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Abstract

We analyze the global convergence of the single-timescale actor-critic (AC) algo-
rithm for the infinite-horizon discounted Markov Decision Processes (MDPs) with
finite state spaces. To this end, we introduce an elegant analytical framework for
handling complex, coupled recursions inherent in the algorithm. Leveraging this
framework, we establish that the algorithm converges to an ϵ-close globally opti-
mal policy with a sample complexity of O(ϵ−3). This significantly improves upon
the existing complexity of O(ϵ−2) to achieve ϵ-close stationary policy, which is
equivalent to the complexity of O(ϵ−4) to achieve ϵ-close globally optimal policy
using gradient domination lemma. Furthermore, we demonstrate that to achieve
this improvement, the step sizes for both the actor and critic must decay as O(k−

2
3 )

with iteration k, diverging from the conventional O(k−
1
2 ) rates commonly used in

(non)convex optimization.

1 Introduction

Actor-critic algorithm, initially introduced in Konda and Tsitsiklis (1999), consist of two key com-
ponents: the actor, which refines the policy towards an optimal solution based on feedback from
the critic, and the critic, which evaluates the value of the current policy (specifically the Q-value).
It has been adapted in various forms Schulman et al. (2017) and have emerged as one of the most
successful methods in reinforcement learning (Mnih et al., 2015; Silver et al., 2017; OpenAI et al.,
2019; Schrittwieser et al., 2020).

Despite their remarkable empirical success, the theoretical convergence of actor-critic algorithms
is not well understood. One line of research explores a two-time-scale version in which the actor
and the critic are effectively decoupled, greatly simplifying the analyses. This can be achieved via a
double-loop version, where the critic evaluates the policy in the inner loop, and the actor updates
the policy in the outer loop (Yang et al., 2019; Agarwal et al., 2020; Wang et al., 2022; Kumar et al.,
2023; Wang et al., 2019), or via a single-loop structure, but the critic updates much faster than the
actor (Borkar, 2022). In the later setup, the ratio of the learning rates of the actor and critic tends to
zero with the number of iterations. Essentially, the critic perceives the actor as nearly stationary, while
the actor views the critic as almost converged. Konda and Tsitsiklis (1999); Bhatnagar et al. (2009);
Chen et al. (2023); Hong et al. (2022); Wu et al. (2022); Xu et al. (2020b). It is important to note that
both frameworks are artificial constructs to ease the analysis, but they are often sample-inefficient
and therefore seldom used in practical implementations (Olshevsky and Gharesifard, 2023).

In this work, we focus on a single time-scale actor-critic framework where both the actor and the critic
are updated with each sample using similar step sizes Sutton and Barto (2018). While this framework
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is more versatile and practical, but the theoretical analysis of single-time actor-critic algorithms faces
significant challenges due to the strong coupling between the actor and critic. Since both components
evolve inseparably together with similar rates, the analytical challenge lies in understanding a stable
error propagation schedule.

For the first time, Castro and Meir (2009) established asymptotic convergence of the single time scale
actor critic to a neighborhood of an optimal value. This was followed by the recent works Chen
et al. (2021); Olshevsky and Gharesifard (2023); Chen and Zhao (2024) demonstrating a sample
complexity of O(ϵ−2) for achieving an ϵ-close stationary policy, where the squared norm of the
gradient of the return is less than ϵ, under various settings. This corresponds to a sample complexity
of O(ϵ−4) for achieving an ϵ-close globally optimal policy (see Proposition 3.2). The question of
whether this O(ϵ−4) complexity can be further improved remains open, and this paper provides a
favorable answer.

In this work, we first formulate the recursions for actor and critic errors which are quite complex.
None of the actor and critic errors are monotonically decreasing. We then identify a Lyaponov term
(sum of actor error and squared of critic error), and obtain its recursions independent of all the other
terms. This Lyapunov recursion is monotonically decreasing but more challenging than in the exact
gradient case found in Xiao (2022); Zhang et al. (2020), due to the presence of a time-dependent
learning rate. To address this, we develop an elegant ODE domination methodology for solving these
recursions, yielding significantly improved bounds.

Our contributions are summarized as follows:

1. Improved Global Convergence Rate: We establish a sharper global convergence result for
single-timescale actor-critic algorithms in softmax-parameterized discounted MDPs. Our
analysis shows a sample complexity of O(ϵ−3) to compute an ϵ-optimal policy, improving
upon the prior best rate of O(ϵ−4).

2. ODE-Based Methodology with Direct Global Guarantees: Our core technical innovation
is a streamlined ODE-based analysis for resolving the interdependent actor and critic updates.
Unlike previous approaches that first bound convergence to stationary points (e.g., O(ϵ−2)
for ϵ-stationary policies), we directly bound the global sub-optimality gap J∗ − Jπk .

3. Broad Applicability of Techniques: The techniques developed are concise and modular,
and may extend naturally to related settings such as minimax optimization, bi-level opti-
mization, robust MDPs, and multi-agent reinforcement learning and could be of independent
interest.

1.1 Related works

Policy gradient based methods Sutton and Barto (2018); Schulman et al. (2015); Mnih et al. (2015)
have been well used in practice with empirical success exceeding beyond the value-based algo-
rithms Auer et al. (2008); Azar et al. (2017); Jin et al. (2018); Agrawal and Agrawal (2024); Agrawal
et al. (2025). Naturally, its convergence properties of policy gradient has been of a great interests.
Only, asymptotic convergence of policy gradient has been well-established in Williams (1992); Sutton
et al. (1999); Kakade (2001); Baxter and Bartlett (2001) until very recently as summarized below.

Projected Policy Gradient (PPG): Given oracle access to gradient, Bhandari and Russo (2024);
Agarwal et al. (2020) established global convergence of the projected policy gradient (tabular setting)
with an iteration complexity of O(ϵ−2) in discounted reward setting. Following up, an improved
recursion analysis, led to complexity of O(ϵ−1) Xiao (2022). Recently, Liu et al. (2024a) obtained an
linear convergence was obtained for an large enough learning rate and also for aggressively increasing
step sizes. Further, PPG is proven to find global optimal policy in finite steps Liu et al. (2024b).

Softmax Parametrized Policy Gradient Often in practice, parametrized policies are used and
softmax is an one of the most popular parametrization. Softmax policy gradient (1) enjoys iteration
complexity of O(ϵ−1) for global convergence Mei et al. (2022); Liu et al. (2024a). This complexity
is matching with lower bound of O(ϵ−1) established in Mei et al. (2022); Liu et al. (2024a).

Stochastic Policy Gradient Descent Often the gradient is not available in practice, and is es-
timated via samples. Vanilla SGD (stochastic gradient descent) and stochastic variance reduced
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gradient descent (SVRGD) has sample complexity of O(ϵ−2) and O(ϵ−
5
3 ) respectively, for achieving

∥∇Jπ∥22 ≤ ϵ (where Jπ is return of the policy π) Xu et al. (2020a). This local convergence yields
global convergence of iteration complexity of O(ϵ−4), O(ϵ−

10
3 ) for SGD and SVRGD respectively us-

ing Proposition 3.2. Further, SGD achieves second order stationary point with an iteration complexity
of O(ϵ−9) Zhang et al. (2020).

Single Time Scale Actor-critic Algorithm: It is a class of algorithms where critic (gradient, value
function) and actor (policy) is updated simultaneously. This is arguably the most popular algorithms
used in many variants in practice Konda and Tsitsiklis (1999); Bhatnagar et al. (2009); Schulman
et al. (2015, 2017). Castro and Meir (2009) first established asymptotic convergence of the single
time scale actor-critic algorithm. Later, Olshevsky and Gharesifard (2023); Chen and Zhao (2024);
Olshevsky and Gharesifard (2023) established the local convergence of single time-scale actor-critic
algorithm with ( see Table 1) sample complexity of O(ϵ−2) for achieving ∥∇Jπ∥22 ≤ ϵ. This yields
global convergence (J∗ − Jπ ≤ ϵ , where J∗ optimal return) with sample complexity of O(ϵ−4)
using Gradient Domination Lemma as shown in Proposition 3.2 Olshevsky and Gharesifard (2023).

The main limitation of the analysis in Chen and Zhao (2024) is that it treats the policy optimization
objective as a generic smooth non-convex function and follows the standard approach of bounding
the average squared gradient norm. This ignores the gradient domination structure, which, if applied
only at the end, yields a weaker rate of O(ϵ−4). Our key innovation is to explicitly exploit this
structure when constraining the iteration-wise drift of the actor. Doing so required developing new
techniques to handle the resulting interdependent recursions, leading to stronger results. In summary,
our analysis is more tailored to RL by effectively leveraging the gradient domination property, unlike
the standard smooth optimization approach used in prior work.

Two Time Scale (/Double Loop) Actor Critic Algorithm. First, Konda and Tsitsiklis (1999)
showed convergence of actor-critic algorithm to a stationary point using two time scale analysis of
Borkar (2022). The work Gaur et al. (2024) establishes O(ϵ−3) sample complexity of a actor-critic
algorithm variant (see Algorithm 1 Gaur et al. (2024)). The algorithm uses O(ϵ−3) new samples for
the global convergence. However, it maintains the buffer of O(ϵ−2) samples at each iteration. For
achieving ϵ-close global optimal policy, the algorithm requires O(ϵ−1) iteration, and each iteration
repeatedly uses the samples from the buffer, O(ϵ−4) many times. In conclusion, the algorithm uses
O(ϵ−3) new samples, using them O(ϵ−5) times in total, thereby significantly inflating the memory
requirements and computational complexity. In comparison, our algorithm does not use any buffer
and use new sample in each iteration.

Natural Actor Critic (NAC) Algorithms. NAC algorithm is another class of algorithms Amari
(1998); Kakade (2001); Bagnell and Schneider (2003); Peters and Schaal (2008); Bhatnagar et al.
(2009) proposed to make the gradient updates independent of different policy parameterizations. It has
linear convergence rate (iteration complexity of O(log ϵ−1)) under exact gradient setting Bhatnagar
et al. (2009) which is much faster the vanilla gradient descent. Similarly, the sample based NAC
algorithms Ganesh et al. (2024) also enjoys better sample complexity of O(ϵ−2). Xu et al. (2020b)
establishes the global convergence of the natural actor-critic algorithm with a sample complexity of
O(ϵ−4) in discounted reward MDPs. However, the natural actor-critic algorithm demands additional
computations, which can be challenging. Yuan et al. (2022) too establishes global convergence
with sample complexity of O(ϵ−3), however, it requires an additional structural assumption on the
problem which is highly restrictive. However, NAC requires the inversion of the Fisher Information
Matrix (FIM) in the update rule. This inverse computation makes the implementation difficult and
sometimes unfeasible (for an instance, FIM is not invertible in direct parametrization, if dπ(s) = 0
for some s). We note that actor-critic is a very different algorithm than NAC, arguably the most useful
and versatile, hence deserving its own independent study.

2 Preliminaries

We consider the class of infinite horizon discounted reward MDPs with finite state space S and
finite action space A with discount factor γ ∈ [0, 1) Sutton and Barto (2018); Puterman (1994). The
underlying environment is modeled as a probability transition kernel denoted by P ∈ (∆A)S ×A.
We consider the class of randomized policies Π = {π : S → ∆A}, where a policy π maps each
state to a probability vector over the action space. The transition kernel corresponding to a policy π
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Table 1: Related Work: Sample Complexity of Single Time Scale Actor Critic
Work Convergence Sample

Complexity
Actor
Step
size ηk

Critic
Step
size βk

Sampling

Olshevsky and
Gharesifard
(2023),Chen et al.
(2021)

∥∇Jπ∥ ≤ ϵ O(ϵ−4) k−
1
2 k−

1
2 i.i.d.

Chen and Zhao
(2024)

∥∇Jπ∥ ≤ ϵ O(ϵ−4) k−
1
2 k−

1
2 Markovian

Ours J∗ − Jπ ≤ ϵ O(ϵ−3) k−
2
3 k−

2
3 i.i.d.

∥∇Jπ∥ ≤ ϵ =⇒ J∗ − Jπ ≤ cϵ for some constant c, see Proposition 3.2. These works
are for different settings such average reward, discounted reward, finite state space,

and infinite state space, please refer to the individual work for more details.

is represented by Pπ : S → S, where Pπ(s′|s) =
∑

a∈A π(a|s)P (s′|s, a) denotes the single step
probability of moving from state s to s′ under policy π. Let R(s, a) ∈ [−1, 1] denote the single step
reward obtained by taking action a ∈ A in state s ∈ S. The single-step reward associated with a
policy π at state s ∈ S is defined as Rπ(s) =

∑
a∈A π(a|s)R(s, a). The discounted average reward

(or return) Jπ associated with a policy π is defined as:

Jπ = E

[ ∞∑
n=0

γnRπ(sk) | π, P, s0 ∼ µ

]
= µT (I − γPπ)−1Rπ,

where µ ∈ ∆S denotes the initial state distribution. It can be alternatively expressed as Jπ =
(1− γ)−1

∑
s∈S dπ(s)Rπ(s), where dπ = (1− γ)µT (I − γPπ)−1 is the stationary measure under

the transition kernel Pπ. Value function vπ := (I − γPπ)−1Rπ satisfies the following Bellman
equation vπ = Rπ + γPπvπ(Puterman, 1994; Bertsekas, 2007). The Q-value function Qπ ∈ RS ×A

associated with a policy π is defined as Qπ(s, a) = R(s, a) + γ
∑

s′∈S P (s′|s, a)vπ(s′) for all
(s, a) ∈ S ×A. For simplicity, we will also assume ∥R∥∞ ≤ 1.

In this paper, we consider soft-max policy parameterized by θ ∈ RS ×A as πθ(a|s) = eθ(s,a)∑
a eθ(s,a)

Mei et al. (2022). The objective is to obtain an optimal policy π∗ that maximizes the return Jπ . We
denote J∗ as a shorthand for the optimal return Jπ∗

. The exact policy gradient update is given as

θk+1 := θk + ηk∇Jπθk , (1)

where ηk is the learning rate, in most vanilla form Sutton and Barto (2018). The policy gradient can
be derived as

∂Jπθ

∂θ(s, a)
= (1− γ)−1dπθ (s)πθ(a|s)Aπθ (s, a),

where Aπ(s, a) := Qπ(s, a) − vπ(s) is advantage function Mei et al. (2022). The return Jπθ is a
highly non-concave function, making global convergence guarantees for the above policy gradient
method very challenging. However, the return Jπθ is L = 8

(1−γ)3 -smooth with respect to θ Mei et al.
(2022).
Lemma 2.1. (Gradient Domination Lemma, Mei et al. (2022)) The sub-optimality is upper bounded
by the norm of the gradient as

∥∇Jπθk ∥2 ≥ c√
SCPL

[
J∗ − Jπθk

]
,

where CPL = maxk∥ dπ∗

d
πθk

∥∞ is mismatch coefficient and c = mink mins πθk(a
∗(s)|s),

The result states that the norm of the gradient vanishes only when the sub-optimality is zero. In other
words, the gradient is zero only at the optimal policies. This, combined with the Sufficient Increase
Lemma, directly leads to the global convergence of the policy gradient update rule in (1).
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However, the above lemma requires the mismatch coefficient CPL to be bounded, which can be
ensured by setting the initial distribution µ(s) > 0 for all states. Unfortunately, failure to ensure
µ ≻ 0 may lead to local solutions Kumar et al. (2024). Additionally, the result requires the constant c
to be strictly greater than zero. This condition can be satisfied by initializing the parameterization
with θ0 = 0 or by ensuring it remains bounded. Furthermore, as the iterates progress towards an
optimal policy, the constant c remains bounded away from zero.

3 Main

In this work, we focus on the convergence of the widely used single time-scale actor-critic algorithm
(1), where the actor (policy) and critic (value function) are updated simultaneously Konda and
Tsitsiklis (1999); Sutton and Barto (2018); Chen et al. (2021); Olshevsky and Gharesifard (2023);
Chen and Zhao (2024). Notably, this algorithm operates with a single sample per iteration, without
relying on batch processing or maintaining an experience replay buffer.

Algorithm 1 Single Time Scale Actor Critic Algorithm
Input: Stepsizes ηk, βk

1: while not converged; k = k + 1 do
2: Sample s ∼ dπθk , a ∼ πθk(·|s) and get the next state-action s′ ∼ P (·|s, a), a′ ∼ πθk(·|s′) .

3: Policy update:
θk+1(s, a) = θk(s, a) + ηk(1− γ)−1A(s, a),

where A(s, a) = Q(s, a)− v(s) and v(s) =
∑

a πθk(a|s)Q(s, a).

4: Q-value update:

Q(s, a) = Q(s, a) + βk

[
R(s, a) + γQ(s′, a′)−Q(s, a)

]
.

5: end while

Our objective is to derive a policy π that maximizes the expected discounted return Jπ using sampled
data. However, due to the stochastic nature of Algorithm 1, we focus on analyzing the expected return
E[Jπθk ] at each iteration k.

Note that the algorithm requires samples sk ∼ dπθk from the occupation measure at each iteration,
which is a common assumption in most works on the discounted reward setting Zhang et al. (2020);
Konda and Tsitsiklis (1999); Bhatnagar et al. (2009); Chen et al. (2021); Kumar et al. (2023);
Olshevsky and Gharesifard (2023). This can be achieved by initializing the Markov chain with
s0 ∼ µ, and at each step i, continuing the chain with probability γ by sampling si+1 ∼ Pπθk (·|si),
or terminating the chain with probability (1 − γ). Once the chain terminates, we randomly select
a state uniformly as sk. This process ensures that the state sk is sampled from dπθk . However, this
approach increases the average computational complexity by a factor of 1

1−γ . There are potentially
more efficient approaches to achieve this sampling, and several studies Wu et al. (2022); Xu et al.
(2020b) have investigated convergence analysis using Markovian sampling. However, we omit these
considerations here for simplicity.
Assumption 3.1. [Sufficient Exploration Assumption] There exists a λ > 0 such that:

⟨Qπ −Q,Dπ(I − γPπ)Q
π −Q⟩ ≥ λ∥Qπ −Q∥22,

where Pπ((s
′, a′), (s, a)) = P (s′|s, a)π(a′|s′) and Dπ((s′, a′), (s, a)) = 1

(
(s′, a′) = (s, a)

)
dπ(s)π(a|s).

Throughout this paper, we adopt the exploration assumption mentioned above, which is standard and,
to the best of our knowledge, has been made in all prior works Olshevsky and Gharesifard (2023);
Chen et al. (2021); Chen and Zhao (2024); Bhatnagar et al. (2009); Konda and Tsitsiklis (1999);
Zhang et al. (2020). Note that the both actor and critic evolving simultaneously, with actor updating
the policy with the imprecise critic’s feedback (Q-value) and critic tracking the Q-value of the
changing policies. This complex interdependent analysis of error is the core subject of investigation
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of this paper. However, the above assumption provides the bare minimum condition that the critic
convergence to the Q-value of any fixed policy in expectation.Specifically, for any fixed policy π, the
Q-value update given by (line 4 of Algorithm 1):

Qm+1(s, a) = Qm(s, a) + βk

[
R(s, a) + γQm(s′, a′)−Qm(s, a)

]
, (2)

where s ∼ dπ, a ∼ π(·|s), s′ ∼ P (·|s, a), a′ ∼ π(·|s′), Qm converges to the true Q-value Qπ in
expectation, under this exploration assumption, More precisely, ∥EQm −Qπ∥ ≤ cm for some c < 1
(see Lemma A.1).The above assumption is satisfied if all the coordiantes of Q-values are updated
often enough. This can be ensured by having strictly positive support of initial state-distribution on
all the states (mins µ(s) > 0) and having sufficient exploratory policies.

Local Convergence To Global Convergence. Convergence of single time-scale actor-critic (Al-
gorithm 1) has been studied for a long time, Konda and Tsitsiklis (1999); Bhatnagar et al. (2009);
Zhang et al. (2020); Olshevsky and Gharesifard (2023); Chen et al. (2021); Chen and Zhao (2024).
These works establish local convergence bounding the average expected square of gradient of the
return, with following state-of-the-art rate

K∑
k=1

1

K
E∥∇Jπk∥2 ≤ O(K− 1

2 ).

This local sample complexity of O(ϵ−2) translates to global sample complexity of O(ϵ−4), as shown
in the result below.

Proposition 3.2. A local ϵ-close stationary policy is equivalent to an
√
ϵ-close global optimal policy.

That is
E∥∇Jπθk ∥2 ≤ O(k−

1
2 ) =⇒ J∗ − EJπθk ≤ O(k−

1
4 ).

Proof. The proof follows directly from Gradient Domination Lemma 2.1 and Jensen’s inequality,
with more details in the appendix.

Now we present below the main result of the paper that proves the convergence of the Algorithm 1
with sample complexity of O(ϵ−3) to achieve ϵ-close global optimal policy.

Theorem 3.3 (Main Result). For step size βk, ηk = O(k−
2
3 ) in Algorithm 1, we have

J∗ − EJπθk ≤ O(k−
1
3 ), ∀k ≥ 0.

The above result significant improves upon the existing sample complexity of O(ϵ−4) Olshevsky and
Gharesifard (2023); Chen et al. (2021); Chen and Zhao (2024) as summarized in Table 1. Additionally,
the convergence is established on the last iterate in the result above. If we follow the analysis in
Chen and Zhao (2024) and plug in the gradient domination condition at the end as shown in the
Proposition 3.2, the convergence in value function space will be on the best iterate (in addition to
having an inferior rate).

The convergence analysis consists of following three main components, discussed in details in the
section next.

1. Deriving Recursions for Actor and Critic Errors: The first step involves formulating the
recursions for the actor and critic errors, which are inherently complex and interconnected.
This step is inspired by the approach outlined in Chen and Zhao (2024).

2. Identifying a well behaved Lyapunov Term: While prior works utilize the standard
convex-optimization technique to rearrange the recursion, expressing the “norm of the
gradient” through a telescoping sum to establish local convergence Chen and Zhao (2024),
this work takes a novel direction. Specifically, it leverages the additional problem structure,
encapsulated in the Gradient Domination Lemma, to identify a Lyapunov term—defined
as the sum of the actor error and the square of the critic error—and derive a Lyapunov
recursion.
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3. Developing an elegant ODE domination Method to Bound the Lyapunov Recursion:
The derived Lyapunov recursion poses significant challenges compared to the exact gradient
case studied in Xiao (2022), primarily due to the presence of time-decaying learning
rates. To address this, we develop an elegant ODE domination methodology that enables
us to establish bounds on the Lyapunov recursion. These bounds, in turn, yield precise
characterizations of both the actor and critic errors.

4 Convergence Analysis

In this section, we present the convergence analysis of Algorithm 1, but first, we introduce some
shorthand notations for clarity. Throughout the paper, we use the following conventions:

Jk = Jπθk ∈ R, Ak = Aπθk ∈ RS ×A, Qk = Qπθk ∈ RS ×A, dk = dπθk ∈ RS .

Additionally, we define ak, zk, yk ∈ R as

• ak := E[J∗ − Jk], which represents the expected sub-optimality.

• zk :=
√
E∥Qk −Qk∥2, which denotes the expected critic tracking error.

• yk :=
√
E∥∇Jk∥2, which denotes the expected norm of the gradient.

We summarize all the useful constants in the Table 4. We begin by deriving an actor recursion,
which is essentially a sufficient increase lemma for our noisy and biased gradient ascent (Line 3 of
Algorithm 1). This recursion arises from the smoothness properties of the return and serves as an
extension of its non-noisy version presented in Mei et al. (2022).
Lemma 4.1. [Actor Recursion] Let θk be the iterates from Algorithm 1, then the sub-optimality
decreases as

ak+1 ≤ ak − c1ηky
2
k + c2ηkykzk + c3η

2
k.

The recursion above illustrates the dependence of sub-optimality progression on various terms. The
second term, ηky

2
k

1−γ , indicates that the sub-optimality decreases proportionally to the square of the
gradient norm and the learning rate, which is consistent with the expected behavior of gradient ascent
on a smooth function in standard optimization. The term 2ηkykzk

1−γ represents the bias arising from
the error in Q-value estimation (critic error), implying that higher critic estimation error reduces the
improvement in the policy. Finally, the term 2Lη2

k

(1−γ)4 accounts for the variance (second moment) of
the updates.

Now, we shift our focus to the critic error. The exploration Assumption 3.1 ensures the evaluation
of the policy (Q-value estimation in expectation) through samples with respect to a fixed policy.
However, in Algorithm 1, the policy changes at every iteration, which makes the derivation of the
result below somewhat more challenging.
Lemma 4.2. [Critic Recursion] In Algorithm 1, critic error follows the following recursion

z2k+1 ≤ (1− c4βk)z
2
k + c5β

2
k + c6η

2
k + c7ηkykzk,

where constants ci are defined in the appendix.

The term (1 − c4βk)z
2
k represents the geometric decrease of the critic error, as the Q-value is a

contraction operator. The terms c5β2
k and c6η

2
k arise from the variance in the critic and policy updates.

Finally, the term c7ηkykzk reflects the effect of the "moving goalpost," where the critic evaluates a
policy that changes in each iteration by an amount proportional to yk.
Lemma 4.3 (Gradient Domination). The sub-optimality is upper bound by gradient as

ak ≤ c8yk.

The result above upper bounds the sub-optimality with the gradient, which follows Lemma 2.1 and
Jensen’s inequality. In summary, we have the following set of simplified recursions:

Actor: ak+1 ≤ ak − c1ηky
2
k + c2ηkykzk + c3η

2
k (3)

Critic: z2k+1 ≤ z2k − c4βkz
2
k + c5β

2
k + c6η

2
k + c7ηkykzk

GDL: ak ≤ c8yk.
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Figure 1: Actor- Critic recursion in (3): Random ci, 10ηk = βk = (1 + k)−
2
3 , a0, z0 = 2.

Solving these interdependent recursions is highly challenging and forms the core technical contribu-
tion of this paper. Notably, we cannot guarantee a monotonic decrease in either the sub-optimality
ak or the critic error zk across iterations, since ak+1 tends to decrease while z2k+1 increases with
the growth of yk. A crucial observation is that the Lyapunov term xk+1 := ak+1 + z2k+1 exhibits a
consistent decrease as yk increases, as shown in Figure 1. This highlights the stability and utility of
the Lyapunov term in characterizing the system’s behavior. Now to formally prove this, we combine
the actor and critic recursions, assume βk = cβηk, and apply additional algebraic manipulations
(detailed in the appendix). This leads to the following recursion:

ak+1 + z2k+1 ≤ ak + z2k − c12ηk

(
yk + z2k

)2
+ c11η

2
k.

Using the Gradient Domination Lemma (GDL), we derive the Lyapunov recursion:

xk+1 ≤ xk − c13ηkx
2
k + c11η

2
k,

which can be solved as stated in the following result.

Lemma 4.4 (ODE Domination Lemma). Given ηk = c14(
1

1

x3
0
+c15k

)
2
3 , the recursion xk+1 ≤ xk −

c13ηkx
2
k + c11η

2
k satisfies the bound:

xk ≤

(
1

1
x3
0
+ c15k

) 1
3

,

Proof. The detailed steps of the proof are provided in the appendix. The key idea in solving the
recursion is to establish that xk lies below the trajectory of the following ODE:

duk

dk
= −c13ηku

2
k + c11η

2
k.

We simplify this by appropriately choosing ηk = c14u
2
k, leading to the reduced ODE: duk

dk = −c15u
4
k,

whose solution is: uk =
(

1
1

u3
0
+c15k

) 1
3

.

Using the above result, we conclude that ak = O(k−
1
3 ) and ηk, βk = O(k−

2
3 ), thus completing the

convergence analysis. Although, we retrospectively chose the best learning rates βk, ηk = O(k−
2
3 )

for the presentation simplifications. But we have developed a general framework in the appendix that
gives the rates for different possible step-sizes schedules.

Additionally, the result below shows that our critic error follows zk = O(k−
1
3 ), as compared to the

O(k−
1
4 ) rate achieved in Chen and Zhao (2024).
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Corollary 4.5. The critic error decreases similar to the actor error as

zk ≤
( 1

c16 + c17k

) 1
3

.

Proof. From Lemma 4.2, we have

z2k+1 ≤ (1− c4βk)z
2
k + c5β

2
k + c6η

2
k + c7ηkykzk. (4)

Constant Definition Remark

Jk ∈ R Jπθk Return at iterate k

Ak ∈ RS ×A Aπθk Advantage value at iterate k

Qk ∈ RS ×A Qπθk Q-value at iterate k

dk ∈ RS dπθk Occupation measure at iterate k

ak ∈ R E[J∗ − Jk] Sub-optimality at iterate k

zk ∈ R
√
E∥Qk −Qk∥ Critic mean squared error at iterate k

yk ∈ R
√
E∥∇Jk∥2 Expected squared norm of the return at iterate k

xk ∈ R ak + z2k Lyapunov value at iterate k

uk ∈ R
(

1
1

u3
0
+c15k

) 1
3

Solution to the ODE duk

dk = −c15u
4
k

ci ∈ R Place holder constants See appendix
Table 2: Definitions of cseful constants: Iterate k is generated from Algorithm 1

5 Discussion

We establish the global convergence of actor-critic algorithms with a significantly improved sample
complexity of O(ϵ−3) for obtaining ϵ-close global optimal policy, compared to the existing rate of
O(ϵ−4) derived from O(ϵ−2) complexity for ϵ-close stationary policy Chen and Zhao (2024). This
brings us closer to the lower bound complexity of O(ϵ−2) for reinforcement learning Auer et al.
(2008). The framework we propose is quite general and could potentially be extended to other settings,
such as average reward, function approximation, or Markovian noise. We leave these extensions for
future work.

Moreover, this framework for addressing the two-time-scale coupling, combined with our novel
and elegant methodology for bounding the recursions, can serve as a foundation for analyzing other
two-time-scale algorithms.

Can we improve the complexity further? Our work proposes a learning rate schedule for both
the critic and actor, decaying as k−

2
3 with iteration k, which we believe through our investigation,

achieves the optimal sample complexity of O(ϵ−3) that these recursions can possible yield. Conse-
quently, we need to shift our approach in deriving these recursions for improvement in the sample
complexity. All prior approaches, including our own, focus on bounding the variance of the critic
error

√
E∥Qk −Qk∥2. However, for the analysis of the actor’s recursion, it suffices to bound the

bias ∥Qk − EQk∥. Through careful investigation, we have come to believe that our current analysis,
which relies on variance bounds, has reached the best possible sample complexity limit of O(ϵ−3).

9



In contrast, an analysis based on bias has the potential to achieve further improvements, possibly
reducing the complexity to the theoretical lower bound of O(ϵ−2).

A key insight lies in the fundamental difference between variance and bias: even for a fixed policy,
variance remains non-zero, whereas bias vanishes. Specifically, current variance-based approaches
necessitate diminishing learning rates for both the actor and the critic to ensure decreasing variance.
In contrast, the bias term can tend to zero even with a constant critic learning rate, requiring only a
diminishing learning rate for the actor. This observation suggests that focusing on bias may be a more
promising direction, but it also presents significant analytical challenges that remain unexplored.

In summary, we hypothesize that the current sample complexity of O(ϵ−3) could be improved to
O(ϵ−2) by focusing on bias rather than variance. This shift in focus may allow for a constant (or very
slowly decaying) critic step size, only requiring diminishing actor step size. In addition, we believe
our new methodology for solving recursions may play a crucial role in unlocking these new research
directions and opportunities.

Extension to continuous spaces. Our analysis is limited to the tabular setting and does not extend to
large or continuous state spaces (e.g., robotics) due to the

√
S dependence in the Gradient Dominant

Lemma (GDL) 2.1. Intuitively,
√
S reflects the diameter of the policy space (maxπ,π′∥π − π′∥2),

which could be replaced by parameter space diameter (maxθ,θ′∥θ− θ′∥2), in function approximation.
This extencion directly enables the non-tabular versions of the exact gradient convergence results
in Xiao (2022); Mei et al. (2022) and consequently our actor–critic complexity results, with minor
modifications in the current analysis.

Using multiple samples for critic estimation. While many double-loop actor–critic methods use
(too) many critic samples per actor update, our work takes the opposite extreme—using only one.
Exploring whether an optimal trade-off exists between these two extremes is an interesting future
direction.

Re-use of samples. We believe that re-using samples could reduce the total number of new samples
needed to below O(ϵ−3). This direction is particularly interesting for bridging offline and online RL,
which we leave for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claim of the paper is theoretical improvement of the sample complexity,
highlited in abstract and in the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, our approach requires sufficient exploration Assumption to work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Yes, assumption in the main text and the proof in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper is purely theoretical in nature.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper is purely theoretical in nature.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper is purely theoretical in nature.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper is purely theoretical in nature.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper is purely theoretical in nature.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper is purely mathematical, we don’t see any ethical concern.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is purely theoretical in nature.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is purely theoretical in nature.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper is purely theoretical in nature.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper is purely theoretical in nature.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper is purely theoretical in nature.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper is purely theoretical in nature.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: LLM was used only for grammer, par-phrasing and proper sentencing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supporting Results

A.1 On Sufficient Exploration Assumption 3.1

Lemma A.1. Under the Assumption 3.1, the update rule (2), converges as

∥EQk −Qπ∥2 → αk∥EQ0 −Qπ∥2,

where α =
√
1− λ2

2 taking βk = λ
2 .

Proof. From Proposition A.3, we have ∥EQk+1 −Qπ∥ ≤ α∥EQk+1 −Qπ∥, from which the result
follows.

We define Pπ((s
′, a′), (s, a)) = P (s′|s, a)π(a′|s′) and Dπ((s′, a′), (s, a)) = 1

(
(s′, a′) = (s, a)

)
(1− γ)

∑∞
n=0 γ

nµT (Pπ)n(s).

Proposition A.2. cγ = maxπ,Q
∥Dπ(I−γPπ)Q∥

∥Q∥ ≤ 1 + γ.
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Proof.

∥Dπ(I − γPπ)Q∥ ≤ ∥DπQ∥+ γ∥DπPπQ∥ (5)

≤ ∥Q∥+ γ∥DπPπQ∥, (as
∑
s,a

|D((s, a), (s, a))| = 1) (6)

= ∥Q∥+ γ

√∑
s,a

(
d(s, a)⟨Pπ(·|(s, a)), Q⟩

)2
, (7)

≤ ∥Q∥+ γ

√∑
s,a

(
d(s, a)∥Pπ(·|(s, a))∥∥Q∥

)2
, (8)

≤ ∥Q∥+ γ∥Q∥
√∑

s,a

(
d(s, a)

)2 ∥Pπ(·|(s, a))∥2, (9)

≤ ∥Q∥+ γ∥Q∥
√∑

s,a

d(s, a)∥Pπ(·|(s, a))∥21, (10)

= (1 + γ)∥Q∥. (11)

Proposition A.3. For any policy π, given Tπ
β Q = Q+ βDπ

[
R+ γPπQ−Q

]
, we have

∥Qπ − Tπ
β Q∥ ≤

√
1− λ2

2
∥Qπ −Q∥2.

Proof.

U := Dπ
[
R− (I − γPπ)Q

]
(12)

= Dπ
[
Qπ − γPπQ

π − (I − γPπ)Q
]
, (using Qπ = R+ γPπQ

π) (13)

= Dπ
(
I − γPπ

)(
Qπ −Q

)
(14)

Lets look at

∥Qπ − Tπ
β Q∥2 = ∥Qπ −Q− βU∥2, (definition of Tπ

β Q = Q+ βU )

= ∥Qπ −Q∥2 + β2∥U∥2 − 2β⟨Qπ −Q,U⟩
≤ ∥Qπ −Q∥2 + β2∥U∥2 − 2βλ∥Qπ −Q∥2, (from Assumption 3.1)

≤ (1 + 2β2 − 2βλ)∥Qπ −Q∥22, (from Proposition A.2)

≤ (1− λ2

2
)∥Qπ −Q∥22, (taking β =

λ

2
).

A.2 Local Convergence to Global Convergence: Proof of Proposition 3.2

Proposition A.4. If E∥∇Jk∥22 ≤ O(k−
1
2 ) then J∗ − EJπk ≤ O(k−

1
4 ).

Proof. From Gradient Domination Lemma 2.1 and Jensen’s inequality, we have

E∥∇Jk∥22 ≥ E
[
J∗ − Jk

]
≥ c2

SC2
PL

[
J∗ − EJk

]2
.

Hence if E∥∇Jπk∥22 ≤ O(k−
1
2 ) then

[
J∗ − EJπk

]2
≤ O(k−

1
2 ), implying J∗ − EJk ≤ O(k−

1
4 ).
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B Deriving Recursions

Notations. Recall that Jk = Jπθk , Ak = Aπθk , Qk = Qπθk , dk = dπθk , ak = E[J∗ − Jk], yk =√
E∥∇Jk∥2, zk =

√
E∥Qk −Qk∥2 are used as shorthands. Further Qk, Ak are iterates from

Algorithm 1, and 1k ∈ {0, 1}S ×A is indicator for (sk, ak) in the Algorithm 1. We refer Hadamard
product by ⊙, defined as (a⊙ b)(i) = a(i)b(i).

Constant Definition Remark

λ Sufficient Exploration constant

L 8
(1−γ)3 Smoothness constant

cg
√
SCPL

c GDL constant

Lπ
1 = 2 ∥πθk+1

− πθk∥ ≤ Lπ
1∥θk+1 − θk∥ Lipschitz constant of policy w.r.t. θ

cq = 2
√
SA

(1−γ)4 ∥Qk −Qk+1∥ ≤ cqηk Lipschitz constant, see Proposition B.3

cu ≤ 3
1−γ |Uk| ≤ cu Proposition B.1

Lq
2 = 8

√
SA

(1−γ)3 ∥Qk −Qk+1 +∇Qk(θk+1 − θk)∥ ≤ 1
2L

q
2∥θk+1 − θk∥2 Smoothness of Q, see Proposition B.6

cz = 2
√
SA

(1−γ) maxk∥Qk −Qk∥ ≤ cz Upper bound on zk, see Proposition B.5

cβ = βk

ηk

9SA2

2(1−γ)5 Actor-critic scale ratio

cη 2c2uc
2
β + 4L

(1−γ)4 + 2c2q +
2Lq

2cz
(1−γ)4

≤ 818S2A4

(1−γ)12

cl
1
4 min{ 1

c2g1−γ) ,
2λcβ
c2z

} ODE constant

= 1
4(1−γ) min{ c2

SC2
PL

, 9λS
4(1−γ)2 }

Table 3: Constants

In this section, we derive the following recursions:

ak+1 ≤ ak − ηk
1− γ

y2k +
2ηk
1− γ

ykzk +
4Lη2k

(1− γ)4

ak ≤ cgyk

z2k+1 ≤ (1− 2λβk)z
2
k + 2c2uβ

2
k + 2c2qη

2
k +

2Lq
2

(1− γ)4
η2kzk +

2γ
√
SA

(1− γ)3
ηkykzk,

where the constants are described in Table 3.

B.1 Useful Constants

The constants appears in upcoming sub-sections while deriving and solving the recursions. Reader
may skip and come back to this subsection later.

Proposition B.1.

cu := max
∥Q∥∞≤ 1

1−γ ,s,s′∈S,a,a′∈A

[
R(s, a) + γQk(s

′, a′)−Qk(s, a)
]
≤ 3

1− γ
.
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Proof.

|R(s, a) + γQk(s
′, a′)−Qk(s, a)| ≤ |R(s, a)|+ γ|Qk(s

′, a′)|+ |Qk(s, a)| (15)

≤ 1 +
2

1− γ
≤ 3

1− γ
. (16)

Proposition B.2. [Lipschitz constant of value function]

∥vk+1 − vk∥∞ ≤
√
A

(1− γ)4
ηk.

Proof.

∥vπ − vπ
′
∥∞ ≤ ∥(I − γPπ)−1

[
(Rπ −Rπ′

) + γ(Pπ − Pπ′
)vπ

′]
∥∞ (17)

≤ 1
1−γ

(
∥Rπ −Rπ′

∥∞ + γ∥(Pπ − Pπ′
)vπ

′
∥∞
)
. (18)

≤ 1

1− γ
max

s

[
∥π′

s − πs∥1 + γ
∥π′

s − πs∥1
1− γ

]
(19)

≤ ∥π′
s − πs∥1
(1− γ)2

(20)

≤ max
s

√
A

2(1− γ)2
∥θ′(s)− θ(s)∥1, (as ∥π(s)θ′ − π(s)θ∥1 ≤

√
A

2
∥θ′(s)− θ(s)∥1).

(21)

Hence

∥vk+1 − vk∥∞ ≤
√
A

(1− γ)4
ηk,

as ∥θk+1 − θk∥ = 2ηk

(1−γ)2 .

Proposition B.3.
∥Qk −Qk+1∥ ≤ cqηk,

where cq = 2
√
SA

(1−γ)4

Proposition B.4.

∥Qk −Qk+1∥∞ = ∥R+ γPvk −R− γPvk+1∥∞ (22)

= γ∥Pvk − Pvk+1∥∞ (23)

= γ∥vk − vk+1∥∞ (24)

≤ γ

√
Aηk

(1− γ)4
, (from Proposition B.2). (25)

Proposition B.5.
max

k
∥Qk −Qk∥ ≤ cz,

where cz = 2
√
SA

(1−γ)

Proof.

∥Qk −Qk∥ ≤
√
SA∥Qk −Qk∥∞ ≤ 2

√
SA

(1− γ)
. (26)
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Proposition B.6.

|d
2Qπθ

dα2
| ≤ 8γ

(1− γ)3

and

∥Qk −Qk+1 +∇Qk(θk+1 − θk)∥ ≤ 4
√
SA

(1− γ)3
∥θk+1 − θk∥2.

Proof.

|d
2Qπθ

dα2
| = | d

2

dα2

[
R(s, a) + γ

∑
s′

P (s′|s, a)vπθ (s′)
]
| (27)

≤ γ
∑
s′

P (s′|s, a)| d
2

dα2
vπθ (s′)| (28)

= γL. (29)
Hence,

∥Qk −Qk+1 +∇Qk(θk+1 − θk)∥ ≤
√
SA∥Qk −Qk+1 +∇Qk(θk+1 − θk)∥∞ (30)

≤
√
SA

γL

2
∥θk+1 − θk∥2 (31)

≤ 4
√
SA

(1− γ)3
∥θk+1 − θk∥2. (32)

Proposition B.7.

cη ≤ 818S2A4

(1− γ)12

Proof. From definition, we have

cη = 2c2uc
2
β +

4L

(1− γ)4
+ 2c2q +

2Lq
2cz

(1− γ)4
(33)

≤ 729S2A4

2(1− γ)12
+

32

(1− γ)7
+

8SA2

(1− γ)8
+

32SA

(1− γ)8
, (as L =

8

(1− γ)3
) (34)

≤ 818S2A4

(1− γ)12
. (35)

B.2 Actor Recursion: Proof of Lemma 4.1

Lemma B.8 (Sufficient Increase Lemma). Let θk be the iterate obtained Algorithm 1. Then,

E[Jk+1 − Jk] ≥ ηk
1− γ

E
[
∥∇Jk∥2 + ⟨∇Jk, dk ⊙ (Ak −Ak)⟩ − 2Lηk

(1− γ)3

]
,

where L = 8
(1−γ)3 .

Proof. From the smoothness of the return, we have

E
[
Jk+1 − Jk

]
≥ E

[
⟨∇Jk, θk+1 − θk⟩ −

L

2
∥θk+1 − θk∥2

]
,

≥ E
[ ηk
1− γ

⟨∇Jk, Ak ⊙ 1k⟩ −
Lη2k

2(1− γ)2
A2

k1k

]
, (from update rule in Algorithm 1

≥ ηk
1− γ

E
[
⟨∇Jk, dk ⊙Ak⟩ −

2Lηk
(1− γ)3

]
, ( as (sk, ak) ∼ dk⊙ and ∥Ak∥∞ ≤ 2

1− γ
)

≥ ηk
1− γ

E
[
∥∇Jk∥22 + ⟨∇Jk, dk ⊙ (Ak −Ak)⟩ − 2Lηk

(1− γ)3

]
, ( as ∇Jk = dk ⊙Ak).
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Proposition B.9. We have

E
∣∣∣ ⟨∇Jk, dk ⊙ (Ak −Ak)⟩

∣∣∣≤ 2
√

E∥∇Jk∥2
√

E∥Qk −Qk∥2.

Proof. We have∣∣∣ ⟨∇Jk, dk ⊙ (Ak −Ak)⟩
∣∣∣≤ ∥∇Jk∥∥dk ⊙ (Ak −Ak)∥, (from Cauchy inequlaity) (36)

≤ ∥∇Jk∥∥dk∥∥(Ak −Ak)∥∞, (as
∑
i

(aibi)
2 ≤ (max

i
a2i )(

∑
i

b2i )) (37)

≤ ∥∇Jk∥∥Ak −Ak∥∞, ( as 1 = ∥dk∥1 ≥ ∥dk∥2) (38)
(39)

Additionally, from definition, we have

|Ak(s, a)−Ak(s, a)| = |Qk(s, a)−
∑
a

π(a|s)Qk(s, a)−Qk(s, a) +
∑
a

π(a|s)Qk(s, a)| (40)

≤ |Qk(s, a)−Qk(s, a)|+ |
∑
a

π(a|s)Qk(s, a)−
∑
a

π(a|s)Qk(s, a)|, (Triangle inequality)

(41)

≤ ∥Qk −Qk∥∞ +
∑
a

π(a|s)|Qk(s, a)−Qk(s, a)|, (42)

≤ 2∥Qk −Qk∥∞. (43)

Putting this back, we get

E
∣∣∣ ⟨dk ⊙Ak, dk ⊙ (Ak −Ak)⟩

∣∣∣≤ 2E
[
∥∇Jk∥∥Qk −Qk∥∞

]
, (44)

≤ 2E
[
∥∇Jk∥∥Qk −Qk∥

]
, (as ∥x∥2 ≥ ∥x∥∞) (45)

≤ 2
√
E∥∇Jk∥22

√
E∥Qk −Qk∥22, (from Cauchy (E⟨x, y⟩)2 ≤ E∥x∥2E∥y∥2). (46)

Lemma B.10. [Actor Recursion] We have

ak − ak+1 ≥ ηk
1− γ

[
y2k − 2ykzk − 2Lηk

(1− γ)3

]
,

where L = 8
(1−γ)3 .

Proof. From Sufficient Increase Lemma B.8, we have

E[Jk+1 − Jk] ≥ ηk
1− γ

E
[
∥∇Jk∥2 + ⟨∇Jk, dk ⊙ (Ak −Ak)⟩ − 2Lηk

(1− γ)3

]
,

≥ ηk
1− γ

[
E∥∇Jk∥2 − E|⟨∇Jk, dk ⊙ (Ak −Ak)⟩| − 2Lηk

(1− γ)3

]
, (as E[a] ≥ −E[|a|])

≥ ηk
1− γ

[
E∥∇Jk∥2 − 2

√
E∥∇Jk∥2

√
E∥Qk −Qk∥2 − 2Lηk

(1− γ)3

]
, (from Lemma B.9).

B.3 GDL Recursion: Proof of Lemma 4.3

Proposition B.11. [Gradient Domination] We have

ak ≤
√
SCPL

c
yk.
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Proof. From GDL, we have

J∗ − Jk ≤
√
SCPL

c
∥∇Jk∥ (47)

=⇒ E[J∗ − Jk] ≤
√
SCPL

c
E∥∇Jk∥ (48)

≤
√
SCPL

c

√
E∥∇Jk∥2, (49)

where the last inequality comes from the Jensen’s inequality (E[x])2 ≤ E[x2].

B.4 Critic Recursion: Proof of Lemma 4.2

Recall that in the Algorithm 1, we have the following updates: (s, a) ∼ dk s′ ∼ P k(·|s, a), a′ ∼
πk(·|s′), and

Qk+1(s, a) = Qk(s, a) + βkUk+1,

where ∥πk+1 − πk∥ ≤ 2Lπ
1

(1−γ)2 ηk, ηk → 0, and Uk+1 =
[
R(s, a) + γQk(s

′, a′)−Qk(s, a)
]
.

Lemma B.12 (Critic Recursion). In Algorithm 1, the critic error follows the following recursion

z2k+1 ≤ (1− 2λβk)z
2
k + 2c2uβ

2
k + 2c2qη

2
k +

2Lq
2

(1− γ)4
η2kzk +

2γ
√
SA

(1− γ)3
ηkykzk.

Proof. We have

E∥Qk+1 −Qk+1∥2 = E
∥∥∥ Qk + βkUk+1 −Qk+1

∥∥∥2, (from update rule of Qk)

=E
∥∥∥ Qk −Qk + βkUk+1 +Qk −Qk+1

∥∥∥2, (plus-minus Qk)

=E
(
∥Qk −Qk∥2 + β2

k∥Uk+1∥2 + ∥Qk −Qk+1∥2 + 2βk⟨Uk+1, Q
k −Qk+1⟩

+ 2βk⟨Qk −Qk, Uk+1⟩+ 2⟨Qk −Qk, Qk −Qk+1⟩
)
, (expansion of (a+ b+ c)2)

≤E
(
(1− 2βkλ)∥Qk −Qk∥2 + β2

k∥Uk+1∥2 + ∥Qk −Qk+1∥2 + 2βk⟨Uk+1, Q
k −Qk+1⟩

+ 2⟨Qk −Qk, Qk −Qk+1⟩
)
, (using sufficient exploration assumption)

≤E
(
(1− 2βkλ)∥Qk −Qk∥2 + 2β2

k∥Uk+1∥2 + 2∥Qk −Qk+1∥2 + 2⟨Qk −Qk, Qk −Qk+1⟩
)
,

(using ∥a∥2 + ∥b∥2 ≥ 2⟨a, b⟩)

≤E
(
(1− 2βkλ)∥Qk −Qk∥2 + 2β2

kc
2
u + 2η2kc

2
q + 2⟨Qk −Qk, Qk −Qk+1⟩

)
,

( as ∥Qk −Qk+1∥ ≤ cqηk and ∥Uk∥ ≤ cu )

≤E
(
(1− 2βkλ)∥Qk −Qk∥2 + 18β2

k

(1− γ)2
+ 2η2kc

2
q + 2⟨Qk −Qk, Qk −Qk+1⟩

)
,

(from Proposition B.1 )
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Now, we only focus on

E⟨Qk −Qk, Qk −Qk+1⟩
≤E⟨Qk −Qk, Qk −Qk+1 +∇Qk(θk+1 − θk)⟩+ E⟨Qk −Qk,∇Qk(θk+1 − θk)⟩, (plus-minus )

≤E
[
∥Qk −Qk∥∥Qk −Qk+1 +∇Qk(θk+1 − θk)∥+ ⟨Qk −Qk,∇Qk(θk+1 − θk)⟩

]
, (Cauchy Schwartz )

≤E
[ 1

2
Lq
2∥Qk −Qk∥∥θk+1 − θk∥2 + ⟨Qk −Qk,∇Qk(θk+1 − θk)⟩

]
, (smoothness of Qπ , see Table 3 )

≤E
[ 2Lq

2η
2
k

(1− γ)4
∥Qk −Qk∥+ ηk

1− γ
⟨Qk −Qk,∇Qk(1k ⊙Ak)⟩

]
, (from Algorithm 1)

≤E
[ 2Lq

2η
2
k

(1− γ)4
∥Qk −Qk∥+ ηk

1− γ
⟨Qk −Qk,∇Qk(dk ⊙Ak)⟩

]
, (Conditional expectation, (sk, ak) ∼ dk )

≤E
[ 2Lq

2η
2
k

(1− γ)4
∥Qk −Qk∥+ ηk

1− γ
∥Qk −Qk∥∥∇Qk(dk ⊙Ak)∥

]
, (Cauchy Schwartz)

≤ 2Lq
2η

2
k

(1− γ)4

√
E∥Qk −Qk∥2 + ηk

1− γ

√
E∥Qk −Qk∥2

√
E∥∇Qk(dk ⊙Ak)∥2, (Jensen and Cauchy inequalities )

≤ 2Lq
2η

2
k

(1− γ)4

√
E∥Qk −Qk∥2 + 2γ

√
SAηk

(1− γ)3

√
E∥Qk −Qk∥2

√
E∥∇Jk∥2, (using Proposition B.13 )

To summarize, we have the following recursion:

z2k+1 ≤ (1− 2λβk)z
2
k + 2c2uβ

2
k + 2c2qη

2
k +

2Lq
2

(1− γ)4
η2kzk +

2γ
√
SA

(1− γ)3
ηkykzk.

Proposition B.13.

∥∇Qk(dk ⊙Ak)∥2 ≤ 4γ2SA2

(1− γ)4
∥∇Jk∥2.

Proof. From definition, we have

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)vπ(s′) (50)

=⇒ d

dθ(s”, a”)
Qπ(s, a) = γ

∑
s′

P (s′|s, a) d

dθ(s”, a”)
vπ(s′) (51)

=
γ

1− γ

∑
s′

P (s′|s, a)dπs′(s”)Aπ(s”, a”). (52)
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This implies that

∥∇Qk(dk ⊙Ak)∥2 =
∑
s,a

( ∑
s”,a”

dQk(s, a)

dθ(s”, a”)
dk(s”, a”)Ak(s”, a”)

)2
(53)

=
1

(1− γ)2

∑
s,a

( ∑
s”,a”

γ
∑
s′

P (s′|s, a)dks′(s”)Ak(s”, a”)dk(s”, a”)Ak(s”, a”)
)2

, (putting back the value )

(54)

≤ γ2

(1− γ)2

∑
s,a

( ∑
s”,a”

∑
s′

P (s′|s, a)dks′(s”)dk(s”, a”)|Ak(s”, a”)||Ak(s”, a”)|
)2

, (taking absolute values)

(55)

=
4γ2SA

(1− γ)4

( ∑
s”,a”,s′

P (s′|s, a)dks′(s”)dk(s”, a”)|Ak(s”, a”)|
)2

(56)

≤ 4γ2SA2

(1− γ)4

∑
s”,a”,s′

P (s′|s, a)dks′(s”)
(
dk(s”, a”)Ak(s”, a”)

)2
, (57)

(from Jensen, as
∑

s”,a”,s′

P (s′|s, a)dks′(s”) = A) (58)

≤ 4γ2SA2

(1− γ)4

∑
s”,a”

(
dk(s”, a”)Ak(s”, a”)

)2
, ( as P (s′|s, a)dks′(s”) ≤ 1) (59)

=
4γ2SA2

(1− γ)4
∥∇Jk∥2. (60)

C Solving Recursions

In this section, we solve the recursions derived above.

C.1 Proof of Lemma 4.4

Lemma C.1. The following recursions

ak+1 ≤ ak − ηk
1− γ

y2k +
2

1− γ
ηkykzk +

4Lη2k
(1− γ)4

ak ≤ cgyk

z2k+1 ≤ (1− 2λβk)z
2
k + 2c2uβ

2
k + 2c2qη

2
k +

2Lq
2

(1− γ)4
η2kzk +

2γ
√
SA

(1− γ)3
ηkykzk,

implies

ak ≤ c
− 2

3

l

(
max{cη, 2c2l u3

0}
) 1

3
( 1

1
α3

0
+ 2k

) 1
3

=
(
max{c−

2
3

l c
1
3
η , 2u0}

)( 1
1
α3

0
+ 2k

) 1
3

,

with constants α0, cl, c2 defined in Table 3.
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Proof. Adding the first and last recursions, and using zk ≤ cz from Table 3, we get

ak+1 + z2k+1

≤ ak + z2k − ηky
2
k

1− γ
− 2λβkz

2
k + 2c2uβ

2
k+
( 4L

(1− γ)4
+ 2c2q +

2Lq
2cz

(1− γ)4

)
η2k+

( 2γ
√
SA

(1− γ)3
+

2

1− γ

)
ηkykzk

≤ ak + z2k − ηky
2
k

1− γ
− 2λβkz

2
k + 2c2uβ

2
k+
( 4L

(1− γ)4
+ 2c2q +

2Lq
2cz

(1− γ)4

)
η2k +

3
√
SA

(1− γ)3
ηkykzk, (simplifying)

≤ ak + z2k − ηk

[ y2k
1− γ

+ 2λcβz
2
k − 3

√
SA

(1− γ)3
ykzk

]
+
(
2c2uc

2
β +

4L

(1− γ)4
+ 2c2q +

2Lq
2cz

(1− γ)4︸ ︷︷ ︸
:=cη

)
η2k, (as

βk

ηk
= cβ)

≤ ak + z2k − ηk
2

[ y2k
(1− γ)

+ 2λcβz
2
k

]
−ηk

2

[ y2k
(1− γ)

+ 2λcβz
2
k − 6

√
SA

(1− γ)3
ykzk

]
+cηη

2
k, (plus-minus)

≤ ak + z2k − ηk
2

[ y2k
(1− γ)

+ 2λcβz
2
k

]
−ηk

[ √ 2λcβ
(1− γ)

− 3
√
SA

(1− γ)3︸ ︷︷ ︸
≥ 0 as cβ := 9SA2

2(1−γ)5

]
ykzk + cηη

2
k, (as a+ b ≥ 2

√
ab )

= ak + z2k − ηk
2

[ y2k
(1− γ)

+ 2λcβc
2
z(
zk
cz

)2
]
+cηη

2
k, (divide-multiply)

= ak + z2k − ηk
2

[ y2k
(1− γ)

+ 2λcβc
2
z(
zk
cz

)4
]
+cηη

2
k, (as

zk
cz

≤ 1 by defn of cz , see Table 3)

≤ ak + z2k − ηk
2

[ a2k
c2g(1− γ)

+
2λcβ
c2z

z4k

]
+cηη

2
k, (using ak ≤ cgyk)

≤ ak + z2k − 2ηkcl

[
a2k + z4k

]
+cηη

2
k, (as cl :=

1

4
min{ 1

c2g(1− γ)
,
2λcβ
c2z

})

≤ ak + z2k − clηk

(
ak + z2k

)2
+cηη

2
k, (using (a+ b)2 ≤ 2(a2 + b2)).

Taking uk = ak + z2k, ωk =
√
ηk, the above recursion is of the form:

uk ≤ uk − clηku
2
k +

1

2
cηη

2
k. (61)

Taking c1 = cl and c2 = max{cη, 2c21u3
0} to ensure α0 = c

2
3
1 c

− 1
3

2 u0 ≤ 2−
1
3 in Lemma C.2, we get

uk ≤ c
− 2

3

l

(
max{cη, 2c2l u3

0}
) 1

3
( 1

1
α3

0
+ 2k

) 1
3

. (62)

Note that ak ≤ uk as z2k ≥ 0, yielding the desired result.

Lemma C.2. [ODE domination for Recursion] Given dαx

dx = − 1
2α

4
x, αk =

(
1

1

α3
0
+2k

) 1
3

, and

ηk = c
− 1

3
1 c

− 1
3

2 α2
k the recursion,

uk+1 ≤ uk − c1ηku
2
k +

1

2
c2η

2
k,

then uk ≤ c
− 2

3
1 c

1
3
2 αk for all k ≥ 0, where α0 = c

2
3
1 c

− 1
3

2 u0 ≤ 2−
1
3
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Proof. Let νk = c
2
3
1 c

− 1
3

2 uk and αk = c
1
6
1 c

1
6
2

√
ηk. Then, multiplying both sides with c

2
3
1 c

− 1
3

2 , we get

c
2
3
1 c

− 1
3

2 uk+1 ≤ c
2
3
1 c

− 1
3

2 uk − c
1
3
1 c

1
3
2 ηk

(
c

2
3
1 c

− 1
3

2 uk

)2
+
1

2
c

2
3
1 c

2
3
2 η

2
k (63)

=⇒ νk+1 ≤ νk − α2
kν

2
k +

1

2
α4
k. (64)

Now let fk(ν) = ν − α2
kν

2 and assume, νk ≤ αk, then

νk+1 ≤ fk(νk) +
1

2
α4
k (65)

≤ fk(αk) +
1

2
α4
k, (as fk(ν) is increasing for ν ≤ 1

2α2
k

, and νk ≤ αk ≤ 1

2α2
0

≤ 1

2α2
k

)

(66)

= αk − 1

2
α4
k, (putting the value back of f ) (67)

≤ αk −
∫ k+1

x=k

1

2
α4
kdx, (dummy integral) (68)

= αk −
∫ k+1

x=k

1

2
α4
xdx, (as αx is decreasing) (69)

≤ αk −
∫ k+1

x=k

1

2
α4
kdx, (dummy integral) (70)

= αk +

∫ k+1

x=k

dαx

dx
dx, (as

dαx

dx
= −1

2
α4
x) (71)

≤ αk+1, (basic calculus). (72)

From induction arguments, we get νk ≤ αk for all k ≥ 0 given the base condition ν0 ≤ α0 is
satisfied. In other words,

c
2
3
1 c

− 1
3

2 uk ≤ αk =
( 1

1
ν3
0
+ 2k

) 1
3

. (73)

C.2 Proof of main theorem

Theorem C.3 (Main Result). For step size ηk = O(k−
2
3 ) and βk = cβηk in Algorithm 1, we have

J∗ − EJπθk ≤ max
{ S

4
3A

4
3C

4
3

PL

c
4
3 (1− γ)

10
3

,
A

4
3

λ
2
3 (1− γ)

6
3

} 1

k
1
3

, ∀k > 0.

where C is some numerical constant.

Proof. From Lemma C.1, we have

J∗ − EJπθk = ak ≤ c
− 2

3

l

(
max{cη, 2c2l u3

0}
) 1

3
( 1

1
α3

0
+ 2k

) 1
3

≤ C1
max{c−

2
3

l c
1
3
η , u0}

k
1
3

. (re-arranging, α0 > 0, C1 is numerical constant).

Putting the values from Table 3, we have

c
1
3
η ≤ 10S

2
3A

4
3

(1− γ)4
,
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and

c
− 2

3

l =
[ 1

4(1− γ)
min{ c2

SC2
PL

,
9λS

4(1− γ)2
}
]− 2

3

(74)

≤ 2
4
3 (1− γ)

2
3 max{

S
2
3C

4
3

PL

c
4
3

,
2

4
3 (1− γ)

4
3

3
4
3λ

2
3S

2
3

}. (75)

Hence, we get

c
− 2

3

l c
1
3
η ≤ C1

S
2
3A

4
3

(1− γ)
10
3

[
max{

S
2
3C

4
3

PL

c
4
3

,
(1− γ)

4
3

λ
2
3S

2
3

}
]

(76)

≤ C1 max
{ S

4
3A

4
3C

4
3

PL

c
4
3 (1− γ)

10
3

,
A

4
3

λ
2
3 (1− γ)

6
3

}
. (77)

and u0 = O( SA
(1−γ)2 ), hence the complexity is

ak ≤ C1 max
{ S

4
3A

4
3C

4
3

PL

c
4
3 (1− γ)

10
3

,
A

4
3

λ
2
3 (1− γ)

6
3

} 1

k
1
3

,

where C2 is some numerical constant. For comparision, the iteration complexity for the exact gradient
case is O(

SC2
PL

c2(1−γ)6k ) as shown in Theorem 4 of Mei et al. (2020).

Notably, actor-critic dependence little better in mis-match coefficient CPL (yes, we double checked),
and only slightly expensive in state space and horizon.

D Numerical Simulations

This section numerically illustrate with convergence rate of single-time-scale Algorithm 1 with
different step size schedule. All MDPs have randomly generated transition kernel and reward function,
with codes available at https://anonymous.4open.science/r/AC-C43E/. For simplicity, the
samples are generated uniformly instead of discounted occupation measure.

Figure 2 illustrates that the learning rate ηk = βk = k−
2
3 has the best performance. Notably, slow

decaying learning rates such as ηk = βk = 0.01k0, k−
1
3 , k−

1
2 have better performance in the starting,

and eventually they surpassed by ηk = βk = k−
2
3 . In addition, ηk = βk = k−1 has the worst

performance.
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Figure 2: Convergence Rate of Algorithm 1, on random MDP with state space =50, action space = 5,
learning rate ηk = βk = k−a

Figure 3: Convergence Rate of Algorithm 1, on random MDP with state space =5, action space = 2,
learning rate 10ηk = βk = k−a
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Figure 4: Convergence Rate of Algorithm 1, on random MDP with state space =20, action space = 5,
learning rate ηk = βk = k−a.
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