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ABSTRACT
Several large language model (LLM) agents have been constructed
for diverse purposes such as web navigation and online shopping,
leveraging the broad knowledge and text comprehension capabili-
ties of LLMs. Many of these works rely on in-context examples to
achieve generalization without requiring fine-tuning. However, few
have addressed the challenge of selecting and effectively utilizing
these examples. Recent approaches have introduced trajectory-
level retrieval with task meta-data and the use of trajectories as
in-context examples to enhance overall performance in some se-
quential decision making tasks like computer control. Nevertheless,
these methods face issues like plausible examples retrieved without
task-specific state transition dynamics and long input with plenty of
irrelevant context due to using complete trajectories. In this paper,
we propose a novel framework (TRAD) to tackle these problems.
TRAD first employs Thought Retrieval for step-level demonstra-
tion selection through thought matching, enhancing the quality of
demonstrations and reducing irrelevant input noise. Then, Aligned
Decision is introduced to complement retrieved demonstration steps
with their preceding or subsequent steps, providing tolerance for
imperfect thought and offering a balance between more context
and less noise. Extensive experiments on ALFWorld and Mind2Web
benchmarks demonstrate that TRAD not only surpasses state-of-
the-art models but also effectively reduces noise and promotes gen-
eralization. Furthermore, TRAD has been deployed in real-world
scenarios of a global business insurance company and yields an
improved success rate of robotic process automation. Our codes
are available at: https://github.com/skyriver-2000/TRAD-Official.
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1 INTRODUCTION
Large Language Models (LLMs) [3, 30] have achieved remarkable
success on various tasks like question answering [42], chatbot [18],
and code synthesis [22] due to their wide knowledge and excellent
ability of text understanding and generation. Recently, a series of
works have attempted to build powerful agents based on LLMs
for various sequential decision-making tasks, including text-based
games [39], web navigation [4], and information retrieval [45].

Among existing LLM agents, some are trained with large-scale
expert data by supervised fine-tuning (SFT) [7, 8, 16], while some are
tuning-free and utilize in-context learning (ICL) with few expert
demonstration examples [12, 32, 40, 43]. In this paper, we focus
the scope on tuning-free ICL methods, as they are highly cost-
effective and can seamlessly generalize to different tasks using only
a small amount of expert samples. Most existing ICL-based agents
are prompted with expert trajectories carefully selected by human
[26, 36, 40], which work well when few expert trajectories are
available. However, when we have access to a large dataset of expert
trajectories or an expert policy, the automatic and personalized
selection of expert trajectories for each task instruction becomes
necessary, and can have an essential influence on task performance.

Recently, Zheng et al. [43] study the problem of demonstration
selection and propose Synapse, which retrieves relevant expert
trajectories by task meta-data, and then prompts LLMs with these
retrieved trajectories. Synapse performs well on computer control
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Thought-Enhanced 
Memory

Thought
I am now in/on: armchair 1
Critical objects I have found:
pillow 1 (armchair 1)
pillow 2 (armchair 1)
Objects I have taken:
None
Now I have found both pillows in/on armchair 1. Next, I need to
take the first pillow and then put it in/on the sofa ……

Input (Observation)
On the armchair 1, you see a cellphone 2, a pillow 2, and a pillow 1.

Output (Action)
take pillow 1 from armchair 1

Domain: PutTwo
Instruction: Put two pillow in sofa

Task Metadata

Thought-Enhanced 
Memory

Demonstrations (For Decision)

Input (Observation)
You pick up the pillow 1 from the armchair 1.

Thought
I am now in/on armchair 1
Critical objects I have found:
pillow 1 (armchair 1)
pillow 2 (armchair 1)
Objects I have taken:
pillow 1
Now I have taken the first pillow (1). Next, I need to go to the sofa
and put it there ……

Demonstrations (For Decision)

Thought-Enhanced 
Memory

Output (Action)
go to sofa 1

Task: put two pillow in armchair.
You pick up the pillow 1 from the sofa 1.
 think: I am now in/on: sofa 1

Critical objects I have found:
pillow 1 (sofa 1)
pillow 2 (sofa 1)
Objects I have taken:
pillow 1
Now I have taken the first pillow (1). Next, I need to go to an
armchair and put it there ……

 act: go to armchair 2

Retrieved (1)

Task: put two pillow in sofa
You put the pillow 2 in/on armchair 2 ……

Retrieved (2)

Task: put two pillow in armchair.
On the sofa 1, you see a creditcard 3, and a pillow 2.
 think: I am now in/on: sofa 1

Critical objects I have found:
pillow 1 (sofa 1, put in/on armchair 2)
pillow 2 (sofa 1)
Objects I have taken:
None
Now I have found the second pillows (2). Next, I need to take
it and then put it in an armchair.

 act: take pillow 1 from armchair 1

Retrieved (1)

Task: put two pillow in sofa
On the armchair 2, you see a pillow 2 ……

Retrieved (2)

Reasoning

Decision

LLM Agent

LLM Agent

LLM Agent

LLM Agent

Trajectory-Wise
Similarity Search

Timestep � Timestep � + �

Aligned Decision Aligned Decision

Thought RetrievalThought Retrieval

Demonstrations (For Reasoning)

Task: put two pillow in armchair
You are in the middle of the room ……

Retrieved (1)

Retrieved (2)

Task: put two pillow in armchair
You are in the middle of the room ……
 think: ……
 act: go to sofa 1
On the sofa 1, you see ……

Overall Scenario

Watch On A Desk

Environment

Figure 1: An overall illustration of TRAD agent (on ALFWorld [28] enviroment). TRAD first pre-processes expert trajectories,
labeling each step with high-quality thoughts. At inference time, TRAD first conducts thought retrieval, which generates
thought with trajectory-wise retrieved demonstrations as the query and keys for a more precise step-wise demonstration
retrieval. Given the retrieved steps, TRAD employs aligned decision module to complement their temporally neighboring steps
and corresponding position information (Fig. 2). Finally, the next action is generated according to the enhanced demonstration.

tasks (MiniWob++ [25]) and web navigation tasks (Mind2Web [4]).
Nevertheless, retrieving and prompting with complete trajectories
can be problematic in the following three aspects.
Plausible examples. Sometimes generalization to data from var-
ious domains can be critical. For example, in cross-website and
cross-domain subsets of Mind2Web, agents operate on websites
unseen in the training set, i.e., memory. In this case, retrieving tra-
jectories with only task meta-data is very likely to provide plausible
examples, which share similar task instructions to the current one
but require totally different solutions. As shown by experiments in
[43], plausible examples provide no more information than random
examples and can usually mislead LLM agents to wrong decisions.
Context limit of LLMs. When facing tasks with long horizons
and complex observations, prompting with complete trajectories
will result in input sequences longer than the allowed length of
LLMs. Synapse thus has to reduce the number of trajectory ex-
amples or even fail to complete the task directly. Though some
long-context LLMs can receive very long prompts, the performance
can be harmed due to the issue of long-term forgetting [29].
Irrelevant information in prompts. LLMs are found sensitive to
their prompts, and can easily copy their recent input [10, 20]. The
decision at the current timestep can be related to very few steps in
a retrieved trajectory, while other steps do not provide any helpful
information. Therefore, irrelevant steps will have unpredictable
effects on the decision of LLM agents. As shown by our experiments,
they negatively impact the performance most of the time.

To address the problems of trajectory-wise retrieval and prompt-
ing, we delve into step-wise demonstration retrieval and prompting.
We discover that, via demonstrating with relevant steps, the input
context of the LLM agent can be significantly reduced. Thus, the

issue of context limit and irrelevant information can be alleviated.
Therefore, the critical part is to retrieve step demonstrations that
are truly relevant and helpful. To achieve this, we utilize step-by-
step reasoning, i.e. Chain-of-Thought technique [36], to abstract
the state at each timestep as retrieval queries and keys. The gen-
erated thoughts can involve historical information or future plans,
which is more specific with state transitions and helpful in reducing
plausible examples.

In this paper, we propose ThoughtRetrieval andAlignedDecision
(TRAD), a novel framework that achieves step-wise demonstration
retrieval via thought matching and enhances the context for ac-
tion prediction with temporally neighboring steps and their order
information. Our contribution can be summarized in four-folds:

• We propose a thought retrieval method, where we label thoughts
for expert demonstration steps in advance with an LLM, prompt
LLM agents to reason at inference time, and achieve step-wise
retrieval by a similarity search on thought. To the best of our
knowledge, this is the first work that enables the LLM agent with
thought retrieval techniques for sequential decision-making.

• Based on the thought retrieval operation, we further propose an
aligned decision method, where we supply the retrieved steps
with their temporal neighbors to overcome imperfect thoughts
and enhance task-relevant information.

• We conduct extensive experiments and analysis onMind2Web [4]
tasks and ALFWorld [28], showing that TRAD achieves state-of-
the-art (SoTA) performance compared to existing works. TRAD
brings a 2.99% improvement over the strongest baseline (93.78%
→ 96.77%) to the success rate (SR) on ALFWorld. On Mind2Web,
TRAD improves element accuracy, step SR, and SR remarkably
over the powerful Synapse agent [43] by 2.1%, 1.4%, and 0.5%.
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• We have deployed TRAD to the real-world robotic process au-
tomation scenarios of a global business insurance company,
where TRAD enables the LLM agent to significantly improve
the success rate in a bunch of practical tasks. In average, TRAD
raises step SR from 90.2% to 98.1% and SR from 65.0% to 92.5%.

2 RELATEDWORK
2.1 LLM Agents
In recent years, there has been a rapidly growing trend to utilize
pre-trained LLMs as the central controller to obtain human-level
decision-making capabilities [33]. Among these works: Nakano
et al. [16] fine-tune the GPT-3 [3] model for question answering in a
text-based web browsing environment. Yao et al. [38] develop Web-
Shop, a simulated e-commerce website environment, and fine-tune
a BERT [5] model with imitation learning and reinforcement learn-
ing. Yao et al. [40] insert a reasoning section between observation
input and action output, significantly improving the performance
on ALFWorld [28] and WebShop [38] tasks. Shinn et al. [26] further
improve over [40] via reflection on task feedback. Schick et al. [24]
teach LLMs to use external tools via simple APIs in a self-supervised
learning way. Park et al. [19] introduce Generative Agents, extend-
ing LLMs with natural language memories and retrieving them
dynamically to plan behavior. Wang et al. [35] propose DEPS, an
interactive planning approach, which facilitates better error cor-
rection by integrating a description of the plan execution process
and an explanation of failure feedback. Wang et al. [32] employ an
exploration curriculum, a growing skill library, and a novel itera-
tive prompting mechanism, leading to better proficiency in playing
Minecraft. Deng et al. [4] construct the Mind2Web dataset from
real-world webpages, which consists of three subsets requiring
different degrees of generalization, and compare the performance
of imitation learning and few-shot inference.

As can be seen above, most existing LLM agents focus on: 1)
improving task performance by direct fine-tuning [4, 16, 38]; 2) en-
hancing planning or reasoning by explicitly prompting [26, 35, 40];
3) extending the application with an external memory or tool li-
brary [19, 24, 32]. However, providing more relevant information in
prompts, as a fundamental way to elicit better task understanding,
does not receive sufficient attention. When near-optimal demon-
strations are accessible, selecting few-shot demonstrations properly
can be a simple yet very effective way to improve task performance,
which is investigated in our work.

2.2 In-Context Example Selection
LLMs have been shown excellence of few-shot learning [3], and the
selection of in-context examples can yield a significant improve-
ment on the overall performance. Liu et al. [15] first propose to
retrieve the 𝑘-nearest neighbors (𝑘-NN) of the input as in-context
examples, and achieve improvement over random retrieval base-
lines. Rubin et al. [23] select relevant samples with an encoder
trained with label similarity, and obtain better performance over
BM25 and pre-trained encoder baselines. Zhang et al. [41] consider
selecting and labeling unlabeled examples as demonstrations to
achieve the best performance, and view this problem as a sequential
decision making task to solve by reinforcement learning. Wu et al.
[37] further select examples in a subset recalled from 𝑘-NN search
via minimizing the entropy of output.

IRCoT [31] should be the most relevant work to ours, which
retrieves relevant documents with reasoning steps on question-
answering tasks. However, their method retrieves with a complete
historical trajectory and accumulates retrieved documents over
time, which are not transferable to complex sequential decision-
making tasks, and we propose a method different from theirs in that:
(i) Our method focuses on both providing more relevant demon-
strations and reducing irrelevant context for decision-making tasks,
while theirs is limited to question-answering tasks and only ad-
dresses the first issue. (ii) Ourmethod retrieves different steps across
timesteps and complements the retrieval results with temporal in-
formation, while theirs only accumulates relevant documents at
every reasoning step and heuristically cuts off the earliest ones to
fit in the context limit of LLMs. (iii) Our method prepares pseudo-
golden thoughts for expert trajectories in the memory to enable
retrieval with trajectories without thoughts, and utilizes single-step
thoughts as both queries and keys for precise retrieval, while theirs
uses thoughts only as queries with raw documents as keys.

The selection of in-context examples has been studied thor-
oughly for non-sequential tasks like question answering and senti-
ment analysis. However, for sequential decision-making tasks, how
to select the examples to improve the overall performance remains
unclear. Zheng et al. [43] propose a trajectory-wise retrieval so-
lution, while a more precise step-wise solution is still desired as
discussed in Section 1, which motivates our work.

2.3 LLM Planning and Reasoning
Ourwork proposes to use thought, which can be viewed as a general
abstraction of the current state, as queries and keys for retrieval.
Nevertheless, plans, code comments, and any other text that extracts
comprehensive information about the current state can serve as
an alternative. Therefore, we particularly review some remarkable
reasoning and planning works based on LLMs, and most of them
are complementary to our work.

Wei et al. [36] first introduce the concept of Chain-of-Thought
(CoT) by providing with explicit step-by-step reasoning process in
example outputs improving performance on arithmetic, common-
sense, and symbolic reasoning tasks. Wang et al. [34] further find
that a single reasoning path can be sub-optimal, and propose self-
consistency to address this problem by sampling multiple reasoning
paths. For efficient yet flexible search of reasoning paths, Yao et al.
[39] apply tree search with self-evaluation to find globally excellent
thoughts. Besta et al. [2] later extend the tree-search structure to a
graph search for even better flexibility and overall performance.

The works mentioned above consider problems that are non-
sequential or solvable by a single complete reasoning path after re-
ceiving the input. For harder sequential decision-making problems:
Zhou et al. [44] introduce least-to-most prompting to solve hard
problems by decomposing the problem and solving sub-problems
sequentially. ReAct proposed by Yao et al. [40] interacts with the en-
vironment in a reason-then-act style, which enriches the context for
action prediction. Code-as-Policies [13] writes executable codes for
embodied control by hierarchically expanding undefined programs,
which can be viewed as implicit reasoning or CoT process. Liu et al.
[14] propose to incorporate the strength of classical planners by
translating the original problem into a PDDL [1] problem to solve
by classical planners. Hao et al. [9] and Ding et al. [6] share a simi-
lar insight that reasoning can be implemented indeed by planning,
where [9] use LLMs as world models and [6] conduct MCTS for
thought generation with a light-weight extra network.
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Demonstrations (For Decision)

Task: put two pillow in armchair.

[Step -1] On the sofa 1, you see ……
think: ……
act: take pillow 1 from sofa 1

[Step 0] You pick up the pillow 1 from the sofa 1.
think: I am now in/on: sofa 1
Critical objects I have found:
pillow 1 (sofa 1)
pillow 2 (sofa 1)
Objects I have taken:
pillow 1
Now I have taken the first pillow (1). Next, I

need to go to an armchair and put it there ……
act: go to armchair 2

[Step 1] On the armchair 2, you see ……
think: ……
act: put pillow 1 in/on armchair 2

Retrieved (1)

Task: put two pillow in sofa

[Step -1] On the armchair 2, ……

[Step 0] You put the pillow 2 ……

[Step 1] On the sofa 1, ……

Retrieved (2)

Thought
I am now in/on armchair 1
Critical objects I have found:
pillow 1 (armchair 1)
pillow 2 (armchair 1)
Objects I have taken:
pillow 1
Now I have taken the first pillow (1). Next, I need
to go to the sofa and put it there ……

Thought-Enhanced 
Memory

Similarity
Search

Thought
I am now in/on: sofa 1
Critical objects I have found:
pillow 1 (sofa 1)
pillow 2 (sofa 1)
Objects I have taken:
pillow 1
Now I have taken the first pillow (1). Next, I need
to go to an armchair and put it there ……

Thought
I am now in/on: armchair 2
Critical objects I have found:
pillow 1 (sofa 1)
pillow 2 (sofa 1, taken and put in/on armchair 2)
Objects I have taken:
None
Now I have put the first pillow in armchair 2.
Next, I need to go back to sofa 1 and take the
second pillow (1).

Input (Observation)
You pick up the pillow 1 from the sofa 1.

Output (Action)
go to armchair 2

Timestep ��

Input (Observation)
On the armchair 2, you see ……

Output (Action)
put pillow 1 in/on armchair 2

Timestep �� + 1

Input (Observation)
On the sofa 1, you see a pillow 1, and a pillow 2.

Output (Action)
take pillow 1 from armchair 1

Timestep �� − 1

Temporal Expansion

Timestep ��

Timestep �� − 1

Timestep �� + 1

Thought Retrieval Keys Thought Retrieval Values

Relative Order Mark

Thought Retrieval Query

Retrieved Step Sequence 1

Retrieved Step Sequence 2

Current Input

Action Output
go to sofa 1

Timestep �

Timestep � − 2

On the sofa 1, you see a newspaper 3.
think: ……
act: go to armchair 1

Timestep � − 1

On the armchair 1, you see ……
think: ……
act: take pillow 1 from armchair 1

History Alignment (� + � = �)

History Aligned LLM Input LLM Agent

You pick up the pillow 1 from the armchair 1.
think: I am now in/on armchair 1
Critical objects I have found:
pillow 1 (armchair 1)
pillow 2 (armchair 1)
Objects I have taken:
pillow 1
Now I have taken the first pillow (1). Next, I

need to go to the sofa and put it there ……
act:

Aligned Decision

Thought Retrieval

Prompting

Figure 2: An illustration of our aligned decision method, where 𝐵 = 𝐹 = 1 and the 𝑖-th retrieved step is at time 𝑡𝑖 in its trajectory.
The aligned decision method consists of three sub-processes to the retrieved step demonstrations and prompting: 1) Temporal
Expansion: Collect at most 𝐵 previous steps and 𝐹 subsequent steps for each retrieved step, and transform each step into a
sequence of length 𝐵 + 𝐹 + 1 from 𝑡𝑖 − 𝐵 to 𝑡𝑖 + 𝐹 ; 2) Relative Order Mark: For each step in one demonstration step sequence,
we label its relative position to the retrieved step in this sequence, i.e., the previous one (𝑡𝑖 − 1) with [Step -1] and the next
one (𝑡𝑖 + 1) with [Step 1]; 3) History Alignment: For the current episode, we complement current observation (and thought,
optional) with 𝐵 + 𝐹 previous steps to enrich information and align with demonstrations.

To summarize, LLM planning and reasoning have continuously
received huge attention from researchers in recent years. This
makes our work flexible and improvable with more powerful plan-
ning and reasoning methods in the future.

3 THE TRAD FRAMEWORK
As discussed in Section 1, trajectory-wise retrieving and prompt-
ing lead to issues of plausible examples, LLM context limits, and
irrelevant information. To resolve these issues, we propose a novel
method called Thought Retrieval and Aligned Decision (TRAD), as
illustrated in Fig. 1. Our TRAD agent utilizes thought, which is
obtained by reasoning about its current state, to retrieve similar
steps from expert trajectories, and is then complemented with steps
temporally correlated to the retrieved ones and their temporal po-
sition information to predict the action. Formally, our TRAD agent
can be summarized in one equation:
𝜋𝑇𝑅𝐴𝐷 (𝑎𝑡 |𝜉, 𝑜0:𝑡 , 𝑎0:𝑡−1) = LLM(AD(TR(𝜏𝑡 ,M), 𝜉, 𝑜0:𝑡 , 𝑎0:𝑡−1)) ,
where 𝜉 is the current task, 𝑜0:𝑡 and 𝑎0:𝑡−1 are historical observa-
tions and actions, 𝜏𝑡 is the thought generated by LLM about the
current state, TR and AD denote our thought retrieval and aligned
decision modules, andM refers to the thought-enhanced memory.
We will present each module of TRAD in the following subsections.

3.1 Thought Preparation
Most expert trajectories, collected by either human or other expert
agents, do not contain their reasoning process. Therefore, before we
utilize thoughts for retrieval, we should prepare thoughts for each
demonstration step in the memory. Specifically, we start from a
small subset of expert demonstrations and provide thoughts written
by human experts for each step in it. Given this small subset as few-
shot examples in prompts, we can query LLMs to label thoughts for
a large memory. Although ground-truth actions are not accessible
at inference time, we can prompt LLMs with them to generate
thoughts of higher quality. In this way, LLMs produce pseudo-
golden thoughts consistent with expert actions, and we obtain
a thought-enhanced memory M supporting both trajectory-wise
retrieval with task meta-data and step-wise retrieval with thoughts.

3.2 Thought Retrieval
Given pseudo-golden thoughts for all steps in the memory, which
can serve as keys for step-wise similarity search, we now present
our thought retrieval method to select relevant demonstrations
at inference time. To be specific, we first conduct trajectory-wise
demonstration retrieval as in [43] for thought generation. With
these trajectory demonstrations, at each timestep 𝑡 we prompt the
LLM to generate a thought 𝜏𝑡 for step-wise retrieval. Note that this
process does not directly effects decision-making, hence it can be
further simplified if necessary and the issues mentioned in Section 1
will not impact the agent severely.

With the thought 𝜏𝑡 , which can be viewed as an abstraction,
about current state, we conduct dense retrieval to find relevant steps
in the thought-enhance memory M. Here any encoder pre-trained
on a large corpus for retrieval, e.g., Sentence-BERT [21] and DPR
[11], can be utilized to encode the query thought and key thoughts
into dense vectors. Using a cosine similarity between the query and
keys, we then collect top-𝐾 relevant steps that belong to mutually
different trajectories and their corresponding task instructions.

3.3 Aligned Decision
Now we have relevant demonstration steps from thought retrieval.
However, the query thought can be imperfect due to the lack of
expert action information at inference time. As we will show by ab-
lation experiments in Section 4.4, directly using these steps to form
single-step demonstrations does not provide satisfactory perfor-
mance, which is similar to the plausible example issue of trajectory-
wise retrieval. Therefore, we propose an aligned decision method to
incorporate more information during the decision-making process.
Aligned decision complements LLM agents with steps temporally
correlated to the retrieved ones and their temporal position infor-
mation. As illustrated in Fig. 2, the aligned decision method can be
decomposed into following three sub-processes.
Temporal expansion. For each retrieved step, we first expand it
into a step sequence involving 𝐵 previous steps and 𝐹 subsequent
steps. When the number of previous or subsequent steps is smaller
than 𝐵 or 𝐹 , we simply take all previous or subsequent steps. This
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Table 1: Success Rate of Different Methods on 6 Types of ALFWorld Tasks. We compare TRAD with ReAct [40], Synapse [43],
and their strong combination. TRAD significantly outperforms all baselines in terms of overall performance, achieves the best
performance in 5 out of 6 types of task, and shows a decent performance on Heat task. The improvement of TRAD over all
baselines on overall performance is statistically significant (measured by student’s t-test at 𝑝 < 0.05).

Method Put Examine Clean Heat Cool PutTwo All

ReAct (Random) 0.8472±0.0393 0.8333±0.0454 0.9570±0.0304 0.8841±0.0205 0.9841±0.0224 0.8431±0.0277 0.8980±0.0093
ReAct (Fixed) 0.7778±0.0708 0.9630±0.0262 0.9032±0.0263 0.9275±0.0205 1.0000±0.0000 0.8824±0.0480 0.9055±0.0186
Synapse 0.9444±0.0196 0.7037±0.0262 0.9355±0.0000 0.9130±0.0615 1.0000±0.0000 0.8039±0.0555 0.8955±0.0106
Synapse + ReAct 0.9167±0.0340 0.9444±0.0454 1.0000±0.0000 0.9130±0.0000 0.9524±0.0000 0.8627±0.0555 0.9378±0.0035
TRAD (Ours) 0.9583±0.0000 0.9630±0.0524 1.0000±0.0000 0.8986±0.0205 1.0000±0.0000 0.9804±0.0277 0.9677±0.0141

transforms each retrieved step into at most (𝐵 + 1 + 𝐹 ) temporally
successive steps, allowing LLM agents to correct their imperfect
thoughts by looking at more related steps at decision-making time.
Relative order mark. Given 𝐾 expanded step sequences by tem-
poral expansion, we insert a mark for each step (including the re-
trieved ones) indicating the relative position w.r.t. its corresponding
retrieved step, and incorporate this rule of mark in the prompt for
decision. For example, the last step before the retrieved one will be
marked as [Step -1], the retrieved step as [Step 0], and the first
step after the retrieved one as [Step 1]. This provides temporal
information about the (𝐵 + 1 + 𝐹 ) × 𝐾 demonstration steps, and
promotes more accurate demonstration following.
History alignment. Sometimes the optimal policy to a task, like
ALFWorld, can be history-dependent, hence using single-step input
for action prediction is unreasonable. Since we aim to reduce input
content for less forgetting and noise, we should neither use all his-
torical observations and actions. Moreover, even if we include previ-
ous actions as auxiliary information, there exists a mismatch where
expert demonstrations are given as sequences of length 𝐵 + 1 + 𝐹
while current input is a single step.We thus propose to insert at most
𝐵 + 𝐹 previous input-output pairs (i.e. 𝑜𝑡−(𝐵+𝐹 ) :𝑡−1, 𝑎𝑡−(𝐵+𝐹 ) :𝑡−1)
before current input 𝑜𝑡 , transforming current input into a similar
sequence to demonstrations.

4 EXPERIMENTS
In this section, we aim to study the following research questions:

RQ1 How does TRAD perform against existing SoTA methods?
RQ2 Does thought retrieval help to reduce irrelevant context and

improve the overall performance?
RQ3 Does aligned decision help to supply information when gen-

eralization is important?
RQ4 Diving into aligned decision, are all temporal expansion (TE),

relative order mark (ROM), and history alignment (HA) neces-
sary for improvement?

RQ5 Howwill the performance and advantage of TRAD be effected
by critical hyper-parameters?

4.1 Experiment Setup
To answer the above research questions, we conduct extensive
experiments on ALFWorld [28] and Mind2Web [4] tasks. For each
task, we introduce the details of evaluation as follows.

ALFWorld [28] is a text-based game aligned with ALFRED [27]
benchmark. It involves 6 types of tasks where an agent must take a
series of actions (e.g. go to shelf 1, take vase 2 from shelf 1, put vase
2 in/on cabinet 5) to achieve a high-level goal given by a natural
language instruction (e.g. put some vase on a cabinet). This environ-
ment is challenging in three aspects: 1) Agent should determine
likely places of a householding object and explore them one by one

to find such object; 2) Agent should understand the usage of some
objects like microwaves, fridges, and desklamps; 3) Some tasks can
take an agent more than 30 steps to solve, requiring substantial
long-term memorization.

Following Shridhar et al. [28], we evaluate on the subset of 134
out-of-distribution tasks, comparing the task success rates of TRAD
to ReAct [40] and Synapse [43] (without state abstraction as obser-
vations are short). As ReAct and Synapse has provided sufficiently
strong performances, we do not include more complex reasoning
and planning baselines and corresponding variants of TRAD due to
our API cost limit. Note that the original ReAct uses fixed but not
retrieved trajectories as demonstrations, hence we test two ReAct
baselines to eliminate such an effect:
• ReAct (Fixed) uses fixed human-written trajectories as demon-
strations;

• ReAct (Random) randomly samples trajectories from the memory
as demonstrations.
For fair comparison, TRAD uses thoughts in exactly the same

format as ReAct, and shares a consistent memory of expert trajecto-
ries with Synapse. We also add a strong baseline (Synapse+ReAct)
combining the trajectory-level retrieval in Synapse and the reason-
ing in ReAct. On ALFWorld, all methods are built with GPT-4 [17]
and 2 in-context examples.

Mind2Web [4] is an HTML-based web navigation benchmark col-
lected from real-world webpages, involving various tasks such as
searching, trip booking, social network subscription, etc. It contains
3 subsets, i.e., cross-task, cross-website, cross-domain. This envi-
ronment is challenging in two aspects: 1) Existing LLM agents can
hardly understand HTML input well; 2) Unseen tasks and websites
can require substantial generalization. Deng et al. [4] find that the
cross-website and cross-domain subsets are significantly harder
due to the need for generalization to unseen websites.

SinceMind2Webwas introduced only about half a year ago, there
is a lack of suitable baseline algorithms, and thus we compare our
TRAD agent to Synapse [43] and ReAct [40]. Following Zheng et al.
[43], we evaluate on all 3 subsets, comparing the element accuracy
(Ele. Acc), step success rate (Step SR), and trajectory success rate
(SR). For fair comparison, we follow [43] and summarize obser-
vations into 5 web elements with the pre-trained element ranker
provided by [4] for all methods. Since the observations are still
very complex on Mind2Web, including thoughts for every step in
trajectories is not available, hence: 1) we do not include a Synapse
+ ReAct baseline; 2) TRAD generates thoughts and predicts actions
by a single-step prompt with the current observation and previous
actions (without previous observations). To eliminate the effect of
prompting style and reasoning, we build two ReAct baselines using
the same format of prompt as TRAD:
• ReAct (Random), for which we prompt ReAct with completely
random demonstration steps.
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Table 2: Results (%) of all methods on Mind2Web benchmark. TRAD achieves the best overall performances and the most
improvement on the two harder subsets, especially the most out-of-distribution Cross-Domain subset. The improvement of
TRAD over all baselines on three overall metrics is statistically significant (measured by student’s t-test with 𝑝 < 0.01).

Method Cross-Task Cross-Website Cross-Domain All
Ele. Acc Step SR SR Ele. Acc Step SR SR Ele. Acc Step SR SR Ele. Acc Step SR SR

MindAct 20.3 17.4 0.8 19.3 16.2 0.6 21.0 18.6 1.0 20.6 18.0 0.9
ReAct (Random) 31.0 24.7 1.6 25.7 19.1 0.6 27.9 22.9 1.8 28.3 22.7 1.6
ReAct (Relevant) 31.3 26.0 1.2 26.7 20.5 0.6 28.0 23.1 1.6 28.5 23.4 1.4
Synapse w/o Retrieval 33.1 28.9 3.2 27.8 22.1 1.1 30.0 26.5 1.4 30.4 26.4 1.7
Synapse 34.4 30.6 2.0 28.8 23.4 1.1 29.4 25.9 1.6 30.4 26.6 1.6
TRAD (Ours) 35.2 30.8 3.6 30.4 24.0 0.6 32.0 28.0 2.0 32.5 28.0 2.1

• ReAct (Relevant), for which we prompt ReAct with demonstrate
steps randomly chosen from trajectories retrieved by Synapse.

We do not include the ReAct (Fixed) baseline as it is hard to write
or pick demonstrations commonly helpful for such diverse test sets.
We also provide the results of the simplest MindAct [4] baseline
without reasoning and retrieval for completeness. On Mind2Web,
all methods are built with GPT-3.5-turbo and 3 in-context examples.

4.2 Evaluation on ALFWorld
The success rate of each method tested on ALFWorld is shown
in Tab. 1. Generally, our TRAD agent achieves an average success
rate of 96.77%, significantly outperforming ReAct (∼90%), Synapse
(89.55%), and even their strong combination (93.78%). It is also worth
noting that the worst trial of TRAD among 3 random seeds achieves
a success rate of 94.8%, outperforming the best trial produced by
any other method (94.0%).

Down to the success rate on each type of task, we observe that
the success rate of each method varies more on the simplest Put
task and the hardest PutTwo task. We discuss the results of these
two tasks respectively as follows:

• On the simplest Put task, ReAct performs even more poorly than
other harder tasks. We find that the two vital reasons for ReAct’s
failure on Put task are incorrect location and usage of objects,
e.g. trying to put an object in a closed safe. As this issue can be
alleviated through a combination with Synapse, the necessity of
retrieving relevant demonstrations thus justified.

• TRAD achieves the largest improvement on the hardest PutTwo
task. PutTwo requires to correct the locations of two objects and
a comprehensive understanding of its task process. Since TRAD’s
outstanding performance on this hardest task is obtained from a
reduced input context at decision-making time, we can conclude
that step-wise thought retrieval is helpful by reducing the noise
of irrelevant steps and finding relevant examples more precisely.

4.3 Evaluation on Mind2Web
To verify the capability of TRAD under more realistic scenarios, we
compare TRAD to ReAct and the current SoTA method, Synapse, on
the Mind2Web benchmark, and the results are shown in Tab. 2. We
also include the results of Synapse without retrieval here to better
illustrate the effect of different retrieval methods.

Generally, TRAD achieves the highest performance in terms of
all 3 metrics averaged on 3 subsets. Considering that the trajectory-
level retrieval of Synapse only brings marginal boosts on Cross-Task
and Cross-Website subsets, and even slightly impacts the perfor-
mance on the Cross-Domain subset, our TRAD method can be thus
justified in two aspects:

• By reducing input context and utilizing step-wise relevant demon-
strations, our step-wise thought retrieval helps more than the
trajectory-wise retrieval with task meta-data in Synapse to im-
prove on the simplest Cross-Task subset.

• By eliminating plausible examples and complementing temporal
correlated steps, aligned decision helps to improve on the two
harder subsets, especially the most out-of-distribution Cross-
Domain subset.

Furthermore, we observe that the two ReAct baselines perform
poorly on this task, which indicates that:

• The thoughts generated by GPT-3.5-turbo on Mind2Web tasks
are not sufficient for LLM agents to infer the correct action.

• The single-step prompting style which removes previous obser-
vations does not benefit overall performance.

On the contrary, TRAD utilizes these imperfect thoughts for re-
trieval rather than direct decision-making, and is complemented
with temporally correlated steps via aligned decision. Therefore,
TRAD is not negatively impacted by the imperfect thoughts, but
transforms them into helpful information.

Before we start the study on detailed design and hyper-parameter
choices of TRAD, we can summarize our performance evaluation on
ALFWorld and Mind2Web benchmarks and answer the first three
research questions as follows.
Answer to RQ1: On both householding (ALFWorld) and web navi-
gation (Mind2Web) tasks, TRAD significantly outperforms curernt
SoTA methods and becomes the new SoTA method.
Answer to RQ2: On ALFWorld benchmark, Synapse + ReAct gener-
ates thoughts in exactly the same way with our TRAD, and uses en-
tire relevant trajectories (more information than TRAD) as demon-
strations for action prediction. However, TRAD shows obvious ad-
vantage over this baseline. Therefore, we can conclude that TRAD
benefits from more relevant demonstrations and less irrelevant
input context brought by thought retrieval.
Answer to RQ3: On Mind2Web benchmark, TRAD achieves the
most improvement over Synapse on the Cross-Domain subset which
requires the most generalization. Therefore, we can tell that the
aligned decisionmethod complements critical information for decision-
making on unseen input.

4.4 Ablation Studies
We have verified the effectiveness of TRAD on two different scenar-
ios, i.e., automatic householding and web navigation. Next, we are
to examine the effect of each module in TRAD. Due to our limited
budget for API usage, all ablation studies are conducted on the
Mind2Web benchmark with GPT-3.5-turbo.
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Table 3: Results (%) of ablation studies on Mind2Web benchmark. TE builds the basic structure of aligned decision and is thus
critical for performance boost on all three subsets. HA and ROM work well to promote generalization on the two harder
Cross-Website and Cross-Domain subsets but provide little help on the Cross-Task subset. The improvement of TRAD over all
ablation baselines on Ele. Acc and Step SR is statistically significant (measured by student’s t-test with 𝑝 < 0.05).

Method Cross-Task Cross-Website Cross-Domain All
Ele. Acc Step SR SR Ele. Acc Step SR SR Ele. Acc Step SR SR Ele. Acc Step SR SR

TRAD w/o TE 34.2 28.4 1.2 27.4 20.4 0.6 29.1 24.0 1.4 30.0 24.5 1.3
TRAD w/o HA 36.2 31.1 4.0 28.3 22.2 0.6 29.4 24.9 1.8 30.8 25.9 2.1
TRAD w/o ROM 35.7 30.5 3.6 28.9 22.3 0.6 31.5 27.2 1.9 32.1 27.2 2.0
TRAD (Ours) 35.2 30.8 3.6 30.4 24.0 0.6 32.0 28.0 2.0 32.5 28.0 2.1

4.4.1 The Effect of Aligned Decision. First, we study the effect
of macro building blocks of TRAD. Since eliminating thought re-
trieval will disable aligned decision at the same time and break the
framework fundamentally, we do not remove the thought retrieval
module, but ablate each component of aligned decision, i.e., temporal
expansion (TE), relative order mark (ROM), and history alignment
(HA), and compare the corresponding performances. The results
are shown in Tab. 3.

From Tab. 3, we observe that the performance without each
component varies differently on the simplest Cross-Task subset and
the two harder subsets:
• On the harder Cross-Website and Cross-Domain subsets, the
elimination of all three modules in aligned decision results in a
significant performance drop, and the effect of TE is the most
significant. This is intuitive, since only retrieved steps are pro-
vided to the agent without TE, and thus the agent becomes more
vulnerable to imperfect thoughts.

• On the simplest Cross-Task subset, however, HA and ROM are
not that helpful and even cause performance drop. As discussed
earlier (Section 1 and Section 3.3), when the issue of plausible
examples is not severe, reducing context and prompting with
the most relevant demonstration becomes the dominant factor
of performance boost. Therefore, only TE remains beneficial
for recovering from imperfect thoughts, while the other two
components lead to sub-optimal performance.
Generally, the aligned decision method provides more informa-

tion about the source trajectories of retrieved steps and the current
trajectory, and helps especially for scenarios where generalization
is essential. We can now summarize these observations and answer
the fourth research question.
Answer to RQ4: Among the sub-processes in aligned decision, 1)
temporal expansion provides tolerance for imperfect thoughts and
improves the overall performance of TRAD consistently; 2) relative
order mark and history alignment complement TRAD with temporal
information about the trajectories of retrieved steps and the current
trajectory, which serve as useful context for out-of-distribution
decision-making but may become less useful for in-distribution
decision-making.

4.4.2 The Effect of Expansion Steps 𝐵 and 𝐹 . Next we vary a critical
hyper-parameter, the number of temporal expansion steps, and
investigate how the overall performance will change accordingly.
To avoid an expensive grid search on 𝐵 and 𝐹 , we consider only
one-side expansion by varying 𝐵 or 𝐹 from 0 to 4 with the other
set to 0. The results are shown in Fig. 3.

From Fig. 3, we can have the following observations:
• Both forward expansion (𝐹 > 0) and backward expansion (𝐵 > 0)
achieve improvement compared to no expansion (𝐹 = 𝐵 = 0).
This justifies our design of aligned decision.
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Figure 3: The effect of varying subsequent steps 𝐹 and previ-
ous steps 𝐵 on Mind2Web benchmark. Solid lines correspond
to the performance metrics of TRAD given different 𝐹 and
𝐵, and the dashed lines correspond to the Synapse baseline.
Forward expansion (𝐹 > 0) generally provides more improve-
ment than backward expansion (𝐵 > 0) over no expansion
(𝐹 = 𝐵 = 0) and the Synapse baseline. 𝐹 or 𝐵 does not help
more when they are sufficiently large.

• Either forward expansion or backward expansion does not ben-
efit from increasing a large enough 𝐹 or 𝐵 further. This proves
our hypothesis that irrelevant context too far from the current
state is of little value and even noisy.

• Generally, forward expansion performs better than backward
expansion when varying 𝐹 and 𝐵. The reason for this phenome-
non might be that historical information has been incorporated
in thoughts and thus future information helps more.

• TRAD achieves its best performance when 𝐹 = 2 and 𝐵 = 0, and
consistently outperforms Synapse with forward expansion.

4.4.3 The Effect of Demonstration Amount 𝐾 . Finally, we look into
a common yet important hyper-parameter, the number of retrieved
demonstrations 𝐾 , and see how the advantage of TRAD over the
baseline (Synapse) will change given different 𝐾 ∈ {1, 2, 3, 4, 5}. We
show the results in Fig. 4. Note that the trajectory-wise prompting
in Synapse frequently exceeds the context limit when 𝐾 = 5, and
thus we omit this result.

From Fig. 4, we see that 𝐾 has a mild effect on the performance
of TRAD and Synapse, and that the advantage of TRAD over Synapse
consistently remains for all 𝐾 ∈ {1, 2, 3, 4}.

With results in Section 4.4.2 and Section 4.4.3, we now respond
to our last research question.
Answer to RQ5: The performance and advantage of TRAD gen-
erally remains stable with different hyper-parameter choices, i.e.,
temporal expansion steps, number of retrieved demonstrations. Its
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Figure 4: The effect of varying the number of retrieved
demonstrations 𝐾 on Mind2Web benchmark. Solid lines cor-
respond to the performance metrics of TRAD given different
𝐾 , and the dashed lines correspond to the Synapse baseline.
𝐾 has a mild effect on the performance of TRAD and Synapse,
and the advantage of TRAD over Synapse remains stable
when 𝐾 varies.
performance and advantage only degrade when using long back-
ward extension, which is possibly due to the fact that historical
information has already been incorporated in thoughts and does
not provide further help for decision-making.

4.5 Case Studies
At the end of this section, we present some representative trajecto-
ries or steps, where we can intuitively learn the advantages of TRAD.
We show two cases produced by Synapse and our TRAD agent on
the cross-domain subset of Mind2Web in Fig. 5, to demonstrate:
1) the difference between task meta-data retrieval and thought re-
trieval; 2) the reason for retrieval rather than direct prediction with
thought and the tolerance for imperfect thoughts.

In Fig. 5a, the trajectory-wise retrieval of Synapse is obviously
problematic, which only considers “search” in task instructions and
the retrieved trajectories are completely irrelevant to the current
one. However, when we use these irrelevant demonstrations for
thought production and conduct thought retrieval afterwards, the
retrieved demonstrations become much more relevant as they all
relate to baby (toddler) and reflect the process of interacting with
navigation links or buttons to unfold invisible web pages during
web browsing. With the demonstrations from thought retrieval,
TRAD is capable of making the correct decision.

In Fig. 5b, both Synapse and TRAD seem to retrieve relevant
examples trying to find something in New York, but if we examine
the trajectories retrieved by task meta-data, 2/3 of them fulfill the
condition “New York” by clicking some link or button rather than
typing in a text box. Unfortunately, the correct action under the
current state is typing, not clicking, and thus Synapse fails to type
the correct content. On the contrary, TRAD learns to type the correct
content “New York” into the text box, even if its thought is incorrect.
This also validates our hypothesis that using thought for retrieval
instead of prediction helps to correct imperfect thoughts.

5 REAL-WORLD DEPLOYMENT OF TRAD
Since Dec. 2023, we have deployed our TRAD agent to automate
some real-world office tasks in a mainstream insurance company,
which owns a global business with approximately 170 million cus-
tomers worldwide. We select 4 different websites and collect 100
expert trajectories for some representative tasks on each website
as our memory. For evaluation, we collect 20 unseen tasks on each
website, using step success rate (Step SR) and trajectory success
rate (SR) as evaluation metrics. Tasks involve filling in insurance
inquiry forms, implementing advanced information retrieval, etc.
Since the websites are complex and contain thousands of web ele-
ments, prompting with complete trajectories is not available, hence
we only consider single-step prompting with historical actions as
auxiliary information.

To verify the effectiveness of TRAD, we use two different ReAct
agents that the company has attempted as our baseline:
• ReAct-RD: randomly selects expert steps in random trajecto-
ries as demonstrations.

• ReAct-RV: randomly selects expert steps in relevant trajecto-
ries retrieved by task instruction as demonstrations.

To be specific, the difference between TRAD and ReAct-RV is using
thought for a second-time step retrieval and the aligned decision
module. To further investigate the effect of thought retrieval and
aligned decision, we also deploy a TR agent which removes our
aligned decision method, namely the TRAD w/o TE baseline in
Tab. 3. We list the results in Tab. 4.

Table 4: Evaluation results on real-world websites from a
mainstream global business insurance company.

Method ReAct-RD ReAct-RV TR TRAD (Ours)

Website 1 Step SR 0.843 0.826 0.941 0.950
(form filling) SR 0.500 0.450 0.800 0.800

Website 2 Step SR 0.941 0.937 0.958 0.974
(advanced IR) SR 0.900 0.850 0.850 0.900

Website 3 Step SR 0.962 0.987 1.000 1.000
(advanced IR) SR 0.850 0.800 0.850 1.000

Website 4 Step SR 0.820 0.860 0.845 1.000
(form filling) SR 0.350 0.350 0.400 1.000

Average Step SR 0.891 0.902 0.936 0.981
SR 0.650 0.613 0.725 0.925

As can be seen in Tab. 4, TRAD achieves the best performance
on all 4 websites, showing its advantage can remain when deployed
to real-world scenarios. Moreover, we observe that TRAD w/o TE
baseline also outperforms both ReAct agents, but exhibits noticeable
disadvantages compared to the complete TRAD agents. This justifies
our design of both thought retrieval and aligned decision.
Inference efficiency of TRAD.At inference time, our TRAD agent
only introduces little extra time consumption in thought retrieval
compared to ReAct. We profile the inference process of TRAD and
ReAct on all websites and tasks, and in average TRAD takes only
11.7% more time than ReAct-RD, which indicates that our method
achieves improvement without much sacrifice on efficiency.

6 DISCUSSIONS
Although TRAD exhibits excellent performances over a diverse set
of tasks, it still has limitations like dependence on high-quality
thought and trade-off between information and noise in temporal
expansion, and we briefly discuss about them here.
Dependence on high-quality thought. TRAD alleviates the is-
sue of imperfect thoughts by its aligned decision module, but its
capability still depends heavily on the quality of thoughts. To make
TRAD work well, the abstraction of current state is critical since it
serves as the query and key for retrieval, hence the LLM used in
TRAD should at least have a decent understanding of the task.
Trade-off in temporal expansion. TRAD expects to keep rele-
vant information but reduce irrelevant input context by step-wise
thought retrieval, while preserving some chance for correcting im-
perfect thoughts by temporal expansion. Here exists a trade-off: a
longer temporal expansion brings not only more tolerance to im-
perfect thoughts, but also more irrelevant noise in demonstrations.
This trade-off requires careful consideration for different tasks.
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Website: babycenter
Domain: Service
Subdomain: Health

Task: search for Good sources of

potassium for toddlers

Website: target
Domain: Shopping
Subdomain: General

Task: Explore Games & Puzzles in the

Toys category that are suitable for ages 14+.

Website: bookdepository
Domain: Shopping
Subdomain: General

Task: search new books from JK

Rowling available for kids within the age
from 3 to 5 that are below $20.

Website: target
Domain: Shopping
Subdomain: General

Task: Find organic dog food and add it to

the cart.

Thought-Enhanced 
Memory

Similarity
Search

Task Meta-data

Correct Action: CLICK [224]

Task: search for Good sources of potassium for toddlers

……
Therefore, next I have to:
`CLICK [224]` ([link] Toddler-> CLICK)

to navigate to the toddler section.

……
Therefore, next I have to:
`CLICK [321]` ([link] BABY -> HOVER)

to navigate to the baby section and find

the toddler collection.

……
Therefore, next I have to:
`CLICK [290]` ([link] BABY -> HOVER)

to view baby products.

Thought-Enhanced 
Memory

Step-Wise Thought

……
Therefore, next I have to:
`CLICK [253]` ([link] KIDS -> CLICK) to

navigate to the Kids section and start

the search.

PredictedAction: CLICK [224] (√)PredictedAction: CLICK [3469] (×)

Synapse (Baseline) TRAD (Ours)

Similarity
Search

Retrieved Trajectories Retrieved Steps

(a) Representative Case 1

Step-Wise Thought

Website: accuweather
Domain: Info
Subdomain: Weather

Task: Look up the pollutants of New
York City.

Website: yellowpages
Domain: Travel
Subdomain: Restaurant
Task: Search for coupons and deals in

New York.

Website: new.mta.info
Domain: Travel
Subdomain: Ground
Task: Find all outdoor events this month in

NYC

Website: yellowpages
Domain: Travel
Subdomain: Restaurant

Task: Find deals inNew York.

Thought-Enhanced 
Memory

Task Meta-data

Correct Action: TYPE [143] [New York]

Task: Look up the pollutants of New York City.

Synapse (Baseline) TRAD (Ours)

PredictedAction: TYPE [143] [pollutants in New York City] (×)

……
Therefore, next I have to:

`TYPE [143] [pollutants New York
City]` ([input] -> TYPE: pollutants
New York City) to search for the
pollutants in New York City.

……
Therefore, next I have to:

`TYPE [23127] [New York]` ([textbox]
Location-Search -> TYPE: New York) to
specify the location as New York.

……
Therefore, next I have to:

`TYPE [9606] [NewYork]`
([searchbox] Search by city -> TYPE: New
York) to specify the location as New York
City.

Thought-Enhanced 
Memory

……
Therefore, next I have to:

`TYPE [6394] [NEWYORK]`
([searchbox] Find a Location -> TYPE:
NEW YORK) to specify the location as
New York.

PredictedAction: TYPE [143] [NewYork] (√)

Retrieved Trajectories Retrieved Steps

Similarity
Search

Similarity
Search

(b) Representative Case 2
Figure 5: Comparison between Synapse trajectory-wise retrieval with task meta-data and TRAD step-wise retrieval with
thought. (a) The trajectory-wise retrieval of Synapse only considers “search” in task instructions and the retrieved trajectories
are completely irrelevant. However, by generating thoughts with these irrelevant trajectories, thought retrieval finds more
relevant step-wise demonstrations related to baby (toddler) and navigation. (b) The trajectory-wise retrieval of Synapse retrieves
plausible examples which do not type in a text box with task meta-data. Although thoughts are imperfect, thought retrieval
finds more relevant demonstrations and TRAD learns to input “New York”.

7 CONCLUSIONS
In this work, we propose a novel LLM agent augmented by step-wise
demonstration retrieval (TRAD) for sequential decision-making
tasks. TRAD first retrieves relevant step demonstrations by its
thought about current state, and then complements temporally
correlated steps for more informative action prediction. Extensive
experiments are conducted on two different sequential decision-
making tasks to validate the effectiveness of our solution, and thor-
ough ablation studies justify the design choice and stability of our
method. We further present the results from real-world deployment

of our method, showing its superior performance and decent effi-
ciency in real-world applications. In the future, we plan to further
improve our work by enhancing the thought retrieval process with
more powerful reasoning or planning methods and learned dense
representations of states.
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