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Abstract

The physical sciences are replete with dynamical systems that require the resolution
of a wide range of length and time scales. This presents significant computational
challenges since direct numerical simulation requires discretization at the finest
relevant scales, leading to a high-dimensional state space. In this work, we pro-
pose an approach to learn stochastic multiscale models in the form of stochastic
differential equations directly from observational data. Drawing inspiration from
physics-based multiscale modeling approaches, we resolve the macroscale state
on a coarse mesh while introducing a microscale latent state to explicitly model
unresolved dynamics. We learn the parameters of the multiscale model using a
simulator-free amortized variational inference method with a Product of Experts
likelihood that enforces scale separation. We present detailed numerical studies
to demonstrate that our learned multiscale models achieve superior predictive ac-
curacy compared to under-resolved direct numerical simulation and closure-type
models at equivalent resolution, as well as reduced-order modeling approaches.

1 Introduction

Multiscale phenomena are ubiquitous in nature, and broadly fall under two categories. The first
are systems with large-scale and small-scale regimes, each of which may follow different laws but
interact with each other at some interface, so simulation requires one to model both regimes. Such
systems are common in materials science [1] and biology [2]. The second, which we focus on in
this work, are systems governed by partial differential equations (PDEs) that require one to resolve a
wide range of length and time scales to make accurate predictions. A canonical example is weather
prediction. Modeling the atmosphere requires resolving phenomena from cloud microphysics (< 1m)
up to planetary waves (5000 km) [3]. In such scenarios, direct numerical simulation (DNS) of the
governing equations on a grid that resolves the smallest scale of interest is computationally infeasible.

The computational intractability of fully-resolved simulations necessitates working with coarsened
representations. This introduces a fundamental multiscale separation between resolved and sub-
grid-scale dynamics. To “close” the system, the effect of the sub-grid-scale dynamics on the
resolved dynamics must be modeled. This approach, known as closure modeling [4, 5], has emerged
independently across multiple fields. Large-eddy simulation (LES) in fluid dynamics filters out
small-scale phenomena and closes the Navier-Stokes equations with a sub-grid-scale model [6].
Similarly, in coarse-grained molecular dynamics, atoms are grouped into larger "beads" to reduce
degrees of freedom [7]. Recently, machine learning techniques have been used to infer closure models
for climate models [8], coarse-grained molecular dynamics [9], and turbulence [10, 11].

We propose a novel framework for learning stochastic multiscale dynamics directly from observational
data. Our approach introduces a latent variable model that explicitly decomposes the system state into
macroscale (ζ) and microscale (η) components, whose dynamics are governed by a learned coupled
system of stochastic differential equations (SDEs). This structure captures complex inter-scale
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Figure 1: Overview of our multiscale modeling approach.

interactions and propagates uncertainty naturally; see Figure 1 for a graphical overview. Our main
contributions are:

• A novel probabilistic multiscale formulation: We introduce a latent variable framework for
stochastic multiscale modeling, which involves learning a system of coupled SDEs governing
distinct, interacting macroscale and microscale latent states directly from data.

• Multiscale likelihood for enforcing scale separation: We enforce explicit scale separation by
formulating a Product of Experts (PoE) multiscale likelihood that ensures macroscale features
dominate predictions while microscale components provide only necessary corrections.

• Efficient learning and empirical validation: We enable efficient training of our multiscale
stochastic model using an amortized, simulator-free variational inference scheme [12]. Numerical
studies on challenging PDE systems demonstrate that explicitly modeling microscale dynamics
yields superior predictive accuracy compared to under-resolved DNS and closure-type models at
equivalent resolution, as well as reduced-order modeling approaches.

Related work Reduced-order modeling (ROM) methods reduce the computational cost of sim-
ulating complex systems through dimensionality reduction of the state space [14]. Traditional
ROM methods employ linear projection [15, 16, 17, 18]; however, the inherent limitations of linear
subspaces for systems with slowly decaying Kolmogorov n-width have led to the development of
nonlinear manifold methods [19, 20, 21, 22, 23]. ROM methods struggle with multiscale systems [24],
motivating specialized closure models [25, 26]. It is worth noting that standard ROM methods learn
a low-dimensional, global latent representations of the dynamics. In contrast, our approach learns
a spatially-distributed representation on a coarse grid, positioning it as a stochastic coarse-grained
modeling framework more akin to paradigms such as LES.

There is a wide body of literature on data-driven closure modeling; see [4, 5] for a review. The Mori-
Zwanzig (MZ) formalism provides a powerful theoretical framework for deriving coarse-grained
models of dynamical systems [13, 27, 28], showing that the effects of unresolved scales manifest
as memory (non-Markovian) terms in the evolution of the resolved variables. The MZ framework
has motivated various approaches for closure modeling [29, 4, 30, 31, 32]. More recently, Boral et
al. [11] proposed a neural SDE-based approach for turbulence closure modeling. This approach,
motivated by ideal LES, enables probabilistic closure modeling but requires running the coarse solver
in the loop during both training and inference.

Our approach fundamentally differs from data-driven closure modeling, which typically augments
the macroscale dynamics with a learned correction that implicitly accounts for the sub-grid effects.
In contrast, we explicitly model the coupled dynamics of macroscale and microscale latent states,
providing a Markovian representation capable of capturing the non-Markovian memory effects arising
from coarse-graining (see Appendix B). Moreover, our approach enables prediction at full resolution
through a decoder, whereas closure models are inherently limited to coarse-scale predictions.

Recent work in weather forecasting has employed hierarchical graph neural networks operating
on multiple mesh resolutions to learn auto-regressive models [33, 34]. In contrast, our multiscale
approach learns continuous-time coupled SDEs governing macroscale and microscale dynamics,
performing test-time simulations only on a single coarse grid and using high-resolution grids solely
as decoding targets.
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2 Problem setting

We consider dynamical systems governed by PDEs on a spatial domain Ω ⊂ Rd, where d ∈ N
is the spatial dimension. We denote the PDE solution by the spatio-temporal vector field u ∈
U(Ω × [t0, T ]; Rdu), where U denotes an appropriate function space (typically a Sobolev space)
endowed with a suitable norm.

To learn a multiscale model from data, we work with a discretized representation of u on a spatio-
temporal grid. We introduce a spatial projection operator, Ps

n : U(Ω; Rdu) → Rndu , that maps a
vector field to its values on a spatial grid with n points. Using this, we define the fully-resolved
state y(t) ∈ Rny by projecting the PDE solution onto a fine spatial grid with nf points: y(t) :=
Ps
nf
(u(·, t)), where the state dimension is ny = nfdu. This grid is assumed to be sufficiently

fine to faithfully represent the dynamics and thus serves as our ground-truth. The training dataset
Y := {ti, yi}nt

i=1 comprises noisy observations of the fully-resolved state at nt time steps, i.e.,

yi := y(ti) + ϵi, ϵi ∼ N (ϵi | 0, σ2I), for i = 1, 2, . . . , nt, (1)

where ϵi represents zero-mean i.i.d. Gaussian noise with covariance σ2I , and ti denotes the observa-
tion time-stamp. We assume access to this dataset without knowledge of the underlying governing
equations.

Our objective is to infer a stochastic, continuous-time, latent variable model from the data. The
stochastic framework is essential for capturing both potential inherent randomness in the underlying
physics and uncertainty introduced by modeling approximations and data limitations. Next, we
present our approach for learning a multiscale SDE model for the dynamics of y by decomposing it
into a macroscale state on a coarse grid and a microscale state representing sub-grid-scale features.

3 Multiscale framework

We introduce our stochastic multiscale modeling framework that addresses the challenge of learning
the dynamics of the fully-resolved state y(t) ∈ Rny from the observational data Y . Our main idea is
to represent the high-dimensional state y through a lower-dimensional latent state, z(t) ∈ Rnz , that
explicitly separates the macroscale state denoted by ζ(t) ∈ Rnζ 1 and the microscale state denoted by
η(t) ∈ Rnη . The temporal evolution of ζ and η is governed by a learned system of coupled SDEs,
capturing both deterministic dynamics and inherent stochasticity arising from scale separation and
model reduction.

Our framework is composed of three core components with learnable parameters that we denote by
θ: a probabilistic encoder that maps the observations of y to the latent state z = (ζ, η), a system of
coupled SDEs governing the dynamics of z, and a probabilistic decoder for mapping z back to the
observation space to make predictions. The following sections detail each of these components.

Probabilistic scale separation (encoder) Inspired by classical multiscale methods like LES, we
decompose the fully-resolved state y into a large-scale component y and a residual small-scale
component ỹ = y − y. In contrast to classical deterministic approaches, we define a probabilistic
encoder pθ(z | y) that explicitly models the uncertainty in identifying and compressing scale-separated
features from the high-dimensional state. We parameterize the mean of this conditional distribution
using the operators defined below that are analogous to traditional multiscale analysis:

1. Smoothing Operator Sθ : Rny → Rny serves as a low-pass filter that extracts the large-scale
component, y := Sθ(y); for example, a fixed Gaussian filter or a learned convolutional network.

2. Residual Operator S⊥
θ defines the residual component, ỹ := S⊥

θ (y) = y − y, which contains
small-scale features.

3. Restriction Operator (Macroscale Encoder) Eζ
θ : Rny → Rnζ maps the smoothed component,

ȳ, to the low-dimensional macroscale latent space, ζ, with E[ζ | y] := Eζ
θ (Sθ(y)); for example,

coarse sampling or a more complex learned mapping.
1 While we denote ζ as a vector for notational simplicity, it represents field variables on a coarse spatial grid.

This structure informs the parameterization of the drift and diffusion functions, which can be modeled using
spatially-aware architectures such as graph neural networks that are capable of handling both regular and
irregular grids.

3



4. Microscale Encoder Eη
θ : Rny → Rnη compresses the residual into the compact microscale state,

η, with E[η | y] := Eη
θ (S⊥

θ (y)); for example, a learned nonlinear mapping that efficiently captures
complex small-scale structures.

We model the conditional distribution of z given the fully-resolved state as a Gaussian, i.e., pθ(z | y) =
N (z |µz

θ(y),Σ
z
θ). The mean µz

θ(y) = E[z | y] = [Eζ
θ (Sθ(y))

T , Eη
θ (S⊥

θ (y))T ]T is constructed from
the outputs of the macroscale and microscale encoders, and the covariance matrix Σz

θ ∈ Rnz×nz is a
learned parameter representing encoding uncertainty.

Latent stochastic dynamics We model the evolution of the macroscale state, ζ , and the microscale
state, η, using a coupled system of Itô SDEs:

d

[
ζ
η

]
=

[
fθ(ζ, ϕ(η))
gθ(η, ψ(ζ))

]
dt+

[
Lζζ(t) Lζη(t)
Lηζ(t) Lηη(t)

] [
dβζ
dβη

]
, (2)

with initial conditions ζ(t0) ∼ pθ(ζ | y(t0)), η(t0) ∼ pθ(η | y(t0)) defined by the encoder at time t0,
i.e., pθ(z(t0) | y(t0)). The learned drift functions fθ : Rnζ×Rn∗

η → Rnζ and gθ : Rnη×Rn∗
ζ → Rnη

govern the evolution of the macroscale and microscale states, respectively.2 These drift functions
depend on coupling functions ϕ : Rnη → Rn∗

η and ψ : Rnζ → Rn∗
ζ that mediate inter-scale

interactions. The dispersion block matrices (Lζζ , Lζη, Lηζ , Lηη) modulate the influence of the
(nζ + nη)-dimensional Wiener process β with components βζ and βη, capturing both inherent
randomness and uncertainty from unresolved scales.

More compactly, we can write the coupled multiscale latent SDE as

dz = γθ(z)dt+ Lθ(t)dβ, z(t0) ∼ pθ(z(t0) | y(t0)), (3)

where γθ(z) = [fθ(ζ, ϕ(η))
T , gθ(η, ψ(ζ))

T ]T is the concatenated drift, and Lθ(t) ∈ Rnz×nz is the
dispersion matrix composed of the blocks Lζζ , Lζη, Lηζ , Lηη.3 The coupled SDE in (3) defines the
prior dynamics on the latent trajectory. The solution to this SDE, initialized from the encoded state at
t0, yields the prior predictive distribution pθ(z(t) | y(t0)) for t > t0.

y yỹ
SθS⊥

θ

ζη

Eζ
θEη

θ

+
Dζ

θDη
θ

Figure 2: Relationships between multi-
scale states and operators. Sθ: smooth-
ing operator; Eζ

θ : macroscale encoder;
Dζ

θ : macroscale decoder; S⊥
θ : residual

operator; Eη
θ : microscale encoder; Dη

θ :
microscale decoder.

Probabilistic state reconstruction (decoder) In order to
make predictions, we require a decoder, pθ(y | z), to map
the latent state dynamics governed by the coupled system of
SDEs in (3) to the observation space Rny . Towards this end,
we introduce macroscale and microscale decoders below:

1. Prolongation Operator (Macroscale Decoder) Dζ
θ :

Rnζ → Rny maps the macroscale state ζ to the fine
grid.

2. Microscale Decoder Dη
θ : Rnη → Rny maps the com-

pressed microscale state η to the fine grid.

Later in Section 4.1, we formulate a PoE likelihood to
enforce scale separation that will establish the specific func-
tional form of the probabilistic decoder pθ(y | z). The pre-
dictive distribution of the learned multiscale model that
follows from the proposed multiscale likelihood is presented in Section 4.4. We summarize the
relationship between all operators introduced in this section in Figure 2.

Remarks on closure models and implicit-scale models Traditional closure modeling aims to
derive equations governing only the resolved (macroscale) dynamics by parameterizing the effect of
unresolved (microscale) dynamics purely in terms of resolved state variables [4, 5]. At first glance,
2 More generally, the drift functions can be parametrized as fθ(ζ, ϕ(η), χ(t)) and gθ(η, ψ(ζ), χ(t)) (e.g.

neural networks or physics-based parametrizations) with χ(t) denoting a time encoding. In our imple-
mentation, we use a neural network architecture for fθ that respects the spatial locality of the coarse grid
variables in ζ; see Appendix A for details.

3 The latent SDE model implicitly assumes Markovian dynamics; we discuss the validity of this assumption
in Appendix B.
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it may appear that closure modeling is a special case of our framework obtained by setting nη = 0,
which reduces the latent state to the macroscale state (z = ζ) and reconstruction involves only the
prolongation operator, with y predicted solely from ζ . However, the fundamental objective in closure
modeling is to ensure that the predicted coarse state ζ (or Dζ

θ(ζ)) matches the filtered state y, not
the original observation y. In contrast, our framework, even when nη = 0, aims to predict the
fully-resolved state y. We therefore refer to the nη = 0 case as an implicit-scale model to distinguish
it from conventional approaches. It implicitly represents all scales solely through ζ and its associated
decoder. Our multiscale framework (with nη > 0) explicitly models sub-grid scales via η, aiming for
improved accuracy in representing the dynamics of the fully-resolved state y.

4 Multiscale variational inference

We now present a simulator-free stochastic variational inference (SVI) approach to learn the parame-
ters of the multiscale SDE model introduced in the previous section. Our approach involves three key
ingredients: a multiscale PoE likelihood that enforces scale separation, variational approximations
for the latent state z and model parameters θ, and a reparametrized evidence lower bound (ELBO)
that can be maximized without an SDE solver in the optimization loop.

4.1 Multiscale likelihood

To explicitly enforce separation between macroscale and microscale states, we employ a PoE per-
spective [35] to define the likelihood of observing y given the latent states ζ and η as:

pθ(y | z) = pθ(y | ζ, η) =
1

Z(ζ, η)
p1(y | ζ) p2(y −Dζ

θ(ζ) | η), (4)

where Z(ζ, η) =
∫
p1(y

′ | ζ) p2(y′ −Dζ
θ(ζ) | η)dy′ denotes the normalization constant.

The term p1(y | ζ) in (4) can be viewed as the “macroscale expert” that evaluates how well the
macroscale state explains the full observation y, while p2(y−Dζ

θ(ζ) | η) functions as the “microscale
expert” assessing how well the microscale state explains the residual y −Dζ

θ(ζ) after accounting for
the macroscale prediction. This PoE formulation establishes a natural hierarchy where macroscale
features are modeled first, with microscale features accounting only for unexplained residuals. The
normalization constant reinforces scale separation by penalizing large microscale contributions,
thereby ensuring that the microscale state does not dominate the overall prediction unless necessary.

For Gaussian experts with covariance matrices Σζ
θ and Ση

θ , i.e., p1(y | ζ) = N (y | Dζ
θ(ζ),Σ

ζ
θ) and

p2(y−Dζ
θ(ζ) | η) = N (y−Dζ

θ(ζ) | D
η
θ (η),Σ

η
θ), the log-likelihood simplifies to (omitting constants):

log pθ(y | ζ, η) = −1

2

(
||r(ζ)||2

Sζ
θ

+ ||r(ζ)−Dη
θ (η)||2Sη

θ
− ||Dη

θ (η)||2Λ
)
+

1

2
log

∣∣∣Sζ
θ + Sη

θ

∣∣∣ , (5)

where r(ζ) = y − Dζ
θ(ζ) is the residual after accounting for macroscale prediction, Sζ

θ = (Σζ
θ)

−1

and Sη
θ = (Ση

θ)
−1 are precision matrices, and Λ = Sη

θ (S
η
θ + Sζ

θ )
−1Sζ

θ . We use the notation
||x||2A = xTAx to denote the squared norm induced by the inner product (x, y)A = xTAy for
x, y ∈ Rn and symmetric positive-definite (SPD) matrix A ∈ Rn×n.

Expanding the terms in (5) and rearranging yields (see Appendix C for details):

log pθ(y | ζ, η) = −1

2
||r(ζ)||2

(Sζ
θ+Sη

θ )
+ (r(ζ),Dη

θ (η))Sη
θ
− 1

2
||Dη

θ (η)||2Λ′ +
1

2
log

∣∣∣Sζ
θ + Sη

θ

∣∣∣ , (6)

where Λ′ = Sη
θ (S

η
θ + Sζ

θ )
−1Sη

θ is an SPD matrix. It follows from the preceding equation that
maximizing the proposed multiscale log-likelihood produces four key effects:

1. Minimizes the (Sζ
θ +Sη

θ )−norm of the residual r(ζ), incentivizing the macroscale state to explain
as much of the full observation as possible.

2. Maximizes the Sη
θ -inner product between the residual r(ζ) and the decoded microscale state

Dη
θ (η), correlating the microscale prediction with the macroscale residual.

3. Minimizes the Λ′−norm of the decoded microscale state Dη
θ (η), serving as an adaptive regularizer

that keeps microscale contributions small unless necessary to explain the residual.
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4. Maximizes the precision matrices Sζ
θ and Sη

θ , which is equivalent to minimizing Σζ
θ and Ση

θ .

In summary, the structure of the proposed multiscale log-likelihood ensures that macroscale features
dominate the overall predictions while microscale components provide only necessary corrections.
This can be viewed as embodying Occam’s razor at the microscale level and maintaining a clear
multiscale hierarchy. This regularization effect emerges naturally from the PoE formulation and helps
prevent overfitting to high-frequency noise in the observations.

4.2 Variational approximation and priors

Our multiscale model requires approximating the posterior distribution of the latent state z, whose
prior dynamics are governed by (2). We specify a variational approximation for the posterior of the
latent state, qφ(z | t), whose sample paths follow the linear SDE:

dz = (−Aφ(t)z + bφ(t) ) dt+ L(t)dβ, z(t0) ∼ N (µt0 ,Σt0). (7)

where Aφ(t) ∈ Rnz×nz and bφ(t) ∈ Rnz are parametrized in terms of the learnable variational
parameters denoted by φ, while µt0 ∈ Rnz and Σt0 ∈ Rnz×nz represent the mean and covariance
derived from our probabilistic encoder pθ(z | y) for a given initial condition y(t0). It is worth noting
that this linear SDE is used only during training. At test time, predictions are made by solving the
learned nonlinear system of SDEs defined in (2).

For model parameters θ, we can either adopt a Bayesian approach or seek point estimates. In the
former case, we specify a prior distribution p(θ), then construct a variational distribution qφ(θ) to
approximate its posterior. Our framework can readily incorporate interpretability constraints – for
example, by representing drift functions as linear combinations of basis functions with sparsity-
inducing priors on their coefficients.

4.3 Evidence lower bound

To train our multiscale model, we maximize the ELBO below, which we derive following [36, 37].

L(φ) =
nt∑

i=1

E
zi,θ

[log pθ (yi | zi)]−
1

2

∫ T

t0

E
z(t),θ

∥rθ,φ(z(t), t)∥2C(t) dt−DKL (qφ(θ) ∥ p(θ)) , (8)

where θ ∼ qφ(θ), zi ∼ qφ(z | ti) and z(t) ∼ qφ(z | t). The first term is the expected log-likelihood
of the dataset Y given the latent states, incorporating the multiscale likelihood from Section 4.1. The
second term is the KL divergence between the solutions of the nonlinear SDE in Equation (2) and our
linear variational SDE (7), with rθ,φ(z(t), t) = −Aφ(t)z(t) + bφ(t) − γθ(z(t)) denoting the drift
residual and C(t) = (Lθ(t)L

T
θ (t))

−1. The third term is the KL divergence between our variational
distribution over model parameters and their prior. For conciseness, we present the ELBO for a single
time-series trajectory; the extension to multiple-trajectory datasets is discussed in Appendix D.

To efficiently maximize the ELBO without requiring a forward SDE solver in the training loop, we
leverage the reparameterization trick for SDEs from [37] (details in Appendix E).

4.4 Computing the posterior predictive distribution

After training our multiscale model, we generate probabilistic predictions by computing the posterior
predictive distribution pθ(y(t) | y(t0)) given an initial observation y(t0). This distribution accounts
for all sources of uncertainty captured by our model.

The prediction process involves three stages. In the first stage, we map the initial observation
to a distribution over possible latent states, i.e., pθ(z(t0) | y(t0)) = N (z(t0) |µt0 ,Σt0), where
µt0 = [Eζ

θ (Sθ(y(t0)))
T , Eη

θ (S⊥
θ (y(t0)))

T ]T and Σt0 = Σz
θ . In the second stage, we propagate this

initial distribution through our learned latent SDE, dz = γθ(z(s))ds + Lθ(s)dβ(s), s ∈ [t0, t],
yielding the non-Gaussian distribution pθ(z(t) | y(t0)). Finally, we map the latent distribution to the
observation space using our PoE likelihood. This step yields a Gaussian conditional distribution for y
given z, whose mean depends on an adaptively weighted contribution of the decoded microscale state
(see Appendix F for a detailed discussion):

pθ(y | z) = N (y |µy(z),Σy), where µy(z) = Dζ
θ(ζ) + ΣyS

η
θ D

η
θ (η) and Σy = (Sζ

θ +S
η
θ )

−1. (9)
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Table 1: Comparison of error statistics obtained using different models for all test cases.

Error mean ± std. dev. on test set

Model type Wave 1D KdV 1D Cylinder 2D SWE 2D
(nζ = 20) (nζ = 20) (nζ = 512) (nζ = 64)

Coarse DNS 1.381± 0.382 0.523± 0.196 0.130± 0.040 0.861± 0.190

DMD 0.492± 0.066 0.163± 0.046 0.016± 0.006 0.531± 0.227

POD-SINDy 0.469± 0.054 0.057± 0.028 0.051± 0.024 0.535± 0.210

Implicit scale 0.565± 0.116 0.324± 0.078 0.063± 0.005 0.426± 0.099

Our approach
nη = 1 0.517± 0.095 0.197± 0.146 0.038± 0.004 0.543± 0.360
nη = 2 0.210± 0.095 0.077± 0.038 0.015± 0.003 0.202± 0.084
nη = 3 0.105± 0.047 0.059± 0.030 0.011± 0.001 0.190± 0.075
nη = 4 0.089± 0.035 0.062± 0.029 0.011± 0.002 0.163± 0.056
nη = 5 0.079± 0.031 0.042± 0.017 0.009± 0.001 0.152± 0.047

The posterior predictive distribution is then obtained by marginalization:

pθ(y(t) | y(t0)) =
∫

N (y(t) |µy(z(t)),Σy) pθ(z(t) | y(t0)) dz(t). (10)

Since this integral is analytically intractable, we use Monte Carlo sampling leading to the Gaus-
sian mixture approximation: pθ(y(t) | y(t0)) ≈ (1/N)

∑N
i=1 N (y(t) |µy(zi(t)), Σy), where zi(t)

denotes the state at time t of the ith sample trajectory, generated by integrating the learned SDE (3)
starting from an initial condition zi(t0) ∼ N (µt0 ,Σt0). We provide further details on the prediction
procedure in Appendix F.

5 Results and discussion

We evaluate our multiscale framework on four systems exhibiting slowly-decaying Kolmogorov
n-width and energy cascade between scales: (1) the 1D advecting wave with varying initial conditions,
(2) the 1D Korteweg-de Vries (KdV) equation with varying initial conditions, (3) a 2D Von Kármán
vortex street, and (4) a radial dam break modeled with the shallow water equations (SWE) with varying
initial conditions.4 Setup/training details including an extra test case are provided in Appendix H.

We adopt a hierarchical training strategy for our multiscale models, varying nη ∈ {0, . . . , 5}. The
implicit scale model was trained first. Its learned parameters were then used to initialize the training
of the multiscale model with nη = 1. This process was repeated, with each trained model initializing
the next in the sequence, incrementing nη by one. For implicit scale and multiscale models, offline
training cost therefore scales linearly with nη; for the four test cases, the training time in minutes is
(1) 46 + 51nη , (2) 46 + 50nη , (3) 53 + 64nη , and (4) 67 + 79nη .

We compare our multiscale models against four baselines: a coarse DNS, a DMD linear system,
a reduced-order model formed over a POD basis with latent dynamics learned by SINDy, and an
implicit scale model (nη = 0). The number of gridpoints in the coarse DNS, the rank of the DMD
model, and the latent state dimension in the POD-SINDy model are chosen to be equal to the total
latent state dimension of our best-performing multiscale model (i.e., nζ + 5). Further details are
provided in Appendix G.

Performance is evaluated using the normalized error metric ϵ(ti) = ∥yi − ŷ(ti)∥/∥yi∥, where yi is
the observation at time ti and ŷ(ti) is the mean prediction. All experiments were conducted on a
system with 24 CPU cores, 128GB RAM, and an NVIDIA RTX4090 GPU. Results across all test
cases are summarized in Table 1, showing the mean and standard deviation of the error metric ϵ on
each test set. Additional visualizations of the results are provided in Appendix I.

4 Code for reproducing our results is available: https://github.com/ailersic/multiscale-visde.
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Figure 3: Advecting wave (top row) and KdV equation (bottom row): scale separation with nη = 5,
shown at t = 0.2 (wave) and t = 1 (KdV). The columns are (A) observation from dataset, (B)
reconstructed full state, (C) prolonged macroscale state, and (D) decoded microscale state.

One-dimensional advecting wave We test on the one-dimensional advection equation with periodic
boundary conditions, i.e., ut = −cux, where c = 1, x ∈ [0, 1], and t ∈ [0, 1] . The initial condition
is exp(−(x/w)2), where w ∼ U [0.01, 0.02]. We generate training trajectories on a fine spatial grid
with spacing 0.001 and time-step 0.001 (nt = 1001 and ny = 1000), which are then corrupted by
zero-mean Gaussian noise with standard deviation 0.001. The test set covers t ∈ [0, 0.2]. The training
dataset comprises 20 trajectories, with 5 each for validation and testing. For our multiscale models,
we use a coarse macroscale mesh with only nζ = 20 points.

On this classic problem, where linear projection methods struggle, the ability to explicitly model
sub-grid features proves crucial. As shown in Table 1, our multiscale model with nη = 5 achieves an
83% error reduction compared to the best baseline (POD-SINDy), with mean error dropping from
0.469 to 0.079. The multiscale models outperform all baselines on this advection-dominated problem.
Figure 3 illustrates the learned scale separation, showing how the microscale component η captures
sub-grid features that are lost in the coarse macroscale representation.

One-dimensional Korteweg-de Vries equation The second test problem is the one-dimensional
Korteweg-de Vries (KdV) equation with periodic boundary conditions: ut + uux + νuxxx = 0,
where x ∈ [0, 10] and ν = 0.02. The initial condition is a cos(πx) exp(−(x − 7.5)2/s2), where
a ∼ N (2, 0.01) and s ∼ N (1, 0.01). We generate training trajectories on a spatial grid with spacing
0.01 and time-step 0.001 (nt = 1001, ny = 1000), which are then corrupted by Gaussian noise with
standard deviation 0.01. The training dataset comprises 10 trajectories, with 5 each for validation and
testing. Our multiscale models use a coarse macroscale mesh with only nζ = 20 points.

Table 1 shows that our multiscale models dramatically outperform all baselines. The best multiscale
model (nη = 5) achieves 87% error reduction compared to the implicit-scale baseline, with mean
error dropping from 0.324 to 0.042. Among reduced-order methods, POD-SINDy performs best but
still has 36% higher error than our approach.

Figure 3 demonstrates scale separation in the KdV system. The coarse macroscale mesh cannot
resolve the wave structure, making the microscale contribution critical. Interestingly, the macroscale
state contains apparent small-scale features beyond what simple smoothing would produce. This
arises from our learned convolution kernel, which differs from a standard Gaussian filter as it attempts
to approximate sub-grid-scale features (see Appendix J for details).

Two-dimensional flow over a cylinder Our next test case examines a 2D Von Kármán vortex street
at Re = 160 from Günther et al. [38]. This dataset consists of a nondimensionalized velocity field
(du = 2) developing from a zero initial condition. The spatial domain is truncated to [−0.5, 3.5]×
[−0.5, 0.5] and sampled on a fine 320 × 80 grid, resulting in a high-dimensional state (ny =
2 · 320 · 80 = 51200). The cylinder is modeled as a region of zero velocity. The time domain spans
[0, 15] with 1501 time steps, which we partition into training [0, 13], validation (13, 14], and test
(14, 15] intervals. Our multiscale models use a coarse 32× 8 macroscale grid (nζ = 2 · 32 · 8 = 512).

Table 1 demonstrates that our multiscale models significantly outperform the implicit-scale baseline,
with the best model (nη = 5) reducing error by 86%. Figure 4 reveals how the implicit-scale model
fails to resolve the intricate vortex structures in the cylinder wake, whereas the multiscale model
captures these flow patterns accurately. Figure 5 provides further insight into the scale separation
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Observation Coarse DNS DMD POD-SINDy Implicit scale Ours (nη = 5)

Figure 4: Cylinder flow: prediction comparison at t = 15 in the test interval. The x-component of
velocity is shown here, zoomed in on the cylinder.
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Figure 5: Cylinder flow: scale separation with nη = 5, shown at t = 15, zoomed in on the cylinder.
The columns are (A) observation from dataset, (B) reconstructed full state, (C) prolonged macroscale
state, and (D) decoded microscale state.

mechanism, showing how the microscale state encodes the unresolved vortex structures. Notably,
as vortices grow larger toward the right of the domain, the microscale contribution diminishes,
demonstrating our model’s ability to adaptively allocate representational capacity across scales based
on the local physics. The periodic dynamics and relatively fast-decaying Kolmogorov n-width in this
problem allows DMD to achieve competitive performance (error 0.016), though our multiscale model
still achieves 44% lower error.

Two-dimensional shallow water equations Our final test case models a radial dam break using
the shallow water equations, from the PDEBench dataset [39]. The spatial domain is [−2.5, 2.5]2

discretized using a 128 × 128 grid, resulting in a high-dimensional state (ny = 16384). The fluid
elevation field evolves from an initial condition of height 2 within radius r ∼ U [0.3, 0.7] of the origin
and height 1 elsewhere. The time domain spans [0, 1] with 101 time steps. We corrupt observations
with Gaussian noise (standard deviation 0.01) and partition 1000 trajectories into 900 training, 50
validation, and 50 test samples. Our multiscale models use a coarse 8× 8 macroscale grid (nζ = 64).

Table 1 shows our multiscale model (nη = 5) achieves 64% error reduction compared to the best
baseline (implicit scale), with mean error dropping from 0.426 to 0.152. The coarse DNS exhibits
particularly high error (0.861), while reduced-order methods (DMD and POD-SINDy) achieve inter-
mediate performance with error of around 0.53. This problem features slowly-decaying Kolmogorov
n-width due to significant advection and the diverse ensemble of initial conditions, explaining
the challenges faced by linear manifold methods. Figures 6 and 7 illustrate how the microscale
representation captures the complex flow patterns that enable this performance improvement.

Observation Coarse DNS DMD POD-SINDy Implicit scale Ours (nη = 5)

Figure 6: Shallow water: prediction comparison on example trajectory from test set at t = 1.

Computational cost studies Figure 8 shows the error-cost tradeoffs for online prediction across all
test cases. We use the product of number of drift function evaluations (NFE) and state dimension
as a measure of computational cost. Our multiscale models achieve favorable error-cost tradeoffs
compared to the baselines. Interestingly, increasing nη from 1 to 5 yields significant accuracy gains
without proportionally increasing inference cost. This highlights the computational efficiency of our
hierarchical structure, which adaptively engages the microscale model only as needed.
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Figure 7: Shallow water: scale separation with nη = 5, shown at t = 1. The columns are (A)
observation from dataset, (B) reconstructed full state, (C) prolonged macroscale state, and (D)
decoded microscale state.
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dimension for DNS), as a proxy for online inference cost. The cost is for a single test trajectory.

6 Concluding remarks

We have introduced a framework for learning stochastic multiscale models directly from data, where
macroscale and microscale states evolve as distinct but interacting dynamical systems. This framing
represents a fundamental departure from physics-based and data-driven closure modeling paradigms.
Instead of parameterizing the effects of unresolved scales as a corrective term dependent only on
the coarse state, we introduce a distinct, dynamical latent state for the microscale itself. This allows
our model to capture the complex, state-dependent interplay between scales that characterizes many
challenging physical systems.

The performance improvements are substantial: across all test cases, our multiscale models achieved
approximately an order of magnitude reduction in error compared to implicit-scale baselines. Our
approach also consistently outperformed reduced-order modeling methods (DMD and POD-SINDy),
with the performance gap most pronounced on problems with slowly-decaying Kolmogorov n-width.
Crucially, unlike global ROM approaches that sacrifice spatial structure, our framework maintains a
physically interpretable representation on a coarse grid while achieving superior accuracy through
the learned microscale corrections.

While our framework shows strong performance on the test problems presented, scaling to more
complex systems presents opportunities for methodological advances. While the current global
compression of η is effective, it may not be optimal for problems like 3D turbulence where sub-grid
dynamics are dominated by local structures. Future work could explore spatially-aware represen-
tations for the microscale state. Furthermore, extending the framework to chaotic systems will
require careful consideration of long-term stability in the learned dynamics. For systems with distinct
scale hierarchies, one could envision incorporating multiple nested coarse grids, creating a sequence
of latent states corresponding to different scales. While this hierarchical generalization presents
non-trivial challenges, it represents a compelling direction for future work.

Looking forward, we believe the potential applications extend to numerous fields where multiscale
phenomena present fundamental modeling challenges, including climate modeling [40], astrophysical
simulations [41], biological pattern formation [42], and neural dynamics [43]. Ultimately, our work
demonstrates a path toward building models that combine the flexibility of data-driven methods with
the physically-grounded structure of multiscale formalisms. This synthesis of machine learning and
physics is particularly promising for complex systems where first-principles closures remain elusive.
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A Macroscale drift parametrization

We parametrize the macroscale drift fθ(ζ, ϕ(η)) to respect the underlying spatial structure of the
coarse grid. This is achieved by defining the drift at each grid point as the output of a single, shared
learnable function, f̂θ, which takes as input the state values from a local neighborhood or "stencil"
around that point. This approach ensures that the learned dynamics are translation-equivariant,
meaning the same physical rule is applied everywhere on the grid.

For a one-dimensional system (with du = 1), the drift component at grid point j is defined as

[fθ(ζ, ϕ(η))]j = f̂θ (ζj−q, . . . , ζj+q, ϕ(η)) for j = 1, . . . , nζ , (11)

where q ∈ N defines the stencil half-width, and f̂θ is a neural network with weights that are shared
across all positions j. Boundary conditions are handled as appropriate for the specific test case. This
structure is a learnable, nonlinear generalization of a finite difference scheme. While this stencil-based
MLP is highly effective for regular grids, the principle of a shared, local operator can be extended to
irregular grids using architectures like graph neural networks.

It is worth noting that if the governing equations are known, fθ can be derived using a spatial
discretization method, such as a finite difference (FD) scheme, on a coarse macroscale spatial mesh.
We do not adopt this approach for two primary reasons.

Firstly, even when an FD scheme is derived directly for the coarse grid spacing (∆x)coarse, from the
original PDE, its accuracy is limited by truncation errors inherent to coarse discretizations. Standard
low-order FD stencils may provide a poor numerical approximation of the original PDE operator on
such a grid. Secondly, and more crucially, the effective governing dynamics on a coarse grid often
differ significantly in their functional form from the original PDE. The process of coarse-graining
means that unresolved subgrid-scale physics exert an influence on the resolved macroscale dynamics.
This influence can manifest as complex, state-dependent modifications to the original PDE terms or
even as entirely new effective terms (often referred to as closure terms or subgrid-scale parametriza-
tions). A simple FD discretization of the original PDE, regardless of the care taken in choosing stencil
coefficients for (∆x)coarse, is generally incapable of representing these emergent subgrid-scale effects.
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Figure 9: Sensitivity of the localized macroscale
drift f̂θ to perturbations of its stencil inputs
ζj−2, . . . , ζj+2. The drift f̂θ is from an implicit-
scale model trained on the KdV dataset.

In contrast, by learning the drift function directly
from observed trajectories, our approach allows
the model to capture these effective coarse-grid
dynamics, including any implicit subgrid-scale
contributions, without being restricted to the
structure of the original PDE. This flexibility is
key to accurately modeling multiscale systems
on a computationally tractable coarse grid.

To demonstrate that our representation enables
interpretable models of macroscale dynamics
to be learned, we perform a numerical study
on the KdV test problem from Section 5 of
the main paper. Figure 9 presents a sensitiv-
ity study of the localized drift f̂θ (from Eq. (11)
with q = 2) for an implicit-scale model. This
model, corresponding to our full framework
with microscale dimension nη = 0 (see "Re-
marks on closure models and implicit-scale mod-
els" in Section 4 of the main paper), was trained
on the KdV dataset. For each subplot in Fig-
ure 9, corresponding to an input stencil loca-
tion k ∈ {−2, . . . , 2} (since q = 2 here), the
macroscale state component ζj+k is varied over
[−1, 1], while the other ζ components within the
stencil are held at zero. The resulting learned
drift is compared to the drift term derived from a
standard FD approximation of the KdV equation
(details of the FD scheme are in Appendix H.2).
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Since the learned macroscale state ζ may have different magnitudes or units than the original physical
state due to the learned encoder, the outputs of both the learned drift and the FD-derived drift are
rescaled to a common range in Figure 9 to enable a direct visual comparison.

It can be seen from Figure 9 that the drift derived using a FD scheme, not being optimized for
the coarse grid, indeed differs from the learned drift function. The unresolved small-scale features
introduce complex effects into the coarse-grid macroscale dynamics (such as apparent nonlinearities
or memory effects) which a standard FD scheme cannot capture. These results motivate the present
approach where the drift functions are learned directly from data.

B Validity of Markovian latent dynamics

Our stochastic multiscale modeling framework models the latent dynamics z = (ζ, η) with an Itô SDE,
which assumes the process is Markovian. However, when coarse-graining complex physical systems,
the dynamics of the resolved variables often exhibit memory effects, rendering them non-Markovian.
As mentioned in the Introduction, the Mori-Zwanzig formalism [13] provides a theoretical basis for
understanding these memory effects in the context of closure modeling.

The Mori-Zwanzig formalism shows that the exact evolution of a set of resolved variables y (analogous
to our macroscale state ζ) interacting with unresolved variables ỹ can be described by a generalized
Langevin equation:

d
dt
y(t) = My(t)︸ ︷︷ ︸

Markov

−
∫ t

0

K(s)y(t− s)ds
︸ ︷︷ ︸

Memory

+ F (t)︸︷︷︸
Noise

, (12)

where My is a Markovian term that captures the resolved dynamics, F is a noise term arising from
the unresolved dynamics associated with ỹ, and the convolution integral involving the memory kernel
K(s) captures the non-Markovian feedback from the history of y(t) due to its coupling with ỹ(t).

To obtain a finite-dimensional Markovian representation suitable for learning SDE models, the
memory integral in (12) must be approximated. One common approach (e.g., [44]) is to introduce
a hierarchy of auxiliary variables w0, w1, . . . , wm to represent the memory term and its derivatives.
For instance, defining w0(t) =

∫ t

0
K(s)y(t− s)ds, the generalized Langevin equation can be recast

as part of an extended, Markovian system:

dy(t)
dt

= My(t)− w0(t) + F (t) (13)

dw0(t)

dt
= K(0)y(t) +

∫ t

0

K ′(s)y(t− s)ds, (14)

where K ′ denotes the time derivative of the kernel. This procedure can be iterated by defining w1(t)
for the integral in (14) and accounting for the dynamics of w1, which leads to

d
dt
y(t) = My(t)− w0(t) + F (t)

d
dt
w0(t) = K(0)y(t) + w1(t)

d
dt
w1(t) = K ′(0)y(t) +

∫ t

0

K ′′(s)y(t− s)ds,

(15)

This iterative process generates a hierarchy of auxiliary variables w0, w1, . . . , wm that collectively
represent the memory effects. The augmented state (y, w0, w1, . . . , wm) becomes approximately
Markovian if this hierarchy is truncated at a level m where the remaining integral term is negligible.
This truncation is an exact representation if the kernel is a polynomial of degree p− 1, in which case
the hierarchy terminates after p auxiliary variables.

In our multiscale modeling framework, we do not explicitly construct these Mori-Zwanzig auxiliary
variables. Instead, we posit that our learned latent SDE system for z = (ζ, η) addresses the memory
challenge in two ways. Firstly, the explicit microscale state η aims to capture some of the fast-
evolving components that would otherwise contribute to the memory kernel K(t) in a model for ζ
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alone. By conditioning the evolution of ζ on η (and vice-versa) within a coupled Markovian SDE,
the effective memory in the ζ dynamics may be significantly reduced. Secondly, the flexibility of the
universal approximators used for the learned drift and diffusion functions of our SDE, operating on
the combined state z, are sufficiently flexible to implicitly represent any residual short-term memory
effects within the chosen finite-dimensional latent space.

In summary, while the Markovian assumption for latent dynamics is an approximation for most
physical systems, it can be justified if the learned latent space z is structured and expressive enough
to capture the dominant interactions and short-term memory. The success of our model in practice
(see Section 5 of the main paper) lends empirical support to this assumption for the systems studied.

C Multiscale likelihood derivation

We summarize below the algebraic manipulations used to derive the multiscale log-likelihood in
Section 4.1 for the case of product of Gaussian experts. Adopting the PoE perspective [35], we define
the following multiscale likelihood:

pθ(y | ζ, η) =
1

Z(ζ, η)
p1(y | ζ) p2(y −Dζ

θ(ζ) | η). (16)

For the case of Gaussian experts, we have p1(y | ζ) = N (y | Dζ
θ(ζ),Σ

ζ
θ) and p2(y − Dζ

θ(ζ) | η) =
N ((y −Dζ

θ(ζ)) | D
η
θ (η),Σ

η
θ), i.e.,

p1(y | ζ) =
1

Z1
exp

(
−1

2
(y −Dζ

θ(ζ))
T (Σζ

θ)
−1(y −Dζ

θ(ζ))

)
, (17)

p2(y −Dζ
θ(ζ) | η) =

1

Z2
exp

(
−1

2
((y −Dζ

θ(ζ))−Dη
θ (η))

T (Ση
θ)

−1((y −Dζ
θ(ζ))−Dη

θ (η))

)
.

(18)

where Z1 = (2π)ny/2|Σζ
θ|1/2 and Z2 = (2π)ny/2|Ση

θ |1/2 are the normalization constants of the two
Gaussian PDFs.

We define the precision matrices as Sζ
θ = (Σζ

θ)
−1 and Sη

θ = (Ση
θ)

−1. For compactness in the
subsequent derivation of the product, we introduce the temporary notational shorthands: µ1 = Dζ

θ(ζ)

and µ2 = Dζ
θ(ζ) + Dη

θ (η). Using these definitions, the product of the two Gaussian PDFs can be
written as

p1(y | ζ) · p2(y −Dζ
θ(ζ) | η) =

1

K
exp

(
−1

2
(y − µ1)

TSζ
θ (y − µ1)−

1

2
(y − µ2)

TSη
θ (y − µ2)

)

=
eC

K
exp

(
−1

2
(y − µy)

TSy(y − µy)

)
, (19)

where Sy = Sζ
θ + Sη

θ , µy = S−1
y (Sζ

θµ1 + Sη
θµ2), C = 1

2µ
T
y Syµy − 1

2 (µ
T
1 S

ζ
θµ1 + µT

2 S
η
θµ2), and

K = (2π)ny |Σζ
θ|1/2|Σ

η
θ |1/2.

The normalization constant of the product of Gaussians is given by

Z(ζ, η) =
eC

K

∫
exp

(
−1

2
(y − µy)

TSy(y − µy)

)
dy =

eC

K
(2π)ny/2|S−1

y |1/2, (20)

which yields the following expression for the normalized PoE likelihood

pθ(y | ζ, η) = (2π)−ny/2|S−1
y |−1/2 exp

(
−1

2
(y − µy)

TSy(y − µy)

)
. (21)
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Recalling our definitions µ1 = Dζ
θ(ζ), µ2 = Dζ

θ(ζ) +Dη
θ (η), and using the resulting expression for

µy = S−1
y (Sζ

θµ1 + Sη
θµ2), the log-likelihood can be written as

log pθ(y | ζ, η) =− 1

2
(y − µy)

TSy(y − µy)−
ny
2

log(2π) +
1

2
log |Sy|

=− 1

2
||r(ζ)||2

Sζ
θ

− 1

2
||r(ζ)−Dη

θ (η)||2Sη
θ
+

1

2
||Dη

θ (η)||2Λ

− ny
2

log(2π) +
1

2
log |Sζ

θ + Sη
θ |, (22)

where Λ = Sη
θ (S

η
θ+S

ζ
θ )

−1Sζ
θ and r(ζ) = y−Dζ

θ(ζ) denotes the residual between the full observation
and the macroscale model prediction.

To derive the expression for the log-likelihood in (6) which provides valuable insights into the
regularization terms arising from the PoE likelihood, we first simplify the sum of the second and
third terms in (22) as follows:

−1

2
||r(ζ)−Dη

θ (η)||2Sη
θ
+

1

2
||Dη

θ (η)||2Λ =− 1

2
r(ζ)TSη

θ r(ζ) + r(ζ)TSη
θD

η
θ (η)

− 1

2
Dη

θ (η)
TSη

θD
η
θ (η) +

1

2
Dη

θ (η)
TΛDη

θ (η)

=− 1

2
r(ζ)TSη

θ r(ζ) + r(ζ)TSη
θD

η
θ (η)

− 1

2
Dη

θ (η)
T (Sη

θ − Λ)Dη
θ (η). (23)

Noting that

Λ′ = Sη
θ − Λ = Sη

θ − Sη
θ (S

η
θ + Sζ

θ )
−1Sζ

θ = Sη
θ

[
I − (Sη

θ + Sζ
θ )

−1Sζ
θ

]

= Sη
θ

[
(Sη

θ + Sζ
θ )

−1(Sη
θ + Sζ

θ )− (Sη
θ + Sζ

θ )
−1Sζ

θ

]
= Sη

θ (S
η
θ + Sζ

θ )
−1Sη

θ (24)

is an SPD matrix, the last term in (23) can written as −(1/2)||Dη
θ (η)||2Λ′ which is non-positive by

definition. Substituting (23) into (22) and combining the first two terms yields the expression for the
log-likelihood in (6) that we reproduce here for clarity:

log pθ(y | ζ, η) =− 1

2
||r(ζ)||2

(Sζ
θ+Sη

θ )
+ (r(ζ),Dη

θ (η))Sη
θ
− 1

2
||Dη

θ (η)||2Λ′

− ny
2

log(2π) +
1

2
log |Sζ

θ + Sη
θ |.

The term (1/2)||Dη
θ (η)||2Λ′ implements an automatic scale separation mechanism by strongly pe-

nalizing microscale components in directions already well-represented by the macroscale model
and allowing the microscale state more freedom in directions poorly captured by the macroscale
model. This creates an “adaptive regularization” effect, wherein the regularization strength for each
component of the microscale state is automatically calibrated based on the relative confidence in
macroscale versus microscale predictions for that component, as encoded in the precision matrices Sζ

θ
and Sη

θ . This is performed automatically based on the learned precision matrices without requiring
manual specification of scale boundaries.

D Multiple trajectory training

The SVI approach presented in Section 4 is formulated for a dataset with a single time series. In
this section, we consider the case of multiple trajectories with potentially different initial conditions.
We assume that the multiscale model parameters are shared across all time series. We denote the
multiple-trajectory dataset as Y = {Yk}ntr

k=1, where Yk is the k-th trajectory {tik, yik}nt,k

i=1 , and
ntr is the number of trajectories. The i-th time step of the k-th trajectory is denoted tik, and the
corresponding observation is yik. The multiple-trajectory ELBO is then given by simply including an
extra summation in (8),

L(φ) =
ntr∑

k=1

nt,k∑

i=1

E
zik,θ

[log pθ (yik | zik)]−
1

2

ntr∑

k=1

∫ Tk

t0

E
zk(t),θ

∥rθ,φ(zk(t), t)∥2C(t) dt

−DKL (qφ(θ) ∥ p(θ)) ,
(25)
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where Tk is the final time of the k-th trajectory, θ ∼ qφ(θ), zik ∼ qφ(zk | tik), and zk(t) ∼ qφ(zk | t).
The log-likelihood term is evaluated at each observation time tik of each trajectory k and summed
over all observations. The drift residual term is evaluated over the entire time span of each trajectory.

E Reparametrized, amortized ELBO

In this section, we outline how our multiscale SVI scheme, presented in Section 4 of the main
paper, leverages the reparametrization trick and amortized SVI scheme proposed by Course and
Nair [37, 12] for efficient training.

A key challenge in evaluating the ELBO defined in (8) of the main paper is that we require a SDE
solver to generate sample trajectories of the linear variational SDE (7). The reparametrization trick,
proposed in [37], allows us to circumvent the need for an SDE solver in the training loop. The
core idea is that the marginal distribution of the variational linear SDE takes the form qφ(z | t) =
N (µφ(t), Σφ(t)), where the dynamics of µφ and Σφ are governed by the following ODEs5

µ̇φ(t) = −Aφ(t)µφ(t) + bφ(t), µφ(0) = µ0,

Σ̇φ(t) = −Aφ(t)Σφ(t)− Σφ(t)Aφ(t)
T + Lθ(t)Lθ(t)

T , Σφ(0) = Σ0.
(26)

The reparametrization trick in [37] leverages (26) to express Aφ and bφ, in terms of µφ, Σφ and their
time derivatives. This, in turn, allows the drift residual to be rewritten as rθ,φ(z(t), t) = µ̇φ(t) −
B(t)(z(t)− µφ(t))− γθ(z(t)), where B(t) = V−1((Σφ(t)⊕Σφ(t))

−1V(Lθ(t)Lθ(t)
T − Σ̇φ(t))),

⊕ denotes the Kronecker sum, the operator V : Rn×n → Rn2

stacks the columns of a matrix
into a vector, and V−1 : Rn2 → Rn×n does the opposite. Consequently, by parametrizing the
variational distribution qφ(z | t) directly via µφ and Σφ, all the ELBO terms can be evaluated by
drawing samples from the multivariate Gaussian N (µφ(t), Σφ(t)). This allows the ELBO to be
maximized without an SDE solver in the training loop, thereby decoupling the computational cost of
training from the stiffness of the variational SDE.

To address the challenge of learning the variational distribution qφ(z | t) (i.e., µφ(t),Σφ(t)) over
long time horizons, we adopt the amortization strategy from [12]. This involves partitioning the
time series into shorter segments and learning the variational distribution locally for each segment.
To illustrate this approach, consider a trajectory with observation times {t1, . . . , tm, tm+1, . . . , tnt

},
where t1 = t0 and tnt

= T . We partition this sequence into nm = ⌈nt/m⌉ non-overlapping
segments (sub-intervals) as follows6

{
Ik = [t

(k)
1 , t

(k)
2 , . . . , t(k)mk

]
}nm

k=1
, (27)

where t(k)1 = t
(k−1)
mk−1 (for k > 1), mk = m for k < nm, and mnm

≤ m. The variational distribution
is then amortized over these nm segments, leading to the reformulated ELBO:

L(φ) =
nm∑

k=1




mk∑

j=1

E
z
(k)
j ,θ

[
log pθ

(
y
(k)
j | z(k)j

)]
− 1

2

∫ t(k)
mk

t
(k)
1

E
z(t),θ

∥rθ,φ(z(t), t)∥2C(t) dt




−DKL (qφ(θ) ∥ p(θ)) , (28)

where θ ∼ qφ(θ), z
(k)
j ∼ qφ(z | t(k)j ), z(t) ∼ qφ(z | t), and y(k)j is the j-th observation in the k-th

segment, corresponding to time t(k)j .

Within each segment Ik, the parameters of the variational distribution, µφ and Σφ, are defined as
follows: At the discrete observation times t(k)j within the segment, µφ(t

(k)
j ) and Σφ(t

(k)
j ) are given

by applying the probabilistic encoder (defined in Section 3) to the observation y(k)j . To obtain a

continuous-time representation for µφ and Σφ (and their derivatives µ̇φ, Σ̇φ) for t ∈ [t
(k)
1 , t

(k)
mk ],

which is necessary for evaluating the integral in (28), we employ a deep kernel interpolation scheme
that operates on these encoder outputs, following [12]. The trajectory partitioning parameter m ∈ N
is a hyperparameter of the training process.
5 Recall that the initial conditions µt0 ,Σt0 are given by the probabilistic encoder pθ(z | y(t0)), as discussed

in Section 4.2 of the main paper.
6 Note that when nt is not divisible by m, the last interval has fewer than m elements.
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F Computing the posterior predictive distribution

After the model parameters are estimated using the multiscale variational inference framework, the
primary objective during inference is to generate probabilistic predictions over a given time horizon.
Specifically, given an initial observation of the full state y(t0) ∈ Rny at time t0, we seek the posterior
predictive distribution pθ(y(t) | y(t0)) for any t > t0. This distribution quantifies our prediction
for y(t) and accounts for all sources of uncertainty captured by the model, including the initial
state decomposition, the stochastic evolution of the latent variables over the interval [t0, t], and the
final state reconstruction. The prediction process involves three fundamental stages that bridge the
fully-resolved observation (y) and the latent state z = [ζT , ηT ]T ∈ Rnz .

Stage 1: Probabilistic encoding of the initial state The inference process commences by mapping
the initial observation y(t0) into the latent space defined by the macroscale state ζ ∈ Rnζ and the
microscale state η ∈ Rnη . Since our model posits a latent representation, the true initial latent state
z(t0) corresponding to y(t0) is inherently uncertain. The learned probabilistic encoder pθ(z | y)
provides the distribution over possible initial latent states at time t0:

pθ(z(t0) | y(t0)) = N (z(t0) |µt0 ,Σt0), (29)

where µt0 ∈ Rnz and Σt0 ∈ Rnz×nz are determined by the learned encoder applied to y(t0):

µt0 = E[z(t0) | y(t0)] =
[
Eζ
θ (Sθ(y(t0)))

Eη
θ (S⊥

θ (y(t0)))

]
, Σt0 = Cov(z(t0) | y(t0)) = Σz

θ.

Here, Σz
θ represents the learned covariance matrix associated with the encoder, capturing the un-

certainty introduced by the initial scale separation (Sθ, Eζ
θ ) and microscale compression (Eη

θ ). This
initial distribution N (z(t0) |µt0 ,Σt0) serves as the starting point for evolving the latent dynamics
over the time interval (t0, t].

Stage 2: Evolving latent state uncertainty via the learned multiscale SDE The core of the
model lies in the learned coupled system of multiscale Itô SDEs governing the evolution of the latent
macroscale (ζ) and microscale (η) states, represented compactly as:

dz = γθ(z(s))ds+ Lθ(s)dβ(s), s ∈ [t0, t], (30)

where γθ(z) ∈ Rnz is the learned drift function, Lθ(s) ∈ Rnz×nz is the learned time-dependent
diffusion matrix, and β ∈ Rnz is a standard Wiener process. Propagating the initial distribution
pθ(z(t0) | y(t0)) through this SDE from time t0 to t yields the distribution of the latent state at the
prediction time t, denoted by pθ(z(t) | y(t0)). It is worth noting that even if the initial distribution
pθ(z(t0) | y(t0)) is Gaussian, the distribution pθ(z(t) | y(t0)) after evolution through the nonlinear
SDE (30) is non-Gaussian. Its probability density function, formally governed by the Fokker-Planck
equation associated with (30), rarely admits a closed-form analytical solution. We will show next
how this challenge can be addressed using Monte Carlo sampling.

Stage 3: Probabilistic reconstruction using the PoE likelihood The final stage connects the
distribution of the latent state at time t, i.e., pθ(z(t) | y(t0)), back to the observable state space
y(t) ∈ Rny . This mapping is defined by the likelihood model pθ(y | z) learned during training. As
described in Section 4.1 and Appendix C, this likelihood leverages the PoE perspective to enforce
scale separation. In brief, the combination of the macroscale expert p1(y | ζ) = N (y | Dζ

θ(ζ),Σ
ζ
θ)

and the microscale expert p2(y−Dζ
θ(ζ)|η) = N (y−Dζ

θ(ζ) | D
η
θ (η),Σ

η
θ) results in a single Gaussian

conditional distribution for y given a specific latent state z:

pθ(y | z) = N (y |µy(z),Σy), (31)

where the conditional mean µy(z) ∈ Rny and conditional covariance Σy ∈ Rny×ny are

µy(z) = E[y | z] = Dζ
θ(ζ) + ΣyS

η
θ D

η
θ (η) and Σy = Cov(y | z) = (Sζ

θ + Sη
θ )

−1. (32)

Here, Sζ
θ = (Σζ

θ)
−1 and Sη

θ = (Ση
θ)

−1 are the precision matrices (parametrized by θ) associated with
the Gaussian macroscale and microscale experts, respectively, Dζ

θ : Rnζ → Rny is the macroscale
decoder, and Dη

θ : Rnη → Rny denotes the microscale decoder.
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The PoE likelihood introduces two key statistical nuances. Firstly, the conditional mean µy(z) in
(32) is not simply the sum of the decoded macrostate Dζ

θ(ζ) and the decoded microstate Dη
θ (η). The

contribution from the microscale decoder Dη
θ (η) is adaptively weighted by the matrix W = ΣyS

η
θ =

(Sζ
θ + Sη

θ )
−1Sη

θ . This weighting factor emerges naturally from combining the Gaussian experts in
the PoE framework and depends on the learned relative precisions (Sζ

θ , S
η
θ ). This ensures that the

microscale state primarily contributes to explaining aspects of y where the macroscale expert has
low precision. Secondly, the conditional covariance Σy in (32), which is independent of z, quantifies
the inherent uncertainty in reconstructing y even if z were known perfectly. This uncertainty stems
from the combination and potential disagreement between the macroscale and microscale experts, as
encoded in their respective covariance matrices Σζ

θ and Ση
θ .

The final predictive distribution pθ(y(t) | y(t0)) is obtained by marginalizing the intermediate latent
state z(t), which yields

pθ(y(t) | y(t0)) =
∫
pθ(y(t) | z(t)) pθ(z(t) | y(t0)) dz(t)

=

∫
N (y(t) |µy(z(t)),Σy) pθ(z(t) | y(t0)) dz(t), (33)

where in the second step we used the PoE likelihood (31). The preceding integral is the expecta-
tion of the conditional likelihood pθ(y(t) | z(t)) with respect to the distribution of the latent state
pθ(z(t) | y(t0)) obtained by propagating the initial condition provided at t0 through the latent SDE
(30). Unfortunately, this integral is analytically intractable due to the nonlinearity of the conditional
mean µy(z(t)) and the non-Gaussian nature of the distribution pθ(z(t) | y(t0)). In the present work,
we use Monte Carlo sampling to approximate this integral and characterize the posterior predictive
distribution as follows:

1. Sample initial latent states: Draw N > 1 independent samples from the initial latent distribution
defined in Eq. (29), i.e., zi(t0) ∼ pθ(z(t0) | y(t0)) = N (µt0 ,Σt0), for i = 1, . . . , N .

2. Propagate samples via SDE: Numerically integrate the learned SDE (30) forward in time from
t0 to t for each initial sample zi(t0). This yields N samples of the latent state {zi(t)}Ni=1, which
collectively form an empirical approximation of the intractable distribution pθ(z(t) | y(t0)) at time t.

3. Calculate conditional means: For each latent sample zi(t), compute the corresponding conditional
mean of the observed state y(t) using (32), i.e., µy,i = µy(zi(t)) = Dζ

θ(ζi(t)) + Σy S
η
θ D

η
θ (ηi(t)).

4. Approximate predictive distribution: The posterior predictive distribution pθ(y(t) | y(t0)) is approx-
imated by the empirical distribution derived from these samples. Specifically, it can be viewed as a
Gaussian mixture model with N components: pθ(y(t) | y(t0)) ≈ 1

N

∑N
i=1 N (y(t) |µy,i,Σy), where

each component N (y(t) |µy,i,Σy) in this mixture represents the distribution of y(t) conditioned on
a specific realization zi(t) of the latent state evolution. All components share the same conditional
covariance Σy (the reconstruction uncertainty from the PoE), but are centered at potentially different
means µy,i reflecting the uncertainty propagated through the latent dynamics.

Predictive mean and covariance The overall moments of the posterior predictive distribution can
be estimated from the Gaussian mixture approximation. The predictive mean is the expected value of
y(t) given the initial observation y(t0), which can be estimated by taking the sample average of the
conditional means µy,i obtained from each propagated latent state sample zi(t), i.e.,

µ̂pred(t) = E[y(t) | y(t0)] ≈
1

N

N∑

i=1

E[y(t) | zi(t)] =
1

N

N∑

i=1

µy,i. (34)

The predictive covariance which is the total covariance matrix of y(t) given y(t0), capturing the
overall prediction uncertainty at time t can similarly be estimated as:

Σ̂pred(t) = Cov(y(t) | y(t0)) = Ez(t)[Cov(y(t) | z(t))] + Covz(t)[E(y(t) | z(t))]

≈ 1

N

N∑

i=1

Σy +
1

N − 1

N∑

i=1

(µy,i − µ̂pred(t))(µy,i − µ̂pred(t))
T . (35)

= Σy + SampleCov({µy,i}Ni=1).
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Table 2: POD-SINDy hyperparameters.

Hyperparameter Wave 1D KdV 1D Burgers 2D Cylinder 2D SWE 2D
(nz = 25) (nz = 25) (nz = 69) (nz = 517) (nz = 69)

Polynomial order 1 2 1 1 1
Threshold 0.1 0.01 0.03 0.1 0.01

The total predictive covariance is given by the sum of two distinct terms: (i) the average reconstruction
uncertainty, Σy = (Sζ

θ + Sη
θ )

−1, which is independent of the latent state propagation reflecting
the precision of the combined experts, and (ii) the propagated uncertainty, SampleCov({µy,i}),
which arises from the variability of the latent state samples {zi(t)} incorporating both the initial
uncertainty encoded in Σt0 and the stochasticity introduced by the SDE dynamics over (t0, t]. The
proposed Monte Carlo sampling procedure provides a practical and statistically principled method for
generating predictions and quantifying their uncertainty at any future time t > t0. It fully leverages
the structure of the learned stochastic multiscale model and the scale-separating PoE likelihood,
without requiring further analytical approximations beyond the finite number of samples N .

G Coarse DNS, POD-SINDy, and DMD baselines

In this section, we discuss the setup for three of our baseline methods in each test case: coarse DNS,
POD-SINDy, and DMD. The coarse DNS baseline involves simply coarsening the computational
mesh used to evaluate the full-order model that generated each dataset. This is straightforward for the
wave, KdV, and Burgers test cases, as we created those test cases, and for the shallow water case, as
the model that generated the data is publicly available in the associated code repository [39]. As the
original solver for the cylinder flow dataset was unavailable, we implemented the full-order model
using FEniCS7 based on the description given by Günther et al. [38]; this code is available in the
git repository of this paper. A cubic interpolation scheme was used to map the coarse grid DNS
predictions to the fine mesh for computing error metrics.

For the POD-SINDy baseline, implemented using PySINDy [47], we first projected the training data
onto a POD basis. The latent dimension was set equal to the total latent state dimension of our model
to ensure a fair comparison of dynamics at the same level of compression. We use a polynomial basis
with thresholded least-squares to learn the latent dynamics. We performed a hyperparameter search
over the polynomial order ∈ {1, 2} and the sparsity threshold ∈ {0.1, 0.03, 0.01, 0.003, 0.001},
selecting the combination that minimized validation error. Due to the high-dimensional latent space
for the 2D test cases, the number of basis functions becomes impractically large when using quadratic
polynomials. We therefore only consider linear latent dynamics for the 2D test problems. The final
hyperparameters for each case are reported in Table 2.

For DMD, we use the package PyDMD8 to learn a discrete-time linear model. The rank of the learned
operator is chosen to be nz , and the Tikhonov regularization parameter is fixed at 0.01 for all cases.

H Detailed setups for test cases

In this section, we provide detailed setups for the test cases, as well as their respective multiscale
model architectures and training procedures.

7 Igor A. Baratta, Joseph P. Dean, Jørgen S. Dokken, Michal Habera, Jack S. Hale, Chris N. Richardson,
Marie E. Rognes, Matthew W. Scroggs, Nathan Sime, and Garth N. Wells. DOLFINx: The next generation
FEniCS problem solving environment, December 2023

8 Sara M. Ichinaga, Francesco Andreuzzi, Nicola Demo, Marco Tezzele, Karl Lapo, Gianluigi Rozza, Steven L.
Brunton, and J. Nathan Kutz. PyDMD: A python package for robust dynamic mode decomposition. Journal
of Machine Learning Research, 25(417):1–9, 2024
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H.1 One-dimensional advecting wave

The data for this test case is generated from the 1D advection equation defined over the domain
x ∈ [0, 1] with periodic boundary conditions:

∂u

∂t
= −c∂u

∂x
, (36)

where c = 1. The initial condition is u(x, 0) = exp(−(x/w)2), where w ∼ U [0.01, 0.02].
To generate the training trajectories, we use a spatial grid with ny = 1000 points (∆x = 0.001) and
approximate the spatial derivative with a centered finite-difference scheme resulting in the system of
ODEs

duj
dt

= −c uj+1 − uj−1

2∆x
, (37)

for j = 1, 2, . . . , ny, where uj denotes the solution at the j-th spatial gridpoint. The system of
ODEs is integrated over the interval [0, 1] using a time step of ∆t = 0.001 (nt = 1001). The final
observational data is created by corrupting these ground-truth trajectories with i.i.d. zero-mean
Gaussian noise (σ = 0.001). The training dataset comprises 20 trajectories, with 5 each for validation
and testing. The test set covers a shorter time domain of t ∈ [0, 0.2]. For our multiscale models, the
macroscale state is defined on a coarse mesh with nζ = 20 points.

H.2 Korteweg-de Vries equation

The Korteweg-de Vries (KdV) equation in 1D is given by

∂u

∂t
+ u

∂u

∂x
+ ν

∂3u

∂x3
= 0, (38)

where ν = 0.02 and the domain is x ∈ [0, 10] with periodic boundary conditions. The initial
condition is u(x, 0) = a cos (πx) exp

(
− (x−7.5)2

s2

)
, where a ∼ N (2, 0.01) and s ∼ N (1, 0.01).

We generate the observational data using a spatial grid with ny = 1000 points (∆x = 0.01) and
approximate the spatial derivatives using a finite-difference scheme9 leading to the system of ODEs

duj
dt

= −uj+1 − uj−1

2∆x
uj − ν

uj+2 − 3uj+1 + 3uj − uj−1

∆x3
, (39)

for j = 1, . . . , ny, where uj denotes the solution at the j-th spatial gridpoint. The system of ODEs
is integrated over the time interval t ∈ [0, 1] using a time step of ∆t = 0.001 (nt = 1001). The
observations are corrupted by i.i.d. zero-mean Gaussian noise with standard deviation 0.01. The
training dataset is formed using 10 samples of initial conditions and their corresponding trajectories,
and the validation and test sets are formed using 5 samples each. For our multiscale models, we use a
coarse mesh with nζ = 20 points for the macroscale state.

H.3 Burgers’ equation in 2D

As an additional test case not included in the main body for brevity, we evaluate the models on the
2D viscous Burgers’ equation:

∂u

∂t
+ u

∂u

∂x1
+ u

∂u

∂x2
= ν∇2u. (40)

The domain is [0, 1]2 with zero Dirichlet boundary conditions and viscosity ν = 0.005. The initial
condition is given by u(x1, x2, 0) = a exp

(
− (x1−0.3)2+(x2−0.3)2

s2

)
, where a ∼ N (1, 0.01) and

s ∼ N (0.2, 0.0001).

We use a uniform Cartesian spatial grid with mesh spacing ∆x = 1/127 in each direction (ny =
1282 = 16384) and approximate the spatial derivatives using a finite-difference scheme leading to

9 Bengt Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of
Computation, 51:699–706, 1988
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Table 3: Error statistics for each model type in Burgers 2D test case.

Model type Error mean ± std. dev. on test set

Coarse DNS 0.560± 0.273

DMD 0.097± 0.039

POD-SINDy 0.057± 0.045

Implicit scale 0.141± 0.040

Our approach
nη = 1 0.108± 0.056
nη = 2 0.035± 0.022
nη = 3 0.037± 0.029
nη = 4 0.047± 0.039
nη = 5 0.028± 0.019

the system of ODEs

dui,j
dt

=− ui,j

(
ui+1,j − ui−1,j

2∆x
+
ui,j+1 − ui,j−1

2∆x

)

+ ν

(
ui+1,j − 2ui,j + ui−1,j

∆x2
+
ui,j+1 − 2ui,j + ui,j−1

∆x2

)
,

(41)

for i = 1, . . . , 128, j = 1, . . . , 128, where ui,j denotes the solution at the i, j-th spatial gridpoint. We
generate ground-truth trajectories by integrating the system of ODEs over the time interval t ∈ [0, 1]
with a time step of ∆t = 0.001 (nt = 1001). The observations are corrupted by Gaussian noise with
standard deviation 0.001. The training dataset is formed using 20 samples of initial conditions and
their corresponding trajectories, and the validation and test sets are formed using 5 samples each. For
our multiscale models, the macroscale state is defined on a coarse 8× 8 grid.

As shown in Table 3, our multiscale model with nη = 5 achieves the lowest error, surpassing the
strongest baseline, POD-SINDy, and reducing the mean prediction error by approximately 51%
(from 0.057 to 0.028). The improvement over the implicit-scale model is even more pronounced (an
80% reduction), demonstrating the critical role of the explicit microscale state in capturing sub-grid
phenomena. Figure 10 visually confirms this advantage; while even the best baselines struggle to
resolve the sharp wavefront, our multiscale model captures it accurately. As shown in Figure 11, this
is because the microscale state successfully encodes these fine-scale features, complementing the
smooth macroscale state to yield a superior prediction.

H.4 Cylinder flow in 2D

The data for this test case is a simulation of a 2D Von Kármán vortex street at a Reynolds number of
Re = 160 generated using the Gerris flow solver [50] by Günther et al. [38]. The dataset provides
the nondimensionalized, two-component velocity field. The original data is defined on the spatial
domain [−0.5, 7.5]× [−0.5, 0.5] with a 640× 80 spatial grid. For our study, we truncate the domain
to [−0.5, 3.5]× [−0.5, 0.5] resulting in a 320× 80 spatial grid.

The data consists of a single trajectory with 1501 snapshots over the time interval t ∈ [0, 15], starting
from a zero-velocity initial condition. We partitioned this trajectory temporally for training, validation,
and testing, using the intervals [0, 13], (13, 14], and (14, 15], respectively. No noise was added to this
dataset. For our multiscale models, the macroscale state is defined on a coarse 32× 8 grid, resulting
in a latent state dimension of nζ = 2× 32× 8 = 512 for the two velocity components.

H.5 Shallow water equations in 2D

This test case uses the radial dam break problem from the PDEBench dataset [39], which simulates
the 2D shallow water equations. The dataset provides the scalar fluid elevation field on a [−2.5, 2.5]2
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Observation Coarse DNS DMD POD-SINDy Implicit scale Ours (nη = 5)

Figure 10: Burgers’ equation in 2D: prediction comparison on test trajectory at t = 1.

Observation

≈
Approx. full state

=

Prolonged macro

+

Decoded micro

Figure 11: Burgers’ equation in 2D: scale separation with nη = 5, shown at t = 1.

spatial domain discretized using a uniform 128 × 128 grid. The initial condition is a binary field:
u(x, 0) = 2 ∀∥x∥ < r, otherwise u(x, 0) = 1, where r ∼ U [0.3, 0.7].
The dataset comprises 1000 trajectories, each generated from a different initial radius r. Each
trajectory consists of 101 snapshots over the time interval t ∈ [0, 1]. We use 900 trajectories for
training, 50 trajectories for validation, and 50 trajectories for testing. We preprocess the data by
subtracting 1 from the state everywhere to center it, and corrupt by adding i.i.d. Gaussian noise with
a standard deviation of 0.01. For our multiscale models, the macroscale state is defined on a coarse
8× 8 spatial grid (nζ = 64).

H.6 Neural network architectures

This section details the neural network architectures for the smoothing operator, encoder, decoder,
and drift functions. All hidden layers in these architectures use a LeakyReLU activation function.

H.6.1 Encoder architecture

The probabilistic encoder models the conditional distribution of the latent state z given the fully-
resolved state y as pθ(z | y) = N (z |µz

θ(y),Σ
z
θ). For all test cases, we use a diagonal parametrization

of the covariance matrix Σz
θ ∈ Rnz×nz . The mean of the encoder is given by

µz
θ(y) = E[z | y] =

[
Eζ
θ (Sθ(y))

Eη
θ (S

⊥
θ (y))

]
,

where Eζ
θ and Eη

θ are the macroscale and microscale encoders, respectively, Sθ is the smoothing
operator, and S⊥

θ (y) = y − Sθ(y) is the residual component containing small-scale features. The
architectures for these components are as follows:

1. Smoothing operator Sθ: We parametrize the smoothing operator for each field variable
using a single-channel convolutional layer with a stride of 1. Let s = (nf/nc)

1/d denote the
downsampling factor between the fine grid with nf points and the coarse grid with nc points,
where d is the spatial domain dimension. We set the kernel size to 6s+1 for advecting wave
and 4s+ 1 for KdV, while for the 2D test cases the kernel size is set to (4s+ 1)× (4s+ 1).
We use circular padding of length 3s for advecting wave, and 2s for all other test cases.

2. Macroscale encoder Eζ
θ : The macroscale encoder maps the smoothed fully-resolved ob-

servation, Sθ(y), from the fine grid with nf points to the coarse grid with nc points. We
implement this as a strided convolution that shares the same learnable kernel as the smooth-
ing operator but uses a stride of s, the downsampling factor defined above.

3. Microscale encoder Eη
θ : The input to the microscale encoder is the residual ỹ = y − Sθ(y).

The architecture of the microscale encoder consists of a series of convolutional layers that
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progressively downsample the input (using a stride of 2), followed by a final linear layer to
produce the η vector. The details of the architecture used for each test case are provided in
Table 4. For the 1D test cases, we use a kernel size of 25 and circular padding of length 12.
For the 2D test cases, we use a kernel size of 9× 9 and circular padding of length 4.

Table 4: Architecture of the microscale state encoder for each test case.

Wave 1D KdV 1D Burgers 2D Cylinder 2D SWE 2D

Conv layers Conv layers Conv layers Conv layers Conv layers

# # filters # # filters # # filters # # filters # # filters

1 1 1 1 1 1 1 2 1 1
2 4 2 4 2 64 2 64 2 64
3 16 3 16 3 32 3 32 3 32
4 64 4 64 4 16 4 16 4 16

Linear layers Linear layers Linear layers Linear layers Linear layers

# In Out # In Out # In Out # In Out # In Out

5 8000 nη 5 8000 nη 5 4096 nη 5 6400 nη 5 4096 nη

H.6.2 Decoder architecture

The decoder maps the latent state z = (ζ, η) to the parameters of the conditional distribution
pθ(y | z). As shown in (32), the conditional mean is a weighted sum of the microscale and macroscale
contributions, i.e., E[y | z] = Dζ

θ(ζ) + ΣyS
η
θ D

η
θ (η), while the conditional covariance is given by

Cov[y | z] = (Sζ
θ + Sη

θ )
−1. We use a diagonal parametrization for the precision matrices Sζ

θ and Sη
θ .

The macroscale and microscale decoder architectures are described below:

1. The macroscale decoder, Dζ
θ is a single convolutional transpose layer with a stride equal to

the downsampling factor s. Its weights are tied to the macroscale encoder, serving as its
approximate inverse to prolong the macroscale state to the fine spatial grid.

2. The architecture of the microscale decoder mirrors that of the encoder. We use a linear
layer to project the microscale state to a small spatial feature map, followed by a series
of convolutional transpose layers to progressively upsample the microscale features back
to the fine grid resolution. These convolutional transpose layers use the same kernel size,
stride, and padding settings as their counterparts in the microscale encoder. The specific
architecture for each test case is detailed in Table 5.

H.6.3 Macroscale drift

As described in Appendix A, the macroscale drift at each grid point is parameterized by a feedforward
neural network, f̂θ, whose weights are shared across all spatial locations to enforce translation
equivariance. This network takes as input the state values from a local stencil, leading to the input
dimension nin = du(2q + 1)d + n∗η, where du is the number of field variables and d is the spatial
dimension. For all cases, we set the stencil half-width q = 2 and use an identity coupling function ϕ
leading to n∗η = nη microscale features used as input. The specific MLP architecture for each test
case is given in Table 6.

For the Wave, KdV, Burgers, and SWE test cases, the physical systems are defined on simple
domains and are spatially homogeneous. The translation-equivariant MLP is therefore a well-suited
architecture. The cylinder flow problem, however, is spatially non-homogeneous due to the presence
of the cylinder obstacle. To allow the shared-weights network to learn position-dependent dynamics,
we augment its input with four spatial positional encoding features. The input to the elementwise
drift f̂θ is augmented with {cos(2πx1/L1), sin(2πx1/L1), cos(2πx2/L2), sin(2πx2/L2)}, where
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Table 5: Architecture of the microscale state decoder for each test case.

Wave 1D KdV 1D Burgers 2D Cylinder 2D SWE 2D

Linear layers Linear layers Linear layers Linear layers Linear layers

# In Out # In Out # In Out # In Out # In Out

1 nη 8000 1 nη 8000 1 nη 4096 1 nη 6400 1 nη 4096

ConvT layers ConvT layers ConvT layers ConvT layers ConvT layers

# # filters # # filters # # filters # # filters # # filters

2 64 2 64 2 16 2 16 2 16
3 16 3 16 3 32 3 32 3 32
4 4 4 4 4 64 4 64 4 64
5 1 5 1 5 1 5 2 5 1

Table 6: Architecture of the macroscale drift function for each test case.

Wave 1D KdV 1D Burgers 2D Cylinder 2D SWE 2D

Linear layers Linear layers Linear layers Linear layers Linear layers

# In Out # In Out # In Out # In Out # In Out

1 nin 128 1 nin 128 1 nin 128 1 nin + 4 128 1 nin 128
2 128 128 2 128 128 2 128 256 2 128 256 2 128 256
3 128 128 3 128 128 3 256 128 3 256 128 3 256 128
4 128 1 4 128 1 4 128 1 4 128 2 4 128 1

L1 and L2 denote the length of the spatial domain along the coordinates x1 and x2, respectively. This
results in an input dimension of nin + 4 for the cylinder flow case.

Table 7: Architecture of the microscale drift function for each test case.

Wave 1D KdV 1D Burgers 2D Cylinder 2D SWE 2D

Linear layers Linear layers Linear layers Linear layers Linear layers

# In Out # In Out # In Out # In Out # In Out

1 nin 128 1 nin 128 1 nin 128 1 nin 128 1 nin 128
2 128 512 2 128 512 2 128 256 2 128 256 2 128 256
3 512 128 3 512 128 3 256 128 3 256 128 3 256 128
4 128 nη 4 128 nη 4 128 nη 4 128 nη 4 128 nη

H.6.4 Microscale drift

In our numerical studies, the microscale state is not chosen to have a spatial grid structure. We
therefore parametrize the microscale drift function using a fully-connected neural network. We use a
non-autonomous model for the drift leading to the input dimension nin = nη + n∗ζ + 1. For the 1D
cases, the coupling term ψ is identity (n∗ζ = nζ). For the 2D cases, ψ is a learned linear map that
projects the nζ-dimensional macroscale state to Rnη (n∗ζ = nη). The architecture for each case is
shown in Table 7.
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H.7 Training

Each model is trained with the Adam optimizer10 and the loss function is the negative of the ELBO
defined in (8). The batch size is 64. The expectation terms in the ELBO are estimated via a single
Monte Carlo sample from the variational distributions. To approximate the temporal integral term
in the ELBO, we use 64 quadrature points. The advecting wave models were trained for 50 epochs,
KdV for 100 epochs, Burgers for 100 epochs, cylinder flow for 1000 epochs, and shallow water for
20 epochs.

Each multiscale model is trained in a hierarchical manner. We begin by training an implicit-scale
model with an initial learning rate of 10−3. We apply an exponential scheduler that decays the learning
rate by 10% every 2000 optimization steps. We then initialize the multiscale model with nη = 1
using the trained parameters from the implicit-scale model; we apply Xavier normal initialization to
all new weights and zero initialization to all new biases. The multiscale model is then trained with a
reduced initial learning rate of 10−4, as its loss landscape is more sensitive to large step sizes than
that of the implicit-scale model. For a multiscale model with nη = 2, we repeat this process using
the parameters from the trained model with nη = 1, and so on for larger nη .

Although training a model for large nη directly is possible, we found that the highly non-convex loss
landscape can lead to suboptimal local minima. The hierarchical initialization strategy acts as a form
of curriculum learning, guiding the optimization through a more stable path. This procedure was
crucial for achieving the near-monotonic performance improvements with increasing nη reported in
Table 1.

I Additional plots for results

This section contains expanded plots of the results presented in Section 5. Many of these figures
expand on plots presented in the body of the paper and earlier in the appendix. They are summarized
in Table 8.

Table 8: Additional result plots in Appendix I

Figure in Appendix I Relevant earlier figure Description

Scale separation for...
12 3 Wave 1D case
13 3 KdV 1D case
14 11 Burgers 2D case

15,16 5 Cylinder 2D case
17 7 SWE 2D case

Multiscale predictions for...
18 N/A Wave 1D case
19 N/A KdV 1D case
20 10 Burgers 2D case

21,22 4 Cylinder 2D case
23 6 SWE 2D case

Baseline comparisons for...
24 N/A Wave 1D case
25 N/A KdV 1D case
26 10 Burgers 2D case

27,28 4 Cylinder 2D case
29 6 SWE 2D case

10 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd International
Conference on Learning Representations, 2015
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I.1 Scale separation plots

t = 0

t = 0.05

t = 0.1

t = 0.15

t = 0.2

yi ≈ y(ti) = y(ti) + ỹ(ti)
Figure 12: Advecting wave: visualization of scale separation with nζ = 20 and nη = 5. The columns
are yi: observation from dataset, y(ti): reconstructed full state, y(ti): prolonged macroscale state,
ỹ(ti): decoded microscale state.

t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

yi ≈ y(ti) = y(ti) + ỹ(ti)
Figure 13: KdV equation: visualization of scale separation with nζ = 20 and nη = 5. All plots on
common x and y-axis scales. The columns are yi: observation from dataset, y(ti): reconstructed full
state, y(ti): prolonged macroscale state, ỹ(ti): decoded microscale state.
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t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

yi ≈ y(ti) = y(ti) + ỹ(ti)

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 14: Burgers’ equation in 2D: visualization of scale separation with nζ = 8 × 8 = 64
and nη = 5. The columns are yi: observation from dataset, y(ti): reconstructed full state, y(ti):
prolonged macroscale state, ỹ(ti): decoded microscale state.

30



t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

yi ≈ y(ti) = y(ti) + ỹ(ti)

1.0 0.5 0.0 0.5 1.0 1.5

Figure 15: Cylinder flow in 2D: visualization of scale separation on velocity x-component with
nζ = 2 × 32 × 8 = 512 and nη = 5. The columns are yi: observation from dataset, y(ti):
reconstructed full state, y(ti): prolonged macroscale state, ỹ(ti): decoded microscale state.

t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

yi ≈ y(ti) = y(ti) + ỹ(ti)

1.0 0.5 0.0 0.5 1.0 1.5

Figure 16: Cylinder flow in 2D: visualization of scale separation on velocity y-component with
nζ = 2 × 32 × 8 = 512 and nη = 5. The columns are yi: observation from dataset, y(ti):
reconstructed full state, y(ti): prolonged macroscale state, ỹ(ti): decoded microscale state.
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t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

yi ≈ y(ti) = y(ti) + ỹ(ti)

1.0 0.5 0.0 0.5 1.0

Figure 17: Shallow water equations in 2D: visualization of scale separation with nζ = 8× 8 = 64
and nη = 5. The columns are yi: observation from dataset, y(ti): reconstructed full state, y(ti):
prolonged macroscale state, ỹ(ti): decoded microscale state.
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I.2 Multiscale model prediction plots

t = 0 t = 0.05 t = 0.1 t = 0.15 t = 0.2

Figure 18: Advecting wave: multiscale model prediction on trajectory from test set with nζ = 20
and nη = 5. Observations are represented with black solid curves and model predictions with red
dashed curves.

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 19: KdV equation: multiscale model prediction on trajectory from test set with nζ = 20 and
nη = 5. Observations are represented with black solid curves and model predictions with red dashed
curves.
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t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

Observation Prediction mean Absolute error Prediction std. dev.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Figure 20: Burgers’ equation in 2D: multiscale model prediction on trajectory from test set with
nζ = 8× 8 = 64 and nη = 5.
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t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

Observation Prediction mean Absolute error Prediction std. dev.

1.0 0.5 0.0 0.5 1.0 1.5 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Figure 21: Cylinder flow in 2D: multiscale model prediction of x-component of velocity on test
interval with nζ = 2× 32× 8 = 512 and nη = 5.

t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

Observation Prediction mean Absolute error Prediction std. dev.

1.0 0.5 0.0 0.5 1.0 1.5 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Figure 22: Cylinder flow in 2D: multiscale model prediction on test interval with nζ = 2× 32× 8 =
512 and nη = 5. Velocity y-component is shown.
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t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

Observation Prediction mean Absolute error Prediction std. dev.

1.0 0.5 0.0 0.5 1.0 0.0 0.1 0.2 0.3 0.4 0.5

Figure 23: Shallow water equations in 2D: multiscale model prediction on trajectory from test set
with nζ = 8× 8 = 64 and nη = 5.
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I.3 Comparison of predictions

t=0

t=0.05

t=0.1

t=0.15

t=0.2

Multiscale SDE Coarse DNS DMD POD-SINDy Implicit scale

Figure 24: Advecting wave: Comparison of predictions on trajectory from test set. Observations are
represented with black solid curves and model predictions with red dashed curves. For the multiscale
model, the predictions corresponding to nζ = 20 and nη = 5 are shown.

t=0

t=0.25

t=0.5

t=0.75

t=1

Multiscale SDE Coarse DNS DMD POD-SINDy Implicit scale

Figure 25: KdV equation: comparison of predictions on trajectory from test set. Observations are
represented with black solid curves and model predictions with red dashed curves. For the multiscale
model, the predictions corresponding to nζ = 20 and nη = 5 are shown.
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Observation Multiscale SDE Coarse DNS DMD POD-SINDy Implicit scale

0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 26: Burgers’ equation in 2D: Comparison of predictions on trajectory from test set. The rows
correspond to time instances t = 0, 0.25, 0.5, 0.75, 1 from top to bottom. For the multiscale model,
the mean predictions corresponding to nζ = 64 and nη = 5 are shown.
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Observation Multiscale SDE Coarse DNS DMD POD-SINDy Implicit scale

1.0 0.5 0.0 0.5 1.0

Figure 29: Shallow water equations in 2D: Comparison of predictions on trajectory from test set. The
rows correspond to time instances t = 0, 0.25, 0.5, 0.75, 1 from top to bottom. For the multiscale
model, the mean predictions corresponding to nζ = 64 and nη = 5 are shown.
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J Learning smoothing kernels
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Figure 30: The macroscale smoothing kernel
learned for the multiscale model (nζ = 20, nη =
5) trained on the KdV dataset. Note that adjacent
gridpoints on the macroscale mesh are 50 grid-
points apart on the high-resolution mesh.

In this work, we choose to use a convolution to
obtain the macroscale state from the full state.
With an appropriate kernel size and stride, the
convolution smooths the full state and sparsely
samples it on the coarse macroscale mesh. Pro-
longing the macroscale state onto the full mesh
is accomplished by transposing the convolution
used to obtain it. Because this operation is lossy,
the prolonged macroscale state loses sub-grid-
scale features of the full state.

If the kernel of the convolution was simply cho-
sen to be Gaussian, then this operation would
amount to a low-pass filter. We choose however
to leave the kernel parametrized and to infer it
from data. The optimal kernel for a particular
dataset may turn out to be non-Gaussian, and
indeed this is what we observed in our numerical studies. The kernel for the multiscale model
(nζ = 20, nη = 5) trained on the KdV dataset is shown in Figure 30. Although the training process
did not converge on a Gaussian kernel, it did converge on a smooth curve.

Observation

Sθ

Smoothed state

Eζ
θ

Macroscale state

Dζ
θ

Prolonged state

Figure 31: The macroscale smoothing, restriction, and prolongation operators visualized on a snapshot
from the KdV dataset.

Figure 31 illustrates the macroscale smoothing, restriction, and prolongation. As our example state,
we use the snapshot at t = 1 from a test trajectory of the KdV dataset. We see how the smoothed
state and especially the macroscale state on its coarsened mesh lose the small-scale features present
in the original snapshot. The learned kernel however reintroduces some small-scale features in the
prolongation, as determined by the training process to maximize the likelihood defined in Section 4.1.
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Figure 32: Spectral plot of observation, multiscale reconstruction
(nζ = 20, nη = 5), and prolonged macroscale state using a snap-
shot from the KdV dataset.

Figure 32 shows a spec-
tral plot of the example
snapshot from Figure 31
compared to the prolonged
macroscale state and a
multiscale reconstruction.
As expected, the decoded
macroscale state accurately
follows the true spectrum
above the spatial Nyquist
frequency of the macroscale
mesh. Below this fre-
quency, however, the small-
scale features introduced by
the deconvolution approxi-
mately follow the true spec-
trum, although they cannot
be directly resolved by the
macroscale mesh. This sug-
gests that the training process selects a non-Gaussian kernel not just to smooth, but also to encode
information about the sub-grid scales that can be partially reconstructed during decoding.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we propose a method for learning stochastic
multiscale models of spatio-temporal systems. The body of the paper details this method
and applies it to several test problems of that type.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the conclusion (Section 6). Specifically, we
note that the latent SDE could incorporate a stabilizing prior, that the microscale state could
be formed in a manner that respects spatial structure, that partial knowledge of the physics
ought to be incorporated as a statistical prior, and that our approach may be applied to a
more general class of problems than we consider in this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The main theoretical contributions of our work are the multiscale model
framework and the multiscale likelihood model. We provide our assumptions and full
derivations throughout the body and appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The training methods, the model architectures, and the variational inference
approach are all described in detail. The code is also provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We link to an anonymized repository with our code in Section 5.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting is described in Results (Section 5) and detailed in
Appendix H. This information is also in our code, which we made available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For each experiment, we report the error mean and standard deviation obtained
on the test set, showing that the error distribution of a sufficiently-dimensioned multiscale
model is significantly lower than that produced by our baseline models.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources and training time are reported in Results (Section 5).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and conformed to it in conduct-
ing our research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Our research concerns a method for modelling physical systems. We do not
foresee any direct societal impacts, positive or negative, resulting from our research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not believe that our method poses a significant risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We do not reuse code or models from other researchers in this work. We do
use open datasets from [38] and [39], which are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code is documented with sufficient detail to reproduce our experiments in
Section 5 and Appendix H. No other assets are used.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing or any human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve crowdsourcing or any human subjects.
Guidelines:

48

paperswithcode.com/datasets


• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in our research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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