
Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Mimoun Mohamed 1 2 François Malgouyres 3 Valentin Emiya 1 Caroline Chaux 4

Abstract
The straight-through estimator (STE) is com-
monly used to optimize quantized neural net-
works, yet its contexts of effective performance
are still unclear despite empirical successes. To
make a step forward in this comprehension, we
apply STE to a well-understood problem: sparse
support recovery. We introduce the Support Ex-
ploration Algorithm (SEA), a novel algorithm pro-
moting sparsity, and we analyze its performance
in support recovery (a.k.a. model selection) prob-
lems. SEA explores more supports than the state-
of-the-art, leading to superior performance in ex-
periments, especially when the columns of A are
strongly coherent. The theoretical analysis consid-
ers recovery guarantees when the linear measure-
ments matrix A satisfies the Restricted Isometry
Property (RIP). The sufficient conditions of recov-
ery are comparable but more stringent than those
of the state-of-the-art in sparse support recovery.
Their significance lies mainly in their applicability
to an instance of the STE.

1. Introduction
Straight-through estimator. The use of quantized neural
networks spares memory, energy, and computing resources
during inference, making them essential for embedding neu-
ral networks (Yuan & Agaian, 2023; Sayed et al., 2023). An
effective strategy is to learn the quantized weights. Seminal
works (Courbariaux et al., 2015; Hubara et al., 2016a) rely
on full-precision weights w that evolve in the parameter
space, while quantized weights wq = Hq(w) are obtained
by applying a piecewise-constant quantization operator Hq .

Denoting by F the computational chain from wq to the loss,

1Aix Marseille Univ, CNRS, LIS, Marseille, France 2Aix
Marseille Univ, CNRS, I2M, Marseille, France 3Institut de
Mathématiques de Toulouse ; UMR5219 , Université de Toulouse ;
CNRS , UPS IMT F-31062 Toulouse Cedex 9, France 4CNRS,
IPAL, Singapour. Correspondence to: Mimoun Mohamed
<mimoun.mohamed@lis-lab.fr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

the learning procedure Minimize
w

F (Hq (w)) relies on the
computational graph:

w Hq wq F loss

Given a step-size η, the update of w is performed as w ←
w − η ∂F

∂wq
|wq

. The motivation, as explained in (Hinton,

2012; Bengio et al., 2013), is that since ∂Hq

∂w |w is either
undefined or 0, we cannot backpropagate using the chain
rule ∂F◦Hq

∂w |w = ∂F
∂wq
|wq

∂Hq

∂w |w. The STE makes the coarse

approximation ∂F◦Hq

∂w |w ≈ ∂F
∂wq
|wq

to backpropagate the
gradient through the piecewise-constant operator Hq . Many
subsequent works improve these methods in various aspects
(Yuan & Agaian, 2023; Sayed et al., 2023).

Although STE achieves state-of-the-art performance in train-
ing quantized weights for neural networks, it is poorly un-
derstood and has not been investigated beyond the context
of quantization. We introduce an STE principle for sparsi-
fication, leading to a novel algorithm named the Support
Exploration Algorithm (SEA) and present experimental evi-
dence of its benefits in challenging, coherent settings such
as spike deconvolution, as well as in systematic experiments
like the phase transition diagram, see Figure 1. Addition-
ally, we establish theoretical guarantees for the STE-based
algorithm.

Figure 1. Overview of the main results. Left: phase transition
diagram showing the recovery limits in dimension n = 500 while
sparsity k and number of observations m varies (the higher, the
better, see details in Section 5.1). Right: spike deconvolution
in dimension m = n = 500 - Average distance between the
supports of the solution x∗ and the estimations obtained from
various algorithms, plotted against the sparsity level k (the lower,
the better, see details in Section 5.2).

1

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Sparse support recovery. For a sparsity k ∈ N, we as-
sume x∗ ∈ Rn is an unknown sparse vector of unknown
support S∗ = supp(x∗), of sparsity |S∗| ≤ k, A ∈ Rm×n

is a known matrix, and

y = Ax∗ + e ∈ Rm

is a linear observation of x∗, contaminated with an additive
error/noise e ∈ Rm.

The support recovery objective1, also coined variable or
model selection, searches for a support S with cardinality
at most k such that S∗ ⊆ S. We say that an algorithm
recovers S∗ if it finds such an S.

Using a least-square criterion

F (x) =
1

2
∥Ax− y∥22,

a famous model for support recovery is the optimization
problem with sparsity constraint:

Minimize
x∈Rn

F (x) s.t. ∥x∥0 ≤ k, (1)

where ∥x∥0 is the ℓ0 pseudo-norm of x. Problem (1) is
known to be NP-hard (Davis et al., 1997) and to recover the
correct support under mild conditions (Elad, 2010, Chapter
5.2.2).

Proposed STE-based approach for sparse recovery. Let
us define an unconstrained optimization problem which is
equivalent to problem (1) and whose structure is compatible
with the STE. We set

Minimize
X∈Rn

F (H (X)) (2)

where H is the sparsification operator2

H (X) ∈ argmin
x∈Rn

supp(x)⊆largestk(X)

1

2
∥Ax− y∥22. (3)

The equivalence between (1) and (2) is established in Ap-
pendix A.

Operator H is piece-wise constant and finds the non-zero
values in x, the sparse support being induced by dense
vector X . Formulation (2) has a similar structure as in
the quantization case presented above. It uses the suitable
loss F and the sparsification operator H in place of the
quantification operator Hq. Here, vector X is dense and

1The adaptation of the article to “signed support recovery” is
possible and is straightforward. We chose to simplify the presenta-
tion and not discuss sign recovery.

2In scenarios of interest, the minimization problem (3) has a
unique and easy to compute solution.

x = H(X) is k-sparse. Applying the STE to the new for-
mulation (2), we obtain the update X ← X − η ∂F

∂x |H(X),
for a step-size η > 0, where we have approximated
∂F◦H
∂X |X = ∂F

∂x |H(X)
∂H
∂X |X ≈

∂F
∂x |H(X). This leads to an

original algorithm for sparse recovery, based on the STE,
which we analyze in this article.

Contributions. The first contribution of the article is to
adapt the STE to the sparse support recovery problem (as ex-
plained above). Doing so, we obtain a new sparsity-inducing
algorithm that we call Support Exploration Algorithm (SEA).
It uses the full gradient history over iterations as a heuristic
in order to select the next support to optimize over. SEA is
supported by support recovery guarantees. In Theorem 4.1
and Corollary 4.2, the sufficient hypotheses guaranteeing
the support recovery are on the Restricted Isometry Property
(RIP) constants of A and x∗. These conditions are com-
parable to those in the state-of-the-art, albeit slightly more
stringent. Their interest mainly lies in the fact that they ap-
ply to an instance of STE, for which very few guarantees of
convergence exist. However, the successes of SEA observed
in the experiments extend to coherent problems where the
RIP hypothesis is no longer satisfied. Additional support re-
covery statements are in Theorem C.4 and in Corollary C.7
of Appendix C. The proofs are based on the interpretation
of SEA as a noisy version of an ‘Oracle algorithm’which is
analyzed in Appendix C.1.

The performances of SEA are compared to those of state-
of-the-art algorithms on: 1/ phase-transition synthetic ex-
periments for Gaussian matrices; 2/ spike deconvolution
problems; 3/ classification and regression problems for real
datasets. An important feature of SEA is that it can be used
as a post-processing to improve the results of existing algo-
rithms, as shown in the experiments. Also, because SEA has
the ability to explore more supports, it performs remarkably
well when the matrix A is coherent. The code is available
in the git repository of the project. 3

Organization of the article. Related works are detailed
in Section 2. Then, SEA is described in Section 3. The
theoretical analysis is in Section 4. The experiments are in
Section 5. Conclusions and perspectives are in Section 6.

In Appendices, a thorough comparison between SEA and
the most similar algorithms of the state-of-the-art is detailed
in Appendix B. Appendix B also details an efficient imple-
mentation of SEA. The proofs of the theoretical statements
as well as complementary support-recovery statements are
in Appendix C. Complementary experimental results are in
Appendices D, E, and F.

3https://gitlab.lis-lab.fr/valentin.
emiya/sea-icml-2024

2

https://gitlab.lis-lab.fr/valentin.emiya/sea-icml-2024
https://gitlab.lis-lab.fr/valentin.emiya/sea-icml-2024

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

2. Related Works
On the STE. Although STE achieves performances defin-
ing the state-of-the-art, it is poorly understood. In (Li et al.,
2017), the authors show that STE behaves well on convex
problems and that a stochastic variant of STE does not on
non-convex ones. For a two-layer linear neural network
with a quantized activation function, a well-chosen STE
converges to a critical point of the population risk (Yin et al.,
2019) or reproduces a teacher network (Long et al., 2021).
These are the only known formal guarantees for STE. Other
works study the large dimension geometry of binary weights
(Anderson & Berg, 2018). In (Helwegen et al., 2019) the
authors interpret w as an inertia variable and design a new
(related) algorithm. In (Cheng et al., 2018), the authors view
the STE as a projected Wasserstein gradient flow.

On sparse prior and support recovery. Sparse represen-
tations and sparsity-inducing algorithms are widely used
in statistics and machine learning (Hastie et al., 2015), as
well as in signal processing (Elad, 2010). For instance, in
machine learning, sparse representations are used to select
relevant variables. They are also sought to interpret trained
models. In signal processing, linear inverse problems have
a wide array of applications. The sparsity assumption is
ubiquitous since most real signals can be exactly or approxi-
mately represented as sparse signals in some domains, e.g.,
communication signals in Fourier space, natural images in
wavelet space. While sparse models are appealing, they
are hard to estimate due to the underlying combinatorial
difficulty of identifying the correct sparse support.

Our algorithm has been designed in a support recovery con-
text. In the noisy case e ̸= 0, support recovery is a stronger
guarantee than the one in the most standard compressed
sensing setting, initiated in (Candès et al., 2006; Donoho,
2006), when the goal is to upper-bound ∥x − x∗∥2, for a
well-chosen x. The first particularity of support recovery is
to assume x∗ is truly k-sparse – not just compressible. Also,
support recovery guarantees always involve a hypothesis
on mini∈S∗ |x∗

i |, in addition of the incoherence hypothesis
on A (Wainwright, 2009; Meinshausen & Bühlmann, 2006;
Zhao & Yu, 2006; Cai & Wang, 2011; Yuan et al., 2016).
We cannot indeed expect to recover an element i ∈ S∗ if
|x∗

i | is negligible when compared to all the other quantities
involved in the problem (Wainwright, 2009).

Support recovery models and algorithms. Beyond (1),
various algorithms were investigated. There are three
main families of algorithms: relaxation, combinatorial ap-
proaches, and greedy algorithms.

The most famous relaxed model uses the ℓ1 norm and is
known as the LASSO (Tibshirani, 1996) or Basis Pursuit Al-
gorithm (Chen et al., 2001). Combinatorial approaches like

Branch and Bound algorithms (Ben Mhenni et al., 2022),
find the global minimum of (1) but lack scalability. Greedy
algorithms can be divided into two categories. Greedy Pur-
suits like Matching Pursuit (MP) (Mallat & Zhang, 1993)
and Orthogonal Matching Pursuit (OMP) (Pati et al., 1993)
are algorithms that start from an empty support and build
up an estimate of x∗ by iteratively adding components to
the current support and optimizing the components. As for
thresholding algorithms like Iterative Hard Thresholding
(IHT) (Blumensath & Davies, 2009), Normalized Iterative
Hard Thresholding (NIHT) (Blumensath & Davies, 2010),
Hard Thresholding Pursuit (HTP) (Foucart, 2011), Com-
pressive Sampling Matching Pursuit (CoSaMP) (Needell
& Tropp, 2009), OMP with Replacement (OMPR) (Jain
et al., 2011), Exhaustive Local Search (ELS) (Axiotis &
Sviridenko, 2020) (a.k.a. Fully Corrective Forward Greedy
Selection with Replacement (Shalev-Shwartz et al., 2010))
and Subspace Pursuit (SP) (Dai & Milenkovic, 2009), they
start from any vector and add a replacement step in the it-
erative process. It allows them to explore various supports
before stopping at a local optimum.

Position of the article. In this work, we take a different
approach and apply the STE to a well-understood prob-
lem to compare its behavior, empirical performances, and
theoretical guarantees to those of the well-established state-
of-the-art.

Compared to other sparse support recovery algorithms, the
algorithm introduced in this article may belong to the family
of greedy algorithms. A clear difference is the introduc-
tion of a non-sparse vector X t ∈ Rn, which evolves during
the iterative process and indicates which support should be
tested at iteration t. We call X t the support exploration vari-
able. It is the analog of the full-precision weights – used by
BinaryConnect that also instantiates the STE – to optimize
binary weights of neural networks (Courbariaux et al., 2015;
Hubara et al., 2016b). We exhibit that the adaptation of STE
for sparsification enables a different exploration/exploitation
trade-off compared to the state-of-the-art. It explores more.
This permits to obtain better performances than the state-of-
the-art on very difficult –coherent– problems. We establish
that it is possible, in the sparse support recovery context, to
obtain theoretical guarantees for the STE.

3. Method
After clarifying the notations in Section 3.1, SEA is de-
scribed in detail in Section 3.2 and its computational com-
plexity is discussed in Section 3.3.

3.1. Notations

For any a, b ∈ R (a and b can be real numbers), the set
of integers between a and b is denoted by Ja, bK and ⌊a⌋

3

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

denotes the floor of a. For any set S ⊆ J1, nK, we denote
the cardinality of S by |S|. The complement of S in J1, nK
is denoted by S.

Given x ∈ Rn and i ∈ J1, nK, the ith entry of x is de-
noted by xi. The support of x is denoted by supp(x) =
{i : xi ̸= 0}. The ℓ0 pseudo-norm of x is defined by
∥x∥0 = |supp(x)|. The set containing the indices of the
k largest absolute entries of x is denoted by largestk (x).
When ties lead to multiple possible choices for largestk (x),
we select the solution with the highest indices. For instance,
largestk(0) = Jn− k + 1, nK.

For any S ⊆ J1, nK, A ∈ Rm×n, and x ∈ Rn, we define
x|S ∈ R|S|, the restriction of the vector x to the indices in
S, and AS ∈ Rm×|S|, the restriction of the matrix A to the
set S as the matrix composed of the columns of A whose
indexes are in S. The transpose of A is denoted by AT ∈
Rn×m. The pseudoinverse of A is denoted by A† ∈ Rn×m

and the pseudoinverse of AS by A†
S = (AS)

† ∈ R|S|×m.
For any d ∈ N, the identity matrix of size d is denoted by
Id. The symbol ⊙ denotes the Hadamard product.

3.2. The Support Exploration Algorithm

The proposed Support Exploration Algorithm (SEA) is
given in Algorithm 1. In terms of pseudocode, SEA re-
sembles many state-of-the-art algorithms and is close to
HTP and IHT (see comparison between SEA, HTP, and
IHT in Appendix B). However, it stands out from the oth-
ers for its exploratory behavior, which stems from the STE
principle behind it.

Algorithm 1 Support Exploration Algorithm
1: Input: noisy observation y, sampling matrix A, sparsity

k, step size η
2: Output: sparse vector x
3: Initialize X 0

4: t← 0
5: repeat
6: St ← largestk (X t)

7:

{
xt
i ← 0 for i ∈ St

xt
St ← A†

Sty

8: X t+1 ← X t − ηAT (Axt − y)
9: t← t+ 1

10: until halting criterion is true
11: tBEST ← argmin

t′∈J0,tK
∥Axt′ − y∥22

12: return xtBEST

Each iteration begins by the foward pass given by (3), in
which the current sparse solution xt is computed by apply-
ing the sparsification operator H to a dense vector X t: after
selecting the support St from X t at line 6, the sparse solu-
tion xt = H(X t) is computed at line 7. The backward pass

uses the STE principle

∂F ◦H
∂X

|X t ≈ ∂F

∂x
|xt = AT (Axt − y),

at line 8. To illustrate with the analogy with BinaryConnect
(Courbariaux et al., 2015), the non-sparse vector X is the
analog of the full-precision weights and H(X) is the analog
of the quantized weights. To the best of our knowledge, this
is the first use of the STE to solve a sparse linear inverse
problem.

The key idea is that support St is designated at line 6 by a
non-sparse variable X t called the support exploration vari-
able. It offers an original mechanism to explore supports
in a more diverse way than existing algorithms. Variable
X t+1 = X 0 − η

∑t
t′=0 A

T (Axt′ − y) is actually an ac-
cumulation of gradients taken in the sparse iterates and is
used to designate the support of the next sparse iterate xt+1.
Consequently, unlike other descent-based algorithms, X t is
not confined to the neighborhood of k-sparse vectors. Its
evolution is not intended to make the objective function
decrease at each iteration. In this regard, since the algo-
rithm explores supports in a way that allows the functional
to sometimes increase, the retained solution is the best one
encountered along the iterations (line 11). Illustrations of
this phenomenon are given in Appendix E.2 where one can
see that the behavior of the loss along the iterations shows
important variations when a new support is explored. This
is an important difference with the aforementioned state-of-
the-art algorithms, resulting in increased exploration.

An important feature of SEA is that it can be used as a
post-processing of the solution x̂ of another algorithm. This
is simply done by initializing X 0 = x̂. In this case S0 =
supp(x̂) (line 6) and x0 improves or is equal to x̂ (line 7).
In the experiments, we have investigated the initialization
with the result of OMP (Pati et al., 1993), ELS (Axiotis
& Sviridenko, 2020; Shalev-Shwartz et al., 2010) and the
initializationX 0 = 0. We observe that the initialization with
ELS is generally preferable except for difficult problems,
when columns of A are very coherent (see Section 5.2).

Finally, as often, there are many possible strategies to design
the halting criterion of the ’repeat’ loop of Algorithm 1. It
is clear that a more permissive criterion allows for more
exploration and better results, at the expense of computation
time. We have not investigated this aspect in the experiments
and leave this study for the future. We preferred to focus
our experiments on the illustration of the potential benefits
of SEA and, as a consequence, we always used a large fixed
number of passes in the ’repeat’ loop of Algorithm 1.

Similarly, since we haveX t = X 0−η
∑t−1

t′=0 A
T (Axt′−y)

for all t ≥ 1, η has no impact on St and xt when X 0 =
0 and therefore on the output xtBEST of Algorithm 1 as
largestk(X t) does not depend on η. In this case, indeed,

4

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

the whole trajectory (X t)t∈N is dilated by η > 0 and the
dilation has no effect on the selected supports St. When
X 0 ̸= 0, the initial support exploration variable is forgotten
as the iterations progress. It is forgotten more rapidly when
η increases. We have not studied the tuning of this parameter
in depth, leaving it for future research.

3.3. Computational Complexity

An efficient implementation of SEA is described in Ap-
pendix B.2. The analysis of the computational complexity
of SEA is based on two facts. First, if the support St ob-
tained at line 6 has already been explored, then the sparse
vector xt and the gradient ηAT (Axt−y) have already been
computed. So, if these quantities have been memorized (as
in Algorithm 5, Appendix B.2), the cost of the iteration is
negligible. The overall cost thus depends on the number of
explored supports rather than on the number of iterations.
Second, each time a new support is extracted, the cost of the
iteration is dominated by solving the (unconstrained) linear
system AT

StAStxSt = AT
Sty. While the pseudo-inverse is a

convenient notation at line 7, the solution may be obtained
more efficiently, e.g. in O(k2n) to compute AT

StASt and
AT

Sty, and apply the conjugate gradient algorithm. The
overall complexity is thus in O(nsuppk

2n) where nsupp is
the number of supports actually explored.

The complexity of HTP, OMP, OMPR and ELS is also dom-
inated by the number of times AT

SASxS = AT
Sy is solved

for S such that |S| = k. As for SEA, efficient implemen-
tations of HTP, OMPR and ELS can save computations by
storing all the explored support and related iterates. The
HTP, OMP and OMPR then depend on the number of ex-
plored supports in a similar way as SEA. The OMP solves
k instances of them which results in less exploration and
less computational cost. The ELS is much more demanding
since it explores (n− k) supports at each iteration, many of
which are irrelevant. IHT has a lower complexity than SEA
since it never inverses the system AT

SASxS = AT
Sy.

As we will see in the deconvolution experiments in Sec-
tion 5.2, SEA outperforms ELS (see Figure 4) while explor-
ing two times less supports (see Appendices E.2 and E.3).
The possibility of performing a random search with the
same computational cost as SEA has been studied in Ap-
pendix E.11.

4. Theoretical Analysis
In this section, we provide the theorem stating that SEA
recovers the correct support for some4 x∗ when the matrix A
satisfies a RIP constraint. Then, we compare the conditions
with existing support recovery conditions for state-of-the-

4In particular it is necessary that mini∈S∗ |x∗
i | is sufficiently

large.

art algorithms. In addition to the statements in this section,
recovery statements are given in Appendices C. The interest
of the theorems lies mainly in the fact that they apply to
an instance of STE, for which guarantees are rare. From
the practitioner’s point of view, the theoretical analysis is
not useful since SEA mostly shows promises in coherent
scenarios in which the RIP hypothesis is not satisfied.

In this section, we assume that columns of A are normalized:
for any i ∈ J1, nK, ∥Ai∥2 = 1. As has been standard
practice since Candès and Tao first proposed it in (Candes
& Tao, 2005), we define for all l ∈ J1, nK the lth Restricted
Isometry Constant of A as the smallest non-negative number
δl such that for any x ∈ Rn, such that ∥x∥0 ≤ l,

(1− δl)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δl)∥x∥22. (4)

If δl < 1, A is said to satisfy the Restricted Isometry Prop-
erty of order l or the l-RIP.

In this section, we assume that A satisfies the (2k + 1)-RIP.
In the scenarios of interest, δ2k+1 is small. We define

αRIP

k = δ2k+1

(
δ2k

1− δk
+ 1

)
∈ R∗

+

and γRIP

k = δ2k+1

√
1 + δk
1− δk

+ 1 ∈ R∗
+. (5)

As soon δk is far from 1 (for example δk ≤ 1
2), αRIP

k has
the order of magnitude of δ2k+1 (in the example δ2k+1 ≤
αRIP
k ≤ 3δ2k+1) and γRIP

k has the order of magnitude
of 1 + δ2k+1 (in the example (1 + δ2k+1) ≤ γRIP

k ≤√
6(1 + δ2k+1)).

As is typical of support recovery statements, the next theo-
rem includes a condition on x∗. We call this condition the
Recovery Condition for the RIP case (RCRIP). It is defined
by

γRIP

k ∥e∥2 <
mini∈S∗ |x∗

i |
2k

− αRIP

k ∥x∗∥2. (RCRIP)

Theorem 4.1 (Recovery - RIP case). Assume A satisfies the
(2k + 1)-RIP and5 for all i ∈ J1, nK, ∥Ai∥2 = 1. Assume
moreover that x∗ satisfies (RCRIP).

5The normalization aims at simplifying formulas by guaran-
teeing that δ1 = 0. It is done at no expense since, if A is not
normalized but satisfies (4) for l > 1, its normalization only has
a small impact on δl. Indeed, considering ∆ ∈ Rn×n diagonal
such that ∆i,i = ∥Ai∥2, A∆−1 is normalized and for all l-sparse
vector x

(1− δl)∥∆−1x∥22 ≤ ∥A∆−1x∥22 ≤ (1 + δl)∥∆−1x∥22.

Using 1− δ1 ≤ ∥Ai∥22 ≤ 1 + δ1, we can derive l-RIP constants
for the normalized matrix A∆−1.

5

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Then for all initializations X 0 and all η > 0, there exists
ts ≤ TRIP such that S∗ ⊆ Sts , where

TRIP =
2k ∥X 0∥∞

η + (k + 1)mini∈S∗ |x∗
i |

mini∈S∗ |x∗
i | − 2k (αRIP

k ∥x∗∥2 + γRIP

k ∥e∥2)
.

(6)

If moreover, x∗ is such that

min
i∈S∗
|x∗

i | >
2√

1− δ2k
∥e∥2 (7)

and SEA performs more than TRIP iterations, then S∗ ⊆
StBEST and ∥xtBEST − x∗∥2 ≤ 2√

1−δk
∥e∥2.

The proof is in Appendix C. To introduce the proof and
provide the main intuition, we first detail in Appendix C.1
a theorem and its proof stating that a variant of the support
exploration algorithm, see Algorithm 6, using the oracle
update rule defined by X t+1 ← X t − ut where for all
i ∈ J1, nK

ut
i =

{
−ηx∗

i i ∈ S∗ ∩ St

0 i ∈ S∗ ∪ St,

always recovers the true support S∗. This update rule de-
pends on x∗ and has no practical application. Its interest
lies in providing an ‘ideal’ update rule that allows for the
fast recovery of the true support, as seen in Theorem C.1.

The intuition behind the success of the oracle update rule is
that the non-zero entries of ut

i are for indices i from the true
support S∗ but for which |X t

i | is too small to be selected
in St at line 6. Whatever the initial content of X 0, the
oracle update rule always adds the same increment to X t

i ,
for i ∈ S∗ ∩ St, and those for i ∈ S∗ never change. This
guarantees that, at some subsequent iteration t′ ≥ t, the true
support S∗ is recovered among the k largest absolute entries
in X t′ , i.e., S∗ ⊆ St′ .

The proof of Theorem 4.1 relies on measuring the devia-
tion of the trajectory (X t)t∈N defined by Algorithm 1 from
the trajectory defined with the oracle update rule. More
precisely, in Theorem C.4 of Appendix C.2, we provide a
sufficient condition on the discrepancy between the oracle
update and the STE-update guaranteeing that SEA visits the
true support S∗. Then, in Appendix C.4, we establish that
the hypotheses of Theorem 4.1 ensure that the discrepency is
sufficiently small to satisfy the hypothesis of Theorem C.4.

We also establish in Corollary C.7 of Appendix C.3 that
when the columns of A are orthonormal and e = 0, SEA
recovers x∗ in less than k + 1 iterations. Despite being
a sanity check with no interest in applications, this result
provides a meaningful case where the oracle update rule and
the STE update rule coincide.

We emphasize that none of the proofs rely on the fact that
a function decays. In particular, as will be illustrated in

the experiments, (F (H(X t)))t∈N generally exhibits erratic
behavior. This is because, by construction in Algorithm 1,
the next support, designated by X t+1, is not restricted to
supports for which F ◦H decays. SEA explores more sup-
ports than algorithms with this restriction and, for instance,
does not get trapped in local minima.

Let us now discuss TRIP . When (RCRIP) holds, TRIP in-
creases as mini∈S∗ |x∗

i | − 2k (αRIP

k ∥x∗∥2 + γRIP

k ∥e∥2) de-
creases. In particular, the number of iterations required by
the algorithm to provide the correct solution increases when
the information on some of the columns of S∗ diminishes,
i.e. when mini∈S∗ |x∗

i | decreases. Also, the initializations
X 0 ̸= 0 have an apparent negative impact on the number of
iterations required in the worst case. This is because in the
worst-case X 0 is poorly chosen and SEA needs iterations to
correct this poor choice.

When the conditions of Theorem 4.1 are met, any X 0 and η
permit the recovery of S∗. X 0 and η only influence TRIP .
In this regard, since the larger η, the faster SEA overrides
the initialization X 0, the choice of η is very much related to
the question of the quality of the initialization. The latter is
often beneficial in practice.

To illustrate (RCRIP), we provide below a simplified con-
dition which is shown in Corollary 4.2 to be stronger than
(RCRIP) in the noiseless scenario. We say x∗ satisfies the
Simplified Recovery Condition in the RIP case if there exists
Λ ∈ (0, 1) such that

2kαRIP

k

∥x∗∥2
mini∈S∗ |x∗

i |
≤ Λ. (RCSRIP)

Corollary 4.2 (Noiseless recovery - simplified RIP case).
Assume ∥e∥2 = 0, A satisfies the (2k + 1)-RIP and for all
i ∈ J1, nK, ∥Ai∥2 = 1.

If moreover x∗ satisfies (RCSRIP), then x∗ satisfies (RCRIP).
As a consequence, for X 0 = 0 and for all η > 0, if SEA
performs more than TSRIP = k+1

1−Λ iterations, we have S∗ ⊆
StBEST and xtBEST = x∗.

The proof is in Appendix C.5.

Compared to the support recovery guarantees for the
LASSO (Wainwright, 2009; Meinshausen & Bühlmann,
2006; Zhao & Yu, 2006), the OMP (Cai & Wang, 2011), the
HTP (Foucart, 2011; Yuan et al., 2016) and the ARHT (Axi-
otis & Sviridenko, 2020) the recovery conditions provided
in Theorem 4.1 and Corollary 4.2 for SEA are stronger. All
conditions involve a condition on the incoherence of A and a
condition similar to (7). In the case of the LASSO algorithm,
the latter is not very explicit. However, none of the support
recovery conditions involve a condition like (RCRIP) and
(RCSRIP). Let elaborate on these two conditions.

One notable limitation of (RCRIP) and (RCSRIP) is that if

6

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

αRIP
k ̸= 0, there is no guarantee of recovering the support

of an x∗ such that maxi∈S∗ |x∗
i | ≫ mini∈S∗ |x∗

i |. In fact,
by increasing x∗

j for j ∈ S∗ such that |x∗
j | ≠ mini∈S∗ |x∗

i |,
we can maintain mini∈S∗ |x∗

i | unchanged while sufficiently
increasing ∥x∗∥2, causing (RCRIP) and (RCSRIP) to fail.
We do not have this problem with conditions similar to (7).
We experimented on the influence of ∥x∗∥2

mini∈S∗ |x∗
i |

on the
recovery performances in Appendix E.9.

Another critical question arises: What (necessary and suf-
ficient) condition on αRIP

k , γRIP
k and ∥e∥2 ensures the

existence of x∗ satisfying (RCRIP) or (RCSRIP)?

To answer this question for the condition (RCRIP), we first
remark that there exists x∗ satisfying (RCRIP) if and only
if there exists some constant c ∈ R and x∗, such that for
all i ∈ S∗, x∗

i = c, satisfying (RCRIP). Indeed, if x∗

satisfies (RCRIP), we take c = mini∈S∗ |x∗
i | and the vec-

tor x̃∗ defined by x̃∗
i = mini∈S∗ |x∗

i | for all i ∈ S∗, and
x̃∗
i = 0 for all i ̸∈ S∗ also satisfies (RCRIP), since we have

mini∈S∗ |x̃∗
i | = mini∈S∗ |x∗

i | and ∥x̃∗∥2 ≤ ∥x∗∥2.

We can rewrite (RCRIP) when for all i ∈ S∗, x∗
i = c for

some constant c ∈ R and obtain

γRIP

k ∥e∥2 < |c|

(
1− 2kαRIP

k |S∗| 12
2k

)
.

The existence of c ∈ R such that this condition holds
only depends on the sign of 1 − 2kαRIP

k |S∗| 12 . If 1 −
2kαRIP

k |S∗| 12 ≤ 0, there does not exist any c satisfying the
condition; if 1− 2kαRIP

k |S∗| 12 > 0, any c ∈ R satisfying

|c| ≥

(
2kγRIP

k

1− 2kαRIP

k |S∗| 12

)
∥e∥2

leads to an x∗ that satisfies (RCRIP). Therefore, when
|S∗| = k, the condition αRIP

k < 1
2k

− 3
2 is necessary and

sufficient to guarantee the existence of an x∗ satisfying
(RCRIP). Similar developments concerning (RCSRIP) are
provided in Appendix C.6.

We remind that αRIP

k has the order of magnitude of δ2k+1.
Therefore, the condition is αRIP

k < 1
2k

− 3
2 is more strin-

gent than the equivalent conditions for other state-of-the-art
methods. For instance, the conditions described in (Axi-
otis & Sviridenko, 2020) are of the form δ2k < C, for a
universal constant C < 1.

Initializing SEA with the solution of an algorithm enjoying
better conditions of recovery is a simple and effective way
for SEA to inherit its support recovery guarantee as soon as
(7) holds. This can formally be proved using the same proof
as in Appendix C.4.3.

As will be seen later in the experiments of Section 5, SEA
performs well even when A is coherent. This is not ex-
plained by Theorem 4.1 and Corollary 4.2 which use the

RIP assumption. The main interest of the above theoretical
results lies in the fact that they apply to an instance of the
STE. Another theory needs to be developed to explain the
good behavior of SEA for sparse support recovery when A
is coherent.

5. Experimental Analysis
We compare SEA to state-of-the-art algorithms on two tasks
in the noisy setting: phase transition diagrams (Section 5.1
and Appendix D) and spike deconvolution problems for
signal processing (Section 5.2 and Appendix E). For com-
pleteness, additional comparisons between SEA and state-
of-the-art algorithms for linear and logistic regression tasks
in supervised learning settings are provided in Appendix F.

The tested algorithms are Iterative Hard Thresholding
(IHT) (Blumensath & Davies, 2009), Hard Thresholding
Pursuit (HTP) (Foucart, 2011), Orthogonal Matching Pur-
suit (Mallat & Zhang, 1993; Pati et al., 1993), OMP with
Replacement (OMPR) (Jain et al., 2011) and Exhaustive Lo-
cal Search (ELS) (Axiotis & Sviridenko, 2020). OMPR and
ELS are initialized with the solution of OMP. Three versions
of SEA are studied: the cold-start version SEA0, where SEA
is initialized with the null vector, and the warm-start ver-
sions SEAELS and SEAOMP, where SEA is initialized with
the solutions of ELS and OMP, respectively. We have also
studied HTP and IHT initialized with OMP and ELS. They
are called HTPOMP, HTPELS, IHTOMP and IHTELS.

For all algorithms, each least-square projection for a fixed
support, as in Line 7 of Algorithm 1, is solved using the
conjugate gradient descent of SciPy (Virtanen et al., 2020).
For all algorithms, 256k iterations are performed. The re-
sults of HTP and to a lesser extent IHT and SEA depend
on the choice of the step size. For the sake of fairness of
the comparison with OMP, OMPR and ELS, we did not
optimize the choice of the step size. The step size of SEA,
HTP, and IHT is arbitrarily6 fixed to η = 1.8

L , where L is
the spectral radius of A. The columns of A are normalized
before solving the problem. The sparse vector x∗ ∈ Rn

is random. Indexes of the support are randomly picked,
uniformly without replacement. The non-zero entries of x∗

are drawn uniformly in [−2,−1] ∪ [1, 2] as in (Elad, 2010).
The noise e is drawn uniformly using the same method as
described in (Blanchard & Tanner, 2015). Their detailed de-
scriptions are in the next two sections. For each experiment,
the metrics used for performance evaluation are defined in
the corresponding subsection. The code is implemented in

6We do not report further experiments for η ∈ { 2l

L
| for l =

J−3,+3K} that do not significantly alter the results in terms of
running time, stability, performance, and do not impact our con-
clusions on phase transition diagrams. Variation of the step size
for IHT and HTP in the deconvolution experiment is reported in
Appendix E.10 and does not impact our conclusions.

7

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 2. Phase transition diagram: each curve is the threshold
below which the related algorithm recovers at least 95% of the
supports. ζ denotes the ratio between the number of rows and
the number of columns in A while ρ denotes the ratio between
the sparsity and the number of rows in A. Matrix A have i.i.d.
standard Gaussian entries and non-zero entries in x∗ are drawn
uniformly in [−2,−1] ∪ [1, 2]. n = 500 is fixed and results are
obtained from 1000 runs.

Python 3 and is available in the git repository of the project 7.
As explained in Section 3.3 and in Appendix B.2, the com-
putational cost of SEA mainly depends on the number of
explored supports. The illustration related to the number of
explored supports for a fixed number of iterations and the
efficiency of the exploration can be found in Appendix E.3.

5.1. Phase Transition Diagram Experiment

Introduced by Donoho and Tanner (Donoho & Tanner, 2009)
and used in compressed sensing (Donoho et al., 2009; Fou-
cart et al., 2013), phase transition diagrams show the re-
covery limits of an algorithm depending on the undersam-
pling/indeterminacy ζ = m

n of A, and the sparsity/density
ρ = k

m of x∗.

We fix n = 500, m takes 18 values in J1, nK and k all
values in J1, 0.5mK. For each triplet (m,n, k) and each
algorithm, we run r = 1000 experiments (described below)
to assess the success rate sζ,ρ

r of the algorithm, where sζ,ρ
is the number of problems successfully solved. A problem
is considered successfully solved if the support of the output
of the algorithm is equal to S∗. For each run, the entries
of A ∈ Rm×n are drawn independently from the standard
normal distribution. The restricted isometry constants are
poor when ζ = m

n is small and improve when m grows (Bah
& Tanner, 2014). The noise e is drawn uniformly from the
sphere of radius 0.01∥Ax∗∥2 in Rm.

Figure 2 shows results from this experiment. Each curve

7https://gitlab.lis-lab.fr/valentin.
emiya/sea-icml-2024

indicates the threshold below which the algorithm has a
success rate larger than 95%. The higher the curve, the bet-
ter. We see that OMP, HTP and IHT achieve poor recovery
successes. The smooth, decreasing part of the HTP and IHT
curves on the left is an artifact due to the discrete values
of (m,n, k) and actually corresponds to a phase transition
located at k = 1. SEA0 outperforms OMP, HTP and IHT
when m

n < 0.6. All the OMP-initialized algorithms (in
blue) improve OMP performance except in the most co-
herent cases (mn < 0.2) where HTPOMP and IHTOMP fail
while SEAOMP exhibits the best improvement. Contrary
to HTPELS and IHTELS, SEAELS (in red) improves further
ELS performances and outperforms the other algorithms
for all m

n . The main improvements are when m
n is small

(mn < 0.4), i.e., for the most coherent matrices A. Thus,
SEA refines a good support candidate into a better one by
exploring new supports and achieves recovery for higher
values of sparsity k than competitors. The actual superiority
of SEAELS and SEAOMP for coherent matrices (mn < 0.3) is
a major conclusion from this experiment and illustrates its
ability to successfully explore supports in difficult problems
where competitors fail. We study the noiseless setup (i.e.,
e = 0) in Appendix D.

5.2. Deconvolution Experiment

Deconvolution purposes arise in many signal processing
areas such as microscopy or remote sensing. Of particular
interest is the deconvolution of sparse signals, also known as
point source deconvolution (Bernstein & Fernandez-Granda,
2019) or spike deconvolution (Duval & Peyré, 2015; Duval
& Peyré, 2017), assuming the linear operator is known (con-
trary to blind approaches (Kuo et al., 2019)). The objective
is to recover spike positions and amplitudes.

We set n = 500, a convolution matrix A corresponding to
a Gaussian filter with a standard deviation equal to 3. The
coherence of matrix A is maxi ̸=j |AT

i Aj | = 0.97, resulting
in very difficult problems for which the support recovery
theorems do not apply. For each sparsity level k ∈ J1, 50K,
every algorithm is tested on r = 200 distinct problems cor-
responding to different k-sparse vectors x∗. The maximal
number of iterations is 1000, for all algorithms. The noise
e is drawn uniformly from the sphere of radius 0.1∥Ax∗∥2
of Rm, aiming for a signal-to-noise ratio of 20dB. Cases
where sparsity is wrongly estimated and noise is stronger or
applied differently are studied in Appendices E.6 to E.8.

Figure 3 illustrates the results for a 20-sparse vector x∗

restricted to a crowded area of the full signal (the later being
depicted in Appendix E.1). Generally speaking, isolated
spikes are recovered by almost all algorithms. However,
algorithms often fail to accurately identify spikes when
they are close to each other. For instance, ELS, OMP and
OMPR falsely detect entries in the highest energetic part

8

https://gitlab.lis-lab.fr/valentin.emiya/sea-icml-2024
https://gitlab.lis-lab.fr/valentin.emiya/sea-icml-2024

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 3. Spike deconvolution: representation of an instance of x∗

and y with the solutions provided by the algorithms when k = 20.
This is a cropped version of a crowded area (spikes are close).

Figure 4. Spike deconvolution: average support distance between
S∗ and the support of the solutions provided by several algorithms
as a function of the sparsity level k.

of the signal (around position 400) and are trapped in a
local minimum. SEA0, SEAOMP, and SEAELS recover the
original signal with a better precision than its competitors.
It is worth mentioning that only SEA recovers perfectly
this signal in the noiseless settings (see Appendix E.5.2).
To illustrate the exploratory behavior of SEA, we show in
Appendix E.2, the evolution of ∥Axt − y∥2 when t and the
number of explored supports varies, for the experiment of
Figure 3.

On Figure 4, for each algorithm and for all k ∈ J1, 50K, we
display the support distance metric (Elad, 2010) averaged
over r = 200 runs and defined by

distsupp(x) =
k − |S∗ ∩ supp(x)|

k
(8)

(the lower the distance, the better). For all considered spar-
sity values, SEA0, SEAOMP, and SEAELS outperform the
other algorithms. SEA improves OMP and ELS results
while they are never enhanced by HTP nor IHT (curves are
superimposed). Note that for small k, IHT shows poor per-
formance because it assigns several neighboring elements of
the support to the largest peak of y and fails to correct this

error afterward. As k increases, due to the increasing diffi-
culty of the problem, the algorithms are gradually becoming
unable to recover S∗. Using a cold-start strategy, SEA0 is
here the best performing algorithm. The analyses conducted
in Appendix E.3 indicate that the exploration carried out by
SEA can be more efficient than the support element swaps
performed by ELS. These experiments also suggest that a
warm-start strategy, such as SEAELS or SEAOMP, may lead
the algorithm to get trapped in a local minimum. The choice
of the best strategy appears to depend on the quality of the
initialization. We recommend selecting it based on empir-
ical performance. The same conclusions are drawn when
using additional metrics (Appendix E.4) and in the noiseless
case (Appendix E.5).

6. Conclusions and Perspectives
In this article, we proposed SEA: a new principled algorithm
for sparse support recovery, based on STE. Experiments
show that SEA supplements state-of-the-art algorithms and
outperforms them in particular when A is coherent, thanks
to its better exploration ability. Indeed, SEA initialized
with the output of ELS is generally a good strategy to try
to improve recovery results. Nonetheless, the cold-start
strategy where SEA is initialized at 0 may also be profitable:
it is the best setting in problems with very coherent matrices
like in the deconvolution experiment. Understanding which
strategy should be preferred remains an open question.

We established guarantees when the matrix A satisfies the
RIP, which we hope gives new insight on the STE. The
theoretical guarantees involve conditions on x∗ that are not
present for similar statements for other algorithms and that
might restrict their applicability. Improving the theoretical
analysis in the following directions are promising perspec-
tive. The algorithm perform well when A is coherent: this
is not explained by the current theoretical analysis which
only applies to matrices satisfying the RIP. Checking ex-
plicitly RIP conditions being NP-hard (Tillmann & Pfetsch,
2014), we will investigate theoretical guarantees based on
mutual incoherence (Donoho & Huo, 2001). Also it would
be interesting to adapt the strategy developed for obtain-
ing the theoretical guarantees to other contexts, such as the
optimization of quantized neural networks.

Finally, this paper opens up broader perspectives. The pro-
posed STE is a deterministic approach for support explo-
ration and may also be compared to or extended by the use
of stochastic heuristics. Also, it would be of interest to
study, either theoretically or numerically, the behavior of
SEA in the compressed sensing setting. There are many
perspectives of SEA and STE applications to sparse inverse
problems such as sparse matrix factorization, tensor prob-
lems, as well as real-world applications such as in biology
and astronomy.

9

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgement
F. Malgouyres gratefully acknowledges the support of IRT
Saint Exupéry and the DEEL project8 and thanks Franck
Mamalet for all the discussions on the STE.

M. Mohamed was supported by a PhD grant from “Em-
ploi Jeunes Doctorants (EJD)” plan which is funded by the
French institution “Conseil régional Provence-Alpes-Côte
d’Azur” and Euranova France. M. Mohamed gratefully
acknowledges their financial support.

References
Anderson, A. G. and Berg, C. P. The high-dimensional

geometry of binary neural networks. In International
Conference on Learning Representations, 2018.

Axiotis, K. and Sviridenko, M. Sparse convex optimization
via adaptively regularized hard thresholding. In Proc.
Int. Conf. Mach. Learn., volume 119 of Proceedings of
Machine Learning Research, pp. 452–462. PMLR, 13–18
Jul 2020.

Bah, B. and Tanner, J. Bounds of restricted isometry con-
stants in extreme asymptotics: formulae for Gaussian
matrices. Lin. Algebra Appl., 441:88–109, 2014.

Ben Mhenni, R., Bourguignon, S., and Ninin, J. Global
optimization for sparse solution of least squares problems.
Optim. Methods Softw., 37(5):1740–1769, 2022.

Bengio, Y., Léonard, N., and Courville, A. Estimating
or propagating gradients through stochastic neurons for
conditional computation. CoRR, arXiv:1308.3432, 2013.

Bernstein, B. and Fernandez-Granda, C. Deconvolution
of point sources: A sampling theorem and robustness
guarantees. Comm. Pure Appl. Math., 72(6):1152–1230,
2019.

Blanchard, J. D. and Tanner, J. Performance comparisons
of greedy algorithms in compressed sensing. Numerical
Linear Algebra with Applications, 22(2):254–282, 2015.

Blumensath, T. and Davies, M. E. Iterative hard thresh-
olding for compressed sensing. Appl. Comput. Harmon.
Analysis, 27(3):265–274, 2009. ISSN 1063-5203.

8https://www.deel.ai/

Blumensath, T. and Davies, M. E. Normalized iterative
hard thresholding: Guaranteed stability and performance.
IEEE J. Sel. Topics Signal Process., 4(2):298–309, 2010.

Cai, T. T. and Wang, L. Orthogonal matching pursuit for
sparse signal recovery with noise. IEEE Trans. Inform.
Theory, 57(7):4680–4688, 2011.

Candes, E. J. and Tao, T. Decoding by linear programming.
IEEE Trans. Inform. Theory, 51(12):4203–4215, 2005.

Candès, E. J., Romberg, J., and Tao, T. Robust uncertainty
principles: Exact signal reconstruction from highly in-
complete frequency information. IEEE Trans. Inform.
Theory, 52(2):489–509, 2006.

Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic
decomposition by basis pursuit. SIAM Rev., 43(1):129–
159, 2001.

Cheng, P., Liu, C., Li, C., Shen, D., Henao, R., and Carin,
L. Straight-through estimator as projected wasserstein
gradient flow. In Third workshop on Bayesian Deep
Learning (NeurIPS), 2018.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-
nect: Training deep neural networks with binary weights
during propagations. In Adv. Neural Inf. Process. Syst.,
volume 28, pp. 3123–3131, Montreal, Quebec, Canada,
Dec. 7–12 2015.

Dai, W. and Milenkovic, O. Subspace pursuit for compres-
sive sensing signal reconstruction. IEEE Trans. Inform.
Theory, 55(5):2230–2249, 2009.

Davis, G., Mallat, S., and Avellaneda, M. Adaptive greedy
approximations. Constr. Approx., 13(1):57–98, 1997.

Donoho, D. and Huo, X. Uncertainty principles and ideal
atomic decomposition. IEEE Trans. Inform. Theory, 47
(7):2845–2862, 2001.

Donoho, D. and Tanner, J. Observed universality of phase
transitions in high-dimensional geometry, with implica-
tions for modern data analysis and signal processing. Phil.
Trans. R. Soc. A, 367(1906):4273–4293, 2009.

Donoho, D. L. Compressed sensing. IEEE Trans. Inform.
Theory, 52(4):1289–1306, 2006.

Donoho, D. L., Maleki, A., and Montanari, A. Message-
passing algorithms for compressed sensing. Proceedings
of the National Academy of Sciences, 106(45):18914–
18919, 2009.

Duval, V. and Peyré, G. Sparse spikes super-resolution on
thin grids I: the LASSO. Inverse Problems, 33(5):055008,
2017.

10

https://www.deel.ai/

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Duval, V. and Peyré, G. Exact support recovery for sparse
spikes deconvolution. Found. Comput. Math., 15(5):1315–
1355, 2015.

Elad, M. Sparse and Redundant Representations. Springer
New York, NY, 1 edition, 2010.

Foucart, S. Hard thresholding pursuit: an algorithm for
compressive sensing. SIAM J. Numer. Anal., 49(6):2543–
2563, 2011.

Foucart, S., Rauhut, H., Foucart, S., and Rauhut, H. An
invitation to compressive sensing. Springer, 2013.

Hastie, T., Tibshirani, R., and Wainwright, M. Statistical
Learning with Sparsity. Chapman and Hall/CRC, May
2015.

Helwegen, K., Widdicombe, J., Geiger, L., Liu, Z., Cheng,
K.-T., and Nusselder, R. Latent weights do not exist:
Rethinking binarized neural network optimization. Ad-
vances in neural information processing systems, 32,
2019.

Hinton, G. E. Neural networks for machine learning. Cours-
era, video lectures, 2012. Lecture 15b.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks. Advances in
neural information processing systems, 29, 2016a.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks. Adv. Neural Inf.
Process. Syst., 29, Dec. 5–10 2016b.

Jain, P., Tewari, A., and Dhillon, I. Orthogonal matching
pursuit with replacement. Adv. Neural Inf. Process. Syst.,
24, Dec. 12–17 2011.

Kuo, H.-W., Lau, Y., Zhang, Y., and Wright, J. Geometry
and symmetry in short-and-sparse deconvolution. In Proc.
Int. Conf. Mach. Learn., volume 97 of Proceedings of
Machine Learning Research, pp. 3570–3580. PMLR, 09–
15 Jun 2019.

Li, H., De, S., Xu, Z., Studer, C., Samet, H., and Goldstein,
T. Training quantized nets: A deeper understanding. In
Advances in Neural Information Processing Systems, pp.
5811–5821, 2017.

Long, Z., Yin, P., and Xin, J. Learning quantized neural nets
by coarse gradient method for nonlinear classification.
Research in the Mathematical Sciences, 8:1–19, 2021.

Mallat, S. G. and Zhang, Z. Matching pursuits with time-
frequency dictionaries. IEEE Trans. Signal Process., 41
(12):3397–3415, 1993.

Meinshausen, N. and Bühlmann, P. High-dimensional
graphs and variable selection with the Lasso. Ann. Statist.,
34(3):1436–1462, 2006.

Needell, D. and Tropp, J. A. CoSaMP: Iterative signal
recovery from incomplete and inaccurate samples. Appl.
Comput. Harmon. Analysis, 26(3):301–321, 2009.

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. Orthogo-
nal matching pursuit: Recursive function approximation
with applications to wavelet decomposition. In Proc.
Asilomar Conf. Signal Syst. Comput., volume 1, pp. 40–
44, Pacific Grove, CA, USA, 1993. IEEE.

Sayed, R., Azmi, H., Shawkey, H. A., Khalil, A. H., and
Refky, M. A systematic literature review on binary neural
networks. IEEE Access, 11:27546–27578, 2023.

Shalev-Shwartz, S., Srebro, N., and Zhang, T. Trading accu-
racy for sparsity in optimization problems with sparsity
constraints. SIAM J. Optim., 20(6):2807–2832, 2010.

Tibshirani, R. Regression shrinkage and selection via the
lasso. J. R. Stat. Soc. Ser. B Stat. Methodol., 58(1):267–
288, 1996.

Tillmann, A. M. and Pfetsch, M. E. The computational com-
plexity of the restricted isometry property, the nullspace
property, and related concepts in compressed sensing.
IEEE Trans. Inform. Theory, 60(2):1248–1259, 2014. doi:
10.1109/TIT.2013.2290112.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Wainwright, M. J. Sharp thresholds for high-dimensional
and noisy sparsity recovery using ℓ1-constrained
quadratic programming (Lasso). IEEE Trans. Inform.
Theory, 55(5):2183–2202, 2009.

Yin, P., Lyu, J., Zhang, S., Osher, S. J., Qi, Y., and Xin, J.
Understanding straight-through estimator in training acti-
vation quantized neural nets. In International Conference
on Learning Representations, 2019.

Yuan, C. and Agaian, S. S. A comprehensive review of
binary neural network. Artificial Intelligence Review, pp.
1–65, 2023.

11

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Yuan, X., Li, P., and Zhang, T. Exact recovery of hard
thresholding pursuit. In Adv. Neural Inf. Process. Syst.,
volume 29, pp. 3558–3566, Barcelona, Spain, Dec. 5–10
2016.

Zhao, P. and Yu, B. On model selection consistency of
Lasso. J. Mach. Learn. Res., 7:2541–2563, 2006.

12

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Appendices

A. Problem Statement
The equivalence between problem (1) and problem (2) is established by the following proposition. Before stating the
proposition, let us remind

F (x) =
1

2
∥Ax− y∥22 ,∀x ∈ Rn (9)

and

H (X) ∈ argmin
x∈Rn

supp(x)⊆largestk(X)

1

2
∥Ax− y∥22 ,∀X ∈ Rn. (10)

Let us also recall the optimization problem (1)

Minimize
x∈Rn

F (x) s.t. ∥x∥0 ≤ k (11)

and the optimization problem (2)
Minimize

X∈Rn
F (H (X)) . (12)

Proposition A.1 (Optimization problem equivalence). For all m,n, k ∈ N, A ∈ Rm×n and y ∈ Rm. Problem (11) is
equivalent to problem (12), in the sense that

1. for any solution X ∗ ∈ argminX∈Rn F (H(X)) of (12), H(X ∗) is solution of (11).

2. for any minimizer x′ of (11), we have x′ ∈ argminX∈Rn F (H(X)), i.e., x′ is solution of (12).

Proof. To establish the first item, we consider a solution X ∗ ∈ argminX∈Rn F (H(X)) of (12). By definition of H , in (10),
H(X ∗) is k-sparse. To prove that it minimizes (11), consider x ∈ Rn such that ∥x∥0 ≤ k, we have

F (H(X ∗)) ≤ F (H(x)) ≤ F (x), (13)

where the first inequality is due to the hypothesis on X ∗, and the last inequality to the definition of H . Finally, since H(X ∗)
is k-sparse and (13) holds for all k-sparse vector x, we conclude that H(X ∗) is solution of (11).

To prove the second item, consider a minimizer x′ of (11) and X ∈ Rn. By definition of H , H(X) is k-sparse. Using that
x′ is solution of (11), we therefore have

F (x′) ≤ F (H(X)). (14)

Moreover, since x′ is k-sparse, we have supp(x′) ⊆ largestk (x
′), and by the definition of H ,

F (H(x′)) ≤ F (x′).

Combining with (14), we obtain F (H(x′)) ≤ F (H(X)), for all X ∈ Rn, and conclude that x′ is solution of (12).

B. Additional Algorithms
In this appendix, more details are given about SEA pseudo-code: the main differences with state-of-the-art algorithms HTP
and IHT are discussed in Section B.1 and tricks for an efficient implementation of SEA are given in Section B.2.

B.1. State-of-the-Art Algorithms

In terms of pseudo-code, SEA looks similar to Hard Thresholding Pursuit (Algorithm 3, (Foucart, 2011)) and to a less extent
to Iterative Hard Thresholding (Algorithm 4, (Blumensath & Davies, 2009)). In this section, we highlight the differences
between these algorithms. In particular, in Algorithm 2, Algorithm 3 and Algorithm 4 distinctions are pointed out in red.

13

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Both HTP and IHT are projected descent algorithms that alternate a gradient step at a sparse estimate xt and a projection
of the resulting variable X t onto the set of sparse vectors. The whole difference with SEA lies in the introduction of the
support exploration variable X t and its interaction with the sparse vector xt. HTP and IHT perform a regular gradient step
X t+1 ← xt − ηAT (Axt − y) (where X denotes an intermediate variable here, not a support exploration variable) while
SEA uses an STE update X t+1 ← X t − ηAT (Axt − y) of the support exploration variable itself (X t) with a gradient
computed at xt. As a consequence, the vector X t in HTP or IHT is always one gradient step away from sparse vector xt.
They do not explore much. This is not the case with SEA. The support exploration variable X t is not expected to minimize
the objective: it rather accumulates all the gradient iterates, where the gradient is computed at xt. This is the whole point of
the STE. In particular, (X t)t∈N is not restricted to a small portion of Rn in the vicinity of sparse vectors. It can explore
much more than in HTP and IHT. This explains why SEA has a different exploration/exploitation trade-off. It explores more.
As can also be seen from the experiments in Appendix E.5.2, the loss oscillates a lot during SEA’s iterative process, but SEA
retains the best solution xtBEST encountered during the exploration. SEA is not based on a descent principle as IHT, HTP
and such.

Finally, one may also notice that HTP stops as soon as the gradient is small enough such that the support does not change
during two successive iterations. On the contrary, SEA keeps accumulating gradients so that the support may remain
unchanged for many iterations before a new support is explored. This is clearly visible in the illustrations of Appendix E.5.2.

Algorithm 2 SEA
(copy of Algorithm 1)

1: Inputs:
noisy observation y,
sampling matrix A,
sparsity k,
step size η

2: Output: sparse vector x
3: Initialize X 0

4: t← 0
5: repeat
6: St ← largestk (X t)

7:

{
xt
i ← 0 for i ∈ St

xt
St ← A†

Sty

8: X t+1 ← X t− ηAT (Axt− y)
9: t← t+ 1

10: until halting criterion is true
11: tBEST ← argmin

t′∈J0,tK
∥Axt′ − y∥22

12: return xtBEST

Algorithm 3 HTP
(Foucart, 2011)

1: Inputs:
noisy observation y,
sampling matrix A,
sparsity k,
step size η

2: Output: sparse vector x
3: Initialize X 0

4: t← 0
5: repeat
6: St ← largestk (X t)

7:

{
xt
i ← 0 for i ∈ St

xt
St ← A†

Sty

8: X t+1 ← xt − ηAT (Axt − y)
9: t← t+ 1

10: until halting criterion is true

11: return xt

Algorithm 4 IHT
(Blumensath & Davies, 2009)

1: Inputs:
noisy observation y,
sampling matrix A,
sparsity k,
step size η

2: Output: sparse vector x
3: Initialize X 0

4: t← 0
5: repeat
6: St ← largestk (X t)

7:

{
xt
i ← 0 for i ∈ St

xt
St ← X t

St

8: X t+1 ← xt − ηAT (Axt − y)
9: t← t+ 1

10: until halting criterion is true

11: return xt

B.2. Efficient Implementation of SEA

Algorithm 1 is presented in a way that favors clarity and simplifies the theoretical analysis. In practice, one can notice that
if the support St does not change (line 6), then the sparse vector xt and the gradient ηAT (Axt − y) do not change either.
Algorithm 5 is an equivalent pseudo-code for a computationally-efficient implementation. The most expensive computations
—the sparse projection at line 10 and the gradient at line 12— are only required when the support has never been explored
before. Also, the best sparse vector can be memorized on the fly (line 16). Hence, the remaining operations, that are
performed at each iteration, have a low computational cost: support extraction (line 8), search for a previous, identical
support (line 9) and STE update (line 21). This computationally-efficient version of SEA has a larger spatial complexity due
to the memorization of all the supports and gradients seen along the iterations. However, this overhead is limited since 1/ for
each explored support, only two vectors are memorized, one of them being sparse; and 2/ the number of explored supports is
generally much lower than the number of iterations. For instance, in the deconvolution experiment, on average, less than
1000 vectors of size 500 (including 500 k-sparse vectors) are stored during the running time of SEA.

In addition, solving the (unconstrained) linear system AT
StAStxSt = AT

Sty can also be performed efficiently. While the
pseudo-inverse is a convenient notation at line 10, the solution may be obtained more efficiently, e.g. in O(k2n) to compute

14

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

AT
StASt and AT

Sty, and apply the conjugate gradient algorithm. This complexity is a worst-case scenario so in practice, the
solution is generally obtained more quickly.

Algorithm 5 Support Exploration Algorithm: efficient implementation
1: Input: noisy observation y, sampling matrix A, sparsity k, step size η
2: Output: sparse vector x
3: Initialize X 0

4: FBEST ← +∞
5: t← 0
6: S ← {} , g ← {}
7: repeat
8: S ← largestk (X t)

{Compute sparse vector and gradient only for unseen supports}
9: if S /∈ S then

10:

{
xS
i ← 0 for i ∈ S

xS
S ← A†

Sy

11: lossS ← 1
2∥AxS − y∥22

12: gS ← ηAT
(
AxS − y

)
{Memorize support and gradient}

13: S ← S ∪ {S}, g ← g ∪
{
gS
}

{Memorize best iterate}
14: if lossS < FBEST then
15: FBEST ← lossS

16: xBEST ← xS

17: end if
18: else
19: Retrieve gS in g
20: end if

{Update support exploration variable}
21: X t+1 ← X t − gS

22: t← t+ 1
23: until halting criterion is true
24: return xBEST

15

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

C. Proofs and Complements of the Theoretical Analysis
The proof of Theorem 4.1 relies on the fact that when the hypotheses of the theorem are satisfied, the trajectory (X t)t∈N
is close to the trajectory of an algorithm that has access to an oracle update. The appendix first contains a description
and an analysis of this algorithm in Appendix C.1. Then, in Appendix C.2, we analyze how much the STE-update can
deviate from the Oracle Update Rule so that the true support S∗ is still recovered. Finally, we prove Theorem 4.1 in
Appendix C.4. We prove Corollary 4.2 in Appendix C.5 and conclude with comments on the conditions (RCRIP) and
(RCSRIP) in Appendix C.6.

C.1. Support Exploration Algorithm Using the Oracle Update Rule

The theoretical analysis of SEA and the understanding of the underlying behavior of the algorithm rely on the introduction
of an oracle case where the true solution x∗and its support S∗ are known by the algorithm. In that case, at iteration t, we can
use the oracle update rule X t+1 ← X t − ut, using the direction ut defined for any index i ∈ J1, nK by

ut
i =

{
−ηx∗

i i ∈ S∗ ∩ St

0 i ∈ S∗ ∪ St,
(15)

where St = largestk (X t) contains the indices of the k largest absolute entries in X t and η > 0 is an arbitrary step size. The
resulting pseudo-code is given by Algorithm 6 and we show the important supports in Figure 5.

Algorithm 6 Support Exploration Algorithm using the Oracle Update Rule
1: Input: true solution x∗, true support S∗, sparsity k, step size η, noisy observation y, sampling matrix A
2: Output: sparse vector x
3: Initialize X 0

4: t← 0
5: repeat
6: St ← largestk (X t)
7: X t+1 ← X t − ut

8: t← t+ 1
9: until ut−1 = 0

10:

{
xi ← 0 for i ∈ St−1

xSt−1 ← A†
St−1y

11: return x

S∗
St

S∗ ∩ St S∗ ∪ St

J1, nK

Figure 5. Visual representation of the main sets of indices encountered in the article.

Notice ut
i is non-zero for indices i from the true support S∗ but for which |X t

i | is too small to be selected in St at line 6.
Whatever the initial content of X 0, the oracle update rule always adds the same increment to X t

i , for i ∈ S∗ ∩ St. This
guarantees that, at some subsequent iteration t′ ≥ t, the true support S∗ is recovered among the k largest absolute entries in
X t′ , i.e., S∗ ⊆ St′ , the intersection is empty, ut′ = 0 and Algorithm 6 stops.

16

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

In the following theorem, we formalize this statement and give an upper bound on the number of iterations required by the
support exploration algorithm using the oracle update rule.

Theorem C.1 (Recovery - Oracle Update Rule). For all matrices A, error vectors e, initializations X 0 and for all η > 0,
there exists

ts ≤ T oracle

max = k

(
1 +

2∥X 0∥∞
ηmini∈S∗ |x∗

i |

)
such that S∗ ⊆ Sts , where St is defined in Algorithm 6 line 6.

Moreover, uts = 0 and Algorithm 6 returns argmin
x∈Rn

supp(x)⊆Sts

∥Ax− y∥22.

C.1.1. PROOF OF THEOREM C.1

We denote, for all t ∈ N∗ and all i ∈ J1, nK, and St defined in Algorithm 6, line 6

cti = |{t′ ∈ J0, t− 1K : i ∈ S∗ ∩ St′}|. (16)

We extend the definition to t = 0 and set, for all i ∈ J1, nK, c0i = 0.

We can prove by induction on t that, given the definition of X t in Algorithm 6 and ut in (15), for all t ∈ N,

X t = X 0 + η ct ⊙ x∗, (17)

where ⊙ denotes the Hadamard product.

The following lemma states that if cti is large then i is always selected by Algorithm 6.

Lemma C.2. For all i ∈ S∗ and all t ∈ N∗

if cti >
2∥X 0∥∞
η|x∗

i |
then ∀t′ ≥ t, i ∈ St′ .

Proof. Let i ∈ S∗ and t ∈ N∗ be such that cti >
2∥X 0∥∞
η|x∗

i |
. Consider t′ ≥ t.

Since t 7→ cti is non-decreasing, we have

ct
′

i ≥ cti >
2∥X 0∥∞
η|x∗

i |
.

Therefore, for all j ∈ S∗,

|X t′

i | = |X 0
i + ηct

′

i x
∗
i | ≥ |ηct

′

i x
∗
i | − |X 0

i | > 2∥X 0∥∞ − |X 0
i | ≥ ∥X 0∥∞ ≥ |X 0

j | = |X t′

j |.

Therefore |X t′

i | is larger than at least n− k elements of {|X t′

j | : j ∈ J1, nK}. Said differently, i ∈ largestk(X t′) = St′ .

This concludes the proof of Lemma C.2.

This leads to the following upper bound.

Lemma C.3. For all i ∈ S∗ and all t ∈ N∗

cti ≤
2∥X 0∥∞
η|x∗

i |
+ 1.

Proof. If Lemma C.3 is false, there exists i ∈ S∗ and t ∈ N∗ such that cti >
2∥X 0∥∞
η|x∗

i |
+ 1.

We denote

t′ = min{t ∈ N∗ : cti >
2∥X 0∥∞
η|x∗

i |
+ 1}.

17

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

We have ct
′

i > 2∥X 0∥∞
η|x∗

i |
+ 1 ≥ 1 and therefore t′ > 1. As a consequence, t′ − 1 ∈ N∗ and ct

′−1
i is defined by (16). Because

of the definitions of t′ and ct
′

i , we must have ct
′

i = ct
′−1
i + 1. Therefore, ct

′−1
i > 2∥X 0∥∞

η|x∗
i |

. Since i ∈ S∗ and t′ − 1 ∈ N∗,

using Lemma C.2, we conclude that i ∈ St′−1 and, using the definition of ct
′

i in (16), that ct
′

i = ct
′−1
i .

This is impossible and we conclude that Lemma C.3 holds.

Proof of Theorem C.1: We denote
ts = min{t ∈ N : S∗ ⊆ St}. (18)

By convention, if for all t ∈ N, S∗ ̸⊆ St, we set ts = +∞. The first statement of Theorem C.1 is obvious if ts = 0. We
assume below that ts ≥ 1.

Consider t ∈ J0, ts − 1K, using of the definition of ts in (18), there exists i ∈ S∗ ∩ St. Using the definition of ct+1
i in (16),

we obtain ct+1
i = cti + 1. Since for all j ∈ J1, nK, t 7→ ctj is non-decreasing, we conclude that

for all t ∈ J0, ts − 1K,
∑
i∈S∗

ct+1
i ≥

∑
i∈S∗

cti + 1.

We therefore obtain ∑
i∈S∗

ctsi =
∑
i∈S∗

(
ts−1∑
i=0

(ct+1
i − cti)

)

=

ts−1∑
i=0

(
(
∑
i∈S∗

ct+1
i)− (

∑
i∈S∗

cti)

)

≥
ts−1∑
i=0

1 = ts.

Using Lemma C.3, we obtain

ts ≤
∑
i∈S∗

ctsi ≤
∑
i∈S∗

(
2∥X 0∥∞
η|x∗

i |
+ 1

)
≤ k

(
1 +

2∥X 0∥∞
ηmini∈S∗ |x∗

i |

)
.

To conclude the proof, we simply remark that, since S∗ ⊆ Sts , by definition of uts in (15),

uts = 0.

□

Since x∗ and S∗ are not available in practice, we replace in Algorithm 6 the oracle update ut by the surrogate ηAT (Axt− y)
(line 8). The choice of this surrogate is an application of STE and is natural. For instance, one can show that ut =
ηAT (Axt − y) in the simple case where A has orthonormal columns and the observation is noiseless (see Corollary C.7 and
Lemma C.8 in Appendix C.3). In the general setting, SEA can be interpreted as a noisy version of the support exploration
algorithm using the oracle update. Theorem 4.1 and its proof in Appendix C are based on the fact that ut − ηAT (Axt − y)
is small, under suitable hypotheses on x∗ and the RIP constants of A.

C.2. If the STE-Update is Sufficiently Close to the Oracle Update, SEA Visits S∗

To prove Theorem 4.1, we first provide a general recovery theorem here. The theorem states that if the discrepancy between
the Oracle update and the STE update is sufficiently small, SEA visits S∗.

To do so, we define, for all t ∈ N, the gradient noise: bt ∈ Rn as

bt = ut − ηAT (Axt − y). (19)

We define the maximal gradient noise norm
ε = sup

t∈N
∥bt∥∞ ∈ R. (20)

18

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

We define the Recovery Condition (RC) as
ε <

η

2k
min
i∈S∗
|x∗

i |. (RC)

Theorem C.4 (Recovery - General case). If (RC) holds, then for all initializations X 0 and all η > 0, there exists ts ≤ Tmax

such that S∗ ⊆ Sts , where St is defined in Algorithm 1 line 6 and

Tmax =
2k∥X 0∥∞ + (k + 1)ηmini∈S∗ |x∗

i |
ηmini∈S∗ |x∗

i | − 2kε
. (21)

The proof is in Appendix C.2.1, right after the comments below.

The main interest of Theorem C.4 is to formalize quantitatively that, when ut − ηAT (Axt − y) is sufficiently small, SEA
visits the correct support. However, the condition (RC) is difficult to use and interpret since it involves both A, x∗, and all
the sparse iterates xt. This is why we provide in Corollary C.7, Theorem 4.1 and Corollary 4.2 sufficient conditions on A, e
and x∗ guaranteeing that (RC) holds.

The conclusion of Theorem C.4 is that the iterative process of SEA visits the correct support at some iteration t. We have in
general no guarantee that this time-step t is equal to tBEST . We are however guaranteed that SEA returns a sparse solution
such that ∥AxtBEST − y∥2 ≤ ∥Axts − y∥2 ≤ ∥Ax∗ − y∥2. This does not give a guarantee on the support recovery but on
the reconstruction error. In machine learning, this upper bound can be used to derive an upper bound of the risk.

Concerning the value of Tmax, a quick analysis shows that Tmax increases with ε, when (RC) holds. In other words, the
number of iterations required by the algorithm to provide the correct solution increases with the discrepancy between ut and
ηAT (Axt − y).

The initializations X 0 ̸= 0 have an apparent negative impact on the number of iterations required in the worst case. This is
because in the worst-case X 0 would be poorly chosen and SEA needs iterations to correct this poor choice.

Concerning η, notice that, since ut is proportional to η > 0, ε is proportional to η > 0 and therefore (RC) is independent
of η. When possible, any η permits the recovery of S∗. The only influence of η is on Tmax. In this regard, since ε is
proportional to η > 0, the denominator of (21) is proportional to η. In the numerator, we see that the larger η is, the
faster SEA will override the initialization X 0. The choice of η is very much related to the question of the quality of the
initialization discussed above.

C.2.1. PROOF OF THEOREM C.4

To prove Theorem C.4, we need to adapt a closed formula for the exploratory variable X t already encountered in the proof
of Theorem C.1. Then, we will study the properties of this closed formula through the counting vector ct in Appendix C.2.2.
to find a sufficient condition of support recovery. Then we prove Theorem C.4 in Appendix C.2.3.

C.2.2. PRELIMINARIES

We remind Figure 5 on which the mains supports are represented and we remind, for each iteration t ∈ N and i ∈ J1, nK, the
Oracle Update already defined in (15)

ut
i =

{
−ηx∗

i i ∈ S∗ ∩ St

0 i ∈ S∗ ∪ St.

We also remind the gradient noise, already defined in (19), bt = ut − ηAT (Axt − y).

We first remark that, for any i ∈ St,
bti = 0. (22)

To prove this equality, we remark that, for all i ∈ St, ut
i = 0 and prove that (AT (Axt − y))i = 0. Indeed, the latter holds

because i ∈ St and xt
St = A†

Sty (see Algorithm 1, line 7). As is well-known for the Moore-Penrose inverse, AStA†
St is

the orthogonal projector onto colspan(ASt). Therefore, AStA†
Sty − y is orthogonal to colspan(ASt) and for all x′ ∈ Rk,

0 = ⟨AStA†
Sty − y,AStx′⟩ = ⟨AT

St(AStA†
Sty − y), x′⟩. Therefore, AT

St(AStA†
Sty − y) = 0. Since, xt

i = 0 for all i ∈ St,
we also have AStA†

Sty = AStxt
St = Axt and we deduce that for all i ∈ St, (AT (Axt−y))i = (AT

St(AStA†
Sty−y))j = 0,

where the line j ∈ J1, kK of AT
St corresponds to the line i ∈ St of AT . This concludes the proof of (22).

19

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

As a consequence of the definition of bt and SEA, line 8, for any t ∈ N,

X t+1 = X t + bt − ut. (23)

The gradient noise bt is the error preventing the gradient from being in the direction of the oracle update ut. At each iteration,
this error is accumulating in X t. With β0 = 0, for any t ∈ N∗, we define this accumulated error by

βt =

t−1∑
t′=0

bt
′
∈ Rn. (24)

As already done in the proof of Theorem C.1 for the support sequence defined in Algorithm 6, we define counting vectors.
However, this time they are defined for the sequence defined in Algorithm 1. We keep the same notations for simplicity. We
set c0 = 0, for any t ∈ N∗ and i ∈ J1, nK, we also define the counting vector by

cti = |{t′ ∈ J0, t− 1K : i ∈ S∗ ∩ St′}|. (25)

We will use the recursive formula for ct: For any t ∈ N, i ∈ J1, nK

ct+1
i =

{
cti + 1 if i ∈ S∗ ∩ St

cti if i ∈ S∗ ∪ St.
(26)

For any i ∈ J1, nK, the sequence (cti)t∈N is non-decreasing.

Using (23), (24) and (25), we can establish by induction on t that for any t ∈ N,

X t = X 0 + ηct ⊙ x∗ + βt, (27)

where ⊙ denotes the Hadamard product. This generalizes (17) to the noisy setting.

As can be seen from (27), the error accumulation βt is responsible for the exploration in the wrong directions. While ct⊙x∗

encourages exploration in the direction of the missed components of x∗. Below, we provide important properties of (ct)t∈N.

At each iteration of SEA, using (26) when S∗ ⊈ St, there exists at least one i ∈ S∗ such that ct+1
i = cti +1. Using also that,

for all i ∈ S∗, (cti)t∈N is non-decreasing we obtain

for all t ∈ N such that S∗ ⊈ St,
∑
i∈S∗

ct+1
i ≥

(∑
i∈S∗

cti
)
+ 1 (28)

We define the first recovery iterate9 ts as the smallest iteration t such that S∗ ⊆ St. More precisely,

ts = min {t, S∗ ⊆ St} ∈ N. (29)

By convention, if S∗ is never recovered, ts = +∞. By induction on t, using (28), we obtain a lower bound on
∑

i∈S∗ cti:

For all t ≤ ts,
∑
i∈S∗

cti ≥ t. (30)

Let us now upper bound
∑

i∈S∗ cti. We first remind the definition of ε in (20). We define the sharp Recovery Condition

ε <
1

2
∑

i∈S∗
1

η|x∗
i |

(RC’)

9Again, a similar quantity is defined in the proof of Theorem C.1 for the supports St defined in Algorithm 6. We use the same notation
although this time the quantity is defined for the sets St defined in Algorithm 1. It should not be ambiguous since the notations are used in
different proofs and sections.

20

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

and

T ′
max =

∑
i∈S∗

maxj /∈S∗ |X 0
j |+|X 0

i |
η|x∗

i |
+ k + 1

1− 2ε
∑

i∈S∗
1

η|x∗
i |

. (31)

If (RC’) holds, we define for any i ∈ S∗, the ith counting threshold by

Ci =
maxj /∈S∗ |X 0

j |+ |X 0
i |+ 2T ′

maxε

η|x∗
i |

. (32)

Proposition C.5 (Upper bound). If (RC’) holds, for any i ∈ S∗ and any t ≤ T ′
max, we have cti ≤ Ci + 1.

Proof. Assume (RC’) holds. We have T ′
max > 0. Let i ∈ S∗, we distinguish two cases:

1st case: If for all t ≤ T ′
max, cti ≤ Ci: Then, obviously, for any t ≤ T ′

max, cti ≤ Ci + 1.

2nd case: If there exists t ≤ T ′
max, such that cti > Ci:

We define ti = min {t ∈ N : cti > Ci}. We have ti ≤ T ′
max. The proof follows two steps:

1. We will prove that for all t ∈ Jti, T ′
maxK, c

t
i = ctii . (33)

2. We will prove that for all t ≤ T ′
max, c

t
i ≤ Ci + 1. (34)

1. Let t ∈ Jti, T ′
maxK, we have, using (27), the triangle inequality and the fact that cti ≥ ctii > Ci

|X t
i | = |X 0

i + ηctix
∗
i + βt

i |
≥ ηcti|x∗

i | − |X 0
i | − |βt

i |
> ηCi|x∗

i | − |X 0
i | − |βt

i |.

Using the definition of Ci, in (32), we obtain

|X t
i | > η

maxj /∈S∗ |X 0
j |+ |X 0

i |+ 2T ′
maxε

η|x∗
i |

|x∗
i | − |X 0

i | − |βt
i |

= max
j /∈S∗
|X 0

j |+ 2T ′
maxε− |βt

i |.

Since for any j ∈ J1, nK, |βt
j | ≤

∑t−1
t′=0|bt

′

j | ≤ tε ≤ T ′
maxε, we have

|X t
i | > max

j /∈S∗
|X 0

j |+max
j /∈S∗
|βt

j |+ |βt
i | − |βt

i |

≥ max
j /∈S∗
|X 0

j + βt
j |

= max
j /∈S∗
|X t

j |, (35)

where the last equality holds because of (27) and for all j /∈ S∗, all t ∈ N, ctj = 0.

Equation (35) implies that |X t
i | is larger than |{j ̸∈ S∗}| elements of {|X t

j | | j ∈ J1, nK} and, since |S∗| ≤ k, we
have |{j ̸∈ S∗}| = n − |S∗| ≥ n − k. Finally, |X t

i | is larger than n − k elements of {|X t
j | | j ∈ J1, nK} and

i ∈ largestk(X t) = St.

As a conclusion, for all t ∈ Jti, T ′
maxK, i ∈ St. Using (26) , this leads to ct+1

i = cti. Therefore, for all t ∈ Jti, T ′
max+1K,

cti = ctii . This concludes the proof of the first step.

2. Since ti = min {t ∈ N : cti > Ci} and since c0i = 0, ti ≥ 1. Since by definition of ti, cti−1
i ≤ Ci and ctii ̸= cti−1

i ; we
find that ctii = cti−1

i + 1 ≤ Ci + 1.

Using (33) , for all t ∈ Jti, T ′
maxK, cti = ctii ≤ Ci + 1. Finally, since (cti)t∈N∗ is non-decreasing, it follows that for any

t ≤ ti − 1, cti ≤ cti−1
i ≤ Ci. This concludes the proof of (34).

21

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

C.2.3. PROOF OF THEOREM C.4

To prove Theorem C.4, we first prove a sharper, but difficult-to-interpret theorem.

Theorem C.6 (Recovery - General case). If (RC’) holds, then for all initializations X 0 and all η > 0, there exists ts ≤ T ′
max

such that S∗ ⊆ Sts , where St is defined in Algorithm 1 line 6 and

T ′
max =

∑
i∈S∗

maxj /∈S∗ |X 0
j |+|X 0

i |
η|x∗

i |
+ k + 1

1− 2ε
∑

i∈S∗
1

η|x∗
i |

.

Proof. We assume (RC’) holds and prove Theorem C.6 using the results of Appendix C.2.2.

In order to do this, we first show that T ′
max =

∑
i∈S∗ Ci + k + 1, then we demonstrate that ts ≤ T ′

max.

Since (RC’) holds, using the definition of T ′
max, we calculate

T ′
max =

1

1− 2ε
∑

i∈S∗
1

η|x∗
i |

(∑
i∈S∗

maxj /∈S∗ |X 0
j |+ |X 0

i |
η|x∗

i |
+ k + 1

)
(
1− 2ε

∑
i∈S∗

1

η|x∗
i |

)
T ′
max =

∑
i∈S∗

maxj /∈S∗ |X 0
j |+ |X 0

i |
η|x∗

i |
+ k + 1

T ′
max =

∑
i∈S∗

maxj /∈S∗ |X 0
j |+ |X 0

i |
η|x∗

i |
+ k + 1 + 2T ′

maxε
∑
i∈S∗

1

η|x∗
i |

T ′
max =

∑
i∈S∗

maxj /∈S∗ |X 0
j |+ |X 0

i |+ 2T ′
maxε

η|x∗
i |

+ k + 1.

Using (32), we obtain T ′
max =

∑
i∈S∗ Ci + k + 1.

We finally prove Theorem C.4 by contradiction. Assume by contradiction that ts > T ′
max, where ts is defined in (29). Using

(30) with t = ⌊T ′
max⌋ < ts, we have∑

i∈S∗

c
⌊T ′

max⌋
i ≥ ⌊T ′

max⌋ = ⌊
∑
i∈S∗

Ci + k + 1⌋ >
∑
i∈S∗

Ci + k. (36)

However, using |S∗| ≤ k and Proposition C.5 for t = ⌊T ′
max⌋ , we find∑

i∈S∗

Ci + k ≥
∑
i∈S∗

(Ci + 1) ≥
∑
i∈S∗

c
⌊T ′

max⌋
i

This contradicts (36) and we can conclude that ts ≤ T ′
max. This proves Theorem C.6.

Proof of Theorem C.4:

If (RC) holds, that is ε < η
2k mini∈S∗ |x∗

i |, since
∑

i∈S∗
1

|x∗
i |
≤ k

mini∈S∗ |x∗
i |

, we have

ε <
1

2
∑

i∈S∗
1

η|x∗
i |
.

Therefore, (RC’) holds, and we can apply Theorem C.6. It ensures that for all initializations X 0 and all η > 0, there exists
ts ≤ T ′

max such that S∗ ⊆ Sts .

To prove Theorem C.4, it suffices to prove that T ′
max ≤ Tmax. Using

∑
i∈S∗

1
|x∗

i |
≤ k

mini∈S∗ |x∗
i |

, we obtain

1− 2ε
∑
i∈S∗

1

η|x∗
i |
≥ 1− 2ε

k

ηmini∈S∗ |x∗
i |

22

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

and using minj ̸∈S∗ |X 0
j |+ |X 0

i | ≤ 2∥X 0∥∞ we have

T ′
max =

∑
i∈S∗

maxj /∈S∗ |X 0
j |+|X 0

i |
η|x∗

i |
+ k + 1

1− 2ε
∑

i∈S∗
1

η|x∗
i |

≤
2k∥X 0∥∞

ηmini∈S∗ |x∗
i |
+ k + 1

1− 2ε k
ηmini∈S∗ |x∗

i |
= Tmax.

C.3. Warm-Up: SEA Recovers the Correct Support when the Columns of A are Orthonormal

The following corollary particularizes Theorem C.4 to the noiseless and orthogonal case. In practice, a complicated algorithm
like SEA is of course useless in such a case, and the state-of-the-art algorithms mentioned in the introduction have similar
recovery properties. We give this corollary mostly to illustrate the diversity of links between the properties of the triplet
(A, x∗, e) and ε and the behavior of SEA, where we remind the definitions of bt and ε in (19) and (20). The following
Corollary C.7 is not only a sanity check for the convergence of SEA under simplistic assumptions, but it also provides a
helpful case to understand the proof of Theorem 4.1. Indeed, it gives a case where the oracle updates introduced in the proof
coincides the surrogate, STE update, as mentioned in the last paragraph of Appendix C.1.

Corollary C.7 (Recovery - Orthogonal case). If A is a tall (or square) matrix with orthonormal columns (ATA = In) and
∥e∥2 = 0, then ε = 0. As a consequence, for all x∗, for initialization X 0 = 0 and all η > 0, if SEA performs more than
k + 1 iterations, we have S∗ ⊆ StBEST and xtBEST = x∗.

To prove Corollary C.7, we first show in Lemma C.8 that the gradient noise bt is null for all t ∈ N. Then, we apply
Theorem C.4 and prove that S∗ ⊆ StBEST and xtBEST = x∗.

Lemma C.8. If A is a tall (or square) matrix with orthonormal columns (ATA = In) and ∥e∥2 = 0, then for any t ∈ N
and any η > 0,

ηAT
(
Axt − y

)
= ut,

i.e. bt = 0.

Proof. Let t ∈ N. Notice first that since ∥e∥2 = 0 and A is a tall (or square) matrix with orthonormal columns

AT
(
Axt − y

)
= ATA

(
xt − x∗) = xt − x∗. (37)

To prove the Lemma, we distinguish three cases: i ∈ St, i ∈ S∗ ∩ St and i ∈ S∗ ∩ St.

1st case: If i ∈ St, η
(
AT (Axt − y)

)
i
= 0 = ut

i. The first equality is a consequence of the definition of xt in Algorithm 1,
line 7. The second is due to the definition of ut, in (15).

2nd case: If i ∈ S∗ ∩ St, taking the ith entry of (37) and using the support constraints of xt and x∗, we find

η
(
AT
(
Axt − y

))
i
= 0 = ut

i,

where the second equality is due to the definition of ut, in (15).

3rd case: If i ∈ S∗ ∩ St, the ith entry of (37) becomes

η
(
AT
(
Axt − y

))
i
= −ηx∗

i = ut
i,

where again the second equality is due to the definition of ut, in (15).

Proof. We now resume the proof of Corollary C.7 and assume that A is a tall (or square) matrix with orthonormal columns
(ATA = In), ∥e∥2 = 0 and X 0 = 0. We remind the definition of Tmax in (21).

Using Lemma C.8, (20) and (19), we find that ε = 0. Therefore (RC) holds for all x∗ and Theorem C.4 implies that there
exists ts ≤ Tmax such that S∗ ⊆ Sts . Since X 0 = 0 and ε = 0, we find Tmax = k + 1.

Since ∥e∥2 = 0, we know from Theorem C.4 and the definitions of tBEST and xt in Algorithm 1 that

∥AxtBEST − y∥2 ≤ ∥Axts − y∥2 ≤ ∥Ax∗ − y∥2 = 0.

23

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Using that A is a tall (or square) matrix with orthonormal columns (ATA = In), and ∥e∥2 = 0, this leads to

0 =AxtBEST − y

=ATA(xtBEST − x∗)

=xtBEST − x∗.

Therefore, S∗ = supp(x∗) = supp(xtBEST) ⊆ StBEST .

This concludes the proof of Corollary C.7.

C.4. Proof of Theorem 4.1

We remind in Appendix C.4.1 known properties of RIP matrices. We bound in Appendix C.4.2 the error made when
approximating x∗ on a specific support S. This permits us to bound bt and apply Theorem C.4 to prove Theorem 4.1 in
Appendix C.4.3. We finally apply Theorem 4.1 in Appendix C.5 to prove Corollary 4.2. Before that and to illustrate and
quantify that the STE-update X t+1 ← X t − ηAT (Axt − y) is a noisy version of the Oracle update X t+1 ← X t − ut, we
provide in the following theorem an upper bound on the discrepancy between the two updates. This bound is pivotal in the
proof of Theorem 4.1. The statement of Theorem 4.1 is, up to the additional upper-bound (38), the same as the statement of
the following theorem, which we prove in this section.
Theorem C.9 (Recovery - RIP case). Assume A satisfies the (2k + 1)-RIP and for all i ∈ J1, nK, ∥Ai∥2 = 1. Then, for all
t ∈ N,

∥u
t

η
−AT (Axt − y)∥∞ ≤ αRIP

k ∥x∗∥2 + γRIP

k ∥e∥2. (38)

If moreover x∗ satisfies (RCRIP), then for all initializations X 0 and all η > 0, there exists ts ≤ TRIP such that S∗ ⊆ Sts ,
where

TRIP =
2k ∥X 0∥∞

η + (k + 1)mini∈S∗ |x∗
i |

mini∈S∗ |x∗
i | − 2k (αRIP

k ∥x∗∥2 + γRIP

k ∥e∥2)
. (39)

If moreover, x∗ is such that

min
i∈S∗
|x∗

i | >
2√

1− δ2k
∥e∥2 (40)

and SEA performs more than TRIP iterations, then S∗ ⊆ StBEST and ∥xtBEST − x∗∥2 ≤ 2√
1−δk
∥e∥2.

C.4.1. REMINDERS ON PROPERTIES OF RIP MATRICES

We first remind the definition of Restricted Isometry Constant in (4) and a few properties of RIP matrices.

Fact 1: For any k, k′ ∈ J1, nK, such that k ≤ k′, we have

δk ≤ δk′ . (41)

Fact 2: For any R,S ⊆ J1, nK, such that R ∩ S = Ø and A satisfies the (|R|+ |S|)-RIP. We remind Lemma 1 of (Dai &
Milenkovic, 2009) (see also (Candes & Tao, 2005)): For any x ∈ R|S|

∥AT
RASx∥2 ≤ δ|R|+|S| ∥x∥2. (42)

For completeness, we prove this inequality below. Let A, R, S and x be as above, we have,

∥AT
RAS

x

∥x∥2
∥2 = max

x′:∥x′∥2=1
⟨x′, AT

RAS
x

∥x∥2
⟩.

Using ⟨x′, AT
RAS

x
∥x∥2
⟩ = ⟨ARx

′, AS
x

∥x∥2
⟩ ≤ 1

2∥ARx
′ +AS

x
∥x∥2
∥22, the fact that R ∩ S = Ø, and that A satisfies the

(|R|+ |S|)-RIP defined in (4), we obtain for all x′ ∈ R|R| such that ∥x′∥2 = 1

⟨x′, AT
RAS

x

∥x∥2
⟩ ≤ 1

2
(1 + δ|R|+|S|)

(
∥x′∥22 + ∥

x

∥x∥2
∥22
)

= (1 + δ|R|+|S|).

This concludes the proof of (42).

24

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Fact 3: Let us assume that A satisfies the |S|-RIP. Taking inspiration of Proposition 3.1 of (Needell & Tropp, 2009), for any
singular value λ ∈ R of AS , and the corresponding right singular vector xλ ∈ R|S|, we have ∥ASxλ∥2 = λ. Using (4),
1− δ|S| ≤ λ2 ≤ 1 + δ|S|. All singular values of AS and AT

S lie between
√
1− δ|S| and

√
1 + δ|S|.

As a consequence, for any u ∈ Rm, we have

∥AT
Su∥2 ≤

√
1 + δ|S| ∥u∥2. (43)

Fact 4: Let us assume that A satisfies the |S|-RIP. Using the same reasoning, we find that the eigenvalues of AT
SAS lie

between 1 − δ|S| and 1 + δ|S|. This implies that AT
SAS is non-singular and that the eigenvalues of (AT

SAS)
−1 lie

between 1
1+δ|S|

and 1
1−δ|S|

. Then AS is full column rank and for any x ∈ R|S|

∥(AT
SAS)

−1x∥2 ≤
1

1− δ|S|
∥x∥2. (44)

Fact 5: Let us assume that A satisfies the |S|-RIP. By using one last time the same reasoning, we find that the eigenvalues
of AT

SAS − I|S| lie between −δ|S| and δ|S|. Finally, for any x ∈ R|S|,

∥(AT
SAS − I|S|)x∥2 ≤ δ|S|∥x∥2. (45)

C.4.2. PRELIMINARIES

In this section, the facts from Appendix C.4.1 are used to bound from above the error ∥(xt − x∗)|St∥2, where (.)|St is the
restriction of the vector to the support St and St is defined in Algorithm 1, line 6. This bound will lead to an upper bound
on ∥bt∥2. Throughout the section, we assume A satisfies the (2k + 1)-RIP. Figure 5 might help visualize the different sets
of indices considered in the proof.

Lemma C.10. If A satisfies the (2k + 1)-RIP, for any t ∈ N,

∥(xt − x∗)|St∥2 ≤
δ2k

1− δk

∥ut∥2
η

+

√
1 + δk
1− δk

∥e∥2.

Proof. For any t ∈ N, using the definition of xt in Algorithm 1 and (15), we find

xt
|St = A†

Sty

= A†
St(AS∗x∗

|S∗ + e)

= A†
StAS∗∩Stx∗

|S∗∩St −
1

η
A†

StAS∗∩Stu
t
|S∗∩St +A†

Ste. (46)

We also have

A†
StAS∗∩Stx∗

|S∗∩St = A†
St

[
AS∗∩St ASt\S∗

] [x∗
|S∗∩St

0

]
= A†

StAStx∗
|St . (47)

Since δ2k+1 < 1, (41) implies that δk ≤ δ2k+1 < 1 and the smallest singular value of ASt is larger than
√
1− δk ≥√

1− δ2k+1 > 0. Therefore ASt is full column rank and

A†
St = (AT

StASt)−1AT
St . (48)

Combining (46), (47) and (48), we obtain

xt
|St = x∗

|St −
1

η
A†

StAS∗∩Stu
t
|S∗∩St +A†

Ste.

25

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Using (48), we find

∥(xt − x∗)|St∥2 = ∥1
η
A†

StAS∗∩Stu
t
|S∗∩St −A†

Ste∥2

≤ 1

η
∥(AT

StASt)−1AT
StAS∗∩Stu

t
|S∗∩St∥2 + ∥(AT

StASt)−1AT
Ste∥2.

Finally, using (44), then (42), (41), (43) and (15), we finish the proof

∥(xt − x∗)|St∥2 ≤
1

1− δk

(
1

η
∥AT

StAS∗∩Stu
t
|S∗∩St∥2 + ∥AT

Ste∥2
)

≤ 1

1− δk

(
δ2k
η
∥ut

|S∗∩St∥2 +
√

1 + δk∥e∥2
)

=
δ2k

1− δk

∥ut∥2
η

+

√
1 + δk
1− δk

∥e∥2.

We have the following upper bound on ∥bt∥2. This bound is given in Theorem C.9.
Lemma C.11 (Bound of bt - RIP case). If A satisfies the (2k + 1)-RIP, for any t ∈ N,

∥u
t

η
−AT (Axt − y)∥∞ =

1

η
∥bt∥∞ ≤ αRIP

k ∥x∗∥2 + γRIP

k ∥e∥2,

where αRIP

k and γRIP

k are defined in (5).

Proof. Let t ∈ N and i ∈ J1, nK, reminding the definition of bt in (19), we have

|bti| = |ut
i − η(Ai)

T (Axt − y)|
= |ut

i − η(Ai)
TA(xt − x∗) + η(Ai)

T e| (49)

= |ut
i − η(Ai)

TAS∗∪St(xt − x∗)|S∗∪St + η(Ai)
T e|.

We distinguish three cases: i ∈ St, i ∈ S∗ ∩ St and i ∈ S∗ ∩ St. We prove that in the three cases

|bti| ≤ η
(
δ2k+1∥xt − x∗∥2 + ∥e∥2

)
. (50)

1st case: If i ∈ St, using (22), bti = 0 and (50) holds.

2nd case: If i ∈ S∗ ∩ St, using the definition of ut in (15), (42), (41) and the fact that ∥Ai∥2 = 1 we obtain

|bti| = |−η(Ai)
TAS∗∪St(xt − x∗)|S∗∪St + η(Ai)

T e|
≤ η

(
∥(Ai)

TAS∗∪St(xt − x∗)|S∗∪St∥2 + ∥(Ai)
T e∥2

)
≤ η

(
δ2k+1∥(xt − x∗)|S∗∪St∥2 + ∥e∥2

)
= η

(
δ2k+1∥xt − x∗∥2 + ∥e∥2

)
3rd case: If i ∈ S∗ ∩ St, reminding that {i} is the complement of {i} ⊆ J1, nK, and since (Ai)

TA{i} = ∥Ai∥2 = 1 and
xt
i = 0, (49) becomes

|bti| = |−ηx∗
i − η(Ai)

TA(xt − x∗) + η(Ai)
T e|

= η|−x∗
i − (Ai)

TA{i}(x
t − x∗)|{i} − (Ai)

TA{i}(x
t − x∗)|{i} + (Ai)

T e|

= η|−x∗
i − (xt

i − x∗
i)− (Ai)

TA{i}(x
t − x∗)|{i} + (Ai)

T e|

= η|−(Ai)
TA{i}(x

t − x∗)|{i} + (Ai)
T e|

≤ η
(
|(Ai)

TA{i}(x
t − x∗)|{i}|+ |(Ai)

T e|
)
.

26

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Using (42), (41) and ∥Ai∥2 = 1, we obtain

|bti| ≤ η
(
δ2k∥xt − x∗∥2 + ∥e∥2

)
≤ η

(
δ2k+1∥xt − x∗∥2 + ∥e∥2

)
.

Regrouping the three cases, we conclude that for all i ∈ J1, nK, (50) holds. We now finish the proof.

Using (15) followed by Lemma C.10, we find

|bti| ≤ η

(
δ2k+1

(
∥(xt − x∗)|St∥2 +

∥ut∥2
η

)
+ ∥e∥2

)
≤ η

(
δ2k+1

(
δ2k

1− δk
+ 1

)
∥ut∥2
η

+

(
δ2k+1

√
1 + δk
1− δk

+ 1

)
∥e∥2

)
≤ η (αRIP

k ∥x∗∥2 + γRIP

k ∥e∥2) ,

where the last inequality holds because ∥ut∥2

η ≤ ∥x∗∥2.

C.4.3. END OF THE PROOF OF THEOREM C.9

We now resume to the proof of Theorem C.9 and assume A satisfies the (2k + 1)-RIP and x∗ satisfies (RCRIP). We remind
the definitions of Tmax in (21) and TRIP in (6).

Using (20) and Lemma C.11, we have

ε = sup
t∈N
∥bt∥∞ ≤ η (αRIP

k ∥x∗∥2 + γRIP

k ∥e∥2) . (51)

Combined with (RCRIP), that is γRIP

k ∥e∥2 <
mini∈S∗ |x∗

i |
2k − αRIP

k ∥x∗∥2, this implies that

ε <
η

2k
min
i∈S∗
|x∗

i |.

Therefore (RC) holds and Theorem C.4 implies that there exists ts ≤ Tmax such that S∗ ⊆ Sts , with

Tmax =
2k∥X 0∥∞ + (k + 1)ηmini∈S∗ |x∗

i |
ηmini∈S∗ |x∗

i | − 2kε
.

Using (51), we obtain

Tmax ≤
2k∥X 0∥∞ + (k + 1)ηmini∈S∗ |x∗

i |
ηmini∈S∗ |x∗

i | − 2kη (αRIP

k ∥x∗∥2 + γRIP

k ∥e∥2)
= TRIP .

We still need to prove that, when mini∈S∗ |x∗
i | > 2√

1−δ2k
∥e∥2, tBEST satisfies S∗ ⊆ StBEST , as well as the last upper-

bound of Theorem C.9 .

Assume by contradiction that

min
i∈S∗
|x∗

i | >
2√

1− δ2k
∥e∥2 (52)

holds but S∗ ̸⊂ StBEST . The construction of tBEST , in line 11 of Algorithm 1, and the existence ts such that S∗ ⊆ Sts

guarantee that
∥AxtBEST − y∥ ≤ ∥Axts − y∥ ≤ ∥Ax∗ − y∥ = ∥e∥2.

Therefore, using the left inequality in (4), we obtain√
1− δ2k∥xtBEST − x∗∥2 ≤ ∥A(xtBEST − x∗)∥2

≤ ∥AxtBEST − y∥2 + ∥Ax∗ − y∥2
≤ 2∥e∥2.

27

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

On the other hand, since we assumed S∗ ̸⊂ StBEST we have

∥xtBEST − x∗∥2 ≥ min
i∈S∗
|x∗

i |.

We conclude that mini∈S∗ |x∗
i | ≤ 2√

1−δ2k
∥e∥2 which contradicts (52).

As a conclusion, when mini∈S∗ |x∗
i | > 2√

1−δ2k
∥e∥2, we have S∗ ⊆ StBEST .

In this case, since the support of xtBEST − x∗ is of size smaller than k, we can redo the above calculation and obtain√
1− δk∥xtBEST − x∗∥2 ≤ ∥A(xtBEST − x∗)∥2 ≤ 2∥e∥2.

This leads to the last inequality of Theorem C.9 and concludes the proof.

C.5. Proof of Corollary 4.2

We assume that x∗ satisfies (RCSRIP) and that ∥e∥2 = 0. Let us first prove that x∗ satisfies (RCRIP). Using (RCSRIP) we
have

0 < 1− Λ ≤ 1− 2kαRIP

k

∥x∗∥2
mini∈S∗ |x∗

i |

=
2k

mini∈S∗ |x∗
i |

(
mini∈S∗ |x∗

i |
2k

− αRIP

k ∥x∗∥2
)
.

As a consequence, since 2k > 0 and mini∈S∗ |x∗
i | > 0,

0 <
mini∈S∗ |x∗

i |
2k

− αRIP

k ∥x∗∥2. (53)

We conclude that x∗ satisfies the (RCRIP) for A.

Applying Theorem 4.1 and since ∥e∥2 = 0 and X 0 = 0, we know that there exists t ≤ TRIP = (k+1)

1−2kαRIP
k

∥x∗∥2
mini∈S∗ |x∗

i
|

such

that S∗ ⊆ St. It is not difficult to check that the function f : R −→ R defined for all u ∈ R by f(u) = k+1
1−u is increasing

on [0, 1). By applying f to

0 ≤ 2kαRIP

k

∥x∗∥2
mini∈S∗ |x∗

i |
≤ Λ < 1,

we obtain

TRIP = f

(
2kαRIP

k

∥x∗∥2
mini∈S∗ |x∗

i |

)
≤ f(Λ) = TSRIP ,

where TSRIP is defined in Corollary 4.2.

Therefore t ≤ TSRIP and we conclude that there exists t ≤ TSRIP such that S∗ ⊆ St.

The last statement of Corollary 4.2 is a direct consequence of Theorem 4.1 and x∗ satisfies (7) with ∥e∥ = 0.

This concludes the proof of Corollary 4.2.

C.6. Comments on (RCRIP) and (RCSRIP)

The hypotheses of Theorem 4.1 are on the RIP of A and there are two hypotheses on x∗: (RCRIP) and (7). The condition
(RCRIP) is described below Corollary 4.2. In Corollary 4.2, the condition becomes (RCSRIP). We adapt in the section the
analysis of the (RCRIP) to condition (RCSRIP) and show that it is not vacuous under a similar constraint on αRIP

k .

If αRIP

k is too large, there does not exist any x∗ satisfying (RCSRIP). It is for instance the case if αRIP

k ≥ 0.5. On
the contrary, a sufficient condition of existence of vectors x∗ satisfying (RCSRIP) is that the constant αRIP

k satisfies
2k

3
2αRIP

k ≤ Λ < 1. In this case, when all non-zero entries of x∗ are equal, we have ∥x∗∥2 =
√
|S∗|mini∈S∗ |x∗

i | and

28

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

2kαRIP

k
∥x∗∥2

mini∈S∗ |x∗
i |

= 2kαRIP

k

√
|S∗| ≤ 2k

3
2αRIP

k ≤ Λ < 1. Summarizing, when 2k
3
2αRIP

k < 1, there exist vectors x∗

satisfying (RCSRIP) and the condition of Corollary 4.2 is not vacuous.

As a conclusion, when αRIP

k < 1
2k

− 3
2 , both Theorem 4.1 and Corollary 4.2 can be applied for a non-empty set of vectors x∗.

Moreover, we can prove that the interior of the sets of x∗ satisfying respectively (RCRIP) and (RCSRIP) are not empty. The
two sets grow as αRIP

k decreases. When ∥e∥2 = 0, the two sets are conical.

D. Additional Results for Phase Transition Diagram Experiment
We consider the same experiment as in Section 5.1 but in the noiseless setting. The analog of the curves of Figure 2 are in
Figure 6. Again, an artifact stemming from the discrete values of (m,n, k) is responsible for the smooth and decreasing part
observed on the left side of the phase transition curves, in a region where k = 1. Without noise, all algorithms exhibit a
similar phase transition curve and maintain the same ranking as in the noisy setting. The conclusions that are drawn in the
noiseless setting from Figure 6 are analog to those in Section 5.1 in the noisy setting.

Figure 6. Phase transition diagram (noiseless setting). Problems below each curve are solved by the related algorithm with a success rate
larger than 95%. ζ = m/n denotes the ratio between the number of rows and the number of columns in A while ρ = k/m denotes the
ratio between the sparsity and the number of rows in A. Matrix A have i.i.d. standard Gaussian entries and non-zero entries in x∗ are
drawn uniformly in [−2,−1] ∪ [1, 2]. n = 500 is fixed and results are obtained from 1000 runs.

E. Additional Results in Deconvolution
To supplement Section 5.2, we present additional results for the initial experimental setup. In Appendix E.1, we provide the
results for the full signal of Figure 3. In Appendix E.2, we display the loss along the iterative process for the experiment
shown in Figure 3. In Appendix E.3 (resp. Appendix E.4), we show the average number of explored supports (resp. the
average loss and Wasserstein distance) over the r = 200 problems solved to construct Figure 4 as k varies. We present results
for the noiseless case when e = 0 in Appendix E.5. Finally, we present the analog of Figure 4 for different configurations.
We depict the case where the sparsity provided to the algorithm is incorrect in Appendix E.6. The noise robustness is
studied in Appendix E.7 and the variant y = A(x∗ + e′) of the initial problem y = Ax∗ + e′ is studied in Appendix E.8.
The impact of increasing the magnitude of ∥x∗∥2

mini∈S∗ |x∗
i |

, testing the importance of conditions RCRIP and RCSRIP , is shown
in Appendix E.9. The impact of the variation of the step size for IHT and HTP is presented in Appendix E.10. Lastly,
considerations on a random search are discussed in Appendix E.11.

E.1. Deconvolution: Examining the Specific Instance from Figure 3

In Figure 7, we present the full signal corresponding to the cropped instance in Figure 3. For clarity, Figure 8 displays the
same crop as Figure 3, presenting the results obtained with all studied algorithms.

In this representation, nearly all algorithms can identify isolated spikes. However, challenges arise when spikes are close,

29

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

leading algorithms to struggle with precise localization. Notably, IHT and HTP exhibit false detections in the most energetic
part of the signal (around positions 140, 180, 260, and 400), getting trapped in local minima. On this experiment (this is not
the case in general), initializing SEA with ELS or OMP allows SEAELS and SEAOMP to find a better approximation of S∗

than SEA0. These two versions of SEA successfully recover the original signal, except for two spikes between positions 410
and 425. In contrast, other algorithms fail due to the coherence of A and the presence of additive noise.

Figure 7. Full version of Figure 3. Representation of an instance of x∗, y and the solutions provided by the algorithms (k = 20, n = 500).

Figure 8. Crop from the dashed area in Figure 7, matching the location of Figure 3 with results from all analyzed algorithms. This region
corresponds to the most densely populated area within the signal.

E.2. Deconvolution: Loss along the Iterative Process

Figures 9 and 10 illustrate the behavior of HTP, IHT, ELS, SEA0, SEAOMP and SEAELS, for the same 20-sparse vector x∗

used in Figure 3 (Section 5.2) and Figures 7 and 8 (Appendix E.1), throughout the iterative process.

More precisely, in Figure 9 the solid curves represent ℓ2,rel loss(x
t) when t varies in J0, 1000K, where ℓ2,rel loss is defined by

ℓ2,rel loss(x) =
∥Ax− y∥2
∥y∥2

. (54)

The dashed lines represent ℓ2,rel loss(x
tBEST (t)) where tBEST (t) = argmin

t′∈J0,tK
∥Axt′ − y∥22 and t varies in J0, 1000K.

Overall, no algorithm succeeds in reaching zero error. ELS performs only one iteration before stopping in a local minimum
(ℓ2,rel loss(x

1) ≈ 0.2). HTP completes a few iterations before stopping. IHT outperforms HTP by exploring a bit more. One

30

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 9. Representation of ℓ2,rel loss(x
t) (solid lines) and ℓ2,rel loss(x

tBEST (t)) (dashed lines) for each iteration of several algorithms, for
the experiment of Figure 3.

Figure 10. Representation of ℓ2,rel loss(x
t(s)) (solid lines) and ℓ2,rel loss(x

tBEST (t(s))) (dashed lines) for each new explored support of
several algorithms, for the experiment of Figure 3.

can observe that, due to the exploratory nature of SEA, ℓ2,rel loss(x
t) oscillates for both versions of SEA. This exploration

enables SEAELS to refine the ELS estimate within 300 iterations. Despite faster decay around the 100th iteration, SEAOMP
finally reaches SEAELS after 620 iterations.

We observe that HTP and IHT exhibit poor performance due to the high coherence of A. As demonstrated in Appendix E.1,
these algorithms initially make the mistake of erroneously assigning several neighboring atoms to represent the same large
bump and fail to correct this error during the iterative process.

Figure 10 illustrates the same iterative process as Figure 9, focusing on support exploration rather than the iteration count for
each algorithm. Here, the solid curves represent ℓ2,rel loss(x

t(s)) when s varies from 0 to the number of explored supports,
where t(s) is the iteration associated to the sth explored support (without redundancy). As in the previous figure, the dashed

31

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

lines represent ℓ2,rel loss(x
tBEST (t(s))) where tBEST (t(s)) = argmin

t′∈J0,t(s)K
∥Axt′ − y∥22. This is the loss associated to the best

estimate found while exploring the sth supports.

We observe that HTP explores very little before stopping in a local minimum. Despite performing only one iteration, ELS
explores 500 supports within the neighborhood of its OMP initialization for a slight improvement. Here, SEA0 explores
one new support at each iteration, while SEAELS explores fewer, improving upon ELS by exploring less than 250 supports.
Again, despite faster decay at the beginning, SEAOMP finally reaches SEAELS after exploring around 520 supports. This
reveals how efficient each algorithm is at finding relevant supports.

E.3. Deconvolution: Number of Explored Supports

As discussed in Section 3.3, the overall cost of the algorithms depends on the number of explored supports. In Figure 11, we
illustrate the number of explored supports in two different ways. First, in Figure 11 (left), we present the average number of
explored supports for the entire problem resolution — representing the overall cost. This includes supports explored before
initialization. For instance, SEAOMP includes both the supports explored by OMP for its initialization and those explored
subsequently in the SEA procedure. Then, in Figure 11 (right), we present the average number of explored supports that
actually required computation after initialization. These curves reveal the cost of the algorithms after initialization, where
supports seen before the initialization (e.g., those of OMP for SEAOMP) are not included as they do not incur additional
computing time.

Figure 11. Left: Average number of explored supports by algorithms solving the 200 problems in Section 5.2, across sparsity levels
k ∈ J1, 50K. Right: Average number of explored supports from algorithms initialization in the same setup.

Examining the overall cost of the algorithms on the left, we observe three types of exploration profiles. Some algorithms,
such as OMP, OMPR, and HTP, exhibit minimal exploration. Notably, as k increases, HTP explores fewer supports. On the
other hand, algorithms like ELS explore extensively. SEA falls in between, exploring a few supports for small k and more as
k increases until reaching a threshold. Despite exploring at least two times fewer supports than ELS, SEA’s more efficient
exploration allows it to achieve better results, as demonstrated in Figure 4.

From this figure, we observe that adding SEA to ELS (SEAELS) does not significantly alter the order of magnitude of the
cost. Turning our attention to the cost after initialization on the right, we do not observe HTPELS and HTPOMP because
they do not explore after their initialization, as shown in Figure 10 for HTPELS. OMP and SEA0 curves remain unchanged
because they do not have any initializing algorithms.

All SEA variants exhibit a similar order of magnitude of explored supports. However, we conclude that the stronger the
initialization (with 0 < OMP < ELS), the more challenging the exploration becomes due to the high coherence of A and the
local minima in which OMP and ELS end up.

32

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

E.4. Deconvolution: Average Loss and Wasserstein Distance when k Varies

In this section, we complement the analysis of the experiment described in Section 5.2, the results of which are already
depicted in Figure 4.

In Figure 12, we present the average – over the r = 200 problems – of the relative ℓ2 loss (ℓ2,rel loss), defined in (54), for the
outputs of all algorithms and for k ∈ J1, 50K. We observe that all versions of SEA achieve the lowest errors for k < 20. The
largest gap between SEA and its competitors is observed for k between 9 and 13. For clarity, the curves for HTP and IHT
are visible for small k only. Due to the high coherence of A and their method of selecting multiple elements of the support
estimate at once, both IHT and HTP attempt to reconstruct single peaks with multiple atoms, leading to much larger errors
than those of the competitors.

Figure 12. Mean of ℓ2,rel loss(x) – defined in (54) – for the outputs
of the algorithms on the 200 problems of Section 5.2, for each
sparsity level k ∈ J1, 50K.

Figure 13. Mean of the Wassertstein distance between the outputs
of the algorithms and the solutions x∗ of the 200 problems of
Section 5.2, for each sparsity level k ∈ J1, 50K.

In Figure 13, we show the mean of the Wasserstein-1-distance (also called Earth mover’s distance) over the same problems.
It illustrates how ’far’ the chosen spikes are from the true ones. Again, all the versions of SEA achieve the smallest distances
for k < 18. As k increases, despite being the best at finding the exact position of the spikes (see Figure 4), SEA0 and, to a
lesser extent, SEAOMP and SEAELS, choose spikes ’far’ from the true ones when they are mistaken, while IHT improves for
the highest k.

E.5. Deconvolution: Results in the Noiseless Setup

We consider the same experiment as in Section 5.2 but in a noiseless setting (e = 0). Thus, we set again n = 500, a
convolution matrix A corresponding to a Gaussian filter with a standard deviation equal to 3. We tested every algorithm on
r = 200 noiseless problems, for different k-sparse x∗, with k ∈ J1, 50K.

E.5.1. VISUALIZATION OF A SPECIFIC INSTANCE

The counterparts of the curves in Figures 7 and 8 from Appendix E.2 in the noiseless case are shown in Figures 14 and 15.
The algorithms behave in a similar way to the noisy case. However, with no perturbation in the signal, all versions of SEA
successfully recover the exact positions of the spikes, whereas no other algorithm achieves such a performance.

E.5.2. LOSS ALONG THE ITERATIVE PROCESS

The analogs of Figures 9 and 10 from Appendix E.2 are respectively shown in Figures 16 and 17. The conclusions drawn
here in the noiseless setting are similar to those in Appendix E.2.

Similarly to the noisy case, it can be observed in Figure 16 that due to the exploratory nature of SEA, ℓ2,rel loss(x
t) oscillates

for all versions of SEA. However, this does not prevent SEA0 from finding a better approximation of S∗ than ELS in the
first 80 iterations and eventually recovering S∗ despite the high coherence of A. Indeed, for all SEA versions, once S∗ is
recovered in the noiseless setting, for t sufficiently large, xt = x∗, and therefore Axt − y = 0. Using the update rule of X t

33

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 14. Representation of an instance of x∗ and y with the solutions provided by the algorithms when k = 20 and n = 500 in the
noiseless case: Full signal.

Figure 15. Crop from the dashed area in Figure 14. This region corresponds to the most densely populated area within the signal.

in line 8 of Algorithm 1, we observe that X t should no longer evolve, and no new support is explored. This behavior is
evident not only from Figure 16 but also from Figure 17. Furthermore, as can be seen in Figure 14, ELS does not improve
OMP thus leading to an identical initialization for SEAOMP and SEAELS. Consequently, these last two algorithms thus follow
the same trajectory. From Figure 17, we however observe thatSEAELS and SEAOMP must explore twice as many supports as
SEA0.

E.5.3. NUMBER OF EXPLORED SUPPORTS

The analog of Figure 11 from Appendix E.3 is shown in Figure 18. The conclusions drawn here in the noiseless case are
similar to those in Appendix E.3.

All the algorithms behave in the same way as in the noisy experiment.

E.5.4. AVERAGE DISTSUPP , LOSS, AND WASSERSTEIN DISTANCE WHEN k VARIES

The analogs of Figures 4, 12 and 13 are respectively displayed in Figures 19 to 21. The results in the noiseless setting
closely mirror those in Section 5.2 and Appendix E.4 in the noisy setting.

In Figure 19, for sparsity levels k < 30, SEA0, SEAOMP, and SEAELS outperform the other algorithms. Across all studied
sparsity levels, SEA0 is reaching the best performances.

34

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 16. Representation of ℓ2,rel loss(x
t) (solid lines) and ℓ2,rel loss(x

tBEST (t)) (dashed lines) for each iteration of several algorithms, for
the noiseless experiment.

Figure 17. Representation of ℓ2,rel loss(x
t(s)) (solid lines) and ℓ2,rel loss(x

tBEST (t(s))) (dashed lines) for each new explored support of
several algorithms, for the noiseless experiment.

35

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 18. Left: Mean of the number of the explored supports by algorithms solving the 200 problems in the noiseless case, across sparsity
levels k ∈ J1, 50K. Right: Mean of the number of the explored supports from algorithms initialization in the same setup.

Moving to Figure 20, the absence of noise makes the problems easier to solve. Despite overall improvement, SEA0 still
attains the lowest error for the smallest k, followed by SEAELS. Once again, HTP and IHT exhibit much larger errors than
their competitors.

In Figure 21, as k increases, SEA0, followed by SEAELS and eventually IHT, exhibits the lowest Wasserstein distance.

Figure 19. Mean of support distance distsupp (defined in (8)) between S∗ and the support of the solutions provided by several algorithms
as a function of the sparsity level k in the noiseless setup.

E.6. Deconvolution: Impact of an Erroneous Input Sparsity k

We consider the same experiment as in Section 5.2 but in the case where the sparsity k is wrongly estimated. Thus, we set
n = 500 and use a convolution matrix A corresponding to a Gaussian filter with a standard deviation of 3. Every algorithm
is tested on r = 200 noisy problems, for different k-sparse x∗, with k ∈ {4p, p ∈ J1, 12K}. The difference here is that the
algorithms are asked to recover a signal of sparsity k′ ̸= k.

The analogs of Figure 4 when k′ = 0.75k and k′ = 1.25k are depicted in Figures 22 and 23. Thus, not all values k ∈ J1, 50K
are tested because we wanted to keep a constant ratio k′

k equal to 0.75 or 1.25. To ensure fairness in the underestimated
case, we introduce a slightly different metric from distsupp, which allows algorithms to achieve a distance equal to 0:

36

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 20. Mean of ℓ2,rel loss(x) – defined in (54) – for the outputs
of the algorithms on the 200 problems of the noiseless setup.

Figure 21. Mean of the Wassertstein distance between the outputs
of the algorithms and the solutions x∗ of the 200 problems of the
noiseless setup.

distsupp,k′(x) =
k′ − |S∗ ∩ supp(x)|

k′
.

This metric shows how good is each algorithm at recovering only elements of S∗.

In Figure 22, we see that improving OMP and ELS is more difficult for SEAOMP and SEAELS, with SEA keeping the lowest
distsupp as in Figure 4. In Figures 22 and 23, we see that all algorithms reach a lower distsupp than in Figure 4. Thus, in
these configurations, SEA0 is still the algorithm reaching the lowest distsupp. The better performance for k′

k > 1 is expected
according to the definition of the mean support distance. Additionally, when k′

k < 1, the algorithms can focus on the largest
entries of x∗ which are easier to recover.

Figures 24 and 25 complement the results presented in Figures 22 and 23 with another metric. Here we illustrate how the
performance degrades when evaluating the mean support distance based on the largest estimated entries. Thus we introduce
K = min{k, k′}, and for any x ∈ Rn and i ∈ J1, nK

distsupp,largest(x) =
K − |supp(x∗

largestK
) ∩ supp(xlargestK)|

K
with (xlargestK)i =

{
xi if i ∈ largestK(x)

0 if i /∈ largestK(x).

When k is underestimated (Figure 24), distsupp,largest depicts the capacity of each algorithm to recover supp(x∗
largestK

), the
support of the largest entries of x∗. When k is overestimated (Figure 25), distsupp,largest depicts the capacity of each algorithm
to recover S∗ in the largest entries of the provided solution. With this new metric, we observe in Figure 24 that the
performance of all algorithms degrades. We also see the same phenomenon in Figure 25 with SEA0 being less affected than
the other algorithms and OMPR showing the best performance for k < 11.

E.7. Deconvolution: Noise Robustness

We consider the same experiment as in Section 5.2 but using a noise e uniformly drawn from the sphere of radius α∥Ax∗∥2
with α ∈ {0.2, 0.3} instead of α = 0.1. Again, we set n = 500 and use a convolution matrix A corresponding to a Gaussian
filter with a standard deviation of 3. Every algorithm is tested on r = 200 noisy problems, for different k-sparse x∗, with
k ∈ J1, 50K. The difference here is that we change the magnitude of the noise of the noisy problems.

The analogs of Figure 4 when α = 0.2 and α = 0.3 are depicted in Figures 26 and 27. As the noise increases, the
performance of all algorithms degrades, without changing their ranking or the conclusions of the experiment.

37

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 22. Mean of support distance distsupp,k′ between S∗ and
the support of the solutions provided by several algorithms as a
function of the sparsity level k when the sparsity is underestimated
(k′ = 0.75k).

Figure 23. Mean of support distance distsupp (defined in (8)) be-
tween S∗ and the support of the solutions provided by several
algorithms as a function of the sparsity level k when the sparsity
is overestimated (k′ = 1.25k).

Figure 24. Mean of distsupp,largest between S∗ and the support of
the solutions provided by several algorithms as a function of the
sparsity level k when the sparsity is underestimated (k′ = 0.75k).

Figure 25. Mean of distsupp,largest between S∗ and the support of
the solutions provided by several algorithms as a function of the
sparsity level k when the sparsity is overestimated (k′ = 1.25k).

E.8. Deconvolution: Noise Before the Linear Transformation

We consider the same experiment as in Section 5.2 but add the noise e differently. Instead, of generating y = Ax∗ + e with
e uniformly drawn from the sphere of radius 0.1∥Ax∗∥2, we generate y = A(x∗ + e), with e uniformly drawn from the
sphere of radius 0.1∥x∗∥2. Again, we set n = 500 and use a convolution matrix A corresponding to a Gaussian filter with a
standard deviation of 3. Every algorithm is tested on r = 200 noisy problems, for different k-sparse x∗, with k ∈ J1, 50K.
The difference here is that we changed the way of adding the noise in the observations.

The analog of Figure 4 is depicted in Figure 28. The differences between these two figures are not significant. Thus, in this
configuration, SEA0 is the algorithm reaching the lowest distsupp and we have the same conclusions as in Section 5.2.

E.9. Deconvolution: Increasing the Ratio ∥x∗∥2

mini∈S∗ |x∗
i |

The ratio ∥x∗∥2

mini∈S∗ |x∗
i |

is of importance in conditions RCRIP and RCSRIP . We experimentally study whether it actually
impacts the performance or whether it is an artifact of the proof. We consider the same experiment as in Section 5.2 but with
the non-zero entries of x∗ drawn uniformly in J−10,−1K ∪ J1, 10K instead of J−2,−1K ∪ J1, 2K. Again, we set n = 500
and use a convolution matrix A corresponding to a Gaussian filter with a standard deviation of 3. Every algorithm is tested
on r = 200 noisy problems, for different k-sparse x∗, with k ∈ J1, 50K.

38

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 26. Mean of support distance distsupp (defined in (8)) be-
tween S∗ and the support of the solutions provided by several
algorithms as a function of the sparsity level k when the noise e is
uniformly drawn from the sphere of radius 0.2∥Ax∗∥2.

Figure 27. Mean of support distance distsupp (defined in (8)) be-
tween S∗ and the support of the solutions provided by several
algorithms as a function of the sparsity level k when the noise e is
uniformly drawn from the sphere of radius 0.3∥Ax∗∥2.

The analog of Figure 4 is depicted in Figure 29. Here, OMP, OMPR, and ELS perform slightly better, while all the versions
of SEA perform slightly worse. IHT and HTP also perform worse. However, the ranking of the algorithms remains the same.
Thus, we can experimentally see that increasing the ratio ∥x∗∥2

mini∈S∗ |x∗
i |

reduces SEA performance.

Figure 28. Mean of support distance distsupp (defined in (8)) be-
tween S∗ and the support of the solutions provided by several al-
gorithms as a function of the sparsity level k when y = A(x∗ + e)
with e uniformly drawn from the sphere of radius 0.1∥x∗∥2.

Figure 29. Mean of support distance distsupp (defined in (8)) be-
tween S∗ and the support of the solutions provided by several
algorithms as a function of the sparsity level k when the non-zero
entries of x∗ are drawn uniformly in J−10,−1K ∪ J1, 10K.

E.10. Deconvolution: Step Size of IHT and HTP

In Section 5, we arbitrarily fixed the step size η = 1.8
L where L is the spectral radius of A. In this section, we study the

influence of the step size on HTP and IHT. We also consider the Normalized Iterative Thresholding (NIHT) (Blumensath &
Davies, 2010) algorithm which is based on IHT but includes an adaptive step size ηt which depends on the iteration t. The
step size is chosen as:

ηt =
∥(AT (y −Axt))St∥22
∥A((AT (y −Axt))St)∥22

.

If ηt > 0.99∥xt−xt+1∥22/∥A(xt−xt+1)∥22, ηt is halved until this inequality becomes unsatisfied, as explained in (Foucart,
2011).

We consider the same experiment as in Section 5.2 for NIHT, IHT, and HTP with different step sizes. Again, we set n = 500

39

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

and use a convolution matrix A corresponding to a Gaussian filter with a standard deviation of 3. Every algorithm is
tested on r = 200 noisy problems, for different k-sparse x∗, with k ∈ J1, 50K. IHT and HTP were tested with a step size
η ∈ { 2

l

L | for l = J−3,+3K}.

The analog of Figure 4 is depicted in Figure 30. For all considered step sizes, IHT and HTP cannot improve the solution
provided by ELS and OMP when we consider the distsupp metric. We reach the same conclusion for NIHT. The ranking of
HTP does not depend on the selected step size. The lowest distsupp is reached with a step size η = 8

L . Increasing the step
size further did not improve the results and made HTP diverge. IHT is more sensitive to step size variations than HTP. The
lowest distsupp is reached with a step size η = 2

L . Increasing the step size further made IHT diverge. The dynamic step size
of NIHT made NIHT better than SEAOMP and SEAELS for k > 25. However, IHT with η = 2

L becomes better than NIHT
for k > 36. Thus, even by considering these variabilities, SEA0 remains the best algorithm in this setting.

Figure 30. Mean of support distance distsupp (defined in (8)) between S∗ and the support of the solutions provided by several algorithms
as a function of the sparsity level k with different step size values for IHT and HTP. The area between the highest and the lowest curve for
different step sizes is displayed in blue and red for IHT and HTP. NIHTOMP and IHTOMP are superimposed. NIHTELS and IHTELS

are superimposed.

E.11. Deconvolution: Random Search as a Pure Exploration Baseline.

A random search to recover the correct support could be used as a baseline to assess the performance of SEA. However, we
discarded this option because the probability of recovery is too small. For instance, if we draw r = 100000 independent
random supports from a uniform distribution, the probability of recovering the correct support of size k = 20 in a signal

of size n = 500 is 1 −
(
1− 1

(nk)

)r

∼ 3.75 × 10−31. To establish a lower bound on support recovery performance, we

conducted a random search for a number of supports equal to the maximal number of iterations (1000). The obtained results
in this context were significantly inferior to any other tested algorithm.

40

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

F. Supervised Machine Learning Experiments
We describe here supervised learning experiments: they confirm that SEA0 performs well in small dimensions, and performs
better in high dimensions when combined with OMP or ELS. They also give evidence that SEA can perform very well in
the presence of error/noise and when no perfect sparse vector fits the data.

F.1. Context

In a supervised learning setting, the rows of matrix A ∈ Rm×n (often denoted by X) are the n-dimensional feature vectors
associated with the m training examples, while the related labels are in vector y ∈ Rm. In the training phase, a sparse vector
x (often denoted β or w) is optimized to fit y ≈ Ax using an appropriate loss function. In this context, support recovery is
called model selection.

Based on the experimental setup of (Axiotis & Sviridenko, 2020), we compare the training loss for different levels of
sparsity, for all the algorithms, on linear regression and logistic regression tasks. We use the preprocessed public datasets10

provided by (Axiotis & Sviridenko, 2020), following the same preprocessing pipeline: we augment A with an extra column
equal to 1 to allow a bias and normalize the columns of A.

We present results for regression problems in Appendix F.2 and for classification problems in Appendix F.3.

F.2. Regression Datasets

As we are working with real datasets without ground truth, we use the ℓ2 regression loss ℓ2 loss(x) = 1
2∥Ax − y∥22 for

x ∈ Rn for regression problems.

As shown in Figure 31, SEA0, SEAOMP and SEAELS are at the same level as ELS on a regression dataset with n small as in
comp-activ-harder. For the higher dimensional regression dataset as year (see Figure 32), SEA0 performs poorly as
k increases, but SEAELS can improve ELS performances and outperforms the other algorithms.

Figure 31. Performance on regression dataset comp-activ-harder (m = 8191 examples, n = 12 features).

In a low-dimensional problem (n is small) as cal housing dataset (m = 20639 examples, n = 8 features) in Figure 33,
we see that SEAOMP and SEAELS perform better than ELS, and SEA0 outperform them for a sparsity k ∈ J5, 8K. It is worth
mentioning that HTP obtains good performances for this dataset.

The same experiment is reported on Figure 34, but for the dataset slice (m = 53500 examples, n = 384 features). This is
an intermediate-dimensional problem. Figure 34 shows that SEA0 obtains slightly worse results than SEAELS, SEAOMP and

10https://drive.google.com/file/d/1RDu2d46qGLI77AzliBQleSsB5WwF83TF/view

41

https://drive.google.com/file/d/1RDu2d46qGLI77AzliBQleSsB5WwF83TF/view

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 32. Performance on regression dataset year (m = 463715 examples, n = 90 features).

ELS. The non-decreasing curve of HTP comes from its support estimation technique. Since the coherence of the slice
dataset is 1, HTP selects highly correlated features and fails to correct this mistake.

Figure 33. Performance on the regression dataset cal housing (m = 20639 examples, n = 8 features).

F.3. Classification Datasets

In these experiments, we consider the logistic regression loss defined by

log loss(x) =
m∑
i=1

(−yi log(σ((Ax)i))− (1− yi) log(1− σ((Ax)i))) ,

where σ(t) = 1
1+e−t is the sigmoid function.

We need to adapt SEA to this new loss. In Algorithm 1, line 7 is replaced by xt = argmin
x∈Rn

supp(x)⊆St

log loss(x) and line 8 is

42

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 34. Performance on the regression dataset slice (m = 53500 examples, n = 384 features).

replaced by X t+1 = X t − η∇log loss(xt). Similar adaptations are performed on the other algorithms.

The loss log loss(x), for the letter dataset (m = 20000 examples, n = 16 features), for all k ∈ J1, 12K and for all
algorithms is depicted in Figure 35. We depict the same curves obtained for the ijcnn1 dataset (m = 24995 examples,
n = 22 features) in Figure 36. These two last figures show that SEA0, SEAOMP and SEAELS achieve similar performances
to ELS.

Figure 35. Performance on the classification dataset letter (m = 20000 examples, n = 16 features).

43

Straight-Through Meets Sparse Recovery: the Support Exploration Algorithm

Figure 36. Performance on the classification dataset ijcnn1 (m = 24995 examples, n = 22 features).

44

