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Abstract

The coordinated activity of neural populations underlies myriad brain functions.
Manipulating this activity using brain stimulation techniques has great potential
for scientific and clinical applications, as it provides a tool to causally influence
brain function. To improve the accuracy by which one can manipulate neural
activity, it is important to (1) take into account the pre-stimulation brain state,
which can influence the brain’s response to stimulation, and (2) adaptively update
stimulation parameters over time to compensate for changes in the brain’s response
to stimulation. In this work, we propose Online MicroStimulation Optimization
(OMiSO), a brain stimulation framework that leverages brain state information
to find stimulation parameters that can drive neural population activity toward
specified states. OMiSO includes two key advances: i) training a stimulation-
response model that leverages the pre-stimulation brain state, and inverting this
model to choose the stimulation parameters, and ii) updating this inverse model
online using newly-observed responses to stimulation. We tested OMiSO using
intracortical microstimulation with a “Utah” array and found that it outperformed
competing methods that do not incorporate these advances. Taken together, OMiSO
provides greater accuracy in achieving specified activity states, thereby advancing
neuromodulation technologies for understanding the brain and for treating brain
disorders.

1 Introduction

Most brain functions are realized through the coordinated activity of neural populations [1–4]. Causal
perturbations of the brain, for example with electrical stimulation, can influence brain function by
modulating neural population activity [5]. This activity is variable from moment to moment, and
such variability in part reflects the current state of the brain [1, 6]. The brain’s state is an important
factor affecting how neural populations respond to incoming sensory stimuli [7, 8], and therefore also
important in understanding how the brain responds to causal perturbations.

Closed-loop brain stimulation tools iteratively test and adjust stimulation parameters based on
observed neural responses, enabling targeted modulation of brain activity and/or behavior. Prior
studies proposed closed-loop brain stimulation tools to drive neural population activity toward specific
states [9, 10]. These methods learn and update the mapping between a wide range of potential brain
stimulation parameters and brain responses during an experiment, but they have not considered the
state of the brain when choosing the stimulation parameters (but see [11] for a study testing this idea
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in simulation). Deep brain stimulation (DBS) approaches have leveraged brain state information
to update stimulation parameters for improving treatment efficacy [12, 13] or reducing the energy
consumption of the stimulation device [14]. However, these methods were designed for manipulating
low-dimensional (low-d) bio-markers (e.g., local field potentials [14]), rather than the activity of
many simultaneously recorded neurons.

In this study, we develop Online MicroStimulation Optimization (OMiSO), a brain stimulation
framework that manipulates neural population activity by using a model updated in real time (i.e.,
online) during an experiment. OMiSO characterizes neural population activity in a low-d latent
space identified using dimensionality reduction [15]. We refer to the low-d projection of the recorded
population activity as a “brain state”. The objective of OMiSO is identify stimulation parameters
that can induce a specified target brain state, given the pre-stimulation brain state. Specifically,
OMiSO first fits a stimulation-response model, which predicts brain responses to different stimulation
parameters given the pre-stimulation state. OMiSO then inverts the trained stimulation-response
model to output stimulation parameters for inducing a target brain state.

We tested OMiSO using electrical microstimulation (uStim) in a macaque monkey implanted with a
multi-electrode Utah array in the prefrontal cortex (PFC, area 8Ar). OMiSO optimized the location of
five stimulated electrodes applied on each trial, enabling the generation of complex spatial patterns of
electric fields across a wide range of electrodes in the array. We found that taking into account brain
states prior to uStim (pre-uStim) was beneficial to improve the prediction of the brain’s response
to uStim (Section 3.1). An inverse model successfully identified the stimulation parameters (in this
case, electrode locations) necessary to achieve the specified brain states (Section 3.2). By adaptively
updating the inverse model using newly-observed stimulation-response samples, OMiSO significantly
improved the uStim parameter optimization performance (Section 3.3).

2 Methods

2.1 OMiSO overview

The goal of OMiSO is to find a set of stimulation parameters (termed “stimulation pattern”) to
drive neural population activity toward a targeted state given the pre-stimulation state (Fig. 1A, left).
Specifically, OMiSO first collects and merges neural activity across multiple experimental sessions
by using latent space alignment (Section 2.2). The merged sessions are used to fit a stimulation-
response model, which predicts the post-stimulation brain state given the stimulation pattern and
the pre-stimulation brain state (Section 2.3). OMiSO inverts the trained stimulation-response model
to output a stimulation pattern that can create a target state (Section 2.4). The inverse model is
then used to choose a stimulation pattern in a brain stimulation experiment. On each trial, OMiSO
observes the pre-stimulation brain state zPre and uses the inverse model πθ(ŝ|zPre, zTarg) to choose a
stimulation pattern ŝ that minimizes the error between the target state zTarg and the induced brain
state zŝ (Section 2.5):

argmin
ŝ

||zTarg − zŝ||, (1)

Then, using the newly-observed zPre and zŝ, OMiSO adaptively updates the inverse model πθ to
improve the selection of ŝ (Section 2.6, Fig. 1A, right). The hyperparameters used in the model
fitting and brain stimulation experiments are summarized in Section S1.

2.2 Latent space identification and alignment

When the stimulation parameter space is large, one can typically test only a small fraction of all
possible stimulation patterns within an experimental session. This requires merging neural activity
across sessions to create a large enough set of stimulation-response samples to learn their relationship.
To merge neural activity across multiple experimental sessions, OMiSO identifies a low-d latent
space of the high-d population activity in each session and aligns identified latent spaces from each
experimental session. Each session consists of two types of trials: “stimulation trials”, in which we
applied stimulation, and “no-stimulation trials”, in which we did not apply stimulation. Following
[10], we use Factor Analysis (FA) to identify a latent space that captures activity shared amongst
neurons using only no-stimulation trials. For alignment, we solve the Procrustes problem to find an
orthogonal transformation matrix to maximize the alignment between two FA loading matrices [16].
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Figure 1: Goal of OMiSO and experimental paradigm. (A) OMiSO finds a stimulation pattern
(grid representing an electrode array, where the stimulated electrodes are indicated by orange cells)
to drive neural population activity toward a target state (pink star) given a pre-stimulation state (black
dots). For different pre-stimulation states (Pre-stim state 1 vs. Pre-stim state 2), OMiSO selects
different stimulation patterns (green bolt vs. yellow bolt) to achieve the same target state. OMiSO
updates the selected stimulation patterns from early (left panel, green bolt) to late (right panel, orange
bolt) in an experimental session to achieve the target state. This is necessitated by the fact that the
stimulation pattern that achieved the target state early in the session (left panel, green bolt) no longer
does so late in the session (right panel, green bolt). (B) Experimental setup. Top: The monkey
performed a memory-guided saccade task (Section S3) while spiking activity was recorded from a
multi-electrode array implanted in PFC. Pre-uStim neural activity (gray bars) was recorded over five
consecutive 50 ms bins. During the 50 ms computation period (blue unfilled bar), the system chose
a uStim pattern, which was then applied for 40 ms (orange bar). Post-uStim neural activity (pink
bar) was measured starting 10 ms after stimulation offset. Bottom: neural population activity was
analyzed in a low-d (in our experiments, 5-d) latent space.

After collecting R experimental sessions, for the ith session, OMiSO extracts a list of ni “usable”
electrodes ei ∈ Rni , where each element of ei is an integer index of an electrode. An electrode
is deemed “usable” if it satisfies criteria involving its mean firing rate, Fano factor, and coincident
spiking with other electrodes (see Section S2). In our multi-electrode array stimulation set-up with
96 implanted electrodes (indexed 1 to 96), ei represents the subset of electrode indices identified as
usable in the ith session (e.g., [1, 4, 10, 32, . . . , 93]).

For each time bin indexed by j = 1, ..., Ji (where Ji is the total number of time bins used to fit
FA for the ith session), OMiSO takes spike counts on each usable electrode xi,j ∈ Rni and fits the
following FA model using the EM algorithm:

zi,j ∼ N (0, I)
xi,j |zi,j ∼ N (Λizi,j + µi,Ψi)

(2)

where zi,j ∈ Rm (m < ni) is the low-d brain state for the jth time bin, Λi ∈ Rni×m is the loading
matrix whose columns define the low-d latent space, µi ∈ Rni contains the mean spike counts for
each electrode, and Ψi ∈ Rni×ni is a diagonal matrix capturing the independent variance of the spike
counts for each electrode. In this work, the latent dimensionality m was chosen by first computing
the optimal dimensionality separately for each session based on cross-validated data likelihoods,
then finding the mode of the distribution of optimal dimensionalities across sessions (m = 5 in our
implementation, Section S1).

OMiSO then defines the latent space identified in one of the R sessions as a reference latent space
Λ0 ∈ Rn0×m and aligns the latent space of the i-th session Λi to Λ0. In contrast to our previous
work [10], which aligns the latent spaces directly using the common “usable” electrodes, OMiSO
introduces an additional step to identify the common “stable” electrodes to make the alignment more
robust to neural recording instabilities across sessions (see Algorithm 1 in [16]). Concretely, for the
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ith session, OMiSO identifies an orthogonal transformation matrix Ôi ∈ Rm×m that fulfills:

Ôi = argmin
O:OO⊺=I

∥Λ0(estable, :)− Λi(estable, :)O
⊺∥2F (3)

where estable is a list of nstable stable electrodes that are common to the reference session and the ith
session, and ∥ · ∥F is the Frobenius Norm. This optimization can be solved in closed-form [17]. The
Ôi found is applied to Λi to obtain the aligned latent space Λ̃i ∈ Rni×m:

Λ̃i = ΛiÔ
⊺
i (4)

The brain states in the pre-stimulation (Fig. 1B, bottom panel, gray dots) and post-stimulation periods
(Fig. 1B, bottom panel, pink dot) are estimated as the posterior mean from the FA model (Eq. 2)
using the loading matrix Λ̃i:

E[zi,j |xi,j ] = βi(xi,j − µi) (5)

where βi = Λ̃⊺
i (Λ̃iΛ̃

⊺
i +Ψi)

−1. By using Λ̃i, the induced brain state E[zi,j |xi,j ] resides in a common
latent space across all sessions.

2.3 Stimulation-response model fitting

Using the merged neural activity across sessions, OMiSO fits a stimulation-response model to predict
a post-stimulation brain state given a stimulation pattern and pre-stimulation brain state. In this work,
we used a combination of a CNN and a LSTM (Fig. S1). To train the stimulation-response model,
OMiSO uses the stimulation trials of R experimental sessions collected in Section 2.2, which involves
stimulating with randomly chosen patterns among all possible stimulation patterns defined by the
user. OMiSO creates a dataset that comprises the pre-stimulation and post-stimulation brain states
(where the latent space is defined using latent space alignment, Section 2.2), and the stimulation
patterns tested across the R sessions. For the kth trial in the ith session, the pre-stimulation brain state
over t time bins ZPre

i,k ∈ Rm×t and induced post-stimulation brain state zPost
i,k ∈ Rm are computed

using Eq. 5. Note that Z denotes pre-stimulation brain states across multiple timesteps (a matrix),
whereas z denotes a post-stimulation brain state at a single timestep (a vector). The entries of ZPre

i,k

and zPost
i,k corresponding to the user-defined l target dimensions within the m dimensional aligned

latent space (l ≤ m) are then subselected and collected in new vectors Ž
Pre
i,k ∈ Rl×t and žPost

i,k ∈ Rl

(see Section S3 for how l target dimensions are chosen). Given a planar grid of electrodes of size
h× v (h, v ∈ R), the stimulation pattern tested in the kth trial during the ith session Si,k,∈ Rh×v is
encoded using a value of 1 for stimulated electrodes and 0 for all other electrodes.

To train the stimulation-response model f(ẑPost
i,k |Si,k, Ž

Pre
i,k), which maps the stimulation pattern Si,k

and pre-stimulation state Ž
Pre
i,k to the predicted post-stimulation state ẑPost

i,k ∈ Rl, OMiSO minimizes
the mean squared error (MSE) between the predicted ẑPost

i,k and observed žPost
i,k post-stimulation brain

states. OMiSO performs R-fold cross validation, where each session is used as a validation set once
(Section S6). The final prediction ẑPost

i,k is obtained by averaging the predictions of the R models.

2.4 Inverting the stimulation-response model

Using the trained stimulation-response model, OMiSO estimates a stimulation-response inverse
model. The goal of the inverse model is to identify a stimulation pattern that can reach a target brain
state given the pre-stimulation brain state. More specifically, a stimulation-response inverse model
πθ(ŝi,k|žTarg, Ž

Pre
i,k), parameterized by θ, receives the target brain state žTarg ∈ Rl and pre-stimulation

state Ž
Pre
i,k ∈ Rl×t. Then, it returns a u-dimensional vector of stimulation suitabilities for each

electrode ŝi,k ∈ Ru, where u is the total number of candidate electrodes to be stimulated whose value
is determined by the user and u ≤ h× v. Each entry in ŝi,k is a number between 0 and 1 representing
the suitability of stimulating each electrode for achieving the target brain state, where a value closer
to 1 indicates greater suitability. Note that the vector as a whole is not normalized to sum to one.

OMiSO generates synthetic data using the trained stimulation-response model to train an inverse
model πθ (Fig. S1). The stimulation-response model outputs the average post-stimulation state over R
models ẑPost ∈ Rl for any given combination of a stimulation pattern S ∈ Rh×v and pre-stimulation
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state Ž
Pre ∈ Rl×t. By considering the predicted post-stimulation state ẑPost as a target state žTarg,

OMiSO constructs synthetic data tuples (Ž
Pre
, žTarg, s), where s ∈ Ru is a vector representation of

S including only the u candidate electrodes for stimulation. The value for each candidate electrode
in s is 1 if stimulated and 0 if not. The generated synthetic data is used to train the inverse model
by minimizing the binary cross entropy over multiple epochs with respect to θ (Section S5). In this
study, we used a Multi Layered Perceptron (MLP, Fig. S1) as the stimulation-response inverse model.

2.5 Stimulation pattern selection on each trial

To find the stimulation pattern for achieving a target brain state with the inverse model, each brain
stimulation session starts with latent space identification trials, where no stimulation is applied.
OMiSO extracts a list of usable electrodes ei, which includes ni electrodes, using these trials. The
observed spike count vectors xi,j ∈ Rni for all time bins j across all these trials are used to fit the FA
parameters Λi ∈ Rni×m, µi ∈ Rni , and Ψi ∈ Rni×ni . The identified latent space Λi is aligned to
the reference latent space Λ0 using the methods described in Section 2.2, yielding Λ̃i ∈ Rni×m. To
start the optimization, OMiSO loads the user defined target brain state žTarg ∈ Rl, the trained inverse
model πθ, and the number of electrodes used for each stimulation pattern nStim ∈ Z. Note that out
of h× v total electrodes (used for the stimulation pattern representation S), not all may be suitable
for stimulation (e.g., some may have no effect on the neural population activity, Section S3). This
results in u (≤ h× v) candidate electrodes (used for the stimulation pattern representation s). Of
those, OMiSO chooses nStim electrodes to form each stimulation pattern, where nStim ≤ u.

On each trial, OMiSO selects the stimulation pattern to perform given the observed pre-stimulation
brain state using the inverse model πθ. On the kth trial, OMiSO estimates the pre-stimulation brain
state ZPre

i,k ∈ Rm×t in real time using Eq. 5. The entries of ZPre
i,k corresponding to the target dimensions

are subselected as Ž
Pre
i,k ∈ Rl×t, and Ž

Pre
i,k and žTarg are passed to πθ to get a u-dimensional vector ŝi,k

of stimulation suitabilities for each candidate electrode. Using ŝi,k, OMiSO chooses a stimulation
pattern with an epsilon greedy algorithm. With probability 1− εi,k, where 0 ≤ εi,k ≤ 1, it chooses
the nStim electrodes with the highest predicted suitabilities in ŝi,k. With probability εi,k, it chooses
nStim electrodes stochastically following the softmax transformed probability pwi,k ∈ R computed for
each electrode indexed by w = 1, ..., u as:

pwi,k =
exp(ŝwi,k)∑u
v=1 exp(ŝ

v
i,k)

(6)

where ŝwi,k ∈ R is the predicted stimulation suitability for the wth electrode. In this way, electrodes
with low predicted stimulation suitability can be occasionally chosen to induce exploration, but the
electrodes with higher stimulation suitabilities are chosen more often. OMiSO uses a time-varying
εi,k to initially encourage exploration and gradually shift to exploitation:

εi,k = max(εinit · γk, εfloor) (7)
where 0 ≤ εinit ≤ 1 is an initial value of εi,k, 0 ≤ γ ≤ 1 is a discount factor, 0 ≤ εfloor ≤ 1 is
the smallest allowable value of εi,k (εfloor ≤ εinit), and k is the current trial index. OMiSO uses
εfloor to maintain some amount of exploration throughout a session. Note that the inverse model
πθ estimates the suitability of each electrode independently, without explicitly modeling potential
interactions between electrodes stimulated simultaneously. Consequently, the selection of the top
nStim electrodes is based on their individual contributions to producing the target state. This design
choice was motivated by our empirical observation that, under our stimulation parameters (25 µA,
50 Hz, 40 ms), stimulating a single electrode primarily affects nearby recording electrodes, with
minimal interaction with other concurrently stimulated electrodes.

Once the stimulation pattern is selected with the epsilon greedy algorithm, OMiSO performs stimu-
lation with the selected nStim electrodes and measures post-stimulation spike counts xPost

i,k ∈ Rni to

compute žPost
i,k ∈ Rl (Eq. 5). The set of žTarg, Ž

Pre
i,k, žPost

i,k , and the tested stimulation pattern si,k ∈ Ru

are stored to update the inverse model in a batched manner, as explained in the next section.

2.6 Adaptive updating of the stimulation-response inverse model

During the brain stimulation experiment, OMiSO adaptively updates the stimulation-response inverse
model πθ using the recent stored observations. In this study, we implemented OMiSO’s adaptive
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model update using the clipped policy gradient objective function used in Proximal Policy Optimiza-
tion (PPO) [18]. PPO is a widely-used RL method to update an action selection strategy. OMiSO
uses a PPO-inspired objective function to update the stimulation-response inverse model to improve
the stimulation pattern selection strategy. Compared to other policy update algorithms such as
REINFORCE [19] and Actor Critic [20], PPO offers a more stable policy update by using the clipped
objective function, which might be particularly well-suited to handle trial-by-trial variance in neural
activity.

At each update, OMiSO increases the suitability of stimulating electrodes that produced a post-
stimulation state closer to the target state and decreases it for electrodes that did not. Specifically, for
the kth stored trial in a batch update of the inverse model (a batch is five trials in our implementation,
Section S1), OMiSO computes the advantage Ai,k ∈ R for the stimulation pattern used in the trial:

Ai,k = −||žTarg − žPost
i,k ||1 + b (8)

where b ∈ R is a fixed baseline value. In contrast to the original PPO implementation, which uses a
separate model called a value network to estimate how much better or worse an action performed
compared to what was expected at the same state, OMiSO uses a fixed baseline shared across all
states. This helps stabilize online updates when only a limited number of observations are available.
The value of b was chosen by running a simulation (Section S7). With the computed advantage
Ai,k, OMiSO updates the parameters θ in the stimulation-response inverse model πθ by performing
gradient ascent over multiple epochs on the following PPO-inspired objective function:

LPPO =
∑nStim

e=1 min
(
rei,k(θ)Ai,k, clip

(
rei,k(θ), 1− εclip, 1 + εclip

)
Ai,k

)
,

where rei,k(θ) =
πθ(ŝ

e
i,k|ž

Targ,Ž
Pre
i,k)

πθold (ŝ
e
i,k|žTarg,Ž

Pre
i,k)

, (9)

e = 1, ..., nStim is the index of the electrode among nStim electrodes used for the stimulation pattern
si,k, and the clipping parameter 0 ≤ εclip ≤ 1 defines upper and lower bounds of rei,k(θ) through
clip function, limiting the magnitude of the gradient update to avoid taking a too large update step
(Section S1). πθ(ŝ

e
i,k|žTarg, Ž

Pre
i,k) represents the predicted stimulation suitability for the eth stimulated

electrode under the updated stimulation-response inverse model. Similarly, πθold(ŝ
e
i,k|žTarg, Ž

Pre
i,k) is

the predicted suitability under the original stimulation-response inverse model before updating θ.
The ratio rei,k(θ) is the change in suitability for selecting the eth electrode. Computing this ratio
separately for each electrode rather than for an entire stimulation pattern is a design choice, motivated
by the same empirical observation as in Section 2.5 for the selection of which electrodes to stimulate.
To maximize this objective function, the model updates θ to increase rei,k(θ) when the advantage is
positive and decrease it when the advantage is negative. By updating θ, OMiSO not only updates the
predictions of the stimulation patterns tested in the stored observations, it also updates the predictions
of stimulation patterns that were not tested.

2.7 Experimental details

We tested OMiSO using uStim in a rhesus macaque monkey with a 96-electrode Utah array implanted
in the PFC. In each experimental session, the monkey performed a memory-guided saccade task
(Section S3). Each trial began when the monkey fixated a central dot, followed by a memory target
briefly appearing at a peripheral location. After the memory target disappeared, the monkey needed
to remember the target location during a “memory period” (Fig. 1B). The go cue was signaled by
the disappearance of the central dot, after which the monkey made a saccade to the remembered
location. On about 80% of trials, we applied uStim for 40 ms during the memory period (Fig. 1B).
The stimulation patterns tested in this study consisted of all possible nStim = 5 electrode spatial
patterns chosen from u = 20 candidate electrodes (15,504 possible patterns, Fig. S2, see Section S3
for the selection criteria of the candidate electrodes). Each experimental session started with 120
no-uStim trials for latent space identification. We identified m = 5 latent dimensions by applying FA
to spike counts taken in 50 ms bins. Among them, we chose l = 2 target dimensions (Section S3).
Post-uStim spike counts (50 ms bin) were calculated starting 10 ms after uStim offset (Fig. 1B, pink
bar), which we empirically verified to be sufficient to recover from the stimulation artifact with our
uStim set-up. The number of sessions used in each analysis is summarized in Section S6.
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Figure 2: The pre-uStim brain state affects the post-uStim brain state. (A) An example 5-
electrode uStim pattern. The orange cells in the array map indicate the location of the stimulated
electrodes. Each small circle (135° memory condition) or cross (315° memory condition) indicates
the brain state on a single trial, and the large black circle and cross indicate the mean across trials
within each memory condition. (B) Post-uStim state prediction performance across models (see
Fig. S1 for the model architectures). Error bars indicate standard error across cross-validation folds
(Section 2.3).

3 Results

3.1 Brain’s response to stimulation depends on pre-uStim brain state

Does neural population activity prior to brain stimulation affect the brain’s response to stimulation?
To assess this, we measured the impact of the pre-uStim state on the uStim response in a behavioral
experiment where different memory conditions (Section S3) were used to create distinct pre-uStim
brain states in a low-d space identified using FA (Fig. 2A, left). We observed that uStim shifted
neural activity within the low-d space (Fig. 2A, right; see Fig. S3 for additional examples) away
from the location where the activity would have been without uStim (cf. Fig. S3, leftmost column,
bottom panel). This demonstrates that uStim perturbed the neural population activity. Furthermore,
the induced post-uStim activity states appeared to depend on the memory condition (Fig. 2A, right;
see Fig. S3 for additional examples). This suggests that brain states induced by uStim depend on the
pre-uStim brain state.

To quantify whether this state dependency helps to improve the prediction of brain responses to uStim,
we compared the post-uStim state prediction performance of the stimulation-response model with
and without pre-uStim state information (Fig. S1). For a model without pre-uStim state information,
we used a CNN which predicted post-uStim states only as a function of the uStim patterns applied
(as in [10]), termed “uStim pattern only”. For models with pre-uStim state information, we tested a
combination of a CNN and a MLP [21] with up to 5 pre-uStim time bins, termed “uStim pattern +
Pre-stim{1,3,5} (MLP)”, and a combination of a CNN and an LSTM with 5 pre-uStim time bins,
termed “uStim pattern + Pre-stim5 (LSTM)”. To collect training data to fit these models, we applied
randomly-chosen 5-electrode uStim patterns in 6 experimental sessions.

The models with pre-uStim state information (Fig. 2B, four middle bars in light blue) outperformed
the model without this information (Fig. 2B, top dark blue bar, p < 0.05 for all four models, one-
tailed t-test). Among the models with pre-uStim state information, uStim pattern + Pre-stim5 (LSTM)
achieved the best prediction performance by incorporating 5 time bins of pre-uStim state information.
A model using only pre-uStim state information, termed “Pre-stim5 only (LSTM)” (Fig. 2B, bottom
dark blue bar), performed worse than uStim pattern + Pre-stim5 (LSTM) (p < 0.05, one-tailed t-test).
Thus, both the uStim pattern and pre-uStim state information were important for prediction. In other
words, the pre-uStim state affects where the activity evolves after uStim, and this can be leveraged to
improve the prediction of brain response to uStim.

3.2 A stimulation-response inverse model selects uStim patterns based on the pre-uStim state

OMiSO’s goal is to choose a uStim pattern that can create a targeted neural population state. While
the stimulation-response model trained in Section 3.1 can predict brain responses to any input
combination of a uStim pattern and a pre-uStim state (Fig. 3A, top), they can not do the inverse - start
with a desired brain state and find a uStim pattern that will drive neural activity to that state. One
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Figure 3: Stimulation-response model inversion to choose a uStim pattern based on the pre-
uStim state. (A) Schematic of the inversion procedure. (B) Inversion performance. The error
bar indicates the standard deviation across 5 inverse models. (C) Methods used for performance
comparison to evaluate the model inversion quality. (D) Absolute error relative to the “Static” method
computed in a 2-d target latent space. Error bars indicate standard error across sessions.

potential approach is to construct a lookup table of predicted post-uStim states for all possible input
combinations and find the uStim pattern expected to produce the closest post-uStim state to the target
state. However, this approach is infeasible with a continuum of pre-uStim states. Another approach is
to mathematically invert the stimulation-response model to choose a uStim pattern. However, this
is challenging because the stimulation-response model could map multiple combinations of uStim
pattern and pre-uStim state to the same post-uStim state (i.e., the mapping is not one-to-one).

Instead, we inverted the stimulation-response model by generating synthetic data (Section 2.4). More
specifically, we generated synthetic data using the stimulation-response model, where we considered
the model-predicted post-uStim states as potential target states (Section S5). The generated synthetic
data allows us to train the inverse model, which receives a pre-uStim state and a potential target
state and returns a suitability of stimulating each candidate electrode (Fig. 3A, bottom). For the
stimulation-response model, we used uStim pattern + Pre-stim5 (LSTM), which achieved the best
prediction performance (Fig. 2B). For the stimulation-response inverse model, we used an MLP
(Fig. S1), since it is computationally fast and could complete all necessary computations within 50
ms (Fig. 1B, computation period) following the observation of pre-uStim states, allowing uStim to be
delivered immediately afterward.

To evaluate inversion quality, we checked if the inverse model could output uStim patterns similar
to those used by the stimulation-response model to generate the post-uStim state predictions (i.e.,
the ground truth uStim patterns for the inversion). We found that with more epochs (each of which
consists of 15,504 synthetic samples), the inverse model improved at choosing uStim patterns that
induced post-uStim states close to a target state (Fig. 3B, Manhattan distance in the 2-d latent space,
Eq. 11). This improvement saturated around 100,000 epochs with a distance (the inversion error) of
around 0.13 a.u. (error for perfect inversion is 0). For comparison, the trial-by-trial standard deviation
in brain states (in no-uStim trials within the same memory condition) is 0.7 a.u.

To understand the impact of imperfect model inversion on achieving target brain states, we experimen-
tally compared the performance of two methods, one with perfect inversion and another that could
only be approximately inverted (Fig. 3C). The first method (termed the “Static” method) constructed
a lookup table of predicted post-uStim states for all possible uStim patterns (15,504 patterns) using
the uStim pattern only model, which does not consider pre-uStim state information. It then found the
uStim pattern expected to produce the closest post-uStim state to the target state. Having a complete
lookup table implies a perfect inversion of the uStim pattern-only model. The second method (termed
the “Static with pre-stim” method) used the inverse model of the uStim pattern + Pre-stim5 (LSTM)
model trained on the generated synthetic data (which only achieves an imperfect inversion). Neither
the prediction lookup table nor the inverse model were updated during the experiments, so we refer
to them as static methods. To compare the two methods, we performed brain stimulation experiments
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Figure 4: Performance of OMiSO in brain stimulation experiments. (A) Schematic of OMiSO.
OMiSO trains a stimulation-response and inverse models using previously collected stimulation-
response samples (top box). On each uStim trial, OMiSO performs five steps: (1) analyzes the
pre-uStim brain state across five time points (gray dots), (2) inputs these pre-uStim states and the
target state into the inverse model to choose a uStim pattern (represented as a grid), (3) applies
the chosen uStim pattern, (4) compares the resulting post-uStim state (dot) to the target state (star),
and (5) updates the inverse model every five trials using the new stimulation-response samples. (B)
Methods used for performance comparison. (C) Examples of stimulation suitability for each electrode
(top) and selected uStim patterns (bottom) by OMiSO during an example session using the same
target state across trials. (D) Induced post-uStim states by each method during an example session
(the same session as in panel C). Different colors indicate the method used to select uStim patterns.
Each small dot shows the post-uStim brain state from a single trial, while each large dot shows the
mean post-uStim state across trials. The red dot in each panel is the target brain state shared across
all three panels and trials. (E) Absolute error of different methods relative to “Static with pre-stim”,
computed in the 2-d target latent space. Error bars indicate standard error across sessions.

in which we applied uStim patterns chosen by each method in an attempt to achieve a 2-d target brain
state. If the effect of the inversion error on the uStim pattern selection performance is small, the
“Static with pre-stim” model, which leverages pre-uStim information, should outperform the “Static”
method. We found that the mean error to the target state of “Static with pre-stim” across sessions
was smaller than for the “Static” method, although the difference was not statistically significant
(Fig. 3D, N = 14 sessions, p = 0.3, Wilcoxon signed-rank test). This provides encouragement
for incorporating the inverse model trained on the synthetic data into an adaptive brain stimulation
framework to choose uStim patterns based on pre-uStim state information.

3.3 OMiSO adaptively updates the inverse model during a brain stimulation experiment

During each experimental session, new stimulation-response samples become available. Leveraging
these samples may help us adaptively update the stimulation-response inverse model to account for
inversion errors, as well as changes in the stimulation-response relationship within and across sessions.
To test this, we developed an adaptive brain stimulation framework, OMiSO (Fig. 4A, Section 2.1)
where we used a PPO-inspired objective function to adaptively update the stimulation-response
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inverse model (Section 2.6). We tested OMiSO during brain stimulation experiments and compared
its performance against an inverse model that was not adaptively updated (“Static with pre-stim”,
tested in Section 3.2). OMiSO had limited observations (104 trials on average within a session in
14 experimental sessions) to update the inverse model (after every 5 trials), which could put it at a
disadvantage due to overfitting compared to the “Static with pre-stim” method. We also compared
OMiSO’s performance with our previously proposed method, MiSO [10], which adaptively updates
its predictions but does not leverage pre-uStim states (Fig. 4B). OMiSO adaptively updated the
stimulation suitability for each electrode over time (Fig. 4C, top; example session), changing the
uStim pattern applied for achieving the same target state (Fig. 4C, bottom). Although these changes
could be due to the changes in pre-uStim brain states over time, the induced brain states, which were
closer to the target state than those produced by the “Static with pre-stim” method (for which the
inverse model was not adaptively updated), indicate that adaptive model updates were essential for
improving the accuracy in inducing the target state (Fig. 4D). Across multiple sessions, OMiSO drove
neural activity closer to the target state than both alternative methods (Fig. 4E, N = 14 sessions,
p = 0.05 for Static with pre-stim and p = 0.01 for MiSO, Wilcoxon signed-rank test) by adaptively
updating the stimulation-response inverse model and by taking into account the pre-uStim state.

4 Discussion

We propose a brain stimulation framework, OMiSO, which involves two key methodological advances
for shaping brain states: incorporation of the pre-stimulation brain state and adaptive updating of the
model used to choose a stimulation pattern. In brain stimulation experiments, OMiSO outperformed
methods that do not incorporate these advances. While the neural activity used in this study consists
of spiking responses recorded with a planar grid of electrodes implanted in the brain, and each
stimulation pattern specifies the location of the stimulated electrodes within the grid, OMiSO can be
readily applied to other stimulation and recording protocols (e.g., holographic optogenetics [22] or
other uStim parameters).

In comparison to MiSO [10], OMiSO introduces several key technical advances. First, MiSO does
not account for the pre-stimulation brain state when predicting brain responses, whereas OMiSO
explicitly incorporates it, enabling more accurate prediction of brain responses. Second, during online
adaptation, MiSO relies on a tabular approach that stores the predicted post-stimulation state for each
candidate stimulation pattern and updates only the entry corresponding to the tested pattern. This
approach is sample inefficient as it does not propagate the knowledge from a new stimulation-response
observation to improve the predicted response of other stimulation patterns. OMiSO instead employs
an inverse model that updates its parameters online, enabling learning beyond the tested stimulation
pattern. Finally, the tabular method in MiSO becomes impractical as the size of the stimulation
parameter space grows. OMiSO’s model-based approach enables better scaling to a larger parameter
space, which allowed us to go from searching among 4,560 (“96 choose 2 electrodes”) stimulation
patterns [10] to among 15,504 (“20 choose 5 electrodes”) stimulation patterns here.

Although we experimentally demonstrated the advantages of OMiSO, there are scenarios where it
might be less beneficial. First, in response to strong stimulation, the brain might be driven to a similar
post-stimulation state regardless of the pre-stimulation activity. Second, in clinical applications, the
neural states can differ substantially between healthy and disease conditions. For example, individuals
with epilepsy exhibit bursting activity, which is not usually observed under healthy conditions [23].
This can limit the accuracy by which the stimulation patterns selected by OMiSO can achieve the
target state. When using OMiSO, one should ensure that the neural state distributions are similar
between the training period and online use.

OMiSO can be adapted to both clinical and basic neuroscience applications, in which the goal is
to drive neural activity to a target brain state (Eq. 1). In clinical applications (e.g., DBS), the target
could be defined as neural activity corresponding to a healthy brain state. OMiSO can then identify
stimulation patterns that move neural activity towards this desired state. Alternatively, OMiSO could
be extended to drive neural activity away from unhealthy brain states. For basic neuroscience, OMiSO
can increase the accuracy with which one perturbs neural activity to elucidate the neural mechanisms
underlying sensory, cognitive, and motor function ([5, 24]).
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Supplementary material

S1 Summary of hyperparameters

The table below summarizes the hyperparameter values used in this study. The latent dimensionality
m for the FA model was chosen by first computing the optimal dimensionality separately for each
session by maximizing the cross-validated data likelihood, then finding the mode of the distribution
of optimal dimensionalities across sessions. The number of stable electrodes used for latent space
alignment was set slightly below the typical number of electrodes satisfying the criteria involving their
mean firing rate, Fano factor, and coincident spiking (see Section S2), to exclude a few electrodes to
make the alignment robust. For the stimulation-response model training, the learning rate, weight
decay, and the number of training epochs (i.e., number of complete passes through the entire training
dataset) were chosen based on a grid search. For the model inversion, we did not perform extensive
tuning of the hyperparameters, such as a max epoch, since the model yielded similar performance
(Eq. 11) even with different hyperparameters. Batch size per epoch refers to the number of synthetic
data samples generated for each epoch. The parameters for uStim pattern selection and the PPO-
inspired adaptive model update were chosen by running simulations (Section S7). uStim parameters
(amplitude, frequency, and duration) were set to avoid causing overt behavioral changes or strong
post-uStim activity inhibition across the entire array.

Method Parameter name Description Value

Latent space m FA latent dimensionality 5
identification & alignment nstable Num. of stable electrodes for alignment 40

Stimulation-response R Num. of training experimental sessions 5
model fitting t Num. of pre-uStim state time bins 1-5

l Target state dimensionality 2
- Optimizer AdamW
- Learning rate 0.0006
- Weight decay 0.001
- Training epoch 20

Model inversion - Batch size per epoch 15,504
- Max epoch 100,000
- Num. of validation samples 1,000
- Validation frequency (epoch) 100
- Early stop patience (epoch) 20

uStim pattern selection - Num. of latent space identification trials 120
εinit Initial value of εi,k 0.5
εfloor Minimum value of εi,k 0.1
γ Discount factor of εi,k 0.95, 0.96

Adaptive model update εclip Clip value of model update 0.15, 0.2
b Baseline for advantage computation 0.6, 0.7
- Batch size 5
- Optimizer AdamW
- Learning rate 2× 10−5, 1× 10−4

- Weight decay 0.001

uStim parameters u Num. of uStim candidate electrodes 20
nStim Num. of uStim electrodes 5

- Total num. of possible uStim patterns 15,504
h Horizontal size of electrode grid 10
v Vertical size of electrode grid 10
- uStim amplitude (uA) 25
- uStim frequency (Hz) 50
- uStim duration (ms) 40

S2 Spiking activity preprocessing

To identify latent dimensions of the neural population activity using FA, we computed binned spike
counts during the 1.5 s memory period of the first 120 trials recorded in each session (termed the
“latent space identification trials”). We used 50 ms bins, yielding 30 bins per trial. The total number
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of time bins used to fit the FA model on each session was 3,600 (120 trials × 30 bins). The same
trials were used to extract a list of usable electrodes ei for the ith session based on the following
three criteria: mean firing rate >1 Hz, Fano factor <8, and <20% coincident spiking with each of the
other electrodes. The FA model was fitted using only the usable electrodes.

S3 Details of uStim experimental paradigm

Experimental procedures were approved by the Institutional Animal Care and Use Committee of
Carnegie Mellon University. In each experimental session, the monkey performed a memory-guided
saccade task. On each trial, the monkey first fixated on a dot at the center of the screen. After
establishing fixation, a target appeared on the screen for 100 ms. This was followed by a memory
period, after which the center dot turned off (go cue) and the monkey performed an eye movement
to the remembered target location to receive a liquid reward. The fixation duration (i.e., the time
from when the monkey acquired fixation to when the go cue was given) was set at either 1.65 or 1.95
seconds for the latent space identification trials and 1.25 or 1.55 seconds for the other trials. The
location of the target was chosen from four peripheral targets ([45°, 135°, 225°, 315°] or [0°, 70°,
135°, 270°]) on the latent space identification trials and from two peripheral targets ([135°, 315°]
or [0°, 70°]) on the other trials. These target directions were chosen based on the mapped receptive
fields of the recorded PFC neurons so that diverse brain states could be induced.

There were two types of memory-guided saccade trials: “uStim trials”, in which we applied uStim,
and “no-uStim trials”, in which we did not apply uStim. The experimental system randomly chose
which type to perform on each trial. On uStim trials, we applied uStim for 40 ms during the memory
period. The stimulation was biphasic with each square pulse in the biphasic pair being 250 µs in
duration. We set the current amplitude low enough not to induce any eye movements (25 µA for
each electrode we stimulated). On each trial, we changed the locations of nStim = 5 stimulated
electrodes selected among u = 20 candidate electrodes (Fig. S2), while keeping other parameter
values such as current amplitude (25 µA) and frequency (50 Hz) fixed. The candidate electrodes for
stimulation were selected based on three criteria: (1) they were spatially distributed across the array
to prevent excessive current concentration when stimulating with multiple electrodes, (2) they were
positioned near electrodes with consistent recordings of spiking activity across sessions to ensure
reliable evaluation of brain responses to stimulation, and (3) they induced changes in brain activity
when stimulated.

Although we could have defined the target state in the m = 5-dimensional latent space, we instead
defined the target state within a subset (l = 2) of those dimensions. We made this choice because not
all latent dimensions are equally suitable for reliable perturbation of neural activity. For example, the
activity in some dimensions might not be easily modifiable by uStim, and some dimensions might
not be well-aligned across sessions. Therefore, we chose the two target dimensions based on two
criteria: 1) diverse brain states could be induced along these dimensions with uStim (evaluated by
visualizing the induced brain states across different dimensions), and 2) they showed good alignment
across multiple sessions (as determined by the similarity of the aligned dimensions across sessions,
cf. Eq. 3). The dimensions that passed the criteria were not necessarily the top FA dimensions that
explained the greatest covariance among the neurons.

To select which uStim pattern to apply, we chose the nStim electrodes with the highest predicted
suitabilities, with 1 − εi,k probability (Section 2.5). For simplicity, we stimulated using the same
number of electrodes (nStim = 5) when evaluating the performance of OMiSO as during the training
sessions. Alternatively, one can use other electrode selection strategies, for example applying a
suitability threshold (e.g., 0.8) and stimulating all electrodes whose predicted suitability exceeds that
threshold.

For the adaptive model update, OMiSO only used new observations without using a replay buffer
(i.e., it performed on-policy model updates), as in [18].

S4 Details of model fitting and computing resources

The model architectures used in this study are depicted in Fig. S1. Hyperparameters are listed in
Section S1. All models were implemented in PyTorch [25] and fit using the AdamW optimizer. We
trained all models on a local computing cluster using 4 NVIDIA GeForce RTX GPUs and 11GB of
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RAM. The same local computing cluster was used to run PPO-inspired adaptive model updates of
the stimulation-response inverse model during uStim experiments. Our experiments also involved
three additional computers dedicated to specific tasks: one for experimental trial control (Intel Core
i5-4590 @ 3.30 GHz × 4, 15.5 GB RAM, Intel HD Graphics 4600, Ubuntu 20.04.2 LTS), one for
neural activity data recording (Intel Core i7-7700 @ 3.60 GHz, 4 GB AMD Radeon R7 450 + Intel
HD Graphics 630, Windows 10 Pro), and one for real-time neural data processing and uStim pattern
selection (11th Gen Intel Core i5-11500 @ 2.70 GHz × 12, 15.4 GB RAM, AMD Radeon Pro WX
3200 + Intel Graphics, Ubuntu 20.04.4 LTS). In our OMiSO implementation, the stimulation-response
inverse model was adaptively updated every 5 trials using a PPO-inspired objective function on a
local computing cluster, which was different from the machines used to run the experimental code. In
this way, the adaptive model updates did not interfere with the stimulation pattern selection process,
which is time-sensitive.

S5 Details of stimulation-response model inversion

To train the stimulation-response inverse model (Fig. S1D) with synthetic data, OMiSO iterates the
data generation process and model parameter updates over multiple epochs. In each epoch, OMiSO
generates 15,504 synthetic samples, each of which consists of a pre-uStim state Ž

Pre ∈ Rl×t, a uStim
pattern s ∈ Ru, and a predicted post-uStim state averaged across R stimulation-response models,
which is used as the target state žTarg ∈ Rl. The number of synthetic samples need not match the
total number of uStim patterns, although we chose that as our hyperparameter value. To generate one
synthetic sample, OMiSO selects one of the experimentally observed pre-uStim states Ž

pre
i,k from the

stimulation-response model training data as Ž
pre

and pairs it with a uStim pattern chosen randomly
among the 15,504 possible patterns. OMiSO then uses the paired pre-uStim state and uStim pattern
to generate a post-uStim state prediction that can be used as the target žTarg. With these synthetic
data, OMiSO trains a stimulation-response inverse model πθ(ŝ|žTarg, Ž

Pre
) by minimizing the binary

cross entropy loss between the chosen uStim patterns s and the predicted patterns ŝ with respect to θ:

LBCE = −
∑u

v=1 [sv log(ŝv) + (1− sv) log(1− ŝv)] (10)

where s and ŝ ∈ Ru, and sv, ŝv are the vth entry of these vectors. Then the next epoch begins, until
the stopping criterion is reached.

To evaluate the inversion quality for the stopping criterion, OMiSO uses 1,000 validation samples,
which are separately generated using the R stimulation-response models. The kth validation sample
consists of a pre-uStim state Ž

Pre
k ∈ Rl×t, a uStim pattern sk ∈ Ru, and the target state žTarg ∈ Rl.

OMiSO first obtains the predicted stimulation suitability of each candidate electrode using the inverse
model, πθ(ŝk|žTarg, Ž

Pre
k ). It then chooses nStim electrodes with the highest predicted suitabilities

in ŝk. Using a grid format representation of the selected uStim pattern Ŝk ∈ Rh×v (locations of
the stimulated electrodes indicated with a 1, and all other electrodes have a value of 0), OMiSO
obtains the predicted post-uStim state using the stimulation-response model f(ẑPost

k |Ŝk, Ž
Pre
k ) where

ẑPost
k ∈ Rl. Finally, OMiSO evaluates the error between the predicted and target states across all

validation samples:
Linv = 1

1000

∑1000
k=1 ||žTarg − ẑPost

k ||1 (11)
If the inversion with the synthetic data were perfect, this error would equal 0. OMiSO performs the
validation every 100 epochs (instead of every epoch) to reduce the computational cost of inverse
model training. This validation frequency is a tunable hyperparameter that can be adjusted based
on the available computing resources. To avoid overfitting, OMiSO stops the inverse model training
when Eq. 11 shows no improvement for 20 consecutive validation performance evaluations.

S6 Summary of experimental sessions

We conducted 31 brain stimulation experimental sessions in total. Of these sessions, 7 sessions were
used for offline analyses (“Offline analysis sessions”), 10 sessions with randomly selected uStim
patterns were used to train the stimulation-response model and the stimulation-response inverse
model (“Training sessions”), and 14 sessions were used to test the performance of different methods
(“Test sessions”). Among the 14 test sessions, 6 of them were obtained by running 2 test sessions per
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day for 3 days. The table below summarizes the number of sessions used for each result reported in
the manuscript.

Figure Offline analysis sessions Training sessions Test sessions

Fig. 2A 1 session - -
Fig. 2B 6 sessions - -
Fig. 3, Fig. 4 - 10 sessions 14 session

S7 Simulations to determine the hyperparameter values for the brain
stimulation experiments

To set the values of the hyperparameters for the adaptive brain stimulation experiments (listed in the
Adaptive model update section in Section S1), we ran simulations by using the R trained stimulation-
response models (Section 2.3) and the stimulation-response inverse model (Section 2.4). In each
simulation, we generated 100 uStim trials with the trained stimulation-response inverse model and
one of the R stimulation-response models. We set the target brain state to be one of the target states to
be used in the subsequent experiment. On each trial, the simulator randomly sampled one pre-uStim
state from the R experimental session datasets and passed it to the stimulation-response inverse
model together with the target state. The stimulation-response inverse model returned the stimulation
suitabilities for each candidate electrode, and we chose the uStim pattern to “apply” using the method
described in Section 2.5. The sampled pre-uStim state and selected uStim pattern were then passed
to the stimulation-response model to obtain the post-uStim state. Finally, the pre-uStim state, the
selected uStim pattern, and the post-uStim state were accumulated to perform the PPO-inspired
adaptive update of the stimulation-response inverse model, as described in Section 2.6.

For each combination of hyperparameters, we performed R× T simulations (where each of the R
stimulation-response models was used to produce post-uStim states for each of T different target
states) and computed the average euclidian distance in l-dimensional space between the predicted
post-uStim state and the target state over all simulations. We performed Bayesian Optimization
(using Optuna [26]) with this error objective and selected the hyperparameter values that achieved
the smallest error. The ranges of hyperparameter values explored during Bayesian Optimization are
summarized in the table below.

Method Parameter Description Value

uStim pattern selection εinit Initial value of εi,k 0.3-0.7
εfloor Minimum value of εi,k 0.05-0.15
γ Discount factor of εi,k 0.95-0.99

Adaptive model update εclip Clip value of model update 0.1-0.3
b Baseline for advantage computation 0.5-1.5
- Batch size 3-10
- Learning rate 0.00001-0.001

S8 Code availability

Python code for OMiSO is available on GitHub at https://github.com/yuumii-san/OMiSO.git.
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Figure S1: Model architectures. (A) Stimulation-response model architecture, uStim pattern only
[10] (Fig. 2B). (B) Stimulation-response model architecture, uStim pattern + Pre-stim5 (MLP)
(Fig. 2B). (C) Stimulation-response model architecture, uStim pattern + Pre-stim5 (LSTM) (Fig. 2B).
(D) Stimulation-response inverse model architecture, MLP (Fig. 3, Fig. 4). The model architectures
(A)-(C) involve the same CNN to process the uStim pattern input.
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Figure S2: Candidate uStim electrodes. The orange cells indicate the locations of the 20 candidate
electrodes chosen based on the criteria described in Section S3.

Figure S3: Pre-uStim states and subsequent post-uStim states induced by example uStim
patterns. Pre-uStim and post-uStim states with additional uStim patterns tested during the same
experimental sessions as Fig. 2A. The top row shows pre-uStim states, and the bottom row shows
post-uStim states. The left-most column shows brain states from no-uStim trials, while the remaining
three columns show brain states from uStim trials with three distinct uStim patterns. Each uStim
pattern is represented as a grid, with the stimulated electrodes indicated by orange cells. Same
conventions as in Fig. 2A.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide a summary of the current literature and gap, and explain the
contributions of our work in the abstract and introduction. Our claims are supported by the
experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in the third paragraph of the discussion
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose the details of the proposed framework, experiments, data analyses,
and modeling approaches needed to reproduce the main results. We also release the code
and sample data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We publish the code and sample data needed to reproduce the tested framework
on github.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and test details are provided in Section 2.3 and Section S4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We include error bars in all figures and provide the outcomes of statistical tests
for the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details for the compute resources in Section S4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed the NeurIPS Code of Ethics and our work is in compliance. All
experimental procedures involved in this work were conducted in accordance with the United
States National Research Council’s Guide for the Care and Use of Laboratory Animals, and
were approved by the Institutional Animal Care and Use Committee of Carnegie Mellon
University.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential societal impacts in the last paragraph of the discussion
section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The data used in this study do not pose a risk for release as it was not acquired
from human subjects and does not contain images or identifiable information.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all assets used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The methods section provides the detail necessary to reproduce the proposed
framework. We also publish the code and sample data on github.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core components of this study do not involve the use of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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