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Abstract

Summary: \We describe the problem of computing local feature attributions for dimensionality reduction methods. We use one such method
that is well established within the context of supervised classification—using the gradients of target outputs with respect to the inputs—on the
popular dimensionality reduction technique t-SNE, widely used in analyses of biological data. We provide an efficient implementation for the gra-
dient computation for this dimensionality reduction technigue. We show that our explanations identify significant features using novel validation
methodology; using synthetic datasets and the popular MNIST benchmark dataset. We then demonstrate the practical utility of our algorithm by
showing that it can produce explanations that agree with domain knowledge on a SARS-CoV-2 sequence dataset. Throughout, we provide a road
map so that similar explanation methods could be applied to other dimensionality reduction techniques to rigorously analyze biological datasets.

Availability and implementation: \We have created a Python package that can be installed using the following command: pip install

interpretable tsne. All code used can be found at github.com/MattScicluna/interpretable_tsne.

1 Introduction

Dimensionality reduction techniques, such as t-distributed
Stochastic Neighbor Embedding (t-SNE) (van der Maaten
and Hinton 2008), Uniform Manifold Approximation and
Projection (Mclnnes et al. 2020), and Potential of Heat-
diffusion for Affinity-based Trajectory Embedding (Moon
et al. 2019), have become widespread tools in the data ana-
lyst’s toolbox, achieving popularity in the Machine Learning
(ML) community and particularly in Bioinformatics. Such
techniques can identify structure in high-dimensional data by
projecting it onto a lower dimensional manifold. When the
manifold is 2 or 3 dimensions, the structure can be easily in-
terrogated using ordinary scatterplots. While these methods
have informed many data analysis projects, they suffer from
an overlooked limitation: there is no obvious way to attribute
a datapoints’ embedding to its corresponding input features.
Currently, practitioners rely on checking for enrichment of
features within groups of points of interest. This is often ad
hoc, and can potentially miss significant features due to cogni-
tive tendencies, such as confirmation bias.

We propose a method that can produce such attributions for
the t-SNE algorithm. Our methodology is conceptually simple,
being based on the well-established practice of using model gra-
dients to compute feature attributions (Simonyan et al. 2014).
Our algorithm can be added to any implementation of t-SNE,

with comparable complexity to the original t-SNE fitting
procedure.

In the next section, we describe interpretability methods in
more detail, contextualizing ours. We then introduce the con-
stituent parts of our framework: the gradients attribution
method and the t-SNE dimensionality reduction algorithm.
Then, we propose our method to apply gradients computa-
tion to the t-SNE algorithm. Then, we describe the methods
for validating our attributions, describing the results we get
when applying our validation methods on the MNIST data-
set. Finally, we utilize our attributions to analyze a SARS-
CoV-2 dataset—a case study that represents a realistic bioin-
formatic application. We also performed an additional attri-
bution experiment on the 20 newsgroups dataset that can be
found in Supplementary Appendix F. In summary, this work
makes the following contributions:

1) Derives the equations to compute the gradient of t-SNE
embeddings with respect to each input.

2) Produces an algorithm which returns these gradients
and is compatible with the Barnes—-Hut t-SNE
approximation.

3) Introduces a novel metric to evaluate dimensionality reduc-
tion attribution performance.

4) Demonstrates empirical evidence for the methodology
on MNIST and SARS-CoV-2 datasets.
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2 Background

Previous literature suggests that interpretability is not a
monolithic concept, but in fact reflects several distinct ideas
(Lipton 2018). For the purposes of contextualizing this work,
we define interpretability as the ability to extract human-
understandable insights from ML models (we include dimen-
sionality reduction techniques, such as t-SNE, into our defini-
tion of ML models). One way to ensure interpretability is to
use a model, which admits a simple explanation by design.
Within the supervised learning framework, algorithms have
been designed to produce models, which are simple enough to
be interpretable. These range from classic algorithms like
Decision Trees and Sparse Lasso regression (Tibshirani 1996)
to interpretable versions of modern deep learning architec-
tures like BagNets (Brendel and Bethge 2019). The limitation
of these approaches is that the increased interpretability
comes at the expense of model performance.

Practitioners can instead apply post-hoc interpretability
methods: which we define as methods that produce explana-
tions of model behavior after training. There exists many such
methods, which can be separated by the kind of explanation
they provide: some are “local”, providing explanations spe-
cific to each datapoint [e.g. LIME (Ribeiro et al. 2016),
Vanilla Gradients (Simonyan et al. 2014)], while others pro-
duce “global” explanations of a models activity (Tan et al.
2018, Plumb et al. 2020). These methods can be further
grouped based on whether they produce feature attributions,
which we define as a score for each input feature, which rep-
resents the features relative influence on the models behavior.

Many post-hoc, local, feature attribution methods have
been proposed. We can divide these into perturbation and
gradient-based approaches. Perturbation-based approaches
like LIME (Ribeiro et al. 2016) and SHAP (Lundberg and Lee
2017) change parts of the input and observe the impact on
the output of the model. The downside of such methods is
that they are computationally infeasible when model inference
is slow since they require many model evaluations. Gradient-
based approaches use the gradient (or a modification), to
compute feature attributions [e.g. Layerwise Relevance
Propagation (Bach et al. 2015) and DeConvNet (Zeiler and
Fergus 2014)]. These techniques tend to be much more com-
putationally efficient, but can be insensitive to either data or
model (Adebayo et al. 2018).

2.1 Gradient attributions

Within the context of supervised learning of neural networks
on classification tasks, techniques have been developed for
computing (local) feature attributions. Let S.(x) € R be the
score function of class ¢ given by our classification model,
when x € R is the input data. Feature attribution methods
assign a value to each feature A.(x) = {AC,,-(x)};il. Ai(x)
represents how much feature i of x contributed to the model’s
prediction of class c.

For this work, we use an attribution method commonly re-
ferred to as the vanilla gradient (Simonyan et al. 2014). For
our purposes:

Aai(‘x) =

{8&(9‘)} . )

Ox

The argument for using the gradients as attribution values
provided in Simonyan et al. (2014) is that the above gradients
correspond to the weights of the first order Taylor
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approximation of S, at x. These weights would have a direct
correspondence to attributions since the approximation is lin-
ear (intuitively, the larger the attribution, the less you have to
change the corresponding input to achieve a fixed change in
output).

In practice, many gradient-based attribution methods have
been proposed and validated including Integrated Gradients
(Sundararajan et al. 2017), DeconvNets (Zeiler and Fergus
2014), and “Guided Backpropagation” (Springenberg et al.
2015). While such techniques have well known limitations
(Adebayo et al. 2018, Hooker et al. 2019), they nonetheless
continue to be used all throughout the interpretable ML
literature.

2.2 The t-SNE algorithm

The t-SNE algorithm is among the oldest and most influential
dimensionality reduction techniques still in widespread use.
We provide a sketch of the t-SNE algorithm here. For a de-
tailed discussion of the t-SNE paper, we refer the reader to the
original paper (van der Maaten and Hinton 2008).

Suppose, we have input data x1,...,x, € R%. Denote y' €
R? as the embedding for x; to be produced by the t-SNE
algorithm at step ¢ in the embedding space with dimension d’
(usually two or three). The t-SNE algorithm updates the y’s to
minimize the Kullback-Leibler (KL) divergence, a measure of
the difference between the probability distributions pji :=

p(xi, x;) and qf./f] = q(y;;ﬂ’ylt_,]):

KL(pij,qi) = Zpi/ log ? (2)
[ "

Note that this represents distances between pairs of points
in input and embedded space, respectively. The intuition is
that we want the embeddings in the low dimensional space to
recapitulate the distances between points in the high dimen-
sional space. Ignoring optimization hyperparameters, our
embeddings are updated using the following equations:

vi =y +dyl, (3)

where:

dy; =4%,(i — qff_l)d’ﬁfly
(4)
=1 =1 a1y t—1 _ =112y
b = yi )+ ]y i)

In t-SNE, we update the embedding of each datapoint using
(4) until convergence.

3 Algorithm

The reasoning behind the use of the gradient as a feature attri-
bution method can be used if we consider our score function
S¢(x) to be the output of a dimensionality reduction technique
(for embedding dimension ¢) rather than the score of class ¢
of a parametric classifier.

Furthermore, the t-SNE update formula (4) is the gradient
of an objective function [Equation (2)] with respect to embed-
dings y1,...,ys, and so each y; is essentially receiving a
Stochastic Gradient Descent (SGD) update. We propose
inspecting the gradients of t-SNE in the same manner as one
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would look at gradients with respect to their inputs in relation
to supervised classifiers trained also via SGD.

3.1 Computing t-SNE attributions

In the supervised classification context, computing the gradi-
ent with respect to the input is usually very simple, but doing
so for t-SNE is more involved, since the relationship between
inputs x1, . . ., x, and outputs y1, . ..,y is less clear. In the fol-
lowing section, we will derive the gradient of each component
of a t-SNE embedded point with respect to its input:

0 (5)
E)x,« '
We do not use this gradient directly since we would end up
with a set of feature attributions per t-SNE component. This
is undesirable since (i) we want only one set of attributions
and (ii) the t-SNE components themselves do not have any
clear meaning. Instead, we return A (x) :8@%“. We found
that this modification produced attributions that had an easy
interpretation: they inform us of how the features of x; con-
tributed to the overall placement of y;.

3.2 Computing the gradient of the t-SNE algorithm

Hereafter, we discuss applying the gradient attribution
method to the t-SNE algorithm. We chose this algorithm since
it is fairly easy to implement and analyze, and has become
widely used within both of the ML and bioinformatics com-
munities. We emphasize that our technique could be extended
to other dimensionality reduction techniques, provided that
they consist of no non-differentiable operations.

We can compute (5) since each of the steps of the t-SNE al-
gorithm are differentiable (we assume that the Euclidean dis-
tance is used in the computation of p;). If we assume that
8_3/('; =0Vi 7é j, we can compute (5) efficiently using dynamic
programming:

Oy, _oyi~'  ody;
37961'_ 8x1- + 8x1- ’ (6)

where:

ody; api 995"\ o gy !
0x,~ 4;{ (8-7‘31_ 8x,~ i +(p1/_qt/) 8xi . (7)

o .
At step ¢, we store aTycx so it can be accessed at step 7+ 1.
This allows us to compute the following:

-1 1 4
BQZ' _ [“)qf/ oyt1
ax,- ayif‘f] ox; '

1

(8)

0gy " _ 0y oy
8x1- 6)/571 8x1- '

9)

We note that this can be implemented within any imple-
mentation of the standard t-SNE algorithm by the addition of
a few lines of code. We provide pseudo-code in Algorithm 1.

E) t—1

See Supplementary Appendix A for the formulas for 0;17,1,

o opy

BT o and for the full derivations.

Algorithm 1: Gradients for t-SNE

Require: data xy, X2, ..., Xp
Ensure: 2.
"t OX
1: Initialize y1, ..., v, as specified by t-SNE

2:Set 2 =0

. ' apj
3: Compute {pj}. {W}
4:fort=1to Tdo

5: Compute {g}~'}, {¢j '} using y/~’
6: Update y/ using Equation (3)
7: Compute {zj’;,1 } {3(:’{,1}
t—1 o t—1
8: Compute {63; } {d?jl/ } via Equation (8)
9: Update {‘3{} using Equations (16) and (17)

10: end for

3.3 Barnes—Hut approximation

Most implementations of the t-SNE algorithm use the Barnes—
Hut approximation to speed up computation time from
O(n?) to O(nlogn) (van der Maaten 2014). We show in
Supplementary Appendix B how to derive gradients using the
Barnes—Hut variant of t-SNE. We note that all experiments
reported in this article were done using gradients of the
Barnes-Hut approximation of t-SNE.

4 Methods

It is generally very difficult to assess the validity of feature at-
tribution methods, even in their usual supervised classification
context (Lipton 2018). In order to determine whether our
attributions were identifying significant features, we per-
formed a series of experiments on synthetic data as well as on
the MNIST benchmark dataset. To show real-world applica-
bility of our method, we used our method to identify the muta-
tions driving SARS-CoV-2 evolution using publicly available
sequence data. Please refer to Supplementary Appendix G for
details regarding t-SNE hyperparameters, attribution process-
ing, and performance on benchmarking experiments.

4.1 Simulated data experiments

We generated several datasets such that they would have a hi-
erarchical cluster structure whose structure was attributed to
a small subset of features. For each datapoint of a cluster, we
translated a small subset of features by a fixed amount. Each
cluster was designed such that a small subset of features was
translated by a given amount. This set of features differed per
cluster, and one cluster did not have any translated feature.
We fixed the cluster structure and ground truth feature depen-
dencies, but varied the amount of feature translation that de-
fined the clusters. The details of the data generating
procedure can be found in Supplementary Appendix C. After
fitting our t-SNE and computing attributions for each syn-
thetic dataset, we took the absolute value of the average of
the attributions of all the points in each cluster, and found
that, for each simulated dataset, these class-averaged attribu-
tions were significantly higher for the ground truth features
versus the rest. This was observed even for the cluster that
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contained no translated features. See Supplementary
Appendix C for details of the results.

4.2 MNIST validation experiments

We performed a series of experiments using the MNIST dataset.
The main idea was to corrupt features based on their attribution
values, and then compute the t-SNE embeddings of this
corrupted data. If the attributions had detected significant
features, then the t-SNE of the corrupted data should be signifi-
cantly different, then the t-SNE fit on the uncorrupted data. We
used three separate metrics to quantify the extent of t-SNE
structure degradation caused by the data corruption, adapted
from metrics used to measure t-SNE quality (Lee and Verleysen
2009, Kobak and Berens 2019). These metrics are:

1) Spearman correlation. The correlation between distances
of pairs of embedded points before and after feature cor-
ruption. This is a measure of the change of global
structure.

2) Adjusted rand index (ARI). We computed the ARI be-
tween clusters generated using K-means clustering (K =
10) before and after corruption. This is a measure of the
change of cluster structure.

3) 10 Nearest-neighbor preservation. The average of the 10
nearest neighbors retained by each point before and after
corruption. This is a measure of the change of local
structure.

We performed our validation experiments on a random
subset of 10 000 MNIST digits. For each experiment, we
computed 10 different t-SNEs (random seeds). We varied the
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percentage of features corrupted from 2% to 18% (in incre-
ments of 2%) and report the average over the percentage
corrupted.

4.2.1 Local, class-level, and global attribution validation

On MNIST, we noticed that individual attributions highlighted
idiosyncrasies of each digit (see Fig. 1A). We noticed that these
attributions could be aggregated on a class level, and these
saliency maps appeared to be visually meaningful (see Fig. 1B).
This led us to investigate the validity of these attributions on
three distinct levels:

1) “Local”: Attributions produced for each individual digit
2) “Class”: Attributions for each digit class
3) “Global”: Attributions of each feature across all digits.

4.2.2 Selecting features to corrupt using the attributions

On the local level, we corrupted k% of features by corrupting
the features within the top k percentile of attribution values
(in absolute value). On the global level, we corrupted the fea-
tures that appeared in the k percentile of attribution values
most often. On the class level, we did the same but for all the
points in each digit class separately. Note that on the local
level, each digit had a different set of features to be corrupted.
On the global level, the same features were corrupted for all
digits. On the class-based level, each class had its own set of
features to be corrupted, and every digit within a class had the
same features corrupted.

Taking inspiration from previous work in the local feature
attribution literature (Springenberg et al. 2015), we experi-
mented with corrupting features based on attributions

A C

Z
S

WE~NOWLEWNRO

b, KNN, ARI

Figure 1. Overall description of method and schematic of validation experiment on MNIST dataset. (A) We display local attributions superimposed onto
t-SNE embedded digits. (B) Attributions aggregated (via averaging) within each class. (C) We computed t-SNE embeddings and their corresponding
attributions using the PCA transformed MNIST digits (left t-SNE plot). We then corrupted the digits based on their attributions (the heatmap and the digit 4
before and after corruption). Note that both digits are projected from PC space using the inverse of the PCA transformation. We then recomputed the
t-SNE using this corrupted data as input (right t-SNE plot). We computed metrics, such as the Spearman correlation (p) of -SNE embedded distances
before and after the feature corruption. For (A), (B), and (C), we projected the attributions from PC space into pixel space by multiplying them by their

corresponding PC loadings.
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produced by positive gradients only and by multiplying the
gradients by the inputs (and taking absolute value).

4.2.3 Methods of feature corruption

For our local and class level attributions, we corrupted each
feature by setting all the values to be corrupted by the mean
of those values. For the global-level attribution validation, we
corrupted each feature by removing it from the dataset en-
tirely. To ensure that our results were not biased by our cor-
ruption method, we experimented with an additional method
of corruption: randomly permuting the values to be cor-
rupted. We replicated all experiments using this permutation
corruption method and present the results in Supplementary
Appendix D.

4.2.4 Baselines

For each level of analysis and each percentage of features to
be corrupted, we randomly sampled 10 subsets of features to
be corrupted, and computed the change in correlation/10-
KNN preservation/ARI to be used as our random baseline.
For the individual level attributions, we corrupted a different
random subset of features per sample. For class level valida-
tions, we corrupted a different random subset per class. For
the global validations, we corrupted the same random subset
of features for all samples.

For the global-level validation, we compared our method to
the Laplace score, a popular unsupervised feature importance
(He et al. 2005) method. We computed the Laplace score
with respect to both P (matrix of p;’s) and Q (matrix of g;;’s)
used by t-SNE. In addition, we compared the method to the
Fischer score, which can be seen as the supervised version of
the Laplace score (He et al. 2005). We also compared the
method to the top principal components, representing a
variance-based control. For the class level validation, we com-
puted a “class-based” Laplace score by re-computing the P
and Q matrices on each class subset and then computing the
Laplace scores. To compute the Fisher and Laplace scores, we
used the python package scikit-feature.

At all levels, our final baseline was to select features using
the absolute values of those features. For the class-based and
global experiments, we selected features in an analogous man-
ner as was done with our attribution-based methods, except
that we substituted the feature values in place of the attribu-
tions. Refer to Fig. 1C for a schematic of the validation
experiment.

4.3 SARS-CoV-2 case study

In order to demonstrate the practical utility of our method,
we used it to investigate SARS-CoV-2 sequence data. The
project has ethical approval from the Ethics Board of the
Montreal Heart Institute, Project 2021-2868. We down-
loaded a globally representative sampling of 3064 SARS-
CoV-2 via Nextstrain (Hadfield et al. 2018) accessed 26
January 2023. The sampling was done between December
2019 and January 2023. We intersect these with the codon-
based alignment of GISAID (Elbe and Buckland-Merrett
2017) from 15 March 2023 resulting in a final dataset of size
2374 (EPL_SET ID EPI_SET_230418kp). The down sampling
is due to the filtering perform by GISAID on missing data dur-
ing the alignment process. We then recode as missing data
any deletion >12 nt. We note that our dataset may be biased
due to the sampling done by NextStrain. We derived the allele
states from the Wuhan ancestral sequence (Gisaid ID:

EPI_ISL_402124). The multiple sequence alignment (MSA)
was performed using an optimized MSA procedure made by
GISAID using MAFFT (Katoh et al. 2002). Each observed
mutation or deletion at each position was encoded as a 1 if
that mutation or deletion was present in the sequence and 0
otherwise. We ignored mutations or deletions that only oc-
curred once in our dataset. Finally, we ignored any mutations
occurring in the first or last 100 positions as these are less
covered by the sequencing and thus of low quality. This left
us with 33 250 mutations and 3359 when removing the refer-
ence allele.

For each sequence, we obtained Pangolin annotations
(Rambaut et al. 2020, O’Toole et al. 2021) from GISAID, and
used these to classify each sequence as belonging to either
“Alpha,” “Beta,” “Delta,” “Gamma,” “Omicron”: BA.1,
BA.2, BA.4, BA.S, and BQ as designated by the World Health
Organization (WHQO). We labeled recombinant lineages, such as
“XBB” separately.

We downloaded representative genetic markers for each
lineage from outbreak.info (Tsueng et al. 2022). We removed
markers containing deletions, since we were unable to identify
the exact genetic positions of them.

5 Results
5.1 Qualitative results on MNIST dataset

We found that on the local level, our t-SNE attributions
highlighted digit idiosyncrasies (see Fig. 1A). On the class-
based level, we found that the digits highlighted pixels that
varied within classes, but also seemed to suggest which digit
classes would cluster together in the resulting t-SNE. For ex-
ample, looking at the class-averaged attributions in Fig. 1B,
we see that the averaged attributions of the 4’s look very simi-
lar to those of the 7’s and 9’s, and indeed these three clusters
appear next to each other in t-SNE space (almost forming
their own “super cluster”). We observe the same pattern be-
tween the 3’s, 5’s, and 8’s.

5.2 Local, class-level, and global attribution
validation results

For each of the local, class, and global level, we found that
our methods significantly outperformed the random baseline
and were on par with or superior to the other baselines.

For the individual level baseline, we experimented with us-
ing only positive attributions. We found that these performed
worse than just using the attributions themselves, and so we
ignored them in subsequent experiments. We found that mul-
tiplying the attribution by the absolute feature value yielded
the best 10-NN preservation (averaged across corruption %)
at 0.20%0.0024 versus the second-highest value of
0.28+0.0035. Similarly, the ARI was 0.3620.0240 versus
second best value of 0.38+0.0129. The Spearman correlation
was a close second to the feature value baseline: 0.35+0.0361
versus 0.32+0.0510.

For the class level experiments, we found that the attribu-
tion alone either outperformed or were on par with all other
baselines (Spearman 0.49+0.0992 versus 0.50%0.0657,
KNN Preservation 0.49+0.0034 versus 0.50+0.0019). For
the global-level experiments, we found that both our gradient
attribution-based methods either outperformed or performed
on par with the other baselines. The full results can be found
in Fig. 2 and in Supplementary Tables S2-S4. We highlight
that our method is on par with other well-established methods
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Figure 2. Individual, class, and global-level attribution validation experiments performed on MNIST. (Left=Local) We corrupted each feature using the
mean of the sampled features to be corrupted. At each level, we compared the t-SNE embeddings before and after feature corruption using three
metrics: the Spearman correlation, 10-nearest-neighbor preservation, and ARl (the y-axis). Note that lower values of each metric means that the
corruption affected the embeddings more. Our baselines are (from left to right) random corruption, using only positive attributions, using only the
attribution, using only the absolute feature values, and multiplying the attribution by the absolute feature values. (Middle=Class-based) We corrupted
each feature using the mean of the sampled features to be corrupted. (from left to right) Random corruption, using the class-based Laplace score on
matrices Pand Q, using the attribution, using the feature, or multiplying the attribution by the feature. (Right=Global) We corrupted each feature by
removing the features to be corrupted. Our controls are (from left to right) random corruption, using the Fisher score (supervised feature importance
control), using the top principal components (variance-based control), using the Laplace score on matrices Pand Q (unsupervised feature importance

control), using the absolute value of the feature, the attribution, or multiplying the attribution by the absolute feature value. The error bars are 95%
bootstrap Cls over the random seeds (and over sampling for our random baselines) computed using seaborn.barplot.

from the feature importance literature, despite being devel-
oped from the local feature attribution framework.

5.3 SARS-CoV-2 case study

We wanted to see if our t-SNE attribution method would as-
sign high attribution to the mutations or deletions that we
expected to be lineage defining. In order to do this, we needed
to ensure that our t-SNE recapitulated the relevant lineage
structure. We did this by inspecting a scatterplot of the t-SNE
embeddings.

5.3.1 Using t-SNE attributions for quality control

Our initial SARS-Cov-2 encoding scheme did not yield t-SNE
embeddings that clustered based on the WHO designations.
This led us to perform an analysis of the t-SNE embeddings
using our proposed attribution method. When we compared
the attributions averaged within clusters generated by
DBSCAN, we found that for several of the clusters, the attri-
bution score was positively correlated with the missingness
frequency. Given that the attributions were identifying miss-
ing values as the cause of certain clustering patters, we chose
to impute this missing data as the reference genotype. For full
details of our attribution-based QC, see Supplementary
Appendix E.

When we computed a t-SNE of our imputed SARS-CoV-2
sequence dataset, we found that the sequences did generally
cluster based on their WHO designation. As can be seen in
the t-SNE scatterplot of Fig. 3A, most clusters correspond to a
single lineage, with sub-lineages appearing as nearby sub-
clusters. Note that there are some deviations in the observed
scatterplot. For example, the clusters corresponding to sub-
lineages of BA.5 (BA.5.1 and BA.5.2) do appear on opposite
sides of the t-SNE scatterplot.

5.3.2 Identifying genetic markers from lineage-averaged
attributions

Motivated by the apparent utility of class-averaged attribu-
tions when used with MNIST, we averaged the attributions of
each mutation/deletion per lineage and compared this to the
mutation/deletion frequency. Note that the mutation/deletion

frequency is a feature average since we encoded each muta-
tion/deletion as a binary variable.

We chose the 90th percentile to be our threshold of signifi-
cance when identifying mutations/deletions based on attribu-
tion scores or mutation/deletion frequency. Of the 267
markers, we found that 251 could be identified by having sig-
nificantly high mutation frequency, while 229 could be identi-
fied by having high attribution. However, three markers were
identified using attributions that had low frequency. Thirteen
markers could not be identified using either the attributions
or mutation frequency. This can be seen in Fig. 3C, where the
markers detected by attributions and not feature means ap-
pear in the top left quadrant, and the 13 markers not detected
by either method appears in the bottom left quadrant.

The attribution-based method uniquely identified the
Omicron BA.1 marker Spike: G142D and the Alpha and
BA.2 marker ORFS8: 184S. Both methods missed Spike:
N440K (BA.2, BA.4, and BA.5 marker) as well as Spike:
N679K (BA.1, BA.2, BA.4, and BA.5) and ORFS: 184S (for
Beta, Delta, Gamma, BA.1, BA.4, and BA.5). Of the 25
markers missed by our attribution-based method, 21 of them
were markers of Gamma, 2 from Beta, and 2 from Omicron
BA.4. We suspect that our approach had difficulty identifying
these markers because their lineages were the least frequent
within our dataset (among the sequences that had markers).
In fact, the dataset contained only 34, 49, and 58 sequences
of Gamma, Beta, and BA.4, respectively.

Finally, we note that our highly attributed mutations were
corroborated in the literature. For example, a previous study
(Mostefai et al. 2022) identified 25 “Haplotype defining”
mutations (highly predictive of SARS-CoV-2 evolutionary
structure). Twenty-four of these positions were highly attrib-
uted by our method.

6 Discussion

To the best of our knowledge, this is the first application of a
feature attribution method to any dimensionality reduction al-
gorithm. Furthermore, we develop a novel validation method,
and provide a biologically relevant demonstration. We note
that the algorithm presented provides feature attributions
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Figure 3. Finding genetic markers for SARS-CoV-2 lineages. (A) The t-SNE embeddings of our SARS-CoV-2 dataset. We added the additional “Omicron
BQ" and “Recombinant” categories. (B) Phylogenetic tree fit via Nextstrain on sequences used in this study (Hadfield et al. 2018). (C) We averaged the
attributions per mutation for each lineage, and plotted them against the mutation/deletion frequency. We colored the points based on whether they were
a marker gene as determined by outbreak.info. Points marked as * are synonymous, and points marked as X are non-synonymous. The dashed lines on
the x and y axes indicate the 90th percentile for the mutation/deletion frequency and averaged attribution, respectively.

with respect to a given t-SNE embedding. Therefore, any
insights yielded by the attribution scores only represent “true
signal” from the data insofar as the t-SNE embedding has
modeled the data appropriately. This is demonstrated in
Fig. 1C, where the t-SNE embeddings for the three- and five-
digit classes are very similar, and indeed the t-SNE embedding
has both digit classes adjoined, and not fully resolved on their
own. Our method can identify such algorithmic artifacts,
which can be useful for practitioners who want to understand
why their embeddings appear a certain way, without having
to do ad-hoc feature enrichment analysis.

In practice, we suggest that users analyze the attributions of
high-quality t-SNE embeddings. There exist metrics that
quantify t-SNE embedding quality (Lee and Verleysen 2009,
Kobak and Berens 2019). We suggest that practitioners use
them to filter out potentially problematic t-SNE embeddings
prior to attribution analysis.

Our MNIST data exists in a human understandable space,
and so we can visualize our attributions at each level, and this
provides a sanity check for our method. Qualitatively, we
found that our attributions yielded human understandable
insights about the variation of individual digits and the defin-
ing characteristics of each MNIST digit class that were reca-
pitulated by the t-SNE embedding.

On all levels, we found that the attributions produced by
our methods significantly outperformed random feature cor-
ruption. We are not surprised that our method did not always
outperform baselines, particularly at the class-based and
global level, given that our method is a local feature attribu-
tion method. We hope that the development of this method
could inspire future research, to eventually develop less noisy
variations of our approach.

We note that throughout this work, we implicitly assume
that the ground truth feature dependencies are somewhat
sparse (i.e. only a few features driving the structures recapitu-
lated by t-SNE). This assumption appears to hold for the
datasets used here. In cases where the data exhibits complex
relationships between features and structures, it is not clear if
one should use feature attribution methods since such rela-
tionships may not be well represented by per-sample per-fea-
ture scores.

In the SARS-CoV-2 application, we further found that ag-
gregating lineage-averaged feature attribution scores identi-
fied significant variations within SARS-CoV-2 lineages. We
note that other methods exist for finding markers mutations
for SARS-CoV-2 variants, and these have been used exten-
sively to analyze SARS-CoV-2 data in the last 3 years. This is
precisely the information that we wanted to leverage to con-
firm the validity of our attributions in a biological applica-
tion. In contrast, the ground truth of attributions in other
biological modalities, such as transcriptomics, metagenomics,
or metabolomics can be harder to establish, making the evalu-
ation of attributions trickier. Our approach is not meant as a
replacement for other methods, but the ample domain exper-
tise in this field made it appropriate a point of reference to as-
sess our method. Nonetheless, our method could be used on
sequence datasets from future waves to identify quickly new
sub-lineages arising and to identify outlier sequences to be
removed.

We anticipate that this work can be extended in multiple
ways. First, we would like to see this method applied to more
real-world biological data science applications (including
gene expression, protein interaction, metagenomics, and
metabolomics). We are particularly intrigued by applications
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in the single-cell RNA transcriptomics domain, where t-SNE
analysis is particularly popular (Kobak and Berens 2019).
However, since ground truth is generally missing in these
applications, simulation work will be needed to validate the
approach (Zappia et al. 2017). The algorithmic complexity of
our method scales roughly linearly in terms of the number of
input features when compared to the usual t-SNE. This is due
to additional computations of large, multidimensional arrays.
Increasing the efficiency of these computations is a second
promising extension. Permutation-based attribution methods,
such as SHAP (Lundberg and Lee 2017) have nice mathemati-
cal guarantees, but a naive application of such methods would
require an infeasible number of model evaluations. Being able
to adapt such methods to this problem setting represents a
third possible future direction for this research.

7 Conclusion

We propose a feature attribution method designed for t-SNE.
To the best of our knowledge, this represents the first such at-
tempt for any dimensionality reduction algorithm. In fact, this
is also the first attempt to do attribution of a non-parametric
ML algorithm. We argue that since both methods are opti-
mized via SGD, the gradient with respect to inputs represent
the same thing.

We developed a method that evaluates the validity of our
approach. Our method quantifies the feature attribution per-
formance by comparing the extent of degradation of t-SNE
embeddings post-corruption. We chose baselines from the
unsupervised feature importance literature. We also com-
pared our method with feature enrichment baselines, and
with appropriate random baselines.

We demonstrated our algorithms correctness using syn-
thetic data, where we knew the significant features available.
We then evaluated our algorithm on MNIST. Here, we did
not have the significant features known in advance, but were
able to provide evidence for our approach using our valida-
tion method. Finally, we demonstrate the utility of our
method via a SARS-CoV-2 case study, finding that in all cases
our approach yielded unique insights that could help a data
scientist better understand their t-SNE plot. We hope that this
work can serve as the foundation for other works investigat-
ing the use of feature attributions for dimensionality reduc-
tion algorithms.
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