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Abstract

Transformer interpretability aims to understand the algorithm implemented by
a learned Transformer by examining various aspects of the model, such as the
weight matrices or the attention patterns. In this work, through a combination
of theoretical results and carefully controlled experiments on synthetic data, we
take a critical view of methods that exclusively focus on individual parts of the
model, rather than consider the network as a whole. We consider a simple synthetic
setup of learning a (bounded) Dyck language. Theoretically, we show that the
set of models that (exactly or approximately) solve this task satisfy a structural
characterization derived from ideas in formal languages (the pumping lemma).
We use this characterization to show that the set of optima is qualitatively rich;
in particular, the attention pattern of a single layer can be “nearly randomized”,
while preserving the functionality of the network. We also show via extensive
experiments that these constructions are not merely a theoretical artifact: even with
severe constraints to the architecture of the model, vastly different solutions can
be reached via standard training. Thus, interpretability claims based on inspecting
individual heads or weight matrices in the Transformer can be misleading.

1 Introduction

Transformer-based models power many leading approaches to natural language processing. With
their growing deployment in various applications, it is increasingly essential to understand the inner
working of these models. Towards addressing this, there have been great advancement in the field
of interpretability presenting various types of evidence (Clark et al., 2019; Vig & Belinkov, 2019;
Wiegreffe & Pinter, 2019; Nanda et al., 2023; Wang et al., 2023), some of which, however, can be
misleading despite being highly intuitive (Jain & Wallace, 2019; Serrano & Smith, 2019; Rogers
et al., 2020; Grimsley et al., 2020; Brunner et al., 2020; Meister et al., 2021).

In this work, we aim to understand the theoretical limitation of certain interpretability methods
by characterizing the set of viable solutions. We focus on myopic interpretability methods, i.e.
methods based on examining individual components only. We adopt a particular toy setup in which
Transformers are trained to generate Dyck grammars, a classic type of formal language grammar
consisting of balanced parentheses of multiple types. Dyck is a useful sandbox, as it captures
properties like long-range dependency and hierarchical tree-like structure that commonly appear in
natural and programming language syntax, and has been an object of interest in many theoretical
studies (Hahn, 2020; Yao et al., 2021; Liu et al., 2022b, 2023). Dyck is canonically parsed using
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Figure 1: Second-layer attention patterns of two-layer Transformers on Dyck: typical attention
patterns do not exactly match the intuitively interpretable stack-like pattern prescribed in Ebrahimi
et al. (2020); Yao et al. (2021). The blue boxes indicate the locations of the last unmatched open
brackets, as they would appear in a stack-like pattern. All models reach ≥ 97% accuracy (defined
in Section 4.1). In the heatmap, darker color indicates larger value.

a stack-like data structure. Such stack-like patterns (Figure 1) have been observed in the attention
heads (Ebrahimi et al., 2020), which was later bolstered by mathematical analysis in Yao et al. (2021).

From a representational perspective and via explicit constructions of Transformer weights, recent
work (Liu et al., 2023; Li et al., 2023) show that Transformers are sufficiently expressive to admit
very different solutions that perform equally well on the training distribution. Thus, the following
questions naturally arise:

(Q1) Do Transformer solutions found empirically match the theoretical constructions given in these
representational results (Figure 1)? In particular, are interpretable stack-like pattern in Ebrahimi
et al. (2020) the norm or the exception in practice?

(Q2) More broadly, can we understand in a principled manner the fundamental obstructions to reliably
“reverse engineering” the algorithm implemented by a Transformer by looking at individual
attention patterns?

(Q3) Among models that perform (near-)optimally on the training distribution, even if we cannot fully
reverse engineer the algorithm implemented by the learned solutions, can we identify properties
that characterize performance beyond the training distribution?

Our contributions. We first prove several theoretical results to provide evidence for why individual
components (e.g. attention patterns or weights) of a Transformer should not be expected to be
interpretable. In particular, we prove:

• A perfect balance condition (Theorem 1) on the attention pattern that is sufficient and necessary
for 2-layer Transformers with a minimal first layer (Assumption 1) to predict optimally on Dyck of
any length. We then show that this condition permits abundant non-stack-like attention patterns
that do not necessarily reflect any structure of the task, including uniform attentions (Corollary 1).

• An approximate balance condition (Theorem 3), the near-optimal counterpart of the condition
above, for predicting on bounded-length Dyck. Likewise, non-stack-like attention patterns exist.

• Indistinguishability from a single component (Theorem 2), proved via a Lottery Ticket Hypothesis
style argument that any Transformer can be approximated by pruning a larger random Transformer,
implying that interpretations based exclusively on local components may be unreliable.

We further accompany these theoretical findings with an extensive set of empirical investigations.

Is standard training biased towards interpretable solutions? While both stack-like and non-stack like
patterns can process Dyck theoretically, the inductive biases of the architecture or the optimization
process may prefer one solution over the other in practice. In Section 4.1, based on a wide range
of Dyck distributions and model architecture ablations, we find that Transformers that generalize
near-perfectly in-distribution (and reasonably well out-of-distribution) do not typically produce
stack-like attention patterns, showing that the results reported in prior work (Ebrahimi et al., 2020)
should not be expected from standard training.

Do non-interpretable solutions perform well in practice? Our theory predicts that balanced (or even
uniform) attentions suffice for good in- and out-of-distribution generalization. In Section 4.2, we
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empirically verify that with standard training, the extent to which attentions are balanced is positively
correlated with generalization performance. Moreover, we can guide Transformers to learn more
balanced attention by regularizing for the balance condition, leading to better length generalization.

1.1 Related Work

There has been a flourishing line of work on interpretability in natural language processing. Multiple
“probing” tasks have been designed to extract syntactic or semantic information from the learned
representations (Raganato & Tiedemann, 2018; Liu et al., 2019; Hewitt & Manning, 2019; Clark et al.,
2019). However, the effectiveness of probing often intricately depend on the architecture choices
and task design, and sometimes may even result in misleading conclusions (Jain & Wallace, 2019;
Serrano & Smith, 2019; Rogers et al., 2020; Brunner et al., 2020; Prasanna et al., 2020; Meister et al.,
2021). While these challenges do not completely invalidate existing approaches (Wiegreffe & Pinter,
2019), it does highlight the need for more rigorous understanding of interpretability.

Towards this, we choose to focus on the synthetic setup of Dyck whose solution space is easier to
characterize than natural languages, allowing us to identify a set of feasible solutions. While similar
representational results have been studied in prior work (Yao et al., 2021; Liu et al., 2023; Zhao et al.,
2023), our work emphasizes that theoretical constructions do not resemble the solutions found in
practice. Moreover, the multiplicity of valid constructions suggest that understanding Transformer
solutions require analyzing the optimization process, which a number of prior work has made progress
on (Jelassi et al., 2022; Li et al., 2023; Deng et al., 2023).

Finally, it is worth noting that the challenges highlighted in our work do not contradict the line of prior
work that aim to improve mechanistic interpretability into a trained model or the training process
(Elhage et al., 2021; Olsson et al., 2022; Nanda et al., 2023; Chughtai et al., 2023; Li et al., 2023),
which aim to develop circuit-level understanding of a particular model or the training process.

We defer discussion on additional related work to Appendix A.

2 Problem Setup

Dyck languages A Dyck language (Schützenberger, 1963) is generated by a context-free grammar,
where the valid strings consist of balanced brackets of different types (for example, “[()]” is valid
but “([)]” is not). Dyckk denote the Dyck language defined on k types of brackets. The alphabet of
Dyckk is denoted as [2k] ≡ {1, 2, · · · , 2k}, where for each type t ∈ [k], tokens 2t− 1 and 2t are a
pair of corresponding open and closed brackets. Dyck languages can be recognized by a push-down
automaton. For a string w and i ≤ j ∈ Z+, we use wi:j to denote the substring of w between position
i and position j (both ends included). For a valid prefix w1:i, the grammar depth of w1:i is defined as
the depth of the stack after processing w1:i:

depth(w1:i) = #Open Brackets in w1:i −#Closed Brackets in w1:i.

We overload depth(w1:i) to also denote the grammar depth of the bracket at position i. For example,
in each pair of matching brackets, the closing bracket is one depth smaller than the open bracket. We
will use τi,d to denote a token of type i ∈ [2k] placed at grammar depth d ∈ N.

We consider bounded-depth Dyck languages following Yao et al. (2021). Specifically, Dyckk,D is a
subset of Dyckk such that the depth of any prefix of a word is bounded by D,

Dyckk,D := {w1:n ∈ Dyckk | max
i∈[n]

depth(w1:i) ≤ D}. (1)

While a bounded grammar depth might seem restrictive, it suffices to capture many practical settings.
For example, the level of recursion occurring in natural languages is typically bounded by a small
constant (Karlsson, 2007; Jin et al., 2018). We further define the length-N prefix set of Dyckk,D as

Dyckk,D,N = {w1:N | ∃n ≥ N,wN+1:n ∈ [2k]n−N , s.t. w1:n ∈ Dyckk,D}. (2)

Our theoretical setup uses the following data distribution Dq,k,D,N :
Definition 1 (Dyck distribution). The distribution Dq,k,D,N , specified by q ∈ (0, 1), is defined over
Dyckk,D,N such that ∀w1:N ∈ Dyckk,D,N ,

P(w1:N ) ∝ (q/k)#{i|wi is open, depth(w1:i)>1} · (1− q)#{i|wi is closed, depth(w1:i)<D−1}. (3)
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That is, q ∈ (0, 1) denote the probability of seeing an open bracket at the next position, except for
two corner cases: 1) the next bracket has to be open if the current grammar depth is 0 (1 after seeing
the open bracket); 2) the next bracket has to be closed if the current grammar depth is D.

Training Objectives. Given a model fθ parameterized by θ, we train with a next-token prediction
language modeling objective on a given Dq,k,D,N . Precisely, given a loss function l(·, ·) → R, fθ is
trained to minimize the loss function minθ L(θ;Dq,k,D,N ) with

L(θ;Dq,k,D,N ) = Ew1:N∼Dq,k,D,N
[
1

N

N∑
i=1

l(fθ(w1:i−1), z(wi))] (4)

in which z(wi) ∈ {0, 1}2k denotes the one-hot embedding of token wi. We will omit the distribution
Dq,k,D,N when it is clear from the context. We will also consider a ℓ2-regularized version Lreg(θ) =

L(θ) + λ
∥θ∥2

2

2 with parameter λ > 0.

For our theory, we will consider the mean squared error as the loss function: 1

l := lsq(x, zi) = ∥x− zi∥22. (5)

In our experiments, we apply the cross entropy loss following common practice.

Transformer Architecture. We consider a general formulation of Transformer in this work: the
l-th layer is parameterized by θ(l) := {W (l)

Q ,W
(l)
K ,W

(l)
V ,param(g(l))} ∈ Θ, where W

(l)
K ,W

(l)
Q ∈

Rma×m, and W
(l)
V ∈ Rm×m are the key, query, and value matrices of the attention module;

param(g(l)) are parameters of a feed-forward network g(l), consisting of fully connected layers,
(optionally) LayerNorms and residual links. Given X ∈ Rm×N , the matrix of m-dimensional
features on a length-N sequence, the l-th layer of a Transformer computes the function

fl(X; θ(l)) =g(l)
(
LN
(
W

(l)
V X σ

(
C + (W

(l)
K X)⊤(W

(l)
Q X)

)
︸ ︷︷ ︸

attention pattern

)
+X

)
, (6)

where σ is the column-wise softmax operation defined as σ(A)i,j =
exp(Ai,j)∑N

k=1 exp(Ak,j)
, C is the

causal mask matrix defined as Ci,j = − inf ·1[i > j] where inf denotes infinity. We call

σ
(
C + (W

(l)
K X)⊤(W

(l)
Q X)

)
the Attention Pattern of the Transformer layer l. LN represents column-

wise LayerNorm operation, whose jth output column is defined as

LNCLN
(A):,j =

P⊥A:,j

max{∥P⊥A:,j∥2, CLN}
,P⊥ = Im − 1

m
11⊤. (7)

Here P⊥ denotes the projection orthogonal to the 11⊤ subspace 2 and CLN is called the normalizing
constant for LayerNorm.

We will further define the attention output at the l-th layer as

al(X; θ(l)) =W
(l)
V Xσ

(
C + (W

(l)
K X)⊤(W

(l)
Q X)

)
. (8)

When CLN = 0, we will also consider the unnormalized attention output as

ãl(X; θ(l)) =W
(l)
V Xσ̃

(
C + (W

(l)
K X)⊤(W

(l)
Q X)

)
. (9)

where σ̃(A)i,j = exp(Ai,j) and it holds by definition that LN0(ãl(X; θ(l))) = LN0(al(X; θ(l))).

An L-layer Transformer TL consists of a composition of L of the above layers, along with a word
embedding matrix WE ∈ Rm×2k and a linear decoding head with weight WHead ∈ R2k×w. When

1The challenge of applying our theory to cross-entropy loss is that for some prefixes, their grammatical
immediate continuations strictly exclude certain tokens in the vocabulary (e.g. “]" cannot immediately follow
“{"), so the optimal cross-entropy loss can only be attained if some parameters are set to infinity. However, when
label smoothing is added, the optima is finite again, and analysis similar to ours could apply.

2this is just a compact way to write the standard mean subtraction operation
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inputting a sequence of tokens into Transformer, we will append a starting token tS that is distinct
from any token in the language at the beginning of the sequence. Let Z ∈ R2k×(N+1) denote the
one-hot embedding of a length-N sequence, then TL computes for Z as

T (Z) = WHead

[
fL(· · · (f1 (WEZ)))

]
1:2k,(N+1)

). (10)

3 Theoretical Analyses

Many prior works have looked for intuitive interpretations of Transformer solutions by studying
the attention patterns of particular heads or some individual components of a Transformer (Clark
et al., 2019; Vig & Belinkov, 2019; Dar et al., 2022). However, we show in this section why this
methodology can be insufficient even for the simple setting of Dyck. Namely, for Transformers
that generalize well on Dyck (both in-distribution and out-of-distribution), neither attention patterns
nor individual local components are guaranteed to encode structures specific for parsing Dyck. We
further argue that the converse is also insufficient: when a Transformer does produce interpretable
attention patterns, there could be limitations of such interpretation as well, as discussed in Appendix B.
Together, our results provide theoretical evidence that careful analyses (beyond heuristics) are required
when interpreting the components of a learned Transformer.

3.1 Interpretability Requires Inspecting More Than Attention Patterns

This section focuses on Transformers with 2 layers, which are sufficient for processing Dyck (Yao
et al., 2021). We will show that even under this simplified setting, attention patterns alone are
not sufficient for interpretation. In fact, we will further restrict the set of 2-layer Transformers by
requiring the first-layer outputs to only depend on information necessary for processing Dyck:

Assumption 1 (Minimal First Layer). We consider 2-layer Transformers with a minimal first
layer f1. That is, let Z ∈ R2k×(N+1) denote the one-hot embeddings of any input sequence
tS , t1, . . . , tN ∈ [2k], then the (j + 1)th column of the output f1(WEZ) only depends on the type
and depth of tj , ∀j ∈ [N ].

Assumption 1 requires the first layer output to depend only on the bracket type and depth, disregarding
any other information such as positions; one such example is given by Yao et al. (2021). The
construction of a minimal first layer can vary, hence we directly parameterize its output instead:

Definition 2 (Minimal first layer embeddings). Given a minimal first layer, e(τt,d) ∈ Rm denotes its
output embedding of τt,d for t ∈ [2k], d ∈ [D]. e(tS) ∈ Rm is the embedding of the starting token.

It is important to note that while the minimal first layer is a strong condition, it does not weaken our
results: We will show that the function class allows for a rich set of solutions, none of which are
necessarily interpretable. Relaxing to more complex classes will only expand the solution set, and
hence our conclusion will remain valid. See Appendix C.2 for more technical details.

3.1.1 Perfect Balance Condition: Ideal Generalization of Unbounded Length

Some prior works have tried to understand the model by inspecting the attention patterns (Ebrahimi
et al., 2020; Clark et al., 2019; Vig & Belinkov, 2019). However, we will show that the attention
patterns alone are too flexible to be helpful, even for the restricted class of a 2-layer Transformer with
a minimal first layer (Assumption 1) and even on a language as simple as Dyck. In particular, the
Transformer only needs to satisfy what we call the balanced condition:

Definition 3 (Balance condition). A 2-layer Transformer (Equation (10)) with a minimal first layer
(Assumption 1 and Definition 2) is said to satisfy the balance condition, if for any i, j1, j2 ∈ [k] and
d′, d1, d2 ∈ [D],

(e(τ2i−1,d′)− e(τ2i,d′−1))
⊤
(W

(2)
K )⊤W

(2)
Q (e(τ2j1,d1

)− e(τ2j2,d2
)) = 0. (11)

The following result shows that under minor conditions the balance condition is both necessary and
sufficient:
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Theorem 1 (Perfect Balance). Consider a two-layer Transformer T (Equation (10)) with a minimal
first layer (Assumption 1) and CLN = 0 (Equation (7)). Let O denote the optimal prediction
scenario, that is, when the first layer embeddings {e(τi,d)}d∈[D],i∈[2k] (Definition 2) and second
layer parameters θ(2) satisfy

θ := {e(τi,d)}d∈[D],i∈[2k], θ
(2)} = argmin

θ̃
L(θ̃;Dq,k,D,N ),∀N,

where the objective L is defined in Equation (4). Then,

• Equation (11) a necessary condition of O, if W (2)
V satisfies P⊥W

(2)
V e(τt,d) ̸= 0,∀t ∈ [k], d ∈ [D].

• Equation (11) is a sufficient condition of O, if the set of 2k + 1 encodings
{e(τ2i−1,d), e(τ2i,d)}i∈[k] ∪ {e(tS)} are linearly independent for any d ∈ [D], and the projection
function g(2) is a 6-layer MLP 3 with O(k2D2) width.

Remark: Recall from Equation (7) that P⊥ projects to the subspace orthogonal to 11⊤. The
assumption in the necessary condition can be intuitively understood as requiring all tokens to have
nonzero contributions to the prediction after the LayerNorm.

Recall that e(τ2i−1,d′), e(τ2i,d′−1) denote the first-layer outputs for a matching pair of brackets.
Intuitively, Equation (11) says that since matching brackets should not affect future predictions, their
embeddings should balance out each other. The balance condition Equation (11) is “perfect” in the
sense that the theory assumes the model can minimize the loss for any length N ; we will see an
approximate version later in Theorem 3.

Proof of the necessity of the balance condition. The key idea is reminiscent of the pumping lemma
for regular languages. For any prefix p ending with a closed bracket τ2j,d for d ≥ 1 and containing
brackets of all depths in [D], let pβ be the prefix obtained by inserting β pairs of {τ2i−1,d′ , τ2i,d′−1}
for arbitrary i ∈ [k] and d′ ∈ [D]. Denote the projection of the unnormalized attention output by

u(τt1,d1
, τt2,d2

) := P⊥ exp
(
e
(
τt1,d1

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τt2,d2

))
W

(2)
V e

(
τt1,d1

)
. (12)

We ignored the normalization in softmax above, since the attention output will be normalized directly
by LayerNorm according to Equation (6).

By Equation (10), there exists a vector v ∈ Rm such that for any β ∈ N, the next-token logits given
by Transformer T are

T (pβ) = WHeadg
(2)

(
v + β (u(τ2j,d, τ2i,d′−1) + u(τ2j,d, τ2i−1,d′))

∥v + β (u(τ2j,d, τ2i,d′−1) + u(τ2j,d, τ2i−1,d′))∥2
+ e(τ2j,d)

)
. (13)

The proof proceeds by showing a contradiction. Suppose u(τ2j,d, τ2i,d′−1) + u(τ2j,d, τ2i−1,d′) ̸= 0.
Based on the continuity of the projection function and the LayerNorm Layer, we can show that
limβ→∞ T (pβ) depend only on grammar depths d, d′ and types 2j, 2i− 1, 2i. However, these are
not sufficient to determine the next-token probability from pβ , since the latter depends on the type of
the last unmatched open bracket in p. This contradicts the assumption that the model can minimize
the loss for any length N . Hence we must have

u(τ2j,d, τ2i,d′−1) + u(τ2j,d, τ2i−1,d′) = 0. (14)

Finally, as we assumed that P⊥W
(2)
V e (τt,d) ̸= 0, we conclude that

(e (τ2i−1,d′)− e (τ2i,d′−1))
⊤
(W

(2)
K )⊤W

(2)
Q e (τ2j+1,d) = ln

(
∥P⊥WV e (τ2i,d′−1) ∥2
∥P⊥WV e (τ2i−1,d′) ∥2

)
,

where the right hand side is independent of j, d, concluding the proof for necessity. The proof of
sufficiency are given in Appendix C.1.

3The 6 layers are by our construction. We will first use 4 layers to convert the input of the projection function
to a triplet indicating the type and depth of the last token and the type of the last unmatched bracket when the
last token is a closed bracket. We will then use another 2 layers to predict the next token probability based on
the triplet. This construction may be improved.
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Note that the perfect balance condition is an orthogonal consideration to interpretability. For example,
even the uniform attention satisfies the condition and can solve Dyck: 4

Corollary 1. There exists a 2-layer Transformer with uniform attention and no position embedding
(but with causal mask and a starting token 5 ) that generates the Dyck language of arbitrary length.

Since uniform attention patterns are hardly reflective of any structure of Dyck, Corollary 1 proves
that attention patterns can be oblivious about the underlying task, violating the “faithfulness” criteria
for an interpretation (Jain & Wallace, 2019). We will further show in Appendix B.1 that empirically,
seemingly structured attention patterns may not accurately represent the inherent structure of the task.

Extension to approximate balance condition: Theorem 1 assumes the model reaches the optimal
loss for Dyck prefixes of any length. However, in practice, due to finite samples and various
sources of randomness, training often does not end exactly at a population optima. In this case, the
condition in Theorem 1 is not precisely met. However, even for models that approximately meet
those conditions, we will prove that when the second-layer projection function g(2) is Lipschitz, a
similar condition as in Equation (14) is still necessary. Details are deferred to Appendix C.4.

3.2 Interpretability Requires Inspecting More Than Any Single Weight Matrix

Another line of interpretability works involves inspecting the weight matrices of the model (Li et al.,
2016; Dar et al., 2022; Eldan & Li, 2023). Some of the investigations are done locally, neglecting
the interplay between different parts of the model. Our result in this section shows that from a
representational perspective, isolating single weights can also be misleading for interpretability. For
this section only, we will assume the linear head WHead is identity for simplicity. To consider the
effect of pruning, we will also extend the parameterization of LayerNorm module (Equation (7)) as

LNCLN
[b](A):,j = b

P⊥A:,j

max{∥P⊥A:,j∥2, ϵ}
+ (1− b)A:,j ,

which corresponds to a weighted residual branch; note that the original LayerNorm corresponds to
LNC [1]. Let θ̂ denote the set of parameters of this extended parameterization.

We define the nonstructural pruning 6 as:
Definition 4 (Nonstructural pruning). Under the extended parameterization, a nonstructural pruning
of a Transformer with parameter θ̂ is a Transformer with the same architecture and parameter θ̂′, so
that for any weight matrix W in θ̂, the corresponding matrix W ′ in θ̂′ has W ′

i,j ∈ {Wi,j , 0}, ∀i, j.

To measure the quality of the pruning, define the ϵ-approximation:
Definition 5 (ϵ-approximation). Given two metric spaces A,B with the same metric ∥ · ∥, a function
f : A → B is an ϵ-approximation of function g with respect to that metric, if and only if,

∀x ∈ A, ∥f(x)− g(x)∥ ≤ ϵ∥x∥.

The metric, unless otherwise specified, will be the 2-norm for vectors and the 1, 2-norm for matrices:
Definition 6. The 1, 2-norm of a matrix A is the max row norm, i.e. ∥A∥1,2 = maxi∈[d′] ∥A:,i∥2.

With these definitions, we are ready to state the main result of this section:
Theorem 2 (Indistinguishability From a Single Component). Consider any L-layer Transformer T
(Equation (10)) with embedding dimension m, attention dimension ma, and projection function g
as 2-layer ReLU MLP with width w. For any δ ∈ (0, 1) and N ∈ N+, consider a 4L-layer random
Transformer Tlarge with embedding dimension mlarge = O(m log(Lm/δ)), attention dimension
mlarge,a = O(maL log mamLN

ϵδ ), and projection function glarge as 4-layer ReLU MLP with width
wlarge = O(max{m,w}L log wmLN

ϵδ ).

4This is verified empirically: the uniform-attention models have attention weights fix to 0 and are to fit the
distribution almost perfectly (> 99% accuracy).

5Here the starting token is necessary because otherwise, the Transformer with uniform attention will have the
same outputs for prefix p and prefix p⊕ p, in which ⊕ denotes concatenation, i.e. p⊕ p means the same string p
repeated twice.

6This is as opposed to structural pruning, which prunes entire rows/columns of weight matrices.
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Assume that ∥W∥2 ≤ 1 for every weight matrix W in T , and suppose the weights are randomly
sampled as Wi,j ∼ U(−1, 1) for every W ∈ Tlarge. Then, with probability 1− δ over the randomness
of Tlarge, there exists a nonstructural pruning (Definition 4) of Tlarge, denoted as T̃large, which ϵ-
approximates T with respect to ∥ · ∥1,2 for any input X ∈ Rm×N satisfying ∥X∥1,2 ≤ 1. 7

Proof sketch: connection to Lottery Tickets. Theorem 2 can be interpreted as a lottery ticket
hypothesis (Frankle & Carbin, 2018; Malach et al., 2020) for randomly initialized Transformers,
which can be of independent interest. The proof repeatedly uses an extension of Theorem 1 of Pensia
et al. (2020), where it 1) first prunes the (2l − 1)-th and 2l-th layers of Tlarge to approximate T (l)

for each l ∈ [L] (Lemma 6), and 2) then prunes the remaining 2L + 1 to 4L-th layers of Tlarge to
approximate the identity function. The full proof is deferred to Appendix C.5.

Noting that the layers used to approximate the identity can appear at arbitrary depth in Tlarge, a direct
corollary of Theorem 2 is that one cannot distinguish between two functionally different Transformers
by inspecting any single weight matrix only:

Corollary 2. Let T1, T2 and Tlarge follow the same definition and assumptions as T and Tlarge in The-
orem 2. Pick any weight matrix W in Tlarge, then with probability 1− δ over the randomness of Tlarge,
there exist two Transformers TLarge,1, TLarge,2 pruned from Tlarge, such that TLarge,i ϵ-approximate Ti,
∀i ∈ {1, 2}, and TLarge,1, TLarge,2 coincide on the pruned versions of W .

Hence, one should be cautious when using methods based solely on individual components to interpret
the overall function of a Transformer.

4 Experiments

Our theory in Section 3 proves the existence of abundant non-stack-like attention patterns, all of
which suffice for (near-)optimal generalization on Dyck. However, could it be that stack-like solutions
are more frequently discovered empirically, due to potential implicit biases in the architecture and the
training procedure? In this section, we show there is no evidence for such implicit bias in standard
training (Section 4.1). Additionally, we propose a regularization term based on the balance condition
(Theorem 1), which leads to better length generalization (Section 4.2).

4.1 Different Attention Patterns Can Be Learned To Generate Dyck

We empirically verify our theoretical findings that Dyck solutions can give rise to a variety of attention
patterns, by evaluating the accuracy of predicting the last bracket of a prefix (Equation 2) given the
rest of the prefix. We only consider prefixes ending with a closing bracket, so that there exists a
unique correct closing bracket which a correct parser should be able to determine. The experiments in
this section are based on Transformers with 2 layers and 1 head, hidden dimension 50 and embedding
dimension 50, trained using Adam. Additional results for three-layer Transformers are provided
in Appendix D.3. The training data consists of valid Dyck2,4 sequences of length less than 28
generated with q = 0.5. When tested in-distribution, all models are able to achieve ≥ 97% accuracy.

Variation in attention patterns First, as a response to (Q1), we observe that attention patterns of
Transformers trained on Dyck are not always stack-like (Figure 1). In fact, the attention patterns
differ even across different random initialization. Moreover, while Theorem 1 implies that position
encoding is not necessary for a Transformer to generate Dyck, 8 adding the position encoding 9 does
affect the attention patterns (Figures 1c and 1d).

7Here the input and output dimension of T̃large is actually mlarge which is larger than m; additional dimensions
are padded with zeroes. The norm constraint can be easily extended to an arbitrary constant.

8This is verified empirically, as Transformers with no positional encoding achieve ≥ 97% accuracy.
9We use the linear positional encoding following Yao et al. (2021): for the ith position, the encoding is

defined to be ep(i) := i/Tmax for some Tmax.
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(a) Embedding 15, run 1 (b) Embedding 15, run 2 (c) Embedding 17 (d) Embedding 16

Figure 2: Second-layer attention patterns of two-layer Transformers with a minimal first layer:
(a), (b) are based on embedding 15 with different learning rates, where the attention patterns show
much variance as Theorem 1 predicts. (c), (d) are based on embedding 17 and 16. Different
embedding functions lead to diverse attention patterns, most of which are not stack-like.
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Figure 3: Relationship Between Balance
Violation and Length Generalization. Ac-
curacy from Transformers with minimal first
layer with embedding 15, using both stan-
dard training and contrastive regularization
(Equation (18)). Standard training leas to
high balance violations which negatively cor-
relate with length generalization performance.
Contrastive regularization helps reduce the
balance violation and improve the length gen-
eralization performance.

Specifically, for 2-layer Transformers with a minimal first layer, we experiment with three different
types of embeddings e: let ot denote the one-hot embedding where ot[t] = 1,

e
(
τt,d
)
= o(t−1)D+d ∈ R2kD, (15)

e
(
τt,d
)
= ot ⊕ od ∈ R2k+D, (16)

e
(
τt,d
)
= ot ⊕ [cos (θd) , sin (θd)] ∈ R2k+2, θd = arctan (d/(D + 2− d)) , (17)

where ⊕ denotes vector concatenation. Equation (15) is the standard one-hot embedding for τt,d;
Equation (16) is the concatenation of one-hot embedding of types and depths. Finally, Equation (17)
is the embedding constructed in Yao et al. (2021). As shown in Figure 2, the attention patterns learned
by Transformers exhibit large variance between different choices of architectures and learning rates,
and most learned attention patterns are not stack-like.

Quantifying the variation We now quantify the variation in attention by comparing across multiple
random initializations. We define the attention variation between two attention patterns A1, A2 as
Variation(A1, A2) = ∥A1 − A2∥2F , for A1, A2 ∈ RN×N over an length-N input sequence. We
report the average attention variation of each architecture based on 40 random initializations.

On the prefix [[[[]]]](((()))) 10, we observe that for standard two layer training, the average attention
variation is 2.20 with linear position embedding, and is 2.27 without position embedding. Both
numbers are close to the random baseline value of 2.85 11, showing that the attention head learned by
different initializations indeed tend to be very different. We also experiment with Transformer with a
minimal first layer and the embedding in Equation (15), where the average variation is reduced to
0.24. We hypothesize that the structural constraints in this setting provide sufficiently strong inductive
bias that limit the variation.

10This prefix contains brackets of all types and depths. Results with different prefixes are provided in Ap-
pendix D.3.

11The random baseline is calculated by generating purely random attention patterns (from the simplex, i.e.
random square matrices s.t. each row sums up to 1) and calculate the average attention variation between them.
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4.2 Guiding The Transformer To Learn Balanced Attention

In our experiments, we observe that although models learned via standard training that can generalize
well in distribution, the length generalization performance is far from optimal. This implies that the
models do not correctly identify the parsing algorithm for Dyck when learning from finite samples. A
natural question is: can we guide Transformers towards correct algorithms, as evidenced by improved
generalization performance on longer Dyck sequences?

In the following, we measure length generalization performance by the model accuracy on valid Dyck
prefixes with length randomly sampled from 400 to 500, which corresponds to around 16 times the
length of the training sequences. Inspired by results in Section 3, we propose a regularization term to
encourage more balanced attentions, which leads to better length generalization.

Regularizing for balance violation improves length generalization accuracy We denote the
balance violation of a Transformer as β := Ed,d′,i,j [Sd,d′,i,j/Pd,j ] for S, P defined in Equations (31)
and (33). Theorem 1 predicts that for models with a minimal first layer, perfect length generalization
requires β to be zero. Inspired by this observation, we design a contrastive training objective to reduce
the balance violation, which ideally would lead to improved length generalization. Specifically, let pr
denote a prefix of r nested pairs of brackets of for r ∼ U([D]), and let T (s | pr ⊕ s) denote the logits
for s when T takes as input the concatenation of pr and s. We define the contrastive regularization
term Rcontrastive(s) as the mean squared error between the logits of T (s) and T (s | pr ⊕ s), taking
expectation over r and pr:

Er∼U([D]),pr

[
∥T (s | pr ⊕ s)− T (s)∥2F

]
. (18)

Following the same intuition as in the proof of Theorem 1, if the model can perfectly length-generalize,
then the contrastive loss will be zero. Models trained with contrastive loss show reduced balance
violation as well as improved length generalization performance, as shown in Figure 3.

5 Conclusion

Why interpreting individual components sometimes leads to misconceptions? Through a case study
of the Dyck grammar, we provide theoretical and empirical evidence that even in this simple and
well-understood setup, Transformers can implement a rich set of non-interpretable solutions. This
is reflected both by diverse attention patterns and by the absence of task-specific structures in local
components. Our results directly imply similar conclusions for more complex Transformer models;
see Appendix C.2 for technical details. Together, this work provides definite proof that myopic
interpretability, i.e. methods based on examining individual components only, are not sufficient for
understanding the functionality of a trained Transformer.

Our results do not preclude that interpretable attention patterns can emerge; however, they do
suggest that interpretable patterns can be infrequent. We discuss the implications for multi-head,
overparameterized Transformers trained on more complex data distributions in Appendix B. Moreover,
our current results pertain to the existence of solutions; an interesting next step is to study how
“inductive biases” given by the synergy of the optimization algorithm and the architecture affect the
solutions found.
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A Additional Related Work

Interpreting Transformer solutions Prior empirical works show that Transformers trained on
natural language data can produce representations that contain rich syntactic and semantic information,
by designing a wide range of “probing" tasks (Raganato & Tiedemann, 2018; Liu et al., 2019; Hewitt
& Manning, 2019; Clark et al., 2019; Tenney et al., 2019; Hewitt & Liang, 2019; Kovaleva et al.,
2019; Lin et al., 2019; Wu et al., 2020; Belinkov, 2022) (or other approaches using the attention
weights or parameters in neurons directly Vig & Belinkov, 2019; Htut et al., 2019; Sun & Marasović,
2021; Eldan & Li, 2023). However, there is no canonical way to probe the model, partially due to the
huge design space of probing tasks, and even a slight change in the setup may lead to very different
(sometimes even seemingly contradictory) interpretations of the result (Hewitt & Liang, 2019). In this
work, we tackle such ambiguity through a different perspective—by developing formal (theoretical)
understanding of solutions learned by Transformers. Our results imply that it may be challenging
to try to interpret Transformer solutions based on individual parameters (Li et al., 2016; Dar et al.,
2022), or based on constructive proofs (unless the Transformer is specially trained to be aligned with
a certain algorithm, as in Weiss et al., 2021).

Interpreting attention patterns Prior works (Jain & Wallace, 2019; Serrano & Smith, 2019;
Rogers et al., 2020; Grimsley et al., 2020; Brunner et al., 2020; Prasanna et al., 2020; Meister et al.,
2021; Bolukbasi et al., 2021; Haab et al., 2023, inter alia) present negative results on deriving
explanations from attention weights using approaches by Vig & Belinkov (2019); Kobayashi et al.
(2020, inter alia). However, Wiegreffe & Pinter (2019) argues to the contrary by pointing out flaws
in the experimental design and arguments of some of the prior works; they also call for theoretical
analysis on the issue. Hence, a takeaway from these prior works is that expositions on explainability
based on attention requires clearly defining the notion of explainability adopted (often task-specific).
In our work, we restrict our main theoretical analysis to the fully defined data distribution of Dyck
language (Definition 1), and define “interpretable attention pattern" as the stack-like pattern proposed
in prior theoretical (Yao et al., 2021) and empirical (Ebrahimi et al., 2020) works. These concrete
settings and definitions allow us to mathematically state our results and provide theoretical reasons.

Theoretical understanding of representability Methodologically, our work joins a long line of
prior works that characterize the solution of neural networks via the lens of simple synthetic data,
from class results on RNN representability (Siegelmann & Sontag, 1992; Gers & Schmidhuber,
2001; Weiss et al., 2018; Suzgun et al., 2019; Merrill, 2019; Hewitt et al., 2020), to the more recent
Transformer results on parity (Hahn, 2020), Dyck (Yao et al., 2021), topic model (Li et al., 2023),
and formal grammars in general (Bhattamishra et al., 2020a; Li & Risteski, 2021; Zhang et al., 2022;
Liu et al., 2023; Zhao et al., 2023). Our work complements prior works by showing that although
representational results can be obtained via intuitive “constructive proofs” that assign values to the
weight matrices, the model does not typically converge to those intuitive solutions in practice. Similar
messages are conveyed in Liu et al. (2023), which presents different types of constructions using
different numbers of layers. In contrast, we show that there exist multiple different constructions
even when the number of layers is kept the same.

There are also theoretical results on Transformers in terms of Turing completeness (Bhattamishra
et al., 2020b; Perez et al., 2021), universal approximatability (Yun et al., 2020), and statistical sample
complexity (Wei et al., 2021; Edelman et al., 2022), which are orthogonal to our work.

Transformer optimization Given multiple global optima, understanding Transformer solutions
requires analyzing the training dynamics. Recent works theoretically analyze the learning process
of Transformers on simple data distributions, e.g. when the attention weights only depend on the
position information (Jelassi et al., 2022), or only depend on the content (Li et al., 2023). Our work
studies a syntax-motivated setting in which both content and position are critical. We also highlight
that Transformer solutions are very sensitive to detailed changes, such as positional encoding, layer
norm, sharpness regularization (Foret et al., 2020), or pre-training task (Liu et al., 2022a). On a
related topic but towards different goals, a series of prior works aim to improve the training process
of Transformers with algorithmic insights (Nguyen & Salazar, 2019; Xiong et al., 2020; Liu et al.,
2020; Zhang et al., 2020; Li & Gong, 2021, inter alia). An end-to-end theoretical characterization of
the training dynamics remains an open problem; recent works that propose useful techniques towards
this goal include Gao et al., 2023; Deng et al., 2023.
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Mechanistic interpretability Finally, it is worth noting that the challenges highlighted in our work
do not contradict the line of prior works that aim to improve mechanistic interpretability into a trained
model or the training process (Cammarata et al., 2020; Elhage et al., 2021; Olsson et al., 2022; Nanda
et al., 2023; Chughtai et al., 2023; Li et al., 2023; Wang et al., 2023; Zhong et al., 2023): although we
prove that components (e.g. attention scores) of trained Transformers do not generally admit intuitive
interpretations based on the data distribution, it is still possible to develop circuit-level understanding
about a particular model, or measures that closely track the training process, following these prior
works.
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B Are interpretable attention patterns useful?

Our results Section 3 and Section 4.1 demonstrate that Transformers are sufficiently expressive that a
(near-)optimal loss on Dyck languages can be achieved by a variety of attention patterns, many of
which may not be interpretable.

However, multiple prior works have shown that for multi-layer multi-head Transformers trained on
natural language datasets, it is often possible to locate attention heads that produce interpretable
attention patterns (Vig & Belinkov, 2019; Htut et al., 2019; Sun & Marasović, 2021). Hence, it is
also illustrative to consider the “converse question" of (Q1): when some attention heads do learn to
produce attention patterns that suggest intuitive interpretations, what benefits can they bring?

We discuss this through two perspectives:

• Reliability of interpretation: Is the Transformer necessarily implementing a solution consistent
with such interpretation based on the attention patterns? (Section B.1)

• Usefulness for task performance: Are those interpretable attention heads more important for the
task than other uninterpretable attention heads? (Section B.2)

We present preliminary analysis on these questions, and motivate future works on the interpretability
of attention patterns using rigorous theoretical analysis and carefully designed experiments.

B.1 Can interpretable attention patterns be misleading?

We show through a simple argument that interpretations based on attention patterns can sometimes
be misleading, as we formalize in the following proposition:

Proposition 1. Consider an L-layer Transformer T (Equation (10)). For any W
(l)
K ,W

(l)
Q ∈

Rma×m (l ∈ [L]), there exist WHead ∈ R2k×w and bHead ∈ R2k such that T (Z) = 0,∀Z .

While its proof is trivial (simply setting WHead = 0 and bHead = 0 suffices), Proposition 1 implies
that the solution represented by the Transformer could possibly be independent of the attention
patterns in all the layers (1 through l). Hence, it could be misleading to interpret Transformer
solutions solely based on these attention patterns.

Empirically, Transformers trained on Dyck indeed sometimes produce misleading attention patterns.

We present one representative example in Figure 4, and Figure 5, in which all interpretable attention
patterns are misleading.

We also present additional results in Figure 6, in which some interpretable attention patterns are
misleading, and some are not.

Figure 4: Even interpretable attention patterns can be misleading: For a 4-layer Transformer
trained on Dyck with the copying task (with > 96% validation accuracy), i.e. the output should
be exactly the same as the input, the attention patterns in some layers seem interpretable: (layer 2)
attending to bracket type a) or (b; (layer 3) attending to closing bracketss; (layer 4) neve attending to
bracket type a); However, none of them are informative of the copying task. This is possible because
Transformers can use the residual connections (or weights MLPs or the value matrices) to solve
copying, bypassing the need of using attention.

Similar message has been conveyed in prior works Bolukbasi et al. (2021), and future works may aim
to achieve the faithfulness, completeness, and minimality conditions in Wang et al. (2023).
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Figure 5: Even interpretable attention patterns can be misleading: For a 1-layer Transformer
trained on Dyck with the copying task (with > 90% validation accuracy), i.e. the output should be
exactly the same as the input, the attention pattern seems to be attending to closing brackets only, but
that is not informative of the copying task.

(a) layer 1 of 4 (b) layer 3 of 4

Figure 6: Even interpretable attention patterns can be misleading: For a 4-layer Transformer
trained on Dyck with the copying task (with > 96% validation accuracy), i.e. the output should be
exactly the same as the input, both types of attention patterns are common: (a) attending to closing
bracketss, which is uninformative of the copying task; (b) attending to the current position, which
solves the copying task.
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B.2 Are attention heads with interpretable patterns more important?

Kovaleva et al. (2019) observes that, when the “importance” of an attention head is defined as the
performance drop the model suffers when the head is disabled, then for most tasks they test, the most
important attention head in each layer does not tend to be interpretable.

However, experiments by Voita et al. (2019) led to a seemingly contradictory observation: when at-
tention heads are systematically pruned by finetuning the Transformer with a relaxation of L0-penalty
(i.e. encouraging the number of remaining attention heads to be small), most remaining attention
heads that survive the pruning can be associated with certain functionalities such as positional,
syntactic, or attending to rare tokens.

These works seem to bring mixed conclusions to our question: are interpretable attention heads more
important for a task than uninterpretable ones? We interpret these results by conjecturing that the
definition of “importance" (reflected in their experimental design) plays a crucial role:
• When the importance of an attention head is defined treating all other attention heads as fixed,

motivating experiments that prune/disable certain heads while keeping other heads unchanged
(Michel et al., 2019; Kovaleva et al., 2019), the conclusion may be mostly pessimistic: mostly no
strong connection between interpretability and importance.

• On the other hand, when the importance of an attention head is defined allowing all other attention
heads to adapt to its change, motivating experiments that jointly optimize all attention heads while
penalizing the number of heads (Voita et al., 2019), the conclusion may be more optimistic: the
heads obtained as a result of this optimization tend to be interpretable.

We think the following trade-offs apply:

• On one hand, the latter setting is more practical, since Transformers are typically not trained to
explicitly ensure that the model performs well when a single attention head is individually disabled;
rather, it would be more intuitive to think of a group of attention heads as jointly representing some
transformation, so when one head is disabled, other heads should be fine-tuned to adapt to the
change.

• On the other hand, when all other heads change too much during such fine-tuning, the resulting
set of attention heads no longer admit an unambiguous one-to-one map with the original set of
(unpruned) attention heads. As a result, the interpretability and importance obtained from the set of
pruned heads do not necessarily imply those properties of the original heads.

A comprehensive study of this question involves multi-head extensions of our theoretical results
(Section 3), and carefully-designed experiments that take the above-mentioned trade-offs into consid-
eration. We think these directions are interesting future work.
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C Omitted Proofs in Section 3

C.1 Proof of Theorem 1

The key step is already shown in Section 3. We will restate the proof rigorously here.

Theorem 1 (Perfect Balance). Consider a two-layer Transformer T (Equation (10)) with a minimal
first layer (Assumption 1) and CLN = 0 (Equation (7)). Let O denote the optimal prediction
scenario, that is, when the first layer embeddings {e(τi,d)}d∈[D],i∈[2k] (Definition 2) and second
layer parameters θ(2) satisfy

θ := {e(τi,d)}d∈[D],i∈[2k], θ
(2)} = argmin

θ̃
L(θ̃;Dq,k,D,N ),∀N,

where the objective L is defined in Equation (4). Then,

• Equation (11) a necessary condition of O, if W (2)
V satisfies P⊥W

(2)
V e(τt,d) ̸= 0,∀t ∈ [k], d ∈ [D].

• Equation (11) is a sufficient condition of O, if the set of 2k + 1 encodings
{e(τ2i−1,d), e(τ2i,d)}i∈[k] ∪ {e(tS)} are linearly independent for any d ∈ [D], and the projection
function g(2) is a 6-layer MLP 12 with O(k2D2) width.

Proof. We prove the sufficiency of the balanced condition below; the proof for the necessity has
been given in Section 3.1.

We will denote the dimension of e(τt,d) as m.

For any i ∈ [k], d′ ∈ [D], by Equation (11), we can assume that there exists ai,d′ ∈ R such that for
any j ∈ [k], d ∈ [D], it holds that,

ai,d′ ≜ (e (τ2i−1,d′)− e (τ2i,d′−1))
⊤
(W

(2)
K )⊤W

(2)
Q e (τ2j,d) . (19)

We will first define the possible index sets of τt,d as I = {(2t, d) | t ∈ [k], 0 ≤ d ≤ D − 1} ∪
{(2t− 1, d) | t ∈ [k], 1 ≤ d ≤ D}, and we will define the rank of (t, d) as

r(t, d) ≜ #{(t1, d1) | t1 < t or t1 = t, d1 ≤ d, (t1, d1) ∈ I} (20)

Then it is clear that r(t, d) is a one-to-one mapping from I to [2kD]. We will then define the
collection of all e(τt,d) as E, satisfying that E:,r(t,d) = e(τt,d),E:,2kD+1 = e(tS).

Because e(τt,d) are linearly independent, for any (i, d) ̸= (j, d′) ∈ I , it holds that e(τi,d)−e(τj,d′) ̸=
0. Then based on Lemma 16, there exists a set of orthonormal vectors {bi}i∈[m−2], such that for any
(i, d), (j, d′) ∈ I, it holds that

m−2∑
i=1

bib
⊤
i (e(τi,d)− e(τj,d′)) ̸= (e(τi,d)− e(τj,d′) (21)

b⊤i 1
m = 0 (22)

We will further construct matrix O as 13

O:,r(2t,d−1) = − exp(at,d)btD+d,

O:,r(2t−1,d) = btD+d. (23)

O:,2kD+1 = 0.

12The 6 layers are by our construction. We will first use 4 layers to convert the input of the projection function
to a triplet indicating the type and depth of the last token and the type of the last unmatched bracket when the
last token is a closed bracket. We will then use another 2 layers to predict the next token probability based on
the triplet. This construction may be improved.

13Recall the definition of r in Equation (20). Comparing O:,r(2t,d−1) and O:,r(2t−1,d): the idea is that a pair
of matched brackets are represented by the same direction (i.e. the direction along btD+d), just with different
norms.
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for t ∈ [k], d ∈ [D].

We can then choose W
(2)
V ∈ Rm×m such that

W
(2)
V E = O (24)

Such W
(2)
V is guaranteed to exist, because E is of full column rank by the linear independence

assumption.

Now based on this construction, we will show that the last column of unnormalized attention output
(Equation (9)) depends only on the sequence of unmatched brackets when the last token is a closed
bracket with depth d greater than or equal to 1. 14

For any valid Dyck prefix p of length n ending with a closed bracket τ2j,d satisfying d ≥ 1, suppose
the list of unmatched open brackets in p is [τ2j1−1,1, τ2j2−1,2, . . . , τ2jd−1,d]. Then, the remaining
tokens in p are pairs of matching brackets. Denote them by τ2tk−1,dk

, τ2tk,dk−1 for k ∈ [K]. Then
the input of the second layer of Transformer X , up to a permutation is

XP = [e(τ2t1−1,d1), e(τ2t1,d1−1), . . . , e(τ2tK−1,dK
), e(τ2tK ,dK−1), e(τ2j1−1,1), . . . e(τ2jd−1,d), e(tS)].

We will focus on the last column of the unnormalized attention output

ã2(X; θ(2)):,n+1 = P⊥

[
W

(2)
V X · σ̃

(
C · (W (2)

K X)⊤(W
(2)
Q X)

)]
:,n+1

=

n+1∑
s=1

P⊥(W
(2)
V X):,s

[
σ̃
(
C · (W (2)

K X)⊤(W
(2)
Q X)

)]
s,n+1

=

n+1∑
s=1

P⊥(W
(2)
V X):,s exp

((
(W

(2)
K X)⊤(W

(2)
Q X)

)
s,n+1

)

=

n+1∑
s=1

P⊥(W
(2)
V X):,s exp

(
(W

(2)
K X)⊤:,s(W

(2)
Q X):,n+1

)
=

K∑
k=1

(u(τ2tk,dk−1, τ2j,d) + u(τ2tk−1,dk
, τ2j,d)) +

d∑
s=1

u(τ2js−1,s, τ2j,d) (25)

in which the last line is by definition of u(·, ·) in Equation (12).

For any indices s, js, j, d, we can simplify the expression for u(τ2js−1,s, τ2j,d) by observing that

u(τ2js−1,s, τ2j,d) = P⊥ exp
(
e
(
τ2js−1,s

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

))
W

(2)
V e

(
τ2js−1,s

)
by Eq 12

= P⊥ exp
(
e
(
τ2js−1,s

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

))
O:,r(2js−1,s) by Eq 24

= P⊥ exp
(
e
(
τ2js−1,s

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

))
bjsD+s by Equation (23)

= exp
(
e
(
τ2js−1,s

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

))
bjsD+s by Equation (22). (26)

Likewise by Equation (12), Equation (24), Equation (23), Equation (22)

u(τ2js,s−1, τ2j,d) = − exp
(
e
(
τ2js,s−1

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

))
exp(ajs,s)bjsD+s (27)

14When depth d = 0, all brackets are matched, the groundtruth next-token distribution is the prior distribution
over the open brackets. Because in Equation (11) d1, d2 ≥ 1, we handle the depth d = 0 case separately in Case
2 “t is even, d = 0" towards the end of this proof. In the following, we focus on cases with depth d ≥ 1.
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By Equation (26) and Equation (27),

u(τ2tk,dk−1, τ2j,d) + u(τ2tk−1,dk
, τ2j,d)

= exp
(
e
(
τ2tk−1,dk

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

))
btkD+dk

− exp
(
e
(
τ2tk,dk−1

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

))
exp(atk,dk

)btkD+dk

=
[
exp

(
e
(
τ2tk−1,dk

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

))
− exp

(
e
(
τ2tk,dk−1

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

)
+ atk,dk

) ]
btkD+dk

= 0 (28)

in which the last line is because the terms inside
[
· · ·
]

cancel each other, because by Equation (19)

e
(
τ2tk−1,dk

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

)
= e

(
τ2tk,dk−1

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

)
+ atk,dk

Plugging Equation (28) and Equation (26) into Equation (25),

ã2(X; θ(2)):,n+1 =

d∑
s=1

u(τ2js−1,s, τ2j,d)

=

d∑
s=1

exp
(
e
(
τ2js−1,s

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

))
bjsD+s (29)

Therefore, ã2(X; θ(2)):,n+1 lies in the span of {bjsD+s}s∈[d]. We will from now on assume
⟨LN(ã2(X; θ(2)):,n),bjsD+s⟩ > M for all possible choices of p ending with a closed bracket
with grammar depth at least 1 for some constant M ∈ (0, 1). Here M exists because

⟨LN(ã2(X; θ(2)):,n),bjsD+s⟩ =
exp

(
e
(
τ2js−1,s

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

))√∑d
s′=1 exp

(
2e
(
τ2j′s−1,s

)⊤
(W

(2)
K )⊤W

(2)
Q e

(
τ2j,d

)) > 0,

for all possible combination of jk, k ∈ [d] and s, and there are only finite number of such combina-
tions.

Constructing the projection function g(2) We will finally show there exists a 6-layer MLP g(2)

with width O(D2k2), such that for any dyck prefix q with n being the length of q, X being the input
of the second layer given q and P(p) being the groundtruth next-token probability vector given q 15,
it holds that, g(2)

(
LN(ã2(X; θ(2)):,n+1) +X:,n+1

)
= P(q).

We will assume the last token of q is τt,d. Suppose that bm−1,bm is an orthonormal basis of the
normal space of span{b1, ..,bm−2}, then we can first observe that for U = bmb⊤m + bm−1b

⊤
m−1, it

holds that

U(LN(ã2(X; θ(2)):,n+1) +X:,n+1) = Ue(τt,d).

is unique for every t, d. Then based on Lemma 15, there exists a 2-layer MLP with width 4kD that
maps U(LN(ã2(X; θ(2)):,n+1) +X:,n+1) to (t, d). This implies that there exists a 2-layer MLP with
width 4kD that maps LN((ã2(X; θ(2)):,n) +X:,n to (t, d).

Further, let matrix U ′ =
∑Dk

j=1 ojb
⊤
j where oj is the Dk dimension one-hot vector with the j−th

entries being 1. Then when t is an even number and d ≥ 1, based on Equation (29) and the definition
of M ,

U ′(LN(ã2(X; θ(2)):,n+1) +X:,n+1)t′D+d′

{
= 0, τ2t′−1,d′ is not an unmatched open brackets in p.

> M, τ2t′−1,d′ is an unmatched open brackets in p.

15That is P(q)t = P(The next token of q has type t)
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Then based on Lemma 18, there exists 2-layer MLP with width kD that operates on(
U ′(LN(ã2(X; θ(2)):,n+1) +X:,n+1)t′D+d′

)
t′∈[k]

for a fixed d′ and output the nonzero index in

it, if such index exists. Hence, we can choose the weight of the first and second layer of g(2), such
that the output of the second layer is (t, d)⊕ x, where 2xd′ − 1 is the type of the unmatched open
brackets with grammar depth d′ if t is an even number, d ≥ d′ ≥ 1.

Now based on Lemma 17, we can choose the third and fourth layer of g(2) to perform indexing and
let the output of the fourth layer be (t, d, y), where y = xd when d ≥ 1. 16 Notice that this triplet
contains all the necessary information to infer P(q) because it uniquely determines the type of last
unmatched open bracket,

1. If t is odd (i.e. the last bracket is open), and then the type of last unmatched open bracket is t.

2. If t is even and d = 0, then all the brackets is matched.

3. If t is even and d ≥ 1, then the type of last unmatched bracket is y.

One may finally construct a 2-layer MLP f that maps (t, d, y) to the corresponding probability vector.
As the input of g has bounded norm,

∥LN(ã2(X; θ(2)):,n+1) +X:,n+1∥2 ≤ 1 + max
t,d

∥e(τt,d)∥,

the output of the constructed 4 layers also has a bounded norm. Hence, we can assume there exists
constant M ′ > 1, such that y ≤ M ′. Now we will discuss by the value of t,

1. t is odd, then one can neglect the third dimension and the correct probability is determined by d
and can be represented by a width-2D network based on Lemma 15.

2. t is even. When d = 0, one can construct a width-1 network mapping any y to the correct proba-
bility distribution as it is unique. When d ≥ 1, one can construct a width-2K network mapping
xd ∈ [K] to the correct probability distribution based on Lemma 15. Then by Lemma 19, one can
construct a width-4KD network that maps (d, y) to the corresponding probability distribution.

Putting together and using Lemma 19 again, one can construct a width-8K2D network that maps
(t, d, y) to the correct next token probability prediction. The proof is then completed.

C.2 Implication of our results to larger models

Recall that the main conclusion of our paper is that interpretability based on a single Transformer
component (e.g. an attention pattern or an MLP block) can be unreliable, since the set of optimal
solutions can give rise to a large set of attention patterns and pruned MLP weights. Section 3 has
demonstrated this with simple two-layer Transformers. The simplicity of this architecture choice is
intentional, since our theory on two-layer Transformers directly implies similar conclusions for larger
models, as we discuss in this section.

Intuitively, when moving to more complex architectures, the set of solutions can only grow and
complicate interpretability further, hence our main conclusion still stands. For example, even though
Theorem 1 and Theorem 3 are stated for 2-layer Transformers only, the constructed solutions can be
trivially extended to multiple layers by e.g. letting the higher layers perform the identity function,
or removing Assumption 1 and allowing the model to flexibly use or ignore positional information.
More precisely:

• For Transformers with greater width, our Theorem 1 applies directly, since the construction does
not depend on the width.

• For Transformers with greater depth, it suffices to show that additional layers can perform the
identity function. To this end, one can utilize the residue link in the Transformer layer and choose
the value matrix to be zero and the FFN (with or without residue connection) to be identity. This

16When d = 0, y does not matter since there is no unmatched open brackets.
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construction is implicitly assuming LayerNorm will map zero vector to zero vector, which is true
for the common PyTorch implementation and for our paper. Also, it is worth noting that this holds
for both the architecture we considered in the paper and the standard GPT-2 architecture.

C.3 Proof of Corollary 1

Corollary 1. There exists a 2-layer Transformer with uniform attention and no position embedding
(but with causal mask and a starting token 17 ) that generates the Dyck language of arbitrary length.

Proof. We will first construct a uniform attention first layer that can generate the embedding in
Equation (15). Suppose Z is the one-hot embeddings of a prefix p of length n, where each token of
type t for t ∈ [2k] is encoded as ot and the starting token is encoded as o2k+1. Then it holds that

[
Zσ
(
C · (W (1)

K Z)⊤(W
(1)
Q Z)

))]
:,n+1

=

2k∑
i=1

#{token of type t in p}ot + o2k+1. (30)

Then we can choose W
(1)
V such that for x ∈ R2k+1,

(W
(1)
V x)1 =

k∑
i=1

x2i−1 − x2i,

(W
(1)
V x)2 =x2k+1,

(W
(1)
V x)i =0,∀i ≥ 3.

Hence it holds That[
W

(1)
V Zσ

(
C · (W (1)

K Z)⊤(W
(1)
Q Z)

))]
:,n+1

= #{depth of pn}o1 + o2.

It is then easy to check LN

([
W

(1)
V Zσ

(
C · (W (1)

K Z)⊤(W
(1)
Q Z)

))]
:,n+1

)
+ Z:,n+1 is uniquely

determined by the type and depth of pn without repetition. Then by Lemma 15, there exists a 2-layer

ReLU MLP with width O(k2D2) that can map LN

([
W

(1)
V Zσ

(
C · (W (1)

K Z)⊤(W
(1)
Q Z)

))]
:,n+1

)
+

Z:,n+1 to the embedding in Equation (15). It is then easy to see that the condition in Theorem 1 is
satisfied as W (2)

K = W
(2)
Q = 0. Hence the second layer can be constructed to let the Transformer to

output the correct next token probability.

C.4 Approximate Balance Condition For Finite Length Training Data

Theorem 1 assumes the model reaches the optimal loss for Dyck prefixes of any length. However,
in practice, due to finite samples and various sources of randomness, training often does not end
exactly at a population optima. In this case, the condition in Theorem 1 is not precisely met. However,
even for models that approximately meet those conditions, we will prove that when the second-layer
projection function g(2) is Lipschitz, a similar condition as in Equation (14) is still necessary.

We will show this by bounding the amount of deviations from the perfect balance. The idea is that
for two long prefixes that differ in only the last open bracket, correct next token prediction requires
the Transformer outputs on these prefixes to be sufficiently different, hence the part irrelevant to the
prediction (i.e. matched brackets) should not have a large contribution.

To formalize this intuition, let’s define two quantities: 1) Sd,d′,i,j which measures the effect from one
matching pair, and 2) Pd,j which measures the effect on the last position from all tokens in a prefix.

17Here the starting token is necessary because otherwise, the Transformer with uniform attention will have the
same outputs for prefix p and prefix p⊕ p, in which ⊕ denotes concatenation, i.e. p⊕ p means the same string p
repeated twice.
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Let u be defined as in Equation (12). Sd,d′,i,j is defined as

Sd,d′,i,j [θ
(2)] = u(τ2j,d, τ2i,d′−1) + u(τ2j,d, τ2i−1,d′), (31)

which measures how much a matching pair of brackets (τ2i,d′−1, τ2i−1,d′) changes the input to
the LayerNorm upon seeing the last token τ2j,d. Note that under the perfect balance condition,
Sd,d′,i,j [θ

(2)] = 0.

The second quantity Pd,j [θ
(2)] is defined via an intermediate quantity Q(2j, d, t̃): for any i ∈ [k], d ∈

[D] and a length-(d− 1) prefix t̃ ∈ [2k]d−1, Q(i, d, t̃) is defined as

Q(i, d, t̃) := u(τ2i,d−1, tS) +
∑

1≤d′<d

u(τ2i,d−1, τt̃d′ ,d′) (32)

+ u(τ2i,d−1, τ2i−1,d) + u(τ2i,d−1, τ2i,d−1),

where t̃d′ denotes the d′th entry of t̃. Intuitively, Q(i, d, t̃) denotes the unnormalized second-layer
attention output at the last position, given the input sequence t̃⊕ τ2i−1,dτ2i,d−1, 18

For results in this subsection, it suffices to consider prefixes consisting only of open brackets. Let
t := argmint̃∈{2i−1}d−1

i∈[k]
∥Q(2j, d, t̃)∥2, and let t′ denote the prefix that minimizes ∥Q(2j, d, t̃)∥2

subject to the constraint that t′ differs from t at the last (i.e. (d− 1)th) position, i.e.

t′ = arg min
t̃′∈{2i−1}d−1

i∈[k]
,t′d−1 ̸=td−1

Q(2j, d, t̃′).

Such choices of t, t′ guarantees that the two prefixes differ at the last open bracket and hence must
have different next-word distributions. Finally, define

Pd,j [θ̄
(2)] = ∥Q(2j, d, t′)∥. (33)

In the following theorem, Pd,j will be used as a reference to upper bound Sd,d′,i,j [θ
(2)], meaning that

the model should not be sensitive to the insertion of a matching pair of brackets.
Theorem 3 (Approximate Balance). Consider a 2-layer Transformer T (Equation (10)) with a
minimal first layer (Assumption 1) and a γ-Lipschitz g(2) for γ > 0, trained on sequences of length
N with the mean squared loss (Equation (5)).

Suppose the loss is approximately optimal, namely, the set of second-layer weights θ̄
(2)
N satisfies

L(T [θ̄
(2)
N ],Dq,k,D,N ) ≤ q−N ϵ, for any positive integer N > 8D and sufficiently small ϵ > 0. Then,

there exists a constant Cγ,ϵ,D, such that ∀0 ≤ d′ ≤ D, 1 ≤ d ≤ D, i, j ∈ [k], it holds that

∥Sd,d′,i,j [θ̄
(2)
N ]∥ ≤ Cγ,ϵ,D

N
Pd,j [θ̄

(2)
N ]. (34)

Intuitively, Theorem 3 states that when the loss L(θ) is sufficiently small, Sd,d′,i,j [θ
(2)] must be

small relative to Pd,j [θ̄
(2)
N ]. Inequality 34 can be interpreted as a relaxation of Equation (14), which is

equivalent to Sd,d′,i,j [θ
(2)] = 0. The proof of Theorem 3 shares a similar intuition as Theorem 1 and

is given in Appendix C.4.1.

A direct corollary of Theorem 3 additionally consider weight decay, in which case approximate
balance condition still holds, as the regularization strength goes to 0:
Corollary 3. Consider the setting where a Transformer with a fixed minimal first layer is trained
to minimize Lreg

λ = Lθ(x) + λ
∥θ∥2

2

2 , which is the squared loss with λ weight decay. Suppose g(1)

of the Transformer is a 2-layer fully connected network and g(2) of the Transformer is a 6-layer
fully connected network. Then, there exists constant C > 0, such that if a set of parameters θλ,N
minimizes Lreg

λ , then it holds ∀0 ≤ d′ ≤ D, 1 ≤ d ≤ D, i, j ∈ [k] that,

∀N, ∃λN , such that ∀λ ∈ [0, λN ], Sd,d′,i,j [θ
(2)
λ,N ] ≤ C

N
Pd,i[θ

(2)
λ,N ].

18We use s⊕ t to denote the concatenation of two strings s, t, same as in Equation (15)-(16), and use τiτj to
denote the concatenation of two tokens τi, τj .
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C.4.1 Proof of Theorem 3

Proof. The key idea is similar to the proof of necessity in Theorem 1. That is, we will construct
two input sequences with different next-word distributions, and show that the approximate balance
condition must hold so that inserting (a bounded number of) pairs of matching brackets does not
collapse the two predicted distributions given by the Transformer.

Constructing the input sequences.

Let t := argmint̃∈[k]d−1 ∥Q(2j, d, t̃)∥2, and let t′ denote the prefix that minimizes ∥Q(2j, d, t̃)∥2
subject to the constraint that t′ must differ from t in the last (i.e. (d− 1)th) position, i.e.

t′ = arg min
t̃′∈[k]d−1,t′d−1 ̸=td−1

Q(2j, d, t̃′).

The motivation for such choices of t, t′ is that since they differ at least by the last position which
is an open bracket, they must lead to different next-word distributions. Note also that Pd,j [θ̄

(2)] =
∥Q(2j, d, t′)∥.

With the above definition of t, t′, consider two valid Dyck prefixes p1 and p2 with length no
longer than N , defined as follows: for any d, d′ ∈ [D], i, j ∈ [k], consider a common prefix
p = τ2i−1 . . . τ2i−1︸ ︷︷ ︸

d′ open brackets

τ2i−1τ2i . . . τ2i−1τ2i︸ ︷︷ ︸
(⌊N

2 ⌋−d′−d−1) pairs

τ2i . . . τ2i︸ ︷︷ ︸
d′ closed brackets

, where τi denotes a token with type i whose

depth is implicit from the context. Set p1, p2 as

p1 = p⊕ t⊕ τ2j−1τ2j ,

p2 = p⊕ t′ ⊕ τ2j−1τ2j .

That is, p1, p2 differ in the last unmatched open bracket. In the following, we will show that the
approximate balance condition must hold for the predictions on p1, p2 to be sufficiently different.

Bounding the difference in Transformer outputs. For a Transformer T with second layer parame-
ters θ̄(2)N , its outputs on p1, p2 satisfy

∥T [θ̄
(2)
N ](p1)− T [θ̄

(2)
N ](p2)∥2 (35)

≥∥p1 − p2∥2 − ∥T [θ̄
(2)
N ](p1)− p1∥2 − ∥T [θ̄

(2)
N ](p2)− p2∥2 (36)

≥ 1√
2k

∥p1 − p2∥1 −
(
∥T [θ̄

(2)
N ](p1)− p1∥1 + ∥T [θ̄

(2)
N ](p2)− p2∥1

)
(37)

≥ 1√
2k

TV(p1, p2)− oϵ(1) (since L(T [θ̄
(2)
N ],Dq,k,D,N ) ≤ q−N ϵ) (38)

=Ω(1), (39)

where TV(p1, p2) denotes the TV distance in the next-word distributions from p1 and p2, and oϵ(1)
means the term will go to zero as ϵ goes to zero. The TV distance is lower bounded by the construction
of p1, p2, where t, t′ differ at the last open bracket. The error ϵ is upper bounded because of the
assumption on θ̄

(2)
N , i.e. L(T [θ̄

(2)
N ],Dq,k,D,N ) ≤ q−N ϵ with sufficiently small ϵ.

Define by Ap the contribution of p to the attention output (before LayerNorm) of the last position of
p1, p2:

Ap =
∑

1≤d′′<d′

(u(τ2j,d−1, τ2i,d′′−1) + u(τ2j,d−1, τ2i−1,d′′))

+ ⌊N − 2d′ − 2d

2
⌋ (u(τ2j,d−1, τ2i,d′) + u(τ2j,d−1, τ2i−1,d′+1)) . (40)

The attention outputs (before LayerNorm) of p1, p2, denoted by A(p1) and A(p2), satisfy that

P⊥A(p1) = P⊥(Ap +Q(2j, d, t)),

P⊥A(p2) = P⊥(Ap +Q(2j, d, t′)). (41)
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Note that for any prefix p′,

T [θ̄
(2)
N ](p′) = g(2)

(
LNCLN

(P⊥A(p′))
)
+ e(τ2i,d′) (42)

=g(2)
( P⊥A(p′)

∥P⊥A(p′)∥

)
+ e(τ2i,d′), (43)

where g(2) is γ-Lipschitz. Hence the Lipschitz constant with respect to and we have∥∥∥ P⊥A(p1)

∥P⊥A(p1)∥2
− P⊥A(p2)

∥P⊥A(p2)∥2

∥∥∥
2
≥ TV(p1, p2)− oϵ(1)√

2kγ
= Ω 1

γ ,ϵ(1). (44)

We show that Ap should not be too much larger in norm than Q(2j, d, t) or Q(2j, d, t′). First, let’s
state a helper lemma about the contrapositive:

Lemma 1. For any ϵ > 0, there exists a constant Rϵ, such that for any a, b ∈ Rd and any r ∈ Rd

such that ∥r∥2 ≥ Rϵ ·max{∥a∥2, ∥b∥2}, it holds that∥∥∥ a+ r

∥a+ r∥2
− b+ r

∥b+ r∥2

∥∥∥
2
≤ ϵ.

Proof. Denote r0 := max{∥a∥2, ∥b∥2}. Then Rϵ :=
4r0
ϵ + 1 suffices:∥∥∥ r + a

∥r + a∥2
− r + b

∥r + b∥2

∥∥∥ ≤ ∥r∥ ·
∣∣∣ 1

∥r + a∥
− 1

∥r + b∥

∣∣∣+ ∥a∥
∥r + a∥

+
∥b∥

∥r + b∥

≤∥r∥ ·
( 1

∥r∥ − r0
− 1

∥r∥+ r0

)
+

2r0
∥r∥ − r0

=
2r0

∥r∥ − r0
·
( ∥r∥
∥r∥+ r0

+ 1
)
≤ 4r0

∥r∥ − r0
≤ 4r0

Rϵ − r0
≤ ϵ.

Lemma 1 implies that if Ap is too large, then the output on p1, p2 (Equation (44)) won’t be sufficiently
different. Let Pd,j [θ̄

(2)
N ] be defined as in Equation (33) and let Rϵ be the constant in Lemma 1, we

need to bound ∥P⊥Ap∥ by

∥P⊥Ap∥2 ≤ Rϵ∥Pd,j [θ̄
(2)
N ]∥2. (45)

As Equation (45) holds for p with any d, d′, if one choose d′ = 1, this shows

∥u(τ2j,d−1, τ2i,1) + u(τ2j,d−1, τ2i−1,2)∥2 ≤
4Rϵ∥Pd,j [θ̄

(2)
N ]∥2

N
. (46)

Further, it holds that for any 1 < d′ ≤ d− 1,

∥
∑

1≤d′′<d′

(u(τ2j,d−1, τ2i,d′′−1) + u(τ2j,d−1, τ2i−1,d′′))

+ ⌊N − 2d′ − 2d

2
⌋ (u(τ2j,d−1, τ2i,d′) + u(τ2j,d−1, τ2i−1,d′+1)) ∥2 ≤ Rϵ∥Pd,j [θ̄

(2)
N ]∥2.

∥
∑

1≤d′′<d′+1

(u(τ2j,d−1, τ2i,d′′−1) + u(τ2j,d−1, τ2i−1,d′′))

+ ⌊N − 2d′ − 2d− 2

2
⌋ (u(τ2j,d−1, τ2i,d′+1) + u(τ2j,d−1, τ2i−1,d′+2)) ∥2 ≤ Rϵ∥Pd,j [θ̄

(2)
N ]∥2.

The triangle inequality then yields,
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⌊N − 2d′ − 2d− 2

2
⌋∥ (u(τ2j,d−1, τ2i,d′+1) + u(τ2j,d−1, τ2i−1,d′+2))

− (u(τ2j,d−1, τ2i,d′) + u(τ2j,d−1, τ2i−1,d′+1)) ∥2 ≤ 2Rϵ∥Pd,j [θ̄
(2)
N ]∥2.

Because N ≥ 8D, we have that ⌊N−2d′−2d−2
2 ⌋ ≥ N

8 , hence it holds that

∥ (u(τ2j,d−1, τ2i,d′+1) + u(τ2j,d−1, τ2i−1,d′+2))

− (u(τ2j,d−1, τ2i,d′) + u(τ2j,d−1, τ2i−1,d′+1)) ∥2 ≤
16Rϵ∥Pd,j [θ̄

(2)
N ]∥2

N
.

Combined with Equation (46), one can conclude that,

Sd,d′,i,j = ∥u(τ2j,d−1, τ2i,d′−1) + u(τ2j,d−1, τ2i−1,d′−1)∥ ≤ 16DRϵ

N
∥Pd,j [θ̄

(2)
N ]∥2. (47)

The proof is then completed.

Proof of Corollary 3. This proof is in fact a direct combination of Theorems 1 and 3. By Theorem 1
we know there exists a weight θ(2)∗ that can reach zero loss for arbitrarily length N . Then it holds that
∥θλ,N∥2 ≤ ∥θ(2)∗∥ as θλ,N minimizes the regularized loss. Noticing that bounded weight implies
bounded Lipschitzness of g(2), the rest follows as Theorem 3.

C.5 Proof of Theorem 2

We now show the limitation of interpretability from a single component, using a Lottery-Ticket-style
argument by pruning from large random Transformers.
Theorem 2 (Indistinguishability From a Single Component). Consider any L-layer Transformer T
(Equation (10)) with embedding dimension m, attention dimension ma, and projection function g
as 2-layer ReLU MLP with width w. For any δ ∈ (0, 1) and N ∈ N+, consider a 4L-layer random
Transformer Tlarge with embedding dimension mlarge = O(m log(Lm/δ)), attention dimension
mlarge,a = O(maL log mamLN

ϵδ ), and projection function glarge as 4-layer ReLU MLP with width
wlarge = O(max{m,w}L log wmLN

ϵδ ).

Assume that ∥W∥2 ≤ 1 for every weight matrix W in T , and suppose the weights are randomly
sampled as Wi,j ∼ U(−1, 1) for every W ∈ Tlarge. Then, with probability 1− δ over the randomness
of Tlarge, there exists a nonstructural pruning (Definition 4) of Tlarge, denoted as T̃large, which ϵ-
approximates T with respect to ∥ · ∥1,2 for any input X ∈ Rm×N satisfying ∥X∥1,2 ≤ 1. 19

Proof. We will first introduce some notation. For vector x ∈ Ra and y ∈ Rb, we will use x⊕ y to
denote their concatenation. We will use 0a to denote the all-zero vector with dimension a. We will
also assume without loss of generality that w ≥ 2m. 20

We will use X̄ to denote
[

X

0(mlarge−m′)×N

]
for X ∈ Rm′×N with m′ ≤ mlarge.

In the following, a random network refers to a network whose weights have entries sampled from a
uniform distribution, i.e. Wi,j ∼ U(−1, 1) for every weight W in the random network.

We will first recall Lemma 2 from Pensia et al. (2020) which shows that a pruned 2-layer random
network can approximate a linear function.

Lemma 2 (Approximating a linear function; Theorem 1 of Pensia et al. (2020) restated). Let
W ∈ Rm′×m, ∥W∥2 = O(1), then for σ ∈ {ReLU, I}, where I represents the identity operator,
for a random network g(x) = W2σ(W1x) with W2 ∈ Rm′×h,W1 ∈ Rh×m for hidden dimension

19Here the input and output dimension of T̃large is actually mlarge which is larger than m; additional dimensions
are padded with zeroes. The norm constraint can be easily extended to an arbitrary constant.

20We can always pad dimensions if w is too small.
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h = O(m log( mm′

min{ϵ,δ} )), with probability 1 − δ, there exists boolean masking matrices M1,M2,
such that for any x ∈ Rw,

∥(M2 ⊙W2)σ
(
(M1 ⊙W1)x

)
−Wx∥ ≤ ϵ∥x∥2,

where ⊙ denotes the Hadamard product.

We then derive two approximation results Lemmas 3 and 4 based on Lemma 2.

Lemma 3. Under the setting of Theorem 2, with probability 1−2δ/3, for any l ∈ [L], l′ ∈ [4L−1], let
T (l) be the l-th layer of T , there exists a pruning of the (l′− 1)-th and the (l′)-th layer T (l′−1)

large , T l′

large,

named T̃ (l′−1)
large , T̃ l′

large such that when defined on domain ∥X∥1,2 ≤ 2L,X ∈ Rm×N ,

1. T̃ (l′−1)
large is independent of the last mlarge −m rows of the input.

2. T̃ l′

large ◦T̃
(l′−1)

large

(
X̄
)

is an
(

C
1000L2

)4L−3
ϵ-approximation of T (l)(X) with respect to 1, 2-norm.

Lemma 4. Under the setting of Theorem 2, for any matrix W ∈ R4m×4m, ∥W∥2 ≤ 1, with
probability 1 − δ/4, for any l′ ∈ [4L], there exists a pruning of the l-th layer T (l′)

large, named T̃ (l′)
large,

such that when defined on domain X ∈ Rm×N ,

1. T̃ (l′)
large is independent of the last mlarge − 4m rows of the input.

2. a(x) = T̃ (l′)
large

(
X̄
)

is an
(

C
1000L2

)4L
ϵ-approximation of ĝ(X) = WX with respect to 1, 2-

norm.

The proof of Lemmas 3 and 4 is deferred to Appendix C.5.1 We can now prove the theorem.

We will first show with induction that if we 1) prune the (2l − 1)-th and 2l-th layers of Tlarge to
approximate T (l) for each l ∈ [L], and 2) prune the 2L+ 1 to 4L-th layers of Tlarge to approximate
identity, then the pruned large transformer will be an ϵ-approximation of T for any input ∥X∥1,2 ≤ 1.

We will perform induction on l: Let T (1:l) define the composition of layer 1 to l, i.e. T (1:l)(X) :=

T (l) ◦ T (l−1) ◦ · · · ◦ T (1)(X), and define ϵl :=
(

C
1000L2

)4L−3−l
ϵ. Suppose that T (1:2l)

large is an
ϵl-approximation of T (1:l). Note that ∥T (1:l)(X)∥1,2 ≤ (l + 1), since each attention output has a
bounded norm of 1 and every weight matrix in projection function g has spectral norm smaller than 1,
hence the norm will at most increment 1 (due to residual connection) after each layer. We have that∥∥∥T̃ (1:2l)

large

(
X̄
)∥∥∥

1,2
≤ 4l ≤ 4L.

Then according to Lemma 13, T (l+1) is (1 + 200L2/C)-Lipschitz on the set of intermediate outputs
{
(
T̃ (1:2l)

large (X̄)
)
1:m

| ∥X∥1,2 ≤ 1}. We also have that T (1:l)(X) is (1+200L2/C)l-Lipschitz. Now

we can apply Lemma 5 to show that T (1:2l+2)
large can ϵ′-approximate T (1:l+1) with

ϵ′ = ϵl(1 + 200L2/C) + ϵ

(
C

1000L2

)4L−3

(1 + 200L2/C)l + ϵl

(
C

1000L2

)4L−3

ϵ

≤
(

C

1000L2

)4L−4−l

ϵ = ϵl+1.

The induction is then completed and we have the composition of T̃ i
large for i ∈ [2L] ϵL-approximates

the composition of T with ϵL =
(

C
1000L2

)3L−3
ϵ. We will then perform another induction showing

that the composition of T̃ i
large for i ∈ [2L+ l] ϵl+L-approximates T with ϵl+L =

(
C

1000L2

)3L−3−l
ϵ.

Suppose the statement holds for L− 1 ≥ l ≥ 0.
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The induction step is similar, because we have T is (1+200L2/C)L Lipschitz, by Lemma 5, it holds
that the composition of T i

large for i ∈ [2L+ l + 1] ϵ′-approximates T with,

ϵ′ = ϵl+L + ϵ

(
C

1000L2

)4L

(1 + 200L2/C)L + ϵl+Lϵ

(
C

1000L2

)4L

≤ ϵ

(
C

1000L2

)3L−4−l

ϵ = ϵL+l+1.

This concludes the induction and prove the first claim of the theorem. For the second claim, notice
that through similar induction steps, we can prune arbitrary layer of Tlarge to approximate identity
function and obtain the same approximation rate, this concludes the proof for the second claim.

C.5.1 Helper lemmas for Theorem 2

Error Analysis Our first lemma shows that the composition of ϵ-approximation can approximate
the composition of the original function.

Lemma 4. Under the setting of Theorem 2, for any matrix W ∈ R4m×4m, ∥W∥2 ≤ 1, with
probability 1 − δ/4, for any l′ ∈ [4L], there exists a pruning of the l-th layer T (l′)

large, named T̃ (l′)
large,

such that when defined on domain X ∈ Rm×N ,

1. T̃ (l′)
large is independent of the last mlarge − 4m rows of the input.

2. a(x) = T̃ (l′)
large

(
X̄
)

is an
(

C
1000L2

)4L
ϵ-approximation of ĝ(X) = WX with respect to 1, 2-

norm.

Proof. One can prune the value matrix on layer l′ to zero and the rest is a direct consequence
of Lemmas 2 and 20.

Lemma 5. Given three metric spaces A,B,C equipped with same metric ∥ · ∥. Suppose f1 : A →
B, f2 : B → C are ϵ1, ϵ2-approximations of g1, g2 with respect to ∥ · ∥, where g1 is a Lipschitz
function with constant λ1 with respect to ∥ · ∥ and ∥g2(x)∥ ≤ λ2x, then it holds that, f1 ◦ f2 is an
ϵ′-approximation of g1 ◦ g2, with ϵ′ = (λ2 + ϵ1)(λ1 + ϵ2)− λ1λ2

Proof. For any x ∈ Rd1 , it holds that,

∥f1(x)− g1(x)∥ ≤ ϵ1∥x∥.

This then suggests that,

∥f2(f1(x))− g2(g1(x))∥
≤∥f2(f1(x))− g2(f1(x))∥+ ∥g2(f1(x))− g2(g1(x))∥
≤ϵ2∥f1(x)∥+ λ2∥f1(x)− g1(x)∥
≤ϵ2∥g1(x)∥+ (λ2 + ϵ2)∥f1(x)− g1(x)∥
≤ (ϵ2λ1 + ϵ1λ2 + ϵ1ϵ2) ∥x∥

Approximating ReLU MLP We will first show an extension of Lemma 2, illustrating that a pruned
wide 4-layer ReLU MLP can approximate any 2-layer ReLU MLP.

Lemma 6. Consider any 2-layer ReLU MLP g : R4m → R4m parameterized by W1 ∈
R4m×w,W2 ∈ Rw×4m, ∥W1∥2, ∥W2∥2 ≤ 2

√
2, for any δ, ϵ ∈ (0, 1), consider a random 4-layer

ReLU MLP f with input and output dimension 4m and width w′ = O(w log( wm
min{ϵ,δ} )) parameter-

ized by Wlarge,i, with probability 1−δ over the randomness of weight of f , there exists a nonstructural
pruning of f named f̃ , such that f̃ is an ϵ−approximation of f with respect to 2−norm.
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Proof. Choose ϵ0 = ϵ/8. We only need to show there exists boolean matrices M1,M2,M3,M4,
such that,∥∥∥(M4 ⊙Wlarge,4ReLU

(
(M3 ⊙Wlarge,3)ReLU

(
(M2 ⊙Wlarge,2)ReLU

(
(M1 ⊙Wlarge,1)x

))))
−W2ReLU (W1X)

∥∥∥
2
≤ ϵ.

By Lemma 2, there exists boolean matrices M1 ∈ Rw′×4m and M ′
2 ∈ Rw×w′

, such that for any
x ∈ R4m,

∥
([

M ′
2

0(w
′−w)×w′

]
⊙Wlarge,2

)
ReLU

(
(M1 ⊙Wlarge,1)x

)
−
[
W1x

0w
′−w

]
∥2 ≤ ϵ0∥x∥2.

Hence we can choose M2 =

[
M ′

2

0(w
′−w)×w′

]
and have f1(x) = ReLU

(
(M2⊙Wlarge,2)ReLU

(
(M1⊙

W,1)x
))

is ϵ0-approximation of g1(x) =
[
ReLU(W1x)

0w
′−w

]
.

Again by Lemma 2, there exists boolean matrices M ′
3 ∈ Rw′×w and M4 ∈ R4m×w′

, such that for
any y ∈ Rw,

∥ (M4 ⊙Wlarge,4)ReLU

([
M ′

3, 0
w′×(w′−w)

] [ y

0w
′−w

])
≤ ϵ0∥y∥2

Hence we can choose M3 =
[
M ′

3, 0
w′×(w′−w)

]
, and have f2(x) = ReLU

(
(M4 ⊙

Wlarge,4)ReLU
(
(M3 ⊙Wlarge,3)x

))
is ϵ0-approximation of g2(x) = W2x.

It is also easy to check g1 and g2 are both 2
√
2-lipschitz and g1(0) = 0. By Lemma 5, we conclude

that f̃ = f1 ⊙ f2 is ϵ′-approximation of g = g1 ⊙ g2, with ϵ′ = 4
√
2ϵ0 + ϵ20 ≤ ϵ.

This lemma then yields the following corollaries.
Corollary 1. Under the setting of Theorem 2, with probability 1− δ/4, for any l ∈ [L], l′ ∈ [4L],

there exists a pruning of the projection function g
(l′)
large, named

˜
g
(l′)
large, such that

1.
˜

g
(l′)
large is independent of the last mlarge −m dimension of the input.

2. a(x) =
˜

g
(l′)
large

([
x

0mlarge−m

])
is an

(
C

1000L2

)4L
ϵ-approximation of ĝ(x) =

[
g(l)(x)

0mlarge−m

]
with

respect to 2−norm.

Proof. One can construct such pruning by pruning the last mlarge −m rows of the weight of the
last layer and the last mlarge −m columns of the weight of the first layer of g(l

′)
large to zero and then

apply Lemma 6.

Approximating Attention Patterns We will now show that the attention pattern can be approxi-
mated by pruning random Transformer layers.
Lemma 7. For any δ, ϵ ∈ (0, 1), for any W ∈ Rm, ∥W∥2 ≤ 1, for two random matrix W1,W2 ∈
Rm′×m where m′ = O(m log( m

min{ϵ,δ} )), suppose X ∈ Rm×N , then there exists nonstructural

pruning of W1,W2, named W̃1, W̃2, such that

∥X⊤W̃1
⊤
W̃2X −X⊤WX∥∞ ≤ ϵ∥X∥21,2

Here we adopt ∥∥∞ in vector sense, meaning the entry with largest absolute value.

Proof. Suppose without loss of generality, ∥X∥:,i ≤ 1. According to Lemma 2, there exists
nonstructural pruning of W1,W2, named W̃1, W̃2, such that for any x ∈ Rm, ∥x∥2 ≤ 1,

∥W̃1
⊤
W̃2x−Wx∥2 ≤ ϵ.
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This then suggests that,

∥y⊤(W̃1
⊤
W̃2x−Wx)∥2 ≤ ϵ∥y∥2 ≤ ϵ.

This concludes the proof.

The next lemma shows how error propogates through the softmax operators.
Lemma 8. For any dimension d, suppose x, y ∈ Rd satisfies ∥x− y∥∞ ≤ ϵ, then it holds that,

d∑
i=1

∣∣ exp(xi)∑n
i=1 exp(xi)

− exp(yi)∑n
i=1 exp(yi)

∣∣ ≤ exp(2ϵ)− 1.

Proof. One can observe that,

exp(−ϵ) exp(xi) ≤ exp(yi) ≤ exp(ϵ) exp(xi)

This then suggests,

exp(xi)∑n
i=1 exp(xi)

exp(−2ϵ) ≤ exp(yi)∑n
i=1 exp(yi)

≤ exp(2ϵ)
exp(xi)∑n
i=1 exp(xi)

.

Hence,
d∑

i=1

∣∣ exp(xi)∑n
i=1 exp(xi)

− exp(yi)∑n
i=1 exp(yi)

∣∣ ≤ max{exp(2ϵ)− 1, 1− exp(−2ϵ)} = exp(2ϵ)− 1.

This concludes the proof.

Approximating Attention Module We will need the following lemma showing there exists a
pruning of the value matrix in Tlarge such that it has eigenvalues with magnitude Θ(1).

Lemma 9. For a matrix W ∈ Rmlarge×mlarge , with probability at least 1− δ
10L , there exists a pruning

of W , named W ′, such that all the nonzero entries is contained in a d × d submatrix of W ′ that
satisfies that (1) all its eigenvalues are within ( 12 , 1), (2) the index of row specifying the submatrix
and the index of column specifying the submatrix are disjoint.

Proof. As wlarge = Ω(m log(dLδ )), hence we can split W1:⌈mlarge/2⌉,⌈mlarge/2⌉+1:mlarge
into (m×(m

blocks, each with width at least O(log( (mδ )) 21. Within each block, with probability 1− δ
10Lmlarge

,
there exists at least one entry that has value at least 1

2 . We can then choose d disjoint entries in W

that are all at least 1
2 , indexed with {(ai, bi)}i∈[d] where ai < aj and bi < bj for i < j. We can then

prune all other entries to zero. Consider the submatrix defined by entries (a, b) for a ∈ {ai}i∈m

and b ∈ {bi}i∈m. Then, this submatrix will be diagonal and contains eigenvalues within ( 12 , 1).
Further {ai}i∈m and {bi}i∈m must be disjoint because ai ≤ ⌈mlarge/2⌉ < bi. The proof is then
completed.

We will also prove that LayerNorm with nonzero normalization constant is Lipschitz.

Lemma 10. For LayerNorm function defined as LN(x) = P⊥x
max{∥P⊥x∥2,C} , x ∈ Rm, for any

x, y ∈ Rm, it holds that, ∥∥∥LN(x)− LN(y)
∥∥∥
2
≤ 2∥x− y∥2/C.

Proof. We will proceed by a case analysis:

1. If ∥P⊥x∥2, ∥P⊥y∥2 ≤ C, then
∥∥∥LN(x)− LN(y)

∥∥∥
2
= ∥P⊥x−P⊥y∥2

C ≤ 1
C ∥x− y∥2.

2. If ∥P⊥x∥2, ∥P⊥y∥2 > C, then
∥∥∥LN(x)−LN(y)

∥∥∥
2
= ∥P⊥x−P⊥y∥2

∥P⊥y∥2
+
∣∣1− ∥P⊥x∥2

∥P⊥y∥2

∣∣ ≤ 2
C ∥x−y∥2.

21O(·) hides absolute constants arising from the change of basis in the logarithm.
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3. If ∥P⊥x∥2 < C and ∥P⊥y∥2 > C, then
∥∥∥LN(x) − LN(y)

∥∥∥
2
= ∥P⊥x−P⊥y∥2

∥P⊥y∥2
+
∣∣∥P⊥x∥2

C −
∥P⊥x∥2

∥P⊥y∥2

∣∣ ≤ 2
C ∥x− y∥2.

The cases exhaust all possibilities, thus the proof is completed.

Finally, we will need a lemma showing how error accumulates when we consider both attention
patterns and the value matrices.

Lemma 11. For any dimension d and positive number N , for P,Q ∈ Rd×d satisfying that
∥P∥2, ∥Q∥2 ≤ 1, for any x ∈ Rd×N , if matrix A ∈ RN×N , B ∈ Rd×N satisfy that,

∥A− σ(x⊤Qx)∥1,1 ≤ ϵ1.

∥B − Px∥1,2 ≤ ϵ2.

∀i, k ∈ [N ]
∑
j∈[N ]

Aj,i = 1, Ak,i ≥ 0.

Then it holds that,

∥BA− Pxσ(x⊤Qx)∥1,2 ≤ (ϵ1∥PX∥1,2 + ϵ2).

∥LNC(BA)− LNC(Pxσ(x⊤Qx))∥1,2 ≤ 2(ϵ1∥PX∥1,2 + ϵ2)/C.

Proof. For any i ∈ N , we will have∥∥∥(BA):,i −
(
Pxσ(x⊤Qx)

)
:,i

∥∥∥
2

=
∥∥∥ ∑

j∈[N ]

Aj,iB:,j −
(
σ(x⊤Qx)

)
j,i

(PX):,j

∥∥∥
2

≤∥
∑
j∈[N ]

Aj,i(PX):,j −
(
σ(x⊤Qx)

)
j,i

(PX):,j

∥∥∥
2
+ ∥

∑
j∈[N ]

Aj,i (PX −B):,j ∥2

≤∥PX∥1,2
∑
j∈[N ]

|Aj,i −
(
σ(x⊤Qx)

)
j,i

+ ∥PX −B∥1,2

≤∥PX∥1,2∥A− σ(x⊤Qx)∥1,1 + ∥PX −B∥1,2 ≤ ϵ1∥PX∥1,2 + ϵ2.

The rest follows from Lemma 10

A LayerNorm of larger dimension can be made to be functionally equivalent to a LayerNorm of a
smaller dimension. Precisely:

Lemma 12. Given any dimension d < d′, it holds that for any x ∈ Rd,

LNC(

[
P⊥x

0d
′−d

]
) =

[
LNC(x)

0

]
.

Proof. The proof follows directly from definition.

We will now formally define attention module.

Definition 7 (Attention Module). We will define attention module a(X | WV ,WK ,WQ) as

a(X) = LNC

(
WV Xσ(X⊤W⊤

KWQX)
)
.

Lemma 13. Attention module is lipschitz with respect to 1, 2-norm for bounded input. Precisely,
consider attention module (Definition 7)parameterized by ∥WV ∥2, ∥WK∥2, ∥WQ∥2 ≤ 1 with input
domain ∥X∥1,2 ≤ 4L, a(X) is 200L2/C-lipschitz with respect to 1, 2−norm.
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Proof. We have that

a(X) = LNC

(
WV Xσ(X⊤W⊤

KWQX)
)
.

Choose ϵ to be a sufficiently small constant, such that, exp(32Lϵ)− 1 ≤ 64Lϵ. Consider X and X̃

satisfying that ∥X − X̃∥1,2 ≤ ϵ and ∥X∥1,2 ≤ 4L, ∥X̃∥1,2 ≤ 4L, we will have∣∣∣ (X⊤W⊤
KWQX − (X̃)⊤W⊤

KWQ(X̃)
)
i,j

∣∣∣
=
∣∣∣(X:.i − X̃:,i)

⊤W⊤
KWQX:,j + (X̃:,i)

⊤W⊤
KWQ(X:,j − X̃:,j) + (X:.i − X̃:,i)

⊤W⊤
KWQ(X:,j − X̃:,j)

∣∣∣
≤8Lϵ+ ϵ2 ≤ 16Lϵ.

By Lemma 8, this implies,

∥σ(X⊤W⊤
KWQX)− σ((X̃)⊤W⊤

KWQ(X̃))∥1,1 ≤ exp(32Lϵ)− 1 ≤ 64Lϵ.

We also have

∥WV

(
X − X̃

)
∥1,2 ≤ ϵ.

∥WV X∥1,2 ≤ 4L

Lemma 11 then implies that

∥a(X)− a(X̃)∥1,2 ≤ 200L2ϵ/C.

This then concludes the proof.

We can now prove that a large Transformer Layer and an attention module of the larger Transformer
can be pruned to approximate the attention module of a smaller Transformer Layer module.
Lemma 14. Under the setting of Theorem 2, with probability 1− δ/2, for any l ∈ [L], l′ ∈ [4L− 1],
let a(l) be the attention module on the l-th layer of T , there exists a pruning of the (l′ − 1)-th layer
T (l′−1)

large , named T̃ (l′−1)
large and the attention module on l′-th layer al

′

large named ˜al
′
large, such that when

defined on domain ∥X∥1,2 ≤ 2L,

1. T̃ (l′−1)
large is independent of the last mlarge −m rows of the input.

2.
(

˜al
′
large ◦ T̃

(l′−1)
large

([
x

0(mlarge−m)×N

]))
1:m

is an
(

C
1000L2

)4L−1
ϵ-approximation of a(l)(x)

with respect to 1, 2-norm.

3.
(
T̃ (l′−1)

large

([
x

0(mlarge−m)×N

]))
1:m

is an
(

C
1000L2

)4L
ϵ-approximation of X with respect to

1, 2-norm.

Proof. We will use the shorthand ϵ0 =
(

C
1000L2

)4L
ϵ and prune in the following order. It holds that

for ϵ ≤ 1, exp(8L2ϵ0)− 1 ≤ 16L2ϵ0.

1. We will prune W
large,(l′)
V according to Lemma 9 and name the pruned matrix

˜
W

large,(l′)
V .

By Lemma 9, all the nonzero entries is contained in a d × d submatrix of W ′ that satisfies
that all its eigenvalues are within ( 12 , 1). We will assume WLOG the submatrix is the one specified
by row 1 . . . d and column d+ 1 . . . 2d and name the submatrix as W .

2. We will then prune T (l′−1)
large according to Lemma 4 to output ϵ0-approximation of X ∈ Rm×N → X

W−1P⊥W
(l)
V X

0(mlarge−2m)×N

. As W is defined as the submatrix pruned by W
(t+1)
V , it holds that

˜
W

large,(l′)
V

 X

W−1P⊥W
(l)
V X

0(mlarge−m)×N

 =

[
P⊥W

(l)
V X

0(mlarge−m)×N

]
.
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3. Finally we will prune W large,(l′)
K ,W

large,(l′)
Q according to Lemma 7 to approximate (W (l)

K )⊤W
(l)
Q

up to ϵ0 error.

we can now calculate the approximation error. For any X ∈ Rm×N , ∥X∥1,2 ≤ 2L, suppose

˜T (l′−1)(X) =

 X + δ1
W−1P⊥W

(l)
V X + δ2

0(mlarge−2m)×N


Then by our constrution, it holds that ∀i ∈ {1, 2}, ∥δi∥1,2 ≤ ϵ0∥X∥1,2.

We would then have

˜
W

large,(l′)
V

˜T (l′−1)(X) =

[
P⊥W

(l)
V X +

˜
W

large,(l′)
V δ2

0(mlarge−m)×N

]
(48)

By our construction, it holds that ∥ ˜
W

large,(l′)
V δ2∥1,2 ≤ 2∥δ2∥1,2 ≤ 2ϵ0∥X∥1,2.

Further, by the construction of
˜

W
large,(l′)
K ,

˜
W

large,(l′)
Q , it holds that,∥∥∥( ˜

W
large,(l′)
K

˜T (l′−1)(X)

)⊤(
˜

W
large,(l′)
Q

˜T (l′−1)(X)

)
− (W

(l)
K X +W

(l)
K δ1)

⊤(W
(l)
Q X +W

(l)
Q δ1)

∥∥∥
∞

≤ ϵ0 (49)

As for any i, j ∈ [N ]∣∣∣∣((W (l)
K X +W

(l)
K δ1)

⊤(W
(l)
Q X +W

(l)
Q δ1)− (W

(l)
K X)⊤W

(l)
Q X

)
i,j

∣∣∣∣
≤
∣∣∣(W (l)

K X:,i)
⊤(W

(l)
Q δ1):,j

∣∣∣+ ∣∣∣(W (l)
K δ1)

⊤
:,i(W

(l)
Q X):,j

∣∣∣+ ∣∣∣(W (l)
K δ1)

⊤
:,i(W

(l)
Q δ1):,j

∣∣∣
≤∥X∥21,2(2ϵ0 + ϵ2) ≤ 4∥X∥21,2ϵ0.

combined with Equation (49),∥∥∥( ˜
W

large,(l′)
K

˜T (l′−1)(X)

)⊤(
˜

W
large,(l′)
Q

˜T (l′−1)(X)

)
− (W

(l)
K X)⊤W

(l)
Q X

∥∥∥
∞

≤ ϵ0(1 + 4∥X∥21,2).

(50)

By Lemma 8, this implies∥∥∥σ(( ˜
W

large,(l′)
K

˜T (l′−1)(X)

)⊤(
˜

W
large,(l′)
Q

˜T (l′−1)(X)

))
− σ

(
(W

(l)
K X)⊤W

(l)
Q X

)∥∥∥
1,1

≤ 4ϵ0(1 + 4∥X∥21,2). (51)

By Lemma 11, Equations (48) and (51) imply,∥∥∥ ˜
W

large,(l′)
V

˜T (l′−1)(X)σ

((
˜

W
large,(l′)
K

˜T (l′−1)(X)

)⊤(
˜

W
large,(l′)
Q

˜T (l′−1)(X)

))

−

[
P⊥W

(l)
V Xσ

(
(W

(l)
K X)⊤W

(l)
Q X

)
0(mlarge−m)×N

]∥∥∥
1,2

≤ 8ϵ0(1 + 4∥X∥21,2)∥X∥1,2 ≤ 80L2ϵ0.

Now according to Lemmas 10 and 12, it holds that

∥ ˜al
′
large ◦ T̃

(l′−1)
large

([
x

0(mlarge−m)×N

])
1:m

− a(l)(x)∥1,2 ≤ 160L2ϵ0/C.

This concludes the proof.
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Approximating Transformer Layers We will finally show that two random Transformer layers
can be pruned to approximate a given Transformer layer.
Lemma 3. Under the setting of Theorem 2, with probability 1−2δ/3, for any l ∈ [L], l′ ∈ [4L−1], let
T (l) be the l-th layer of T , there exists a pruning of the (l′− 1)-th and the (l′)-th layer T (l′−1)

large , T l′

large,

named T̃ (l′−1)
large , T̃ l′

large such that when defined on domain ∥X∥1,2 ≤ 2L,X ∈ Rm×N ,

1. T̃ (l′−1)
large is independent of the last mlarge −m rows of the input.

2. T̃ l′

large ◦T̃
(l′−1)

large

(
X̄
)

is an
(

C
1000L2

)4L−3
ϵ-approximation of T (l)(X) with respect to 1, 2-norm.

Proof. We will prune the (l′ − 1)-th layer and the attention module of the l′-th layer according
to Lemma 14 to approximate a(l) and the projection function of the l′-th layer according to Corollary 1.
Notice that

∥∥∥a(l)(X) +X
∥∥∥
1,2

≤ ( 2
C + 1)∥X∥1,2 and g(l) is 1−lipschitz, according to Lemma 5,(

T̃ l′

large ⊙ T̃ (l′−1)
large

([
x

0(mlarge−m)×N

]))
1:m

is an ϵ′-approximation of T (l)(x), with

ϵ′ ≤ (
2

C
+ 1)

(
C

1000L2

)4L

ϵ+

(
C

1000L2

)4L−2

ϵ+

(
C

1000L2

)8L−2

ϵ2 ≤
(

C

1000L2

)4L−3

ϵ.

This concludes the proof.

C.6 Technical Lemmas

Lemma 15. Given any dimension d and number of samples n, for any size-n dataset {(xi, yi)}i∈[n]

with xi ∈ Rd and yi ∈ R, there exists a width-2n two-layer MLP f : Rd → R with ReLU activation
such that, f(xi) = yi for any i ∈ [n].

Proof. We will first choose direction w ∈ Rd, ∥w∥2 = 1 and margin γ > 0 such that for any i ̸= j
in [n], it holds that, ∣∣∣⟨w,xi − xj⟩

∣∣∣ ≥ 2γ.

We will assume WLOG w⊤xi is increasing in i.

Then we will construct an auxilliary series zi for i ∈ [n] such that,
z1 = y1/γ

zi = yi/γ − 2

i−1∑
j=1

zj , i ∈ {2, . . . n}.

Finally consider the following two-layer MLP with ReLU activation,

f(x) =

n∑
i=1

ziReLU (⟨w,x− xi⟩+ γ)− ziReLU (⟨w,x− xi⟩ − γ) ,

we will show that f(xi) = yi for any i ∈ [n]. Notice that

zjReLU (⟨w,xi − xj⟩+ γ)− zjReLU (⟨w,xi − xj⟩ − γ) =


0, j > i,

γzi, j = i,

2γzj , j < i.

Thus it holds,

f(xi) =

n∑
j=1

zjReLU (⟨w,xi − xj⟩+ γ)− zjReLU (⟨w,xi − xj⟩ − γ)

=

i−1∑
j=1

2γzj + γzi = yi.
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Lemma 16. Given any sets {xi}i∈m satisfying that xi ∈ Rn and xi ̸= 0, there exists a set of
orthonormal vectors {uj}j∈[n−2] of Rn such that (1) u⊤

j 1
n = 0 for any j ∈ [n − 2] and (2)∑

j∈[n−2] u
⊤
j xiuj ̸= xi for any i ∈ [m].

Proof. There exists a vector v ∈ Rn such that v⊤xi ̸= 0 for any i ∈ [m]. We can then construct
an orthonormal basis {uj}j∈[n−2] of Rn as the basis of the normal space of span(v, 1n). Then the
lemma holds.

Lemma 17. Given any dimension n and constant M , there exists a 2-layer width-2n ReLU network
f : Rn+1 → R such that for any x ∈ [0,M ]n, y ∈ [n], f(x⊕ y) = xy .

Proof. The construction is as followed, we will choose f as

f(x⊕ y) =

n∑
i=1

ReLU(xi +M(y − i))−
n∑

i=1

ReLU(xi +M(y − i− 1))−M(y − 1).

Then as we have

ReLU(xi +M(y − i))−
n∑

i=1

ReLU(xi +M(y − i− 1)) =


M, i ≤ y − 1;

xi, i = y;

0, i ≥ y + 1.

The proof is completed.

Lemma 18. Given any dimension n and constant M > 0, there exists a 2-layer width-2n ReLU
network f : Rn → R such that for any x ∈ Rn satisfying there exists i ∈ [n], xi > M and
∀j ̸= i, xj = 0, it holds that f(x) = i.

Proof. The construction is as followed, we will choose f as

f(x) =

m∑
i=1

i (ReLU(xi)− ReLU(xi −M) +M) /M.

The proof is completed.

Lemma 19. Given any dimension n and natural numbers K,m,M , if there exists K different 2-layer
width-m ReLU networks fk : Rn → R, then there exists a 2-layer width-2Km ReLU network

f : Rn+1 → R, such that f(
[
k
x

]
) = fk(x) when x ∈ [0,M ]n.

Proof. Suppose that

fk(x) =

m∑
i=1

ak,iReLU(w⊤
k,ix+ bk,i) + bk.

Then we can construct

f(

[
y
x

]
) =

K∑
k=1

m∑
i=1

ak,iReLU(w⊤
k,ix+ bk,i +M(y − k))− ak,iReLU(w⊤

k,ix+ bk,i +M(y − k − 1))

+ bk − ck,iReLU(y + 1− k),

where ck,i satisfies

∀i, k′,
k′∑

k=1

ck,i(k
′ + 1− k) = M

k′−1∑
k=1

ak,i.

The proof is then completed.

Lemma 20. Given any dimension n and W ∈ Rn×n, ∥W∥2 ≤ 2, there exists a 2-layer width-2n
ReLU network f : Rn → R such that for any x ∈ Rn, it holds that f(x) = Wx and both weight
matrices parameterizing f has spectral norm less than 2

√
2.
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Proof. The construction is straightforward, one can choose

f(x) = [In,−In]
⊤ReLU

([
Wx
−Wx

])
.

C.7 Discussion on Architecture Choices

The reader may notice that Equation (6) is not the same as the standard GPT architecture,

fl(X; θ(l)) =g(l)
(
LN
(
W

(l)
V Xσ

(
C + (W

(l)
K X)⊤(W

(l)
Q X)

)
+X

))
. (52)

We will shortly discuss the impact of considering Equation (52) here.

With similar arguments to Theorem 3 and the necessity part of Theorem 1, one can prove that similar
balance conditions should also hold for a transformer with a layer specified by Equation (52) and a
minimal first layer that can nearly perfectly generate bounded Dyck languages.

However, the sufficiency part of Theorem 1 no longer holds, when the balance condition holds, the
last column of the term W

(2)
V Xσ

(
C+(W

(2)
K X)⊤(W

(2)
Q X)

)
will converge to zero when input length

converges to infinity. Hence, if not all e(τt,d) where τt,d is a closed bracket aligns with 1m, then it is
impossible for the model to perfectly generate Dyck for arbitrary length. Although it remains possible
to refine a sharper condition for standard GPT architecture to perfectly generate Dyck Language,
we find considering Equation (6) more elegant in theory. We also verify with experiments that our
architecture with standard training can learn bounded Dyck language to more than 97% accuracy.
Also, the learned attention patterns are also similarly not interpretable as standard architectures.
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D Experiments

D.1 Training Details

For Figure 1, we train 2-layer standard GPT on Dyck2,4 with sequence length no longer than 28. For
(a), we train with hidden dimension and network width 200 and learning rate 3e-4. For (b), (c), (d),
we train with hidden dimension and FFN width 50 and learning rate 3e-3.

For Figure 2, for (a), we train 1-layer transformer without residual link, FFN and the final LayerNorm
before the linear head. The hidden dimensions and FFN widths are fixed as 500. For (a), we train the
network with learning rate 1e-2 and for (b), (c), (d) we train the network with learning rate 3e-3.

D.2 Additional Results on Dyck Prefix

In the experiment presented in the main text, we perform experiments on complete Dyck sequences,
which is a special case of Dyck prefixes. In this section, we present additional experiments on Dyck
prefixes Dyck2,4,28.

Attention Patterns We first perform experiments on attention patterns. The qualitative results
are shown in Figures 7 and 9. We can observe that the attention patterns are still diverse and do
not commonly show stack-like patterns. We also calculate the attention variation 22, and find that
the attention variation is 0.34, based on 30 models with a minimal first layer and different random
seeds. In contrast, for models with a standard first layer and without position encodings, the attention
variation is surprisingly high, reaching 14.51. The high value is caused by the large distance between
attention patterns like Figure 7 (c) and (d); that is, between patterns that attend more to the current
positions, and patterns that attend more heavily to the initial position. The difference is even increased
when we consider longer sequence (Figure 8). Similarly, the variation is also high for models with
linear position embedding, reaching 11.92. This shows that the attention patterns are still diverse and
do not commonly show stack-like patterns.

(a) With Position
Embedding

(b) With Position
Embedding

(c) Without Position
Embedding

(d) Without Position
Embedding

Figure 7: Second-layer attention patterns of two-layer Transformers on Dyck Prefix: Models for
(a),(b) are under the same setup but different random seeds; similarly for (c),(d). All models reach
≥ 97% accuracy (defined in Section 4.1). In the heatmap, darker color indicates larger value. As we
can observe, the attention patterns still show much variance.

Balanced Violations We also test the relationship with the balance violation with length general-
ization on Dyck prefixes, similar to Figure 3. We observe that although the negative correlation is not
presented as in the case of Dyck sequences, contrastive regularization still helps reduce the balance
violation and significantly improve the length generalization performance. This shows that for Dyck
prefixes, while the balance violation may not be predictive of the length generalization performance,
it is still possible to reduce the balance violation and improve the length generalization performance.
The results are shown in Figure 10.

22Recall from Section 4.1 that the attention variation between two attention patterns A1, A2 ∈ RN×N is
defined as Variation(A1, A2) = ∥A1 −A2∥2F .
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(a) With Position
Embedding Run 1

(b) With Position
Embedding Run 2

(c) Without Position
Embedding Run 1

(d) Without Position
Embedding Run 2

Figure 8: Second-layer attention patterns of two-layer Transformers on Longer Dyck Prefix:
Models for (a),(b) are under the same setup but different random seeds. All models reach ≥ 97%
accuracy (defined in Section 4.1). In the heatmap, darker color indicates larger value.

D.3 Extended Experiments

We include more experiments on the attention variation of different Dyck languages and architectures.
The results are summarized in Table 1.

#types k Grammar depth m #Layers l Layer 1 Layer 2 Layer 3
2 4 2 0.047(0.006) 7.721(0.908)
2 4 3 0.070(0.013) 5.072(0.645) 24.063(1.166)
2 8 2 0.087(0.012) 7.583(0.961)
2 8 3 0.059(0.011) 5.560(0.714) 23.590(0.829)
3 4 2 0.182(0.024) 9.313(0.815)
3 4 3 0.225(0.032) 8.426(0.877) 25.749(0.897)
3 8 2 0.178(0.028) 7.000(0.884)
3 8 3 0.154(0.036) 6.280(0.711) 25.451(0.871)

Table 1: Extended attention variation. “Layer i” shows the mean (and standard deviation) of the
attention variation on layer i, calculated on 40 sentences. The embedding width and FFN width are
fixed as 50 in the experiments. We train using sentences from Dyckk,m of length less than 28 and
test the variation on 40 randomly sampled sentences with length 19 (the sampled sentence is fixed
across different architectures). The random attention variation baseline here is 3.33. The numbers in
this table are different from previous discussion, since the results here are from a slightly different
architecture than the standard GPT-2 architecture: a residue link is appended after the LayerNorm to
match our theory better. The models are trained to convergence and have in-distribution accuracy
higher than 97%.

Attention pattern visualization for three-layer experiments. The first-layer attention is close to
uniform, while the higher-layer attention shows no clear patterns.

(a) Embedding 15, run 1 (b) Embedding 15, run 2 (c) Embedding 17 (d) Embedding 16

Figure 9: Second-layer attention patterns of two-layer Transformers with a minimal first layer:
(a), (b) are based on embedding 15 with different random seeds. (c), (d) are based on embedding
17 and 16. Different embedding functions lead to diverse attention patterns, most of which are not
stack-like.
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Violation and Length Generalization. Ac-
curacy from Transformers with minimal first
layer with embedding 15, using both standard
training and contrastive regularization (Equa-
tion (18)). We again observe that contrastive
regularization helps reduce the balance vio-
lation and improve the length generalization
performance.

(a) seed = 0 (b) seed = 1 (c) seed = 2 (d) seed = 3

Figure 11: Third-layer attention. The test sentence is fixed and the attention patterns learned by
different 3-layer models with the same architectures on the same dataset show large variation visually.
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