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ABSTRACT

Standard reinforcement learning (RL) agents never intelligently explore like a
human (i.e. by taking into account complex domain priors and previous explo-
rations). Even the most basic intelligent exploration strategies such as exhaustive
search are only inefficiently or poorly approximated by approaches such as novelty
search or intrinsic motivation, let alone more complicated strategies like learn-
ing new skills, climbing stairs, opening doors, or conducting experiments. This
lack of intelligent exploration limits sample efficiency and prevents solving hard
exploration domains. We argue a core barrier prohibiting many RL approaches
from learning intelligent exploration is that the methods attempt to explore and
exploit simultaneously, which harms both exploration and exploitation as the goals
often conflict. We propose a novel meta-RL framework (First-Explore) with two
policies: one policy learns to only explore and one policy learns to only exploit.
Once trained, we can then explore with the explore policy, for as long as desired,
and then exploit based on all the information gained during exploration. This
approach avoids the conflict of trying to do both exploration and exploitation at
once. We demonstrate that First-Explore can learn intelligent exploration strategies
such as exhaustive search and more, and that it outperforms dominant standard
RL and meta-RL approaches on domains where exploration requires sacrificing
reward. Surprisingly and importantly, on such domains, First-Explore not only
achieves higher final episode reward, it also achieves higher cumulative reward.
First-Explore is a significant step towards creating meta-RL algorithms capable of
learning human-level exploration, which is essential to solve challenging unseen
hard-exploration domains.

1 INTRODUCTION

Reinforcement learning (RL) performs challenging tasks, including plasma control (Degrave et al.,
2022), molecule design (Zhou et al., 2019a), game playing (Silver et al., 2018), and controlling robots
(OpenAI et al., 2019). Despite this success, standard RL is very sample inefficient. Agents take
hundreds of thousands of episodes of play to learn a task that humans could learn in a few tries (Mnih
et al., 2013).

This sample inefficiency has several causes. First, standard RL cannot condition on a complex prior
such as a human’s common sense or general experience (Pertsch et al., 2021) (e.g., knowing before
training on a game that e.g., one can collect coins to obtain reward). It has been shown that much of
the sample efficiency of humans comes from such priors (Dubey et al., 2018). Second, a standard
RL agent cannot remember previous episodes, and only learns via slow weight updates. Having no
memory prohibits high sample efficiency. Memory is required to e.g., navigate to a treasure location
after reading a treasure map last episode, or e.g., immediately copy an opponent’s chess opening
after losing to it. Third, standard RL and standard meta reinforcement learning (meta-RL) both use
the same policy to explore (gather data to improve the policy) and to exploit (achieve high episode
reward) (Schulman et al., 2017; Adaptive Agent Team et al., 2023). Using the same policy for both
purposes can lead to terrible performance when good exploration and good exploitation require very
different behaviors (e.g., when exploration requires sacrificing episode reward). Sec. 5.2 shows
standard meta-RL can fail to train when deep sacrificial exploration is required.
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We present First-Explore, a simple framework for meta-RL that overcomes these limitations by
learning a pair of policies: an explore policy that can intelligently explore, and an exploit policy
that can intelligently exploit. First-Explore enables the potential of learning policies that exhibit
meta-RL’s human-level-in-context-sample-efficient learning on unseen hard-exploration domains
including hostile ones that require sacrificing reward to properly explore.

2 RL ISSUES

Exploring by Exploiting: Standard RL uses a single policy for two different purposes: i) Exploring:
gathering data to improve the policy and ii) Exploiting: achieving high episode reward (Sutton et al.,
2018). Standard RL algorithms (such as PPO (Schulman et al., 2017)) rely on exploring by sampling
the small area of policy space covered by a noisy policy centered on exploitation, e.g., by ensuring the
exploit policy has high entropy (Haarnoja et al., 2018) or by epsilon-greedy sampling of the policy
(Mnih et al., 2013).

Exploring by relying on such noisy exploiting struggles in the presence of a reward signal that does
not always lead to the global optima, i.e., deceptive reward (e.g., if the environment is very harsh
an agent may learn to stay still so as to avoid the penalty of moving incorrectly). In the presence
of deceptive reward good exploration must sacrifice episode reward. We categorize exploration by
whether it makes such sacrifice:

• Sacrificial exploration: exploration that is not exploitative is sacrificial as one is ‘sacrificing’
episode reward for information gain. Examples: paying for information or tutoring, doing practice
drills, practicing ones weaknesses, attempting a new strategy while a previously tried one works.

• Coincidental exploration: exploitation that happens by coincidence when noisily exploit-
ing(exploiting with noise potentially added or encouraged). Relying on coincidental exploration is
the standard RL approach, and is vulnerable to local optima. Examples: practicing one’s strengths,
playing normal matches, attempting a new strategy when all previously tried ones fail.

Standard RL never intentionally sacrificially explores because each episode is spent trying to maxi-
mize reward. This inability prevents standard RL from optimally exploring, and so causes greater
sample inefficiency, making solving hostile tasks (where exploration requires sacrificing reward)
infeasible.

Memory-less Exploration: A standard RL agent has no knowledge or memory of previous episodes,
and so (while noisily exploiting) it will do approximately the same ‘exploration’ repeatedly. This
repetition can make standard RL exploration hugely sample inefficient. While the agent’s policy
may change due to updates to the policy’s weights, the policy change is slow, and unlikely to allow
human-level adaption, wherein people change their policy substantially and appropriately based on a
single episode of experience (e.g., exploring new territory in each episode).

No Prior on Exploration: Effective and efficient exploration requires a prior on how to explore in
the environment (e.g., intuiting that levers might open doors) (Dubey et al., 2018). Further, a good
exploration prior is often different from a good exploitation prior because optimal exploration often
requires sacrificing episode reward, e.g., to experiment with new strategies.

Imagine playing an adventure game: each episode one explores a fixed dungeon full of treasures
and traps. In the dungeon one finds a new (untested) lever that likely triggers a trap (huge penalty),
but may unlock a new room with great treasure (reward). If one is purely exploiting (maximizing
current episode reward, e.g., for a high score) then one should not risk the lever as the trap chance
out weighs the potential treasure gain. However, while exploring it is future episode reward that
matters (not current), and the slim chance of treasure is worth it (as with the fixed dungeon it can
be obtained every subsequent episode). Further, if the lever is a trap then it be will triggered once
and then avoided. The only concern, while exploring, is triggered trap opportunity cost potentially
prohibiting further exploration this episode. Both ways of playing corresponds to a prior on how the
player should act (use unfamiliar levers or don’t), however the prior for exploitation actively prohibits
effective exploration (levers remain untried).
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3 META-RL AND RELATED WORK

Meta-RL addresses standard-RL issues by learning a reinforcement learning algorithm: a map from a
context of rollouts c in an environment m to a peformant policy πθ,c specialized to that environment.
Any architecture capable of memory can be used (e.g., transformers (Adaptive Agent Team et al.,
2023) or recurrent neural networks (Wang et al., 2016)). To train meta-RL, one specifies a distribution
of environments M. Each training step, environments are sampled, and the agent plays a sequence of
same-environment episodes. Because the agent has memory of earlier current-sequence episodes,
it can learn to adapt to the current environment m. It can also learn the prior that the environment
comes from the training distribution, m ∼ M.

Once trained, the learnt RL algorithm can be very sample efficient (at in-context adaptation) (Adaptive
Agent Team et al., 2023; Duan et al., 2016). For example, when trained to find a reward location in
mazes, a learnt RL algorithm can avoid maze areas already ruled out by past exploration (Duan et al.,
2016). This capability allows an unseen maze to be solved in a few tries, which is fewer episode
rollouts than are needed for a typical standard RL gradient update (Duan et al., 2016).

Cummulative Reward Meta-RL: Methods such as RL2 (Duan et al., 2016; Wang et al., 2016),
VariBAD (Zintgraf et al., 2019), HyperX (Zintgraf et al., 2021), AdA (Adaptive Agent Team et al.,
2023) train a single policy to maximize (possibly discounted) cumulative reward. Maximizing
cumulative reward allows some sacrificial exploration (trading off low reward in initial episodes
for higher reward in later ones). However, because each episode reward matters to the final sum,
sufficiently deceptive rewards can still prevent good exploration. Sec. 5.2 shows this liability can
result in these methods having significantly lower cumulative reward than First-Explore.

Meta-RL Exploration: Methods such as MetaCURE (Zhang et al., 2021), EPI (Zhou et al., 2019b)
and CCM (Fu et al., 2021) learn an exploration policy that aims to extract maximum environment
information (independent of whether such information informs good exploitation). While decou-
pling exploration from exploitation guards against deceptive reward preventing exploration, these
approaches discard grounding exploration in (maximizing) future reward. Not grounding exploration
in future exploitation reward means that time may be spent learning irrelevant information (e.g., the
exact penalty of bad actions). This distraction potentially prevents good exploration.

E-RL2 (Stadie et al., 2018) modifies RL2 to ignore the first-k episode rewards. This modification
enables pure sacrificial exploration. However, E-RL2 introduces an across-episode value assignment
problem: identifying which exploration episodes enabled good subsequent exploitation. This problem
potentially limits training sample efficiency. Further, the exploratory episodes number k is set
as a hyperparameter and constant across all tasks (both at training and at inference), preventing
efficient combination with a curriculum that contains different difficulty tasks (as hard tasks may need
significantly more exploration episodes than easy ones). Finally, hard coding k limits the flexibility
and usefulness of E-RL2 because one cannot explore until a satisfactory policy quality is reached,
preventing meta-RL in-context adaptation from off-the-shelf replacing standard RL. While, like
E-RL2, not discouraging sacrificial exploration, First-Explore addresses these limitations.

DREAM (Liu et al., 2021) also separately optimizes exploration and exploitation policies (and grounds
exploration in exploitation), but has four complex, manually designed, interacting components and a
reliance on knowing unique problem IDs during meta-training. This complexity enables increased
sample-efficiency by avoiding the chicken and egg problem of simultaneously learning explore and
exploit policies. First-Explore shows that such complexity is unnecessary, at least for the domains
we tested in. Unlike E-RL2, because a part of DREAM’s machinery must learn to produce the right
information per problem based on the (unique, random) problem ID only, it is unable to generalize
or handle never-seen-before challenges during meta-training, raising questions about its scalability
and generality. For example, DREAM may potentially be difficult to apply to problems where each
training environment is unique (e.g., for environments with continuous variables, or samples from
otherwise vast search spaces). It may also struggle when each environment is a hard-exploration
challenge, as it may be difficult for the model to explore enough to learn which information is
required to solve the problem. We believe curricula are necessary to solve such environments.
However, because DREAM cannot generalize during meta-training (as described above), it cannot
take advantage of a curriculum to build an exploration skill set to tackle harder and harder exploration
challenges, unlike First-Explore.
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3.1 OTHER WORKS ADDRESSING EXPLORATION

A rich non-meta-RL exploration literature exists. E.g., Intrinsic Motivation (IM) replaces the
environment reward with an intrinsic motivation reward such as novelty (Aubret et al., 2019), and so
enables sacrificial exploration. However, non-meta-RL methods are limited by being slow to adapt
due to lacking a memory not encoded via weights (sec. 2) and not having a complex learnt prior
on exploration (sec. 2). Further, many of these methods enable sacrificial exploration by entirely
ignoring the reward signal, leading to pathologies such as the noisy TV problem (Burda et al., 2018;
Ladosz et al., 2022), where an agent looking for new states will find a TV showing white noise to be
endlessly captivating. Another method, Go-Explore (Ecoffet et al., 2019), decouples exploration and
exploitation, but lacks complex priors.

There are also MPC methods (e.g., Mehta et al. (2022)) and approaches within the multi-armed bandit
literature, and regret-based learning (Ladosz et al., 2022). However, all the methods have issues (e.g.,
computationally infeasible on complex long-horizon environments, requiring human-coded priors,
etc. . . Only meta-RL is both a) computationally tractable and b) can potentially achieve human-level
sample efficiency in complex environments. The First-Explore framework builds on this promise by
allowing meta-RL to readily sacrificially explore.

4 FIRST-EXPLORE FRAMEWORK

The First-Explore Framework overcomes the discussed limitations by learning a pair of policies.
An explore policy πexplore,θ,c that explores and provides information (context) for itself and for
exploitation, and an exploit policy πexploit,θ,c that exploits after every explore providing feedback to
train the explore policy. The policies may share or have separate parameters, e.g., for policies with
separate parameters, one could write θ = (θexplore, θexploit) with each policy only dependent on its
own subset of θ. This framework is visualized in Figure 1.

• The explore policy πexplore,θ|c gathers informative environment rollouts based on the current context
c (all previous explores) and parameters θ.

• The exploit policy πexploit,θ|c exploits (maximizes episode return) based on the current context c
(all previous explores) and parameters θ.

Figure 1: The First-Explore Framework. Arrows de-
pict the flow of context / memory. The explore episodes
τ1, . . . , τ4 in blue are purely exploratory and are able to sacri-
ficially explore. They are sampled using the previous-explore-
conditioned explore policy τt ∼ πexplore,θ|{τ1, . . . τt−1}. The
exploit episodes τ ′1, . . . , τ

′
4 in orange are purely exploitative,

and are sampled using the previous-explore conditioned ex-
ploit policy τ ′t ∼ πexploit,θ|{τ1, . . . τt}.

On complex tasks, the policies need to
be learnt together. Learning together
is necessary as each policy is limited
by the other’s quality. Provided poor
context, it may be hard to distinguish
excellent from poor exploitation (e.g.,
with no useful information good ex-
ploitation may be impossible). Simi-
larly, if the exploitation policy ignores
context then all exploration has the
same value (no value).

A central idea of First-Explore is
that the exploratory value vexplore of
an explore episode τt given a con-
text of past episodes {τ1, . . . , τt−1}
is the increase in expected reward of a
subsequent exploit when the explore
episode is added to the context to cre-

ate new context {τ1, . . . , τt−1, τt}. vexplore(τt)|{τ1, . . . , τt−1} = E(τexploit|{τ1, . . . , τt−1, τt}) −
E(τexploit|{τ1, . . . , τt−1}) where τexploit|c ∼ πexploit,θ|c. As only the E(τexploit|{τ1, . . . , τt−1, τt})
term depends on the explore episode τt, the training reward for the explore policy can be simplified
to be just the reward of the following exploit episode τexploit|{τ1, . . . , τt−1, τt}.

First-Explore trains by performing rollouts as depicted in Figure 1, with the explore policy being
optimized to maximize the reward of the subsequent exploit, and the exploit policy being optimized
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to maximize each exploit episode reward. First-Explore can be combined with different meta-RL
approaches and losses.

Once trained, First-Explore (in-context) adapts to an environment by performing iterated exploration
rollouts using the exploration policy, building the context. As the agent explores, the quality of
exploitation improves as the agent has more environment information. Exploration rollouts become
the analogue of standard-RL training, and exploitation rollouts the analogue of standard-RL evaluation.
As in standard-RL, one might explore (train) until a the environment is solve (a desired exploit quality
is reached), or explore (train) for a set number of rollouts (i.e., train epochs).

5 RESULTS

First-Explore results used a GPT-2 style transformer architecture (Radford et al., 2019). For simplicity,
the parameters are shared between the two policies, differing only by a final linear-layer head. We use
a novel loss based on predicting the sequence of future actions conditional on the episode having high
reward, which preliminary experiments showed improved training stability. While an innovation, it is
not core to the framework, and standard training (e.g., PPO) should work as replacement. The controls
(VariBAD, RL2, HyperX) were run using the VariBAD and HyperX official codebase. The controls
are run for less time than First-Explore due to the controls converging and not exhibiting improvement
with further training (unlike First-Explore which continued to improve). Full architecture, training
details and hyperparameters are given in the appendix, along with plots demonstrating that the
controls converge and a more detailed explanation of why they do.

All policies were trained ten times with ten different random seeds. Furthermore, the in-context
learning of each training run was evaluated ten times each on an independently sampled batch of
environments (for a total of 100 evaluations). Each treatment is then visualized by a line showing the
mean over the evaluations and training runs.

A single evaluation of the trained policies involves sampling a large batch of environments, performing
iterated rollouts in each environment (allowing the policy to in-context adapt to each environment)
and calculating the average statistics across the batch (e.g., the average first episode exploit reward).
The lighter-shaded area shows the minimum and maximum value (across evaluations and seeds). If
the light area shaded around one line (e.g., the First-Explore exploit reward) is above the light shaded
area around another (e.g., RL2 reward) then, in all 100 evaluations, one treatment beats the other,
which (as the runs are independent) is statistically significant (p ≤ 2−10). All lines have these shaded
areas, however the deviation between evaluations can be so small that the shaded areas can be hard to
see.

5.1 GAUSSIAN 10-ARMED BANDIT DOMAIN

A 10-armed Gaussian Bandit environment is specified by 10 arm means µ{1,...10} ∈ R. Each time step
t, the agent chooses an arm at and receives reward rt equal to the arm mean plus a normally distributed
noise term, rt = N(µat ,

1
2 ). A meta-RL agent also observes its previous actions and their rewards,

and can adapt based on that. Each environment’s arm means are normally distributed, µ{1,...,k} ∼
N(0, I). After training, we compare First-Explore to the following: i) UCB1. UCB1 estimates an

upper confidence bound and selects the arm that maximizes ucbi(t) = µ̂i(t− 1) + c
√

2 log t
Ti(t−1) where

µ̂i(t− 1) is the estimated mean reward of the ith arm, Ti(t− 1) is the number of times the ith arm
has been pulled, and c is a tunable hyperparameter. Similarly to Duan et al. (2016), we initialize
UCB1 with a prior, corresponding to one observation of zero for each arm. ii) Thompson Sampling
(TS) (Thompson, 1933), which samples arm means from the posterior distribution, and chooses the
arm with the best sampled mean. iii) RL2: See appendix for training details. iv) Round Robin Arm
Selection, which samples the arms in fixed order from 1 to 10 repeating. v) Random Arm Selection.
We compare three policy properties: a) how well the policies cover the arms (sample each arm at
least once) (Fig. 2 A b) the average reward of a policy (Fig. 2 B1-2 at different scales) and (c) how
well the exploration of a policy informs a hand-coded strategy of picking the arm with the highest
mean reward seen (or an unseen arm if all seen arms have negative sample means) (Fig. 2 C1-3 at
different scales).
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Figure 2: A) Bandit-Coverage: First-Explore Exploration (blue line) and Round Robin (dotted
purple) are the only policies to consistently try all arms in the first ten tries (and this best informs
exploitation see C2. Random selection (green) takes significantly longer (but is ≈ 10 eventually),
UBC1 (red) is worse than random (9.75 average coverage after 100 pulls) and TS and RL2 are the
worst (< 8 coverage). B1-2) Differently Zoomed Pull Rewards: First-Explore Exploitation (orange)
outperforms all other policies (quickly nearing oracle performance (dotted brown)). C1-3) Differently
Zoomed Hand-coded Exploit Reward with Policy Exploration: First-Explore Exploration and
Round Robin (C2 purple overlapping blue) provide the best exploration in the first ten pulls, after
which First-Explore Exploration outperforms Round Robin (C2 blue above purple) (by focusing on
high expected value arms (see B1)) to be eventually slightly outperformed by UBC1 (C3 red above
blue). All policies other than RL2 (yellow) and TS (pink) eventually inform Exploitation sufficiently
to get very close to oracle performance (dotted brown). This insufficiency corresponds to RL2 and
TS having poor arm coverage (see A).

First-Explore learns intelligent exploration on this domain, learning a policy that exhaustively searches
(Fig. 2 A blue line) in the first ten actions (almost always trying all ten arms in the first ten pulls).
Once all arms have been tried once, First-Explore changes its exploration to sampling high reward
arms (Fig. 2 B2 left blue line). This series of average pull rewards show how the learnt policy
is grounded in reward (by focusing on high reward arms at times), while also able to sacrificially
explore (by getting low expected reward for the first ten pulls).

Evaluating the quality of exploration by using their context to inform a hand-coded policy that picks
the arm with highest seen mean (or an unseen arm if all seen arms are negative), First-Explore
exploration provides better exploration than hand-coded round robin selection (Fig. 2 C2 blue line
higher than purple line after ten pulls), while in the first 12 pulls outperforming UCB1 (Fig. 2 C2 red
line) due to First-Explore learning to initially perform exhaustive search. UCB1 achieves slightly
higher reward (1.537 vs 1.525) after many pulls (Fig. 2 C3), due to the tiny marginal gain of better
informing the choice between arms with very similar (high) rewards.

First-Explore Exploitation significantly outperforms all other policies (Fig. 2 B1 orange line above
all others), due to First-Explore decoupling exploration and exploitation, and after multiple pulls is
close to oracle performance (Fig. 2 B1 brown line). While in this domain, it may be easy to program
good exploitation (e.g., pick the arm with highest seen arm mean), this property is absent from more
complex domains (e.g., driving a car given past episodes of training), and highlights the value of
decoupling exploration and exploitation when problems naturally having low stakes training (e.g.,
flight simulation) and high stakes performance (e.g., flying an actual plane).

Interestingly, after the First-Explore exploration policy changes to sampling high reward arms, the
explore pull rewards trend steadily downward and eventually become negative. This behavior may be
because First-Explore learns to heavily weight reducing arm-uncertainty and (as it starts with the
high-reward arms) eventually only lower reward arms have significant uncertainty left.
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5.2 9× 9 DARK TREASURE-ROOM DOMAIN

9× 9 Dark Treasure-Rooms (inspired by the Darkroom in Laskin et al. (2022)) are 9× 9 grids full
of treasures and traps. The agent navigates (up, left, down, or right) to find treasure, and cannot
see its surroundings. Only its current (x, y) coordinates are observed, with a meta-RL agent also
observing past coordinates, rewards and actions. Each environment has 8 objects (treasures or traps),
and when the agent encounters a treasure or trap it consumes/activates it, and receives an associated
reward (positive or negative). The treasure and trap values are uniformly distributed in the range
−4 to 2 (i.e., ri ∼ U [−4, 2]). The locations of the objects are randomly sampled uniformly, with
overlapping objects having their rewards/penalties summed. Importantly, the average value of any
location is negative, meaning that visiting a new location gives a negative expected reward. Further,
the exploratory value of a policy is well approximated by the number of unique coordinates visited,
as each coordinate has a chance of containing treasure (and there is nothing to gain by visiting the
same coordinate twice).

Because the agent lacks sight, to reliably find treasure while avoiding traps, a standard-RL agent must
store the environment trap and reward locations in the agent’s weights. This requirement makes each
individual environment a standard-RL training challenge requiring many (thousands or more training
episodes). In contrast, a meta-RL agent has access to a context of all past environment interactions,
and so can instead with each episode in-context adapt to newly sampled environments, rather than
needing to train anew. However, the negative expected reward for visiting new states makes the
environment distribution hostile to coincidental exploration (exploring by noisy exploiting), thus
requiring sacrificial exploration. To provide an environmental control that does not need sacrificial
exploration, we also introduce a ‘Kind-Room’ domain with no traps (ri ∼ U [0, 2]) otherwise identical
to the Dark Treasure-Room. First-Explore is compared to random actions selection and meta-RL
algorithms RL2, HyperX, and VariBAD (see related work section).

Figure 3: A) 10 Episode Cumulative Reward: First-Explore Exploration (blue) for two episodes,
followed by First-Explore Exploitation (orange) conditioned on the frozen context of the two explo-
rations, achieves significant positive average cumulative reward (on newly sampled Dark Treasure
Rooms). HyperX (teal), VariBAD (grey), and RL2 (yellow) fail to achieve significant positive reward,
due to the hostility of
the space. B1) Dark-Treasure Room Exploration: VariBAD (grey) and RL2 (yellow) learn to stay
still, due to the hostility of the space, while HyperX (teal) (despite its exploration incentive) learns
to avoid exploration covering less space than random action selection (green). B2) Dark-Treasure
Room Exploitation: First-Explore Exploitation (orange) achieves significant positive reward, while
the meta-RL controls (having learnt to stay still) achieve close to zero reward). The significant
negative reward of the random play (green) and First-Explore Exploration highlights the hostility of
the domain. C1-2) Kind-Room Results: When the environments only have positive rewards coinci-
dental exploration is possible and all trained policies explore and exploit well. Despite this domain
property, First-Explore exploitation C2 (orange) still outperforms the other methods, highlighting the
value of decoupling exploration and exploitation.
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The first experiment (Fig. 3 A) trains all methods on Dark-Treasure Rooms for a sequence of ten
episodes each of nine steps. The meta-RL controls all fail to achieve significant cumulative reward
despite a) training directly to do so, and b) significant cumulative reward being possible (Fig. 3 A
teal, grey and yellow lines close to zero, despite orange line ≈ 2 at step 90). Although not being
trained for it, First-Explore achieves significant cumulative reward, with two explorations followed by
repeated exploitation conditioned on the two explorations achieving significant average cumulative
reward on newly sampled Dark-Treasure Rooms. The meta-RL controls learn to stay still (see below)
preventing the methods from learning due to insufficient environment exploration while training (and
so poor meta-exploration (see. for meta-exploration Beck et al. (2023)). This dynamic demonstrates
that First-Explore can have a powerful meta-training advantage over other methods.

The second experiment (Fig. 3 B1-2 & C1-2) is sequences of six episodes each of nine steps. First-
Explore Exploration has only five exploration episodes as one First-Explore Exploitation follows
each exploration. When sacrificial exploration is required (Fig. 3 B1-2), the controls catastrophically
fail to explore, and learn to stay still instead B1: RL2 (yellow) and VariBAD (grey) visit < 2
coordinates, and HyperX (teal), despite an exploration incentive, visits fewer coordinates than random
action selection. First-Explore is unaffected and explores well and significantly better than random
action selection (Fig. 3 B1 blue line above green line). Further, First-Explore exploration almost
always visiting nine-unique coordinates in the first episode, and 8 more unique ones in the second.
Provided this exploration context, First-Explore massively outperforms all other methods (Fig. 3
B2 orange line above all others). The kind-room results (Fig. C1-2) show that it is the fact that the
Dark-Treasure Room requires sacrificial exploration that cripples the other methods, as all methods
perform well when the average reward distribution is positive. However, First-Explore Exploitation
still outperforms the others, highlighting the value of decoupling exploration and exploitation even in
kind situations.

First-Explore’s high training run consistency (e.g., tightly grouped coverage and reward in Fig. 3)
suggests that the same systematic behaviour is being learnt regardless of network initialisation and
training seed, suggesting First-Explore is learning something fundamental to the domain. This
learning is promising as it potentially means First-Explore might learn a consistent algorithm or
heuristic for general exploration if paired with a sufficiently-complex curriculum and task-distribution.

6 LIMITATIONS AND FUTURE WORK

Figure 4: Well-planned sequential ex-
ploration (left) and myopic exploration
(right) of an area from the center over
multiple episodes. The initial explore
(red) is equally good, but myopic explo-
ration hinders the second explore (green)
as it must revisit previously seen loca-
tions, and more so for the third (purple).

As presented, First-Explore Exploration is myopic. The ex-
plore policy πexplore,θ trains to most increase the expected
reward of the explore-conditioned exploit policy πexploit,θ
with each exploration. Unfortunately, iterated optimal my-
opic exploration does not necessarily produce an optimal
sequence of explorations (Fig. 4). A potential solution
is to reward exploration episodes with weighted sums of
the rewards of all subsequent exploitation (analogous to
summing discounted future reward in standard-RL).

Surprisingly, First-Explore is able to sometimes achieve
higher cumulative reward than meta-RL algorithms that
optimize for cumulative exploitation. Holding promise for
using First-Explore to improve cumulative exploitation,
e.g., initialize with a trained First-Explore policy, or a
multi-headed architecture, etc...

While in the real world, true innovation often requires
temporary sacrifice (and sacrificial exploration) it may
be that RL has so far avoided such domains. There are
however many RL applications that naturally decouple into no-stakes training/exploration, and high
stakes performance/exploitation, and on these problems First-Explore should excel.

Another First-Explore limitation is that (seemingly no-stakes) rewards sometimes matter. E.g., if a
chef robot is learning a new recipe in a physical home then it is vital the robot behaves safely and does
not endanger humans or damage the kitchen while learning (unlike say, getting poor flavor or dish

8



Under review as a conference paper at ICLR 2024

presentation). First-Explore being willing to sacrifice reward could be dangerous, as it might ignore a
safety reward penalty in order to master the recipe. One potential solution is to infinitely penalize
endangerment or damage while training both the explore and exploit policy. This proposed version of
First-Explore could actually result in far safer training (via in-context adaption) than attempting to
use standard-RL, as the meta-RL policies would have learnt a strong prior of avoiding potentially
endangering actions. However, it could be that such a strong penalty could prohibit effective training
too. The issue is worth investigating. There are however many scenarios where exploration can be
truly no stakes, e.g., any (sandboxed) simulation.

A final problem is the challenge of long sequence modelling, with certain environments requiring a
very large context and high compute (e.g., can one have a large enough context, and enough compute
to allow First-Explore to generalize and act as a replacement for standard-RL?). AdA (Adaptive Agent
Team et al., 2023) hints such a project might be possible, and as progress on efficient long-context
sequence modelling (Tay et al., 2020; Gu et al., 2021), research on RL transformer applications
(Laskin et al., 2022; Chen et al., 2021), and Moore’s Law all continue it becomes more feasible.

7 DISCUSSION

Given that First-Explore uses RL algorithms to train the meta-RL policy, how can it solve hard-
exploration domains that standard-RL cannot? For example, how might First-Explore solve a sparse
exploration problem (e.g. design a rocket for the first time). We believe that given a suitably advanced
curriculum, and sufficient compute, First-Explore could learn powerful exploration heuristics (i.e.,
develop intrinsic motivations, e.g., an analogue of curiosity) and that these heuristics would enable
such hard problems to be tackled (with great sample efficiency).

Curricula work by constantly challenging agents (or humans) with a suitable level of task. E.g.,
initially the First-Explore agent can only randomly explore and must learn to exploit based on random
exploration. Once it has learnt rudimentary exploitation, the agent can learn rudimentary exploration.
Then it can learn better exploitation, then better exploration, and so on, each time relying on there
being ‘goldilocks zone’ tasks (Wang et al., 2019) that are not too hard and not too easy.

Further, while curricula can aid all of meta-RL, e.g., RL2 and AdA, First-Explore can have a
significant training advantage on certain problems (e.g., in the ten episode Dark Treasure-Room, First-
Explore achieves positive cumulative reward while the standard meta-RL methods catastrophically
fail). This advantage could potentially allow orders of magnitude greater compute efficiency, and
allow otherwise infeasible curricula.

One might wonder how significant a limitation exploring by exploiting is, given that standard-RL
seems to succeed despite it. We argue the difference is more significant, the more intelligent and
human-like the adaptation. However, in both problem domains, the results show how optimal
exploiting and exploring significantly differ, both in how they cover the state or action space, and in
how and whether they help achieve high reward, and how this difference matters in order to achieve
efficient in-context learning.

8 CONCLUSION

We identify the problem of attempting to explore by exploiting, and demonstrate that the novel
meta-RL framework, First-Explore, solves this problem via the simple modification of learning two
policies (one to first explore, another to then exploit). This paradigm of learned, intelligent exploration
informing learned exploitation significantly improves meta-RL performance (even getting higher
cumulative reward than state-of-the-art cumulative reward meta-RL). First-Explore performs better on
even simple domains such as the multi-armed Gaussian-bandit, and massively improves performance
on domains that require sacrificial exploration, such as the Dark Treasure Room environment.

We believe combining First-Explore with a curriculum, such as the AdA (Adaptive Agent Team
et al., 2023) curriculum, could be a step towards creating algorithms able to exhibit human-level
performance on unseen hard-exploration domains, which is one of the core challenges of creating
artificial general intelligence (AGI). Provided we can adequately address the real and significant
safety concerns associated with developing AGI, such developments would allow us to reap AGI’s
tremendous potential benefits.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, and et al. Magnetic
control of tokamak plasmas through deep reinforcement learning, Feb 2022. URL https:
//www.nature.com/articles/s41586-021-04301-9.

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N. Zare, and Patrick Riley. Optimization of molecules
via deep reinforcement learning, Jul 2019a. URL https://www.nature.com/articles/
s41598-019-47148-x.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand. arXiv preprint, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pages 188–204. PMLR, 2021.

Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L Griffiths, and Alexei A Efros. Investigating
human priors for playing video games. arXiv preprint arXiv:1802.10217, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Adaptive Agent Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani,
Avishkar Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister,
et al. Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608,
2023.

Richard S. Sutton, Francis Bach, and Andrew G. Barto. Reinforcement learning: An introduction.
MIT Press Ltd, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning.
arXiv preprint arXiv:1910.08348, 2019.

Luisa M Zintgraf, Leo Feng, Cong Lu, Maximilian Igl, Kristian Hartikainen, Katja Hofmann, and
Shimon Whiteson. Exploration in approximate hyper-state space for meta reinforcement learning.
In International Conference on Machine Learning, pages 12991–13001. PMLR, 2021.

Jin Zhang, Jianhao Wang, Hao Hu, Tong Chen, Yingfeng Chen, Changjie Fan, and Chongjie Zhang.
Metacure: Meta reinforcement learning with empowerment-driven exploration. In International
Conference on Machine Learning, pages 12600–12610. PMLR, 2021.

10

https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41598-019-47148-x
https://www.nature.com/articles/s41598-019-47148-x


Under review as a conference paper at ICLR 2024

Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environment probing interaction policies. arXiv
preprint arXiv:1907.11740, 2019b.

Haotian Fu, Hongyao Tang, Jianye Hao, Chen Chen, Xidong Feng, Dong Li, and Wulong Liu.
Towards effective context for meta-reinforcement learning: an approach based on contrastive
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
7457–7465, 2021.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118, 2018.

Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration and
exploitation for meta-reinforcement learning without sacrifices. In International conference on
machine learning, pages 6925–6935. PMLR, 2021.

Arthur Aubret, Laetitia Matignon, and Salima Hassas. A survey on intrinsic motivation in reinforce-
ment learning. arXiv preprint arXiv:1908.06976, 2019.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1–22, 2022. ISSN 1566-2535. doi: https://doi.
org/10.1016/j.inffus.2022.03.003. URL https://www.sciencedirect.com/science/
article/pii/S1566253522000288.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Viraj Mehta, Ian Char, Joseph Abbate, Rory Conlin, Mark Boyer, Stefano Ermon, Jeff Schneider,
and Willie Neiswanger. Exploration via planning for information about the optimal trajectory.
Advances in Neural Information Processing Systems, 35:28761–28775, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

William R. Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933. ISSN 00063444. URL
http://www.jstor.org/stable/2332286.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon
Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

11

https://www.sciencedirect.com/science/article/pii/S1566253522000288
https://www.sciencedirect.com/science/article/pii/S1566253522000288
http://www.jstor.org/stable/2332286


Under review as a conference paper at ICLR 2024

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Openai gpt2. https://huggingface.co/docs/transformers/model_doc/gpt2.
Accessed: 2023-04-01.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theo-
phane Weber, David Silver, and Hado Van Hasselt. Muesli: Combining improvements in policy
optimization. In International conference on machine learning, pages 4214–4226. PMLR, 2021.

APPENDIX

A REPLICABILITY

For full transparency, replicability, and to make it easier for future scientists to build on our work, we
have open sourced the training code, visualization code, the significance plots code, and environment
code. The code is attached in the SI and anonymous for review. For the controls (VariBAD, RL2, Hy-
perX) we share environments, and the configuration files (that specify the training hyperparameters).

B COMPUTE

Each training run commanded a single GPU, specifically a Nvidia T4, and up to 8 cpu cores. Table 1
gives the approximate walltime of each run.

Table 1: Compute Usage Per Training Run

Run Runtime

Stochastic Bandit First-Explore 18.5 hours
Stochastic Bandit RL2 40 hours
Dark Treasure-Room First-Explore 50 hours
Dark Treasure-Room HyperX & VariBAD & RL2 10 hours
Dark Treasure-Room HyperX & VariBAD & RL2 10 hours

Notably, First-Explore was run for significantly longer on the Dark Treasure Room. First-Explore
training was extended as performance continued to improve with additional training. Conversely, no
change was observed in HyperX, VariBAD, or RL2 (with VariBAD and RL2 rapidly converging
to a policy of staying still, while HyperX more slowly converged (as the exploration incentive was
attenuated)). Similarly, the RL2 Stochastic Bandit training was extended, as initial shorter runs were
still improving, see Figure 5.
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B.1 CONTROL CONVERGENCE

Figure 5: Control Training on the Dark Treasure-Room Environment. Top: RL2, VariBAD, and
HyperX average cumulative reward plotted against training time. RL2 (yellow) and VariBAD (grey)
converge to zero reward almost immediately. This transition corresponds to the policies learning to
stay still (as the coverage plots demonstrate in Figure 3). HyperX (teal) reward increases (toward
zero) throughout meta-training. However, this increase in reward comes not from HyperX learning
an increasingly sophisticated policy, but instead is the result of the HyperX algorithm’s meta-training
exploration bonus being linearly reduced from the start to the end of meta-training. Thus, once that
bonus is near zero, HyperX also learns to stay still. Bottom: HyperX with different training lengths
(specified by number of episode steps). When HyperX is run for ten times as long (orange) or ten
times less long (blue) than the default training time (light blue) the same behaviour is observed (of
slow convergence to (slightly below) zero reward). This behaviour demonstrates the improvement in
reward comes from the HyperX algorithm reducing the exploration incentive during the meta-training.
It also implies that changing the length of training runs (including running for much longer) would
not change the final performance results.

C EVALUATION DETAILS

Evaluation (sampling the multiple evaluation environments and performing iterated rollouts) was
with a single GPU.

For the Bandit Results each of the 100 First-Explore evaluations (10 for each seed) used a batchsize
of 10, 000. For the 100 RL2 Bandit evaluations batch size was reduced 2,000 (due to taking longer
to evaluate), and since there is no training variance for UCB1 and TS ten evaluations were done, each
with batchsize of 10, 000.

For the Dark Treasure Room and Kind Treasure Room results a evaluation of batchsize of 1, 000 was
used for policies. All trained policies were evaluated 100 times (10 for each seed).
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D TRAINING DETAILS

D.1 CONTROLS:

VariBAD, HyperX and RL2 were run via the official VariBAD (VariBAD and RL2) and HyperX
(HyperX) codebase. The hyperparameters they used for their gridworld environments were used,
with the Dark Treasure-Room and Stochastic Bandit Environments being re-implemented to conform
to the codebase (and tested to ensure the environments performed identically). See the SI attached
configuration file for the exact hyper-parameters.

D.2 FIRST-EXPLORE:

The architecture for both domains is a GPT-2 transformer architecture (Radford et al., 2019) specifi-
cally the Jax framework (Bradbury et al., 2018) implementation provided by Hugging Face (hug),
with the code being modified so that token embeddings could be passed rather than token IDs. The
different Hyperparameters for the two domains are given in Table 2.

For both domains each token embedding is the sum of a linear embedding of an action, a linear
embedding of the observations that followed that action, a linear embedding of the reward that
followed that action, a positional encoding of the current timestep, and a positional encoding of the
episode number. See the provided code for details. For the dark treasure-room environments a reset
token was added between episodes that contained the initial observations of the environment, and a
unique action embedding corresponding to a non-action. The bandit domain had no such reset token.

Table 2: Model Hyperparameters

Hyperparameter Bandit Dark

Hidden Size 128 128
Number of Heads 4 4
Number of Layers 3 4

For training we use AdamW (Loshchilov and Hutter, 2019) with a piece-wise linear warm up schedule
that interpolates linearly from an initial rate of 0 to the full learning rate in the first 10% training
steps, and then interpolates linearly back to zero in the remaining 90% of training steps. Table 3 gives
the optimization hyperparameters.

Table 3: Optimization Hyperparameters

Hyperparameter Value

Batch Size 128
Optimizer Adam
Weight Decay 1e-4
Learning Rate 3e-4

Hyperparameters were chosen based on a relatively modest amount of preliminary experimentation.
Finally, for efficiency, all episode rollouts and training was done on GPU using the Jax framework
(Bradbury et al., 2018).

D.3 OPTIMIZATION LOSS

The First-Explore policies are trained by a novel optimization approach. To learn to exploit we
learn the distribution of actions that lead to ‘maximal’ exploit episodes. Here we define an exploit
episode as maximal if it a) has higher or equal reward to the best reward found in all of the previous
First-Explore explore and exploit episodes in the current environment, and b) also exceeds a set
baseline reward (hyperparameter) for the domain, see Algorithm 1. To learn to explore we learn
the distribution of actions that lead to ‘informative’ explore episodes. Informative episodes are
those that when added to the context lead to a subsequent exploit episode that a) exceeds the best
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reward of previous First-Explore explore and exploit episodes and b) has higher reward than the
environment baseline. This explore criterion is slightly different from the exploit ‘maximal’ criterion,
as it requires an improvement in reward, see Algorithm 1. The baseline reward is there such that the
first First-Explore exploit and explore episodes have an incentive to be respectively exploitative and
exploratory.

Because in the dark treasure-room each episode is composed of multiple actions, the probability of
an initial action leading to any outcome is potentially dependent on the distribution of future actions
(e.g., imagine requiring two up actions to reach a reward; the first up action is no better than the
first down action if the policy always moves down in the second step). Hence, one must learn the
distribution conditional on a rollout policy. This expression is shown in Equation 1 for the case of the
exploit distribution. Here “episode is maximal” refers to an exploit episode having higher reward than
the baseline reward and the previous First-Explore explores and exploits (see previous paragraph). at
refers to the current action, and [a]i>t ∼ π expresses how subsequent actions are taken under the
rollout policy.

P(episode is maximal|at, [a]i>t ∼ π) (1)

To learn this distribution, the predicted likeihoods of actions being ‘maximal’ or ‘informative’
are compared to the action distributions of the rollouts that are ‘maximal’ or ‘informative.’ The
predictions are improved by minimizing a cross entropy loss between the actions observed in the
maximal and informative episodes, and the calculated probability of those actions being selected.
This loss is detailed in Algorithm 1 as well as the provided code.

Once learned, the explore and exploit distributions combined with a sampling temperature each then
specify a policy that with high probability selects actions likely to lead to good exploitation or good
exploration. To ensure that all actions are sampled and to provide more exploration during training
(of both the explore and exploit policy), we add a small probability ϵ chance of selecting a random
action instead of one sampled from the unmodified explore or exploit policy. This probability is then
a hyperparameter that can be tuned. Learning the distributions then allows iteratively updating the
rollout policies by each time taking the new rollout policies and learning the new distributions of
maximal and informative actions under the rollout policy. The frequency of such updates is then a
hyperparameter. The hyperparameters used are given in Table 4.

While preliminary experiments found this meta-RL training method performed best, we believe the
First Explore meta-RL framework will work for general approaches too, such as using policy gradient
with actor critic, or Muesli (Hessel et al., 2021) which was used in AdA (Adaptive Agent Team et al.,
2023).

Table 4: Training Rollout Hyperparameters

Hyperparameter Bandit Darkroom

Exploit Sampling Temperature 1 1
Explore Sampling Temperature 1 1
Policy Update Frequency every training step every 10, 000 training steps
ϵ chance of random action selection 0.05 0
Baseline Reward 0 0
Training Updates 200,000 1,000,000

For evaluation, we then sample by taking the argmax over actions, and do not add the ϵ-noise.
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# rollout conducts an episode when provided with an environment and policy
# and returns all the episode infomation
def model_conditional_actions(θ, π, baseline_reward):

# sample an environment, and initalize context c and loss values
m = sample(M); c = set(); loss = 0
best_reward_seen = baseline_reward
for i in range(k): # do k iterated rollouts

τexplore = rollout(m,πexplore,c) # explore given context c
τexploit = rollout(m,πexploit,c ∪ {τexplore}) # exploit given c ∪ {τexplore, }
r = final_reward(τexploit) # get the exploit reward
# calculate a weight on the episodes
# non-increasing episodes have zero weight
# and increasing episodes have weight proportional to reward improvment
explore_weight = 1r>best_reward_seen ∗ (1 + r − best_reward_seen)
exploit_weight = 1r≥best_reward_seen ∗ (1 + r − best_reward_seen)
explore_loss = cross_ent(π and θ predicted probability, τexplore actions)
exploit_loss = cross_ent(π and θ predicted probability, τexploit actions)
# update the loss, conditional on the episodes being improvements
loss = loss + explore_weight * explore_loss
loss = loss + exploit_weight * exploit_loss
c = c ∪ {τexplore} # update the context for the next explore
# update the best reward seen
best_reward_seen = max(best_reward_seen, final_reward(τexploit),final_reward(τexplore))

return loss

Algorithm 1: Training to model conditionally increasing exploits with First-Explore rollouts.

E DARK TREASURE-ROOM VISUALIZATIONS

Figure 6: A visualization of the dark treasure-room. The agent’s position is visualized by the blue
square, positive rewards are in green, and negative rewards are in red, with the magnitude of reward
being visualized by the colour intensity. When the agent enters a reward location it consumes the
reward, and for that timestep is visualized as having the additive mixture of the two colours.

Here are example iterated First-Explore rollouts of the two trained policies, πexplore, πexploit, visualized
for a single sampled darkroom.
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Figure 7: The first (First-Explore) explore episode. Top left visualizes the last step of a First-Explore
explore episode, with the locations that are not in the cumulative context being coloured white, as
the agent is blind to them (having no observations or memory of those locations). This figure plots
the end of the first exploration, and shows a reward has been found. Bottom left visualizes the
coverage of the cumulative context by plotting the total number of unique locations visited by the
exploration against the cumulative episode step count. In this explore, the agent never doubled back
on itself, which is good as it is optimal to have as many unique locations visited as possible. Top right
visualizes a step in a First-Explore exploit episode, with the locations that are in context visualized.
The agent can effectively ‘see’ those locations in its memory. Bottom right plots the exploit reward
against the exploit episode timestep. As this figure plots before the start of the exploit episode, the
agent has yet to move and encounter rewards, but will have done so in the subsequent visualizations.

17



Under review as a conference paper at ICLR 2024

Figure 8: The first (First-Explore) exploit episode. This figure uses the same visualization design as
Figure 7. Left top and bottom are the same as in Figure 7, and of the explore context, not the current
exploit episode. Right top, the agent (the light blue square) has found the reward in the first two
steps. Consuming the reward is visualized by the agent color and the reward color being combined.
Right bottom, the associated episode reward is shown.
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Figure 9: The fifth (First-Explore) explore episode. At the end of the 5th explore episode the agent
has discovered a new positive reward at the top of the room, and can now ‘see’ it in memory. The
new information presents an opportunity for the exploit policy to obtain both rewards, but it only
has exactly enough time-steps in an episode to navigate to do so, and thus cannot make a mistake
navigating.

Figure 10: The first reward of the fifth (First-Explore) exploit episode. Two steps into the episode the
agent (in consuming, light blue) has consumed the nearby reward.
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Figure 11: The end of the fifth (First-Explore) exploit episode. After consuming the nearby reward
the agent has reached the newly discovered reward at the top of the room and consumed it. This
success required making no mistakes and pathing first to the nearby reward then to the top one on the
first try. This inference is possible because the quickest the agent can reach both rewards is exactly the
length of the episode (9 steps). The pathing in this episode is an example of intelligent exploitation,
as after the information reveal (the reward at the top) of a single episode the agent appropriately
changes its policy based on the context and using the learnt environment prior (e.g., how to navigate),
produces a highly structured behaviour (pathing with no mistakes).
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