural for humans to use analogical reasoning and
find the most similar options. The meta-thinker gives the highest effectiveness score for inductive
reasoning, which is then chosen as the optimal reasoning type f∗ = inductive. Effectiveness scores
are all larger than 0, so the effective set is all reasoning types. The reasoner gets the correct answer
for deductive and inductive reasoning while doing wrong on the other reasoning types. If we use
the majority vote over five answers, (A) and (C) will have the same votes, indicating that there is a
50% chance to be correct 6. However, with the effectiveness score predicted by the meta-thinker,
TypedThinker can get the correct answer either by applying the optimal reasoning type or using
the weighted vote on the four answers. Besides, without a specific reasoning type (which is ‘Empty’),
the model cannot arrive at the correct answer. This shows the limitation of the common few-shot
baselines. It shows that TypedThinker improves the reasoning performance by the introduction
of diverse reasoning types and the capability of selecting the appropriate type to apply.

Table 7: One example from LogiQA. The correct answer and the reasoning type with the highest effectiveness
score are underlined. MoR is the few-shot MoR baselines, which use the majority votes among reasoning types.

Problem The higher the altitude, the smaller the atmospheric pressure. Because the
altitude of Place A is higher than that of Place B, the atmospheric pressure of
Place A is lower than that of Place B. Which of the following examples shows
the same pattern of reasoning?
(A) In a highly competitive market, the better the product quality and the more
advertising investment, the greater the product sales. Company A invests more
money in advertising than Company B. So Company A sells more products than
Company B.
(B) The older a person is, the more mature he becomes. Person A is older than his
son, so Person B is more mature than his son.
(C) The older a tree is, the more rings it has. The age of the locust tree in A’s yard is
older than that of B’s family, so the locust tree of A’s family has more rings than B’s.
(D) The greater the vocabulary of a language, the more difficult it is to learn. English
is harder to learn than Italian, so English has a larger vocabulary than Italian.

Ground Truth (C)

Predicted scores Deductive: 0.4; Inductive: 0.5; Analogical: 0.4; Abductive: 0.4; Empty: 0.4
and their answers Deductive: (C); Inductive: (C); Analogical:(A); Abductive: NULL; Empty: (A)

Model Output MoR: (A); TypedThinker with f∗ (C); TypedThinker with F : (C)

5 CONCLUSION AND LIMITATION

We investigate how reasoning types diversify LLMs’ thinking and propose TypedThinker to
incorporate different reasoning types into problem-solving. TypedThinker is inspired by human
cognition processes during reasoning: it learns an implicit policy to select the appropriate reasoning
types with the meta-thinker and to conduct the selected type of reasoning with the reasoner. It also
maintains an explicit memory to retrieve experiences to aid reasoning. TypedThinker optimizes
its implicit policy and the explicit memory with its own successful experiences during the self-training
process. The results show that TypedThinker enhances the reasoning capabilities of Mistral 7B
and LLaMA3 8B on four benchmarks. Furthermore, TypedThinker shows good generalization
capabilities in new domains and models. It can also improve GPT-4o’s performance by the effective
reasoning type selection.

Despite the promising results, TypedThinker has several limitations that need further investigation.
Firstly, one problem may require different reasoning types at different steps, and applying one sole
reasoning type can hardly find a correct solution. In that case, dividing the problems into multiple
reasoning steps, and applying TypedThinker for each step could make the reasoning more diverse
and effective. Additionally, this paper mainly focuses on logical and mathematical benchmarks.
Expanding to a broader range of tasks, such as commonsense reasoning or creative problem-solving,
could deepen the understanding of the role of reasoning types in various problems and provide a
more comprehensive assessment of TypedThinker’s capabilities.

6In our implementation, answers with the same votes are ranked based on their alphabetical order, so (A)
will be chosen in this case.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang Li, Sheila Babayan, Kavya Kopparapu,
Zachary Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srinivasan, et al. Rest meets react: Self-
improvement for multi-step reasoning llm agent. In ICLR 2024 Workshop on Large Language
Model (LLM) Agents.

Afra Feyza Akyürek, Ekin Akyürek, Ashwin Kalyan, Peter Clark, Derry Wijaya, and Niket Tandon.
2023. Rl4f: Generating natural language feedback with reinforcement learning for repairing
model outputs. In Annual Meeting of the Association of Computational Linguistics 2023, pages
7716–7733. Association for Computational Linguistics (ACL).

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. 2023. Qwen technical report. arXiv preprint arXiv:2309.16609.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. 2022. Constitutional ai:
Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multitask, multilingual, multimodal evaluation
of chatgpt on reasoning, hallucination, and interactivity. In Proceedings of the 13th International
Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages 675–718.

Paul Bartha. 2013. Analogy and analogical reasoning.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. 2024. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 17682–17690.

Hugo Bronkhorst, Gerrit Roorda, Cor J. M. Suhre, and Martin J. Goedhart. 2020. Logical reasoning in
formal and everyday reasoning tasks. International Journal of Science and Mathematics Education,
18:1673–1694.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. 2024. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeffrey Wu. 2024.
Weak-to-strong generalization: Eliciting strong capabilities with weak supervision. In Forty-first
International Conference on Machine Learning.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. 2021. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168.

Craig DeLancey. 2017. A concise introduction to logic. Open SUNY Textbooks.

John Dougrez-Lewis, Mahmud Elahi Akhter, Yulan He, and Maria Liakata. 2024. Assessing the
reasoning abilities of chatgpt in the context of claim verification. arXiv preprint arXiv:2402.10735.

Igor Douven. 2011. Abduction.

Bradley H Dowden. 2018. Logical reasoning.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. 2023. Im-
proving factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325.

Peter A Flach and Antonis C Kakas. 2000. Abductive and inductive reasoning: background and
issues. Abduction and induction: Essays on their relation and integration, pages 1–27.

11

https://api.semanticscholar.org/CorpusID:210054824
https://api.semanticscholar.org/CorpusID:210054824
https://openreview.net/forum?id=ghNRg2mEgN

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. 2023. Complexity-based
prompting for multi-step reasoning. In The Eleventh International Conference on Learning
Representations.

Çaglar Gülçehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. 2023. Reinforced
self-training (rest) for language modeling. CoRR.

Diane F Halpern. 2014. Critical thinking across the curriculum: A brief edition of thought &
knowledge. Routledge.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with world model. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 8154–8173, Singapore.
Association for Computational Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. 2021. Measuring mathematical problem solving with the math dataset.
NeurIPS.

Wenyue Hua, Kaijie Zhu, Lingyao Li, Lizhou Fan, Shuhang Lin, Mingyu Jin, Haochen Xue, Zelong
Li, JinDong Wang, and Yongfeng Zhang. 2024. Disentangling logic: The role of context in large
language model reasoning capabilities. arXiv preprint arXiv:2406.02787.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
2023. Large language models can self-improve. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 1051–1068, Singapore. Association
for Computational Linguistics.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
2023. Mistral 7b. arXiv preprint arXiv:2310.06825.

Phil Johnson-Laird. 2010. Deductive reasoning. Wiley Interdisciplinary Reviews: Cognitive Science,
1(1):8–17.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. 2024. Training language models to self-correct
via reinforcement learning. arXiv preprint arXiv:2409.12917.

Rémi Leblond et al. 2023. Alphacode 2 technical report. Technical report, DeepMind.

V Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. Pro-
ceedings of the Soviet physics doklady.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng
Tu, and Shuming Shi. 2023. Encouraging divergent thinking in large language models through
multi-agent debate. arXiv preprint arXiv:2305.19118.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations.

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan Duan, Ming Zhou, and Yue Zhang.
2023a. Logiqa 2.0—an improved dataset for logical reasoning in natural language understanding.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31:2947–2962.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. 2023b. Making ppo even better: Value-guided monte-carlo tree search decoding.
arXiv preprint arXiv:2309.15028.

12

https://openreview.net/forum?id=yf1icZHC-l9
https://openreview.net/forum?id=yf1icZHC-l9
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf
https://doi.org/10.1109/TASLP.2023.3293046

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. 2021. Logiqa: a
challenge dataset for machine reading comprehension with logical reasoning. In Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI’20.

Man Luo, Shrinidhi Kumbhar, Mihir Parmar, Neeraj Varshney, Pratyay Banerjee, Somak Aditya,
Chitta Baral, et al. 2023. Towards logiglue: A brief survey and a benchmark for analyzing logical
reasoning capabilities of language models. arXiv preprint arXiv:2310.00836.

Terezinha Nunes. 2012. Logical Reasoning and Learning, pages 2066–2069. Springer US, Boston,
MA.

OpenAI. 2023. Gpt-4 technical report.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Li-
den, Zhou Yu, Weizhu Chen, et al. 2023. Check your facts and try again: Improving large language
models with external knowledge and automated feedback. arXiv preprint arXiv:2302.12813.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deepspeed: System op-
timizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’20, page 3505–3506, New York, NY, USA. Association for Computing Machinery.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.

Yunfan Shao, Linyang Li, Yichuan Ma, Peiji Li, Demin Song, Qinyuan Cheng, Shimin Li, Xiaonan
Li, Pengyu Wang, Qipeng Guo, Hang Yan, Xipeng Qiu, Xuanjing Huang, and Dahua Lin. 2024.
Case2code: Learning inductive reasoning with synthetic data.

Noah Shinn, Beck Labash, and Ashwin Gopinath. 2023. Reflexion: an autonomous agent with
dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. 2022. Beyond
the imitation game: Quantifying and extrapolating the capabilities of language models. arXiv
preprint arXiv:2206.04615.

Mirac Suzgun and Adam Tauman Kalai. 2024. Meta-prompting: Enhancing language models with
task-agnostic scaffolding.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, and Jason Wei. 2022. Challenging
big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
2024. Openmathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint
arXiv:2402.10176.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971.

Danqing Wang and Lei Li. 2023. Learn from mistakes through cooperative interaction with study
assistant. The 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)
2023.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman. 2023a.
Hypothesis search: Inductive reasoning with language models. In The Twelfth International
Conference on Learning Representations.

13

https://doi.org/10.1007/978-1-4419-1428-6_790
http://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.48550/arXiv.2407.12504
http://arxiv.org/abs/2401.12954
http://arxiv.org/abs/2401.12954

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. 2022. Self-consistency improves chain of thought reasoning in
language models. In The Eleventh International Conference on Learning Representations.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. 2023b. Self-instruct: Aligning language models with self-generated
instructions. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13484–13508, Toronto, Canada. Association for
Computational Linguistics.

Peter Cathcart Wason and Philip Nicholas Johnson-Laird. 1972. Psychology of reasoning: Structure
and content, volume 86. Harvard University Press.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny
Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. 2024. Livebench: A challenging,
contamination-free llm benchmark. arXiv preprint arXiv:2406.19314.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik Cambria, Xiaodong Liu, Jianfeng Gao, Furu
Wei, Yvette Graham, and Matthew Purver. 2024. Language models as inductive reasoners. In
Proceedings of the 18th Conference of the European Chapter of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 209–225, St. Julian’s, Malta. Association for
Computational Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of Thoughts: Deliberate problem solving with large language models.

Junchi Yu, Ran He, and Zhitao Ying. 2024. THOUGHT PROPAGATION: AN ANALOGICAL
APPROACH TO COMPLEX REASONING WITH LARGE LANGUAGE MODELS. In The
Twelfth International Conference on Learning Representations.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2023. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. 2024. Self-rewarding language models. arXiv preprint arXiv:2401.10020.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. 2024. Progressive-hint
prompting improves reasoning in large language models. In AI for Math Workshop @ ICML 2024.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, Denny
Zhou, Swaroop Mishra, and Huaixiu Steven Zheng. 2024. Self-discover: Large language models
self-compose reasoning structures.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. 2024. Dyval:
Dynamic evaluation of large language models for reasoning tasks. In The Twelfth International
Conference on Learning Representations.

14

https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
http://arxiv.org/abs/2305.10601
https://openreview.net/forum?id=SBoRhRCzM3
https://openreview.net/forum?id=SBoRhRCzM3
https://openreview.net/forum?id=UkFEs3ciz8
https://openreview.net/forum?id=UkFEs3ciz8
https://doi.org/10.48550/arXiv.2402.03620
https://doi.org/10.48550/arXiv.2402.03620
https://openreview.net/forum?id=gjfOL9z5Xr
https://openreview.net/forum?id=gjfOL9z5Xr

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROMPT

We introduce the simple and practical definition of four reasoning types in Table 8. Table 16 lists
the few-shot examples of each reasoning type. The full few-shot examples can be found in the
supplementary materials. We use the same few-shot examples for the logical problems and create
another set of examples for the mathematics problems.

Table 8: Description of different reasoning types. We give informal definitions that are easy to follow and
illustrate simple examples for each reasoning type.

Type Definition Example

Deduction Deduce conclusion based on the gen-
eral rules and premise.

From the premises ‘all frogs are amphibians‘ and
‘no cats are amphibians’, we can infer the conclu-
sion ‘no cats are frogs’

Induction Make broad generalizations from spe-
cific observations.

Starting from the empirical observation that ‘all
ravens I have seen so far are black’, inductive rea-
soning can be used to infer that ‘all ravens are
black’

Abduction Assume one candidate is correct and
check whether it meets the condition in
the problem.

Guess that it has rained to explain that the streets
are wet. A tsunami could also explain why the
streets are wet but this is usually not the best ex-
planation.

Analogy Retrieve several relevant information
and draw the conclusion of this problem
based on the similarity.

Infer information about humans from medical ex-
periments on animals: (1) rats are similar to hu-
mans; (2) birth control pills affect the brain devel-
opment of rats; (3) therefore they may also affect
the brain development of humans.

The prompt used by the meta-thinker is:

Given the question below, please identify the type of reasoning required to provide
a solution. You may choose the following reasoning types: Deductive, Inductive,
Analogical, Abductive Reasoning, or None. None indicates that no specific reason-
ing type is needed for this problem. Please assign an effectiveness score for each
reasoning type from 0 to 1, where 0 represents no effective and 1 represents full
effective. Please return the reasoning types and their corresponding effectiveness
scores in the JSON format.
For instance, if you think the question can be solved using both deductive and
inductive reasoning, with an effectiveness of 0.5 for deductive reasoning and 0.3
for inductive reasoning, you should return: [{"ReasoningType": "Deductive",
"Effectiveness": 0.5},{"ReasoningType": "Inductive", "Effectiveness": 0.3},{"Rea-
soningType": "Analogical", "Effectiveness": 0},{"ReasoningType": "Abductive",
"Effectiveness": 0}, {"ReasoningType": "None", "Effectiveness": 0}].

The prompt used by the reasoner is listed below. The definition is based on Table 8.

Use [fk] reasoning to solve the given question. [fk] reasoning is [definition].

A.2 DATASET

A.2.1 DATA PROCESSING

The dataset statistics of the four benchmarks are detailed in Table 9. For multiple-choice questions,
we calculate accuracy using the exact match criterion. For mathematics problems, we compare the
model’s response with the ground truth using mathematical equality.

LogiQA (Liu et al., 2021; 2023a) is a multi-choice understanding benchmark for logical reasoning. It
follows the definition of DeLancey (2017) and categorizes the problems into categorical reasoning,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 9: Logical benchmarks and mathematic benchmarks we used in this paper. We follow the standard train/test
split on LogiQA and follow the split in Toshniwal et al. (2024) for GSM8k and MATH. For BBH, we randomly
split the dataset. The synthesized data is described in Section 3.1. BBH includes 16 tasks while MATH includes
math problems of 7 categories. Policy indicates the data used to train the meta-reasoner and SFT indicates the
instruction-following in reasoner finetuning.

Benchmark Empirical Dataset

Task # Train # Val # Test # Total # Meta-thinker # Reasoner

LogiQA 1 3757 500 511 4768 ~2k ~6k
BBH 16 1904 320 1600 3824 ~1k ~3.5k
GSM8k 1 6473 1000 1319 8792 ~4k ~4k
Math 7 6500 1000 5000 12500 ~1k ~1k

sufficient conditional reasoning, necessary conditional reasoning, disjunctive reasoning, and conjunc-
tive reasoning. These reasoning categories are not orthogonal and one problem can belong to multiple
categories. We follow the standard training/validation split and only keep examples with more than
3 reasoning categories. This makes the problem more diverse and difficult to solve. We take the
validation set as the test set and randomly select 500 examples from the training set for validation.

BBH (Suzgun et al., 2022) is a set of hard problems borrowed from Big Bench (Srivastava et al.,
2022). They are also formatted as multi-choice problems. We pick the English tasks with more than
2 options, resulting in 16 tasks: date understanding disambiguation qa, geometric shapes, hyperbaton,
logical deduction three, logical deduction five, logical deduction seven, movie recommendation,
penguins in a table, reasoning color, ruin names, snarks, temporal sequences, tracking shuffled three,
tracking shuffled five, and tracking shuffled seven. For each task, we randomly select 100 examples
as the test set and 20 examples as the validation. The rest are used as training examples.

GSM8k (Cobbe et al., 2021) is a commonly used math benchmark to evaluate LLMs’ capability
in math reasoning. It contains 8.5K grade school math word problems, which are split into 7.5k
training examples and 1k test problems. Each problem usually takes between 2 and 8 steps to solve.
MATH (Hendrycks et al., 2021) is also a popular math benchmark for LLMs. It contains 12,500
challenging competition mathematics problems with 7 categories. There are 7.5k training examples
and 5k test problems. We follow Toshniwal et al. (2024) to process the dataset.

Contexthub (Hua et al., 2024) is a new propositional logic benchmark. It contains abstract and
contextualized logical problems from 12 categories with 4 levels of difficulty (Zhu et al., 2024). We
follow the standard split of the original paper and use the subset of difficult level 4 to test the complex
logic reasoning capabilities. The abstract logical problems only contain the symbolic variable without
natural language description, which can be viewed as symbolic reasoning problems.

Livebench (White et al., 2024) is a recently proposed benchmark with 18 diverse tasks across 6
categories, specifically designed to minimize data contamination. All problems have verifiable,
objective ground-truth answers, allowing hard questions to be scored accurately and automatically.
We evaluate our models on three tasks (spatial, web of lies v2, zebra puzzle) from the reasoning
category, splitting them 0.7/0.3 for training and testing.

A.2.2 DATASET EXAMPLES

We demonstrate one example for each dataset below.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

LogiQA

One seminar had 18 participants. It is known that :(1) At least 5 young teachers are female; (2) At least
6 female teachers are over middle age; (3) At least 7 young women are teachers; According to the
above information, which can be concluded?
Options:
(A) Some young teachers are not women
(B) Some young women are not teachers
(C) There are at least 11 young teachers
(D) There are at least 13 female teachers

BBH: logical deduction three objects

The following paragraphs each describe a set of three objects arranged in a fixed order. The statements
are logically consistent within each paragraph. In a golf tournament, there were three golfers: Ada, Mel,
and Mya. Mya finished below Ada. Mel finished above Ada.
Options:
(A) Ada finished last
(B) Mel finished last
(C) Mya finished last

GSM8k

A 40 meters rope was cut into 2 parts in the ratio of 2:3. How long is the shorter part?

MATH: Algebra Level 1

361 + 2(19)(6) + 36 = x. Solve for x.

ContextHub: Abstract - Level 2

(wqeq or mnze) → zkx.
(NOT ttjmx) → kottz.
(kottz or zkx) → pofk.
Given pofk is False, what is the value of ttjmx?

LiveBench: reasoning - zebra puzzle

There are 3 people standing in a line numbered 1 through 3 in a left-to-right order.
Each person has a set of attributes: Nationality, Music-Genre, Transport.
The attributes have the following possible values:
- Nationality: spanish, argentine, canadian
- Music-Genre: punk, rock, reggae
- Transport: train, jet-ski, trike
and exactly one person in the line has a given value for an attribute.

Given the following premises about the line of people:
- the person who is argentine avoids getting on a train
- the person who is spanish is somewhere between the person who listens to punk and the person who
listens to rock
- the person who listens to punk is not anywhere to the right of the person that travels by trike
- the person who listens to punk is on the immediate right of the person that travels by jet-ski

Answer the following question:
What is the nationality of the person who listens to rock? Return your answer as a single word, in the
following format: ***X***, where X is the answer.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 TRAINING DETAILS

For self-training of TypedThinker, we use the splits in the original papers for LogiQA and
follow the split of Toshniwal et al. (2024) for GSM8k and MATH. For BBH, we utilize 16 English
multiple-choice tasks and randomly select 100 examples per task as the test set, with 20 examples
as the hold-out validation set. The detailed statistics are listed in Table 9. Finally, the curated
generation dataset covers 67.2% problems on the LogiQA benchmark, 69.7% on BBH, 74.88%
on GSM8k, and 36.27% on MATH. We finetune a unified meta-thinker for both math and logical
problems, and a unified reasoner for all reasoning types. We use Huggingface (Wolf et al., 2019) with
deepspeed (Rasley et al., 2020). The finetuning is conducted on 2 A6000 GPUs. The batch size is 64
and the learning rate is 1e− 5. The maximum epoch is 3 for the meta-thinker and 2 for the reasoner.

A.4 ANALYSIS OF REASONING TYPES

Accuracy of Reasoning Types We calculate the accuracy for each reasoning type on our empirical
dataset D, shown in Figure 6. We can find that on LogiQA and MATH, the accuracy of different
reasoning types is similar. However, deductive and analogical reasoning outperform the other two
on BBH while inductive and abductive reasoning are more effective. The results illustrate that after
our carefully designed demonstration for each reasoning type, LLM’s capabilities in other reasoning
types achieve comparable performance with deductive reasoning. This ensures the quality and the
balance of our collected dataset on each reasoning type.

Comparing Figure 1 and Figure 6, we can see that if correctly selected, the specific reasoning type
can enhance the model performance by handling problems that cannot be solved by other reasoning
types, such as inductive on MATH. However, the unsuitable reasoning type can also mislead the
model, leading to poor performance.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

LogiQA BBH GSM8k MATH

Deductive Inductive Analogical Abductive

Figure 6: Accuracy of the solutions on different reasoning types. It indicates that the effectiveness of reasoning
types varies in different problems.

Diversity of Reasoning Types To further verify whether the reasoning types can make the solutions
more diverse, we compare the diversity between solutions under different sampling settings in Table
10. We use Levenshtein Distance (Levenshtein, 1966) and the n-gram overlaps between sentences
to evaluate diversity. Specifically, for K generations G = {g1, · · · , gK} of the same problem, we
calculate the distance between each pair and normalize them with the sentence length. Then the
average distance over these paired results is used as the distance of these K generations. If we denote
the normalized Levenshtein Distance function as fld, this process can be represented as:

fld(G) =
2

K(K − 1)

K∑
i=0

K∑
j=i+1

fld(gi, gj). (1)

The calculation of the n-gram overlap is defined in the same way. For each setting, we present the
average score over the problems in the test set in Table 10. A larger Levenshtein distance and a
smaller overlap indicate a more diverse solution set. The zero-shot setting does not include examples

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

in the prompt, and the zero-shot setting + types only include the definition of the reasoning type
(as listed in Table 8). The few-shot setting has 5 examples, and the few-shot setting with types has
different 6 examples for each type. For zero-shot / few-shot @5, we use repeated sampling with
temperature = 1 for 5 times. For zero-shot / few-shot + 5 types, we sample one solution per reasoning
type.

From Table 10, we can see that after adding the reasoning types, the diversity of both zero-shot and
few-shot increases significantly. It indicates that the introduction of various reasoning types can
make the LLM’s reasoning more diverse. We can also find that in most cases, the few-shot with
reasoning types has the highest diversity, while in BBH, the zero-shot setting can benefit more from
the reasoning types.

Table 10: Adding reasoning types can enhance diversity in both zero-shot and few-shot sampling settings. It can
significantly increase the distance and reduce the n-gram overlaps between generations. For each setting, we
use Mistral 7B to sample 5 solutions with temperature = 1. @5 indicates repeated sampling 5 times, + 5 types
indicates sampling one solution per reasoning type. The diversity is averaged over the whole test set.

Benchmark Sampling Setting Levenshtein Distance ↑ Unigram overlap ↓ 4-gram overlap ↓

LogiQA

Zero-shot @ 5 0.3043 0.5877 0.5367
Zero-shot + 5 types 0.5997 0.2584 0.1863
Few-shot @ 5 0.5729 0.2316 0.1226
Few-shot + 5 types 0.6437 0.1745 0.0773

BBH

Zero-shot @ 5 0.5170 0.3104 0.2157
Zero-shot + 5 types 0.7117 0.1280 0.0495
Few-shot @ 5 0.5992 0.2239 0.1191
Few-shot + 5 types 0.6495 0.1750 0.0764

GSM8k

Zero-shot @ 5 0.6242 0.1951 0.0907
Zero-shot + 5 types 0.6831 0.1513 0.0540
Few-shot @ 5 0.4977 0.3117 0.1761
Few-shot + 5 types 0.7097 0.1366 0.0476

MATH

Zero-shot 0.6726 0.1573 0.0703
Zero-shot + 5 types 0.7291 0.1116 0.0352
Few-shot 0.6588 0.1741 0.0804
Few-shot + 5 types 0.7319 0.1154 0.0382

A.5 MORE EXPERIMENTAL RESULTS

A.5.1 RESULTS ON MORE BACKBONE LLMS

We conducted further experiments using Qwen 2-7B-Instruct (Bai et al., 2023) as our backbone
LLM. The Qwen series of open-source large language models have demonstrated comparable or
even superior performance to the Mistral and LLaMA families across multiple tasks. The results
are shown in Table 11. Our method achieves approximately 7% improvement over the few-shot
baseline in both single-generation and majority-vote settings (+SC @5). These results demonstrate
that TypedThinker is a general and effective method for enhancing the reasoning capabilities of
various LLMs.

Table 11: Qwen 2-7B-Instruct results. The annotations are the same with Table 1.

LogiQA BBH GSM8K MATH Avg.

Few-shot 0.552 0.471 0.643 0.417 0.521
+ SC @ 5 0.579 0.554 0.752 0.497 0.596

CoT Selection 0.528 0.462 0.449 0.314 0.438
+ SC @ 5 0.560 0.528 0.767 0.490 0.586

Fewshot MoR 0.607 0.568 0.798 0.490 0.616

TypedThinker 0.595 0.534 0.776 0.474 0.595
+ SC @ 5 0.644 0.584 0.875 0.565 0.667

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 12: TypedThinker outperforms other baselines on LiveBench without extra finetuning. Here the results
are based on the majority vote over 5 responses (+SC @5).

Mistral 7B LLaMA3 8B

Few-shot 0.178 0.200
CoT Selection 0.244 0.200
TypedThinker 0.267 0.267

A.5.2 RESULTS ON MORE BENCHMARKS

We further evaluate our methods on LiveBench (White et al., 2024) to test the generalization capability
of our method. The experimental settings are the same as described in Section 4.5. The results
are shown in Table 12. It demonstrates that TypedThinker outperforms other baselines, further
supporting its generalization capability across diverse tasks.

A.5.3 MORE ABLATION STUDIES

The primary reason for comparing our method with the few-shot baseline is that fine-tuning for
specific reasoning types is an integral part of our approach. Therefore, we evaluate the impact of
our fine-tuned reasoner through a separate ablation study. However, comparing TypedThinker to
few-shot baselines without fine-tuning may not fully account for the benefits of fine-tuning. Therefore,
we conduct two more experiments to verify the influence of the fine-tuned LLMs.

Comparison with base LLM + one module Ablation studies in Section 4.4 investigate the contribu-
tion of each component by removing one component each time. Here we provide additional ablation
results by adding one component to the base LLM each time, resulting in two variants: Base LLM +
Meta-thinker and Base LLM + Collection. For a more reliable conclusion, we ran experiments
three times to calculate the average and std and present the result in Table 13 and 14.

Table 13: Mistral 7B results are based on three repetitive experiments. Avg. indicates the average accuracy over
four benchmarks.

LogiQA BBH GSM8K MATH Avg.

Few-shot 0.493 ± 0.007 0.347 ± 0.01 0.372 ± 0.014 0.071 ± 0.003 0.321 ± 0.006
CoT Selection 0.475 ± 0.009 0.361 ± 0.01 0.377 ± 0.011 0.104 ± 0.008 0.329 ± 0.004
LLM + Meta Thinker 0.512 ± 0.003 0.377 ± 0.006 0.379 ± 0.004 0.106 ± 0.009 0.343 ± 0.004
LLM + Collection 0.519 ± 0.007 0.398 ± 0.005 0.363 ± 0.004 0.086 ± 0.008 0.342 ± 0.001
TypedThinker 0.553 ± 0.004 0.430 ± 0.008 0.390 ± 0.012 0.103 ± 0.01 0.369 ± 0.006

Table 14: LLaMA 3 8B results are based on three repetitive experiments. Avg. indicates the average accuracy
over four benchmarks.

LogiQA BBH GSM8K MATH Avg.

Few-shot 0.569 ± 0.003 0.319 ± 0.006 0.476 ± 0.004 0.102 ± 0.005 0.366 ± 0.001
CoT Selection 0.558 ± 0.011 0.376 ± 0.007 0.360 ± 0.006 0.104 ± 0.009 0.349 ± 0.007
LLM + Meta Thinker 0.538 ± 0.005 0.434 ± 0.005 0.508 ± 0.005 0.118 ± 0.005 0.400 ± 0.001
LLM + Collection 0.574 ± 0.011 0.497 ± 0.004 0.438 ± 0.005 0.109 ± 0.006 0.404 ± 0.001
TypedThinker 0.546 ± 0.004 0.534 ± 0.003 0.535 ± 0.001 0.203 ± 0.009 0.455 ± 0.002

Results show that the retrieval component improves performance on logical tasks but may mislead
models on mathematical datasets. This is consistent with our findings in the ablation study in Table
2: the retrieved solutions with digits may mislead the model. Meanwhile, compared with the ICL
reasoner, our finetuned reasoner shows better capability in identifying the suitable reasoning type.

A.6 DISCUSSION ON DIFFERENT REASONING PROBLEMS

In this paper, we mainly focus on logical and math reasoning problems. However, our
TypedThinker can also be extended to symbolic or commonsense reasoning without extra ef-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 15: TypedThinker performs best on the abstract category of Contexthub. Here the results are based on
the majority vote over 5 responses (+SC @5).

Mistral 7B LLaMA3 8B

Few-shot 0.25 0.35
CoT Selection 0.55 0.40
Zero-shot MoR 0.55 0.35
Few-shot MoR 0.45 0.45

TypedThinker 0.75 0.55

fort. For example, the problems under abstract category in ContextHub can be viewed as symbolic
reasoning, as shown in A.2.2. Therefore, in addition to the overall performance shown in Table 4,
we present specific performance on the abstract category of symbolic reasoning in Table 15. As
we can see TypedThinker outperforms baseline methods, even without further fine-tuning the
meta-thinker and reasoner for this symbolic reasoning task.

While the LogiQA dataset contains problems requiring commonsense reasoning, the dataset lacks
explicit annotations (such as a specific category) for such tasks. For example, here is one case
that requires commonsense knowledge about manufacturing costs, market dynamics, and consumer
preferences.

LogiQA: A commonsense reasoning case

Traditionally, the most highly sought cars have been the sports cars and similar two-door models.
Nevertheless, Zincstone Motors has chosen to eliminate the last two-door models and produce only
four-door models. Which of the following would, if true, most help to explain Zincstone Motors’
strategy?
Options:
(A) In almost every instance, Zincstone Motors models lead all comparable models of competitors in
fuel efficiency and have lower average maintenance costs as well.
(B) After a spate of recent additional safety requirements, the cost of frame and doors of Zincstone
Motors’ standard two-door models are now three times as expensive as standard four-door frame and
doors.
(C) Many of Zincstone Motors models are exported and sold overseas, including in some countries like
Japan, which import a significant number of cars into the United States.
(D) As American consumers lose access to car manufacturers who produce two-door cars, and as
two-door cars occupy smaller and smaller shares of the United States car market, American consumers’
tastes tend to shift from two-door cars.

For reasoning problems that significantly differ from the existing domains (logic and math), additional
demonstrations tailored to the task are recommended to guide reasoning. For example, inductive
reasoning might involve deriving a general program from exemplar input-output test cases in code
generation (Shao et al., 2024; Yang et al., 2024). In such cases, providing a few task-specific examples
or conducting light fine-tuning on the reasoner can further enhance performance.

A.7 IMPACT STATEMENT

This work will enhance current LLMs with better reasoning capability, which can make them more
useful in problem-solving. There might be some potential societal consequences of our work, none
of which we feel must be specifically highlighted here. However, it might be misused as we release
all our code and data for reproduction. We will try our best to avoid the potential misuse.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 16: Examples of four reasoning types.

Type Query Example

Deduction Alice, Bob, and Claire are dancers at
a square dance. At the start of a song,
they each have a partner: Alice is with
Lola, Bob is with Rodrigo, and Claire
is with Patrick. Throughout the song,
Alice and Bob switch partners; Claire
and Bob switch; Finally, Bob and Alice
switch. At the end of the dance, Alice
is dancing with Options:
(A) Lola (B) Rodrigo (C) Patrick

(0) At the start: Alice: Lola, Bob: Rodrigo, Claire:
Patrick.(1) Alice and Bob switch : Alice: Rodrigo,
Bob: Lola, Claire: Patrick. (2) Claire and Bob
switch : Alice: Rodrigo, Bob: Patrick, Claire:
Lola. (3) Bob and Alice switch : Alice: Patrick,
Bob: Rodrigo, Claire: Lola. At the end of the
dance, Alice is dancing with Patrick. So the answer
is (C) .

Induction Students who told a lie overestimated
how many people could detect it.
Volleyball players performing poorly
thought teammates noticed more than
they actually did. A student wearing a
funny T-shirt expected everyone to no-
tice, but only a few did. Which option
best illustrates the statements above?
(A) People overestimate how often oth-
ers notice their appearance and behav-
ior.
(B) People rarely notice the appearance
or behavior of others.
(C) We are less observant of others’ ap-
pearance and behavior than we think.
(D) People are less aware of their ap-
pearance and behavior than others are."

By examining each of the scenarios mentioned, we
notice all these examples indicate that individuals
overestimate the level and extent of attention their
actions, appearances, or behaviors receive from
others. This consistency across different contexts
illustrates a broader psychological phenomenon.
So the answer is (A) .

Abduction The integer m is between 30 and 80 and
is a multiple of 6. When m is divided by
8, the remainder is 2. Similarly, when
m is divided by 5, the remainder is 2.
What is the value of m?

To solve this problem using abductive reasoning,
we assume that one possible value of m exists that
abides by the constraints and check if this assump-
tion holds.1. Fi rst, filter values of m that are mul-
tiples of 6 between 30 and 80. 2. Next, apply the
condition that when m is divided by 8, the remain-
der is 2. Only 42, 66 fit this condition.3. Apply the
third condition, that when divided by 5, m should
leave a remainder of 2. Testing the applicable val-
ues so far and find 42 meets the requirement. So
the answer is 42 .

Analogy John is 24 years younger than his dad.
The sum of their ages is 68 years. How
many years old is John?

Retrieval: Question: Lisa is 10 years younger than
her mom. The sum of their ages is 70 years. How
old is Lisa?
Answer: Lisa is 30 years old and her mom is 40
years old.
These are solved using the same approach as the
problem about John and his dad’s ages, i.e., setting
up two equations based on the information given
and then solving for the two variables representing
the ages. Therefore, for the given question, John is
22 years old.

22

	Introduction
	Related Work
	TypedThinker: Diversify Thinking with Typed Reasoning
	Typed Reasoning with Implicit Policy and Explicit demonstration
	Optimize Implicit Policy for Reasoning Type Selection and Following

	Experiments
	Experiment Setup
	How do reasoning types encourage divergent thinking during generation?
	What kinds of benefits can TypedThinker bring?
	What contributes to TypedThinker's effectiveness?
	Can TypedThinker be applied to new domains or new LLMs without finetuning?
	Case study

	Conclusion and Limitation
	Appendix
	Prompt
	Dataset
	Data Processing
	Dataset Examples

	Training Details
	Analysis of Reasoning Types
	More experimental results
	Results on More Backbone LLMs
	Results on more benchmarks
	More Ablation Studies

	Discussion on Different Reasoning Problems
	Impact Statement

