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ABSTRACT

Normalization techniques are crucial in stabilizing and accelerating the training
of deep neural networks. However, they are mainly designed for the indepen-
dent and identically distributed (IID) data, not satisfying many real-world out-of-
distribution (OOD) situations. Unlike most previous works, this paper presents
two normalization methods, SelfNorm and CrossNorm, to promote OOD general-
ization. SelfNorm uses attention to recalibrate statistics (channel-wise mean and
variance), while CrossNorm exchanges the statistics between feature maps. Self-
Norm and CrossNorm can complement each other in OOD generalization, though
exploring different directions in statistics usage. Extensive experiments on differ-
ent domains (vision and language), tasks (classification and segmentation), and
settings (supervised and semi-supervised) show their effectiveness.

1 INTRODUCTION

Normalization methods, e.g., Batch Normalization (Ioffe & Szegedy, 2015), Layer Normalization
(Ba et al., 2016), and Instance Normalization (Ulyanov et al., 2016), play a pivotal role in training
deep neural networks. Most of them try to make training more stable and convergence faster, as-
suming that training and test data come from the same distribution. However, few studies investigate
normalization in improving OOD generalization in real-world scenarios. For example, image cor-
ruptions (Hendrycks & Dietterich, 2019), e.g., snow and blur, can cause test data out of the clean
training distribution. Moreover, training on synthetic data (Richter et al., 2016) to generalize to
realistic data can significantly reduce the annotation burden. This work aims to encourage the in-
teraction between normalization and OOD generalization. Specifically, we manipulate feature mean
and variance to make models generalize better to out-of-distribution data.

Our inspiration comes from the observation that channel-wise mean and variance of feature maps
carry some style information. For instance, exchanging the RGB means and variances between two
instances can transfer style between them, as shown in Figure 1 (a). For many tasks such as CIFAR
classification (Krizhevsky et al., 2009), the style encoded by channel-wise mean and variance is
usually less critical in recognizing the object than other information such as object shape. Therefore,
we propose CrossNorm that swaps the channel-wise mean and variance of feature maps. CrossNorm
can augment styles in training, making the model more robust to appearance changes.

Furthermore, given one image in different styles, we can reduce their style discrepancy if adjusting
their RGB means and variances properly, as illustrated in Figure 1 (b). Intuitively, the style recali-
bration can reduce appearance variance, which may be useful in bridging distribution gaps between
training and unforeseen testing data. To this end, we propose SelfNorm to use attention (Hu et al.,
2018) to adjust channel-wise mean and variance automatically.

It is interesting to analyze the distinction and connection between CrossNorm and SelfNorm. At
first glance, they take opposite actions (style augmentation v.s. style reduction). Even so, they use
the same tool: channel-wise statistics and pursue the same goal: OOD robustness. Additionally,
CrossNorm can increase the capacity of SelfNorm by style augmentation. SelfNorm, with the help
from CrossNorm, can generalize better to OOD data.

Concept and Intuition. The style concept here refers to a family of weak cues associated with the
semantic content of interest. For instance, the image style in object recognition can include many
appearance-related factors such as color, contrast, and brightness. Style sometimes may help in
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(a) Switch RGB mean and variance (b) Recalibrate RGB mean and variance

Figure 1: CIFAR examples of exchanging (Left) and adjusting (Right) RGB mean and variance.

decision-making, but the model should weigh more on more vital content cues to become robust.
To reduce its bias rather than discard it, we use CrossNorm with probability in training. The insight
beneath CrossNorm is that each instance, or feature map, has its unique style. Further, style cues
are not equally important. For example, the yellow color seems more useful than other style cues
in recognizing orange. In light of this, the intuition behind SelfNorm is that attention may help
emphasize essential styles and suppress trivial ones.

Assumption. Although we use the channel-wise mean and variance to modify styles, we do not
assume that they are sufficient to represent all style cues. Better style representations are available
with more complex statistics (Li et al., 2017) or even style transfer models (Ulyanov et al., 2017;
Huang & Belongie, 2017). We choose the first and second-order statistics mainly because they are
simple, efficient to compute, and can connect normalization to out-of-distribution generalization. In
summary, the key contributions are:

• We propose SelfNorm and CrossNorm, two simple yet effective normalization techniques
to enhance out-of-distribution generalization.

• SelfNorm and CrossNorm form a unity of opposites in using feature mean and variance for
model robustness.

• They are domain agnostic and can advance state-of-the-art robustness performance for dif-
ferent domains (vision or language), settings (fully or semi-supervised), and tasks (classi-
fication and segmentation).

2 RELATED WORK

Out-of-distribution generalization. Although the current deep models continue to break records on
benchmark IID datasets, they still struggle to generalize to OOD data caused by common corruptions
(Hendrycks & Dietterich, 2019) and dataset gaps (Richter et al., 2016). To improve the robustness
against corruption, Stylized-ImageNet (Geirhos et al., 2019) conducts style augmentation to reduce
the texture bias of CNNs. Compared to it, CrossNorm has two main advantages. First, CrossNorm
is efficient as it transfer styles directly in the feature space of the target CNNs. However, Stylized-
ImageNet relies on external style datasets and pre-trained style transfer models. Second, CrossNorm
can advance the performance on both clean and corrupted data, while Stylized-ImageNet hurts clean
generalization. In contrast to the consistent styles within one dataset, the external ones can result
in massive distribution shifts. Recently, AugMix (Hendrycks et al., 2020c) trains robust models by
mixing multiple augmented images based on random image primitives or image-to-image networks
(Hendrycks et al., 2020a). Adversarial noises training (ANT) (Rusak et al., 2020) can also improve
the robustness against corruption. CrossNorm is domain agnostic and orthogonal to AugMix and
ANT, making it possible for their joint application. Moreover, unsupervised domain adaptation is
also useful for corruption robustness in some situations (Schneider et al., 2020).

Besides common corruptions, generalization with distribution gaps (Richter et al., 2016) across
different datasets also suffers from problems. IBN (Pan et al., 2018) mixes instance and batch
normalization to shrink the domain distances. SelfNorm can bridge the domain gaps by style recali-
bration. Domain randomization (Yue et al., 2019) uses style augmentation for domain generalization
on segmentation datasets. It suffers from the same issues of Stylized-ImageNet as it also uses pre-
trained style transfer models and additional style datasets. By contrast, CrossNorm is more efficient
and balances better between the source and target domains’ performance. Beyond the vision field,
many natural language processing (NLP) applications also face the out-of-distribution generaliza-
tion challenges (Hendrycks et al., 2020b). Benefiting from the domain-agnostic property, SelfNorm
and CrossNorm can also improve model robustness in the NLP area.
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Figure 2: SelfNorm (left) and CrossNorm (right). SelfNorm uses attention to recalibrate the mean
and variance of a feature map, while CrossNorm swaps the statistics between a pair of feature maps.
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Figure 3: Flowchart for SelfNorm and CrossNorm. SelfNorm learns in training but functions in
testing, while CrossNorm works in training.

Normalization and attention. Batch Normalization (Ioffe & Szegedy, 2015) is a milestone tech-
nique that inspires many following normalization methods such as Instance Normalization (Ulyanov
et al., 2016), Layer Normalization (Ba et al., 2016), and Group Normalization (Wu & He, 2018).
Recently, some works integrate attention (Hu et al., 2018) into feature normalization. Mode nor-
malization (Deecke et al., 2018) and attentive normalization (Li et al., 2019) use attention to weigh
a mixture of batch normalizations. Examplar normalization (Zhang et al., 2020) learns to combine
multi-type normalizations by attention. By contrast, SelfNorm uses attention with only instance
normalization. More importantly, different from previous normalization approaches, SelfNorm and
CrossNorm are to improve out-of-distribution generalization. In addition, SelfNorm is different from
SE (Hu et al., 2018), though they use similar attention. First, SelfNorm learns to recalibrate channel-
wise mean and variance instead of channel features in SE. Second, SE models the interdependency
between channels, while SelfNorm deals with each channel independently. Also, a SelfNorm unit,
with O(n), is more lightweight than a SE one, of O(n2), where n denotes the channel number. The
difference analysis here also applies to the Channel Attention (Zhang et al., 2018), similar to SE.

Data augmentation. Data augmentation is an important tool in training deep models. Current pop-
ular data augmentation techniques are either label-preserving (Cubuk et al., 2019a; Lim et al., 2019;
Ho et al., 2019) or label-perturbing (Zhang et al., 2017; Yun et al., 2019). The label-preserving
methods usually rely on domain-specific image primitives, e.g., rotation and color, making them
inflexible for tasks beyond the vision domain. The label-perturbing techniques mainly work for
classification and may have trouble in broader applications, e.g., segmentation. CrossNorm, as a
data augmentation method, is readily applicable to diverse domains (vision and language) and tasks
(classification and segmentation). The goal of CrossNorm is to boost out-of-distribution generaliza-
tion, which is also different from many former data augmentation methods.

3 SELFNORM AND CROSSNORM

Background. Technically, SelfNorm and CrossNorm share the same origin: instance normalization
(Ulyanov et al., 2016). In 2D CNNs, each instance has C feature maps of size H × W . Given
A ∈ RH×W , instance normalization first normalizes the feature map and then conducts affine
transformation:

γ
A− µA

σA
+ β, (1)

where µA and σA are the mean and standard deviation; γ and β denotes learnable affine parameters.
As shown in Figure 1 and also pointed out by the style transfer practices (Dumoulin et al., 2016;
Ulyanov et al., 2017; Huang & Belongie, 2017), µA and σA can encode some style information.
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SelfNorm. SelfNorm replaces β and γ with recalibrated mean µ′A = f(µA, σA)µA and standard
deviation σ′A = g(µA, σA)σA, as illustrated in Figure 2, where f and g are the attention functions.
The adjusted channel becomes:

σ′A
A− µA

σA
+ µ′A. (2)

As f and g learn to scale µA and σA based on themselves, A normalizes itself by self-gating, hence
SelfNorm. SelfNorm is inspired by the fact that attention can help the model emphasize informative
features and suppress less useful ones. In terms of recalibrating µA and σA, SelfNorm expects to
highlight the discriminative styles and understate trivial ones. In practice, we use a fully connected
(FC) network to wrap attention functions f and g. The architecture is efficient as its input and output
are both two scalars. Since each channel has its independent statistics, SelfNorm recalibrates each
channel separately using C lightweight FC networks, hence the complexity of O(C).

CrossNorm. CrossNorm exchanges µA and σA of channel A with µB and σB of channel B, i.e.,
changing β and γ to each other’s µ and σ, shown in Figure 2:

σB
A− µA

σA
+ µB σA

B − µB

σB
+ µA, (3)

where A and B seem to normalize each other, hence CrossNorm. CrossNorm is motivated by the
key observation that a target dataset, such as a classification dataset, has rich, though subtle, styles.
Specifically, each instance, or even every channel, has its unique style. Exchanging the statistics
can perform efficient style augmentation, reducing the style bias in decision-making. In mini-batch
training, we turn on CrossNorm with some probability.

Unity of Opposites. SelfNorm and CrossNorm both start from instance normalization but head
in opposite directions. SelfNorm recalibrates statistics to focus on only necessary styles, reducing
standardized features (zero-mean and unit-variance) and statistics mixtures’ diversity. In contrast,
CrossNorm transfers statistics between channels, enriching the combinations of standardized fea-
tures and statistics. They perform opposite operations mainly because they target at different stages.
SelfNorm dedicates to style recalibration during testing, while CrossNorm functions only in train-
ing. Note that SelfNorm is a learnable module, requiring training to work. Figure 3 shows the
flowchart of SelfNorm and CrossNorm. Additionally, SelfNorm helps make the model less sensitive
to appearance changes, while CrossNorm aims to lessen the model’s style bias. Despite these dif-
ferences, they both can facilitate out-of-distribution generalization. Further, CrossNorm can boost
the performance of SelfNorm because its style augmentation can prevent SelfNorm from overfitting
to specific styles. Overall, the two seemingly opposed methods form a unity of using normalization
statistics to advance out-of-distribution robustness.

3.1 CROSSNORM VARIANTS

The core idea of CrossNorm is to swap mean and variance between channel features. For 2D CNNs,
given one instance X,∈ RC×H×W , CrossNorm can exchange statistics between its C channels:

{(A,B) ∈ (Xi,:,:,Xj,:,:) | i 6= j, 0 < i, j < C} , (4)

where A and B refer to the channel pair in Equation 3. If two instances X,Y ∈ RC×H×W given,
CrossNorm can swap statistics between their corresponding channels, i.e., A and B become:

{(A,B) ∈ (Xi,:,:,Yi,:,:) | 0 < i < C} . (5)

Compared with one-instance CrossNorm, the two-instance one tends to consider instance-level style
instead of channel-level.

Moreover, distinct spatial regions probably have different mean and variance statistics. To promote
the style diversity, we propose to crop regions for CrossNorm:

{(A,B) ∈ (crop(A), crop(B)) | rcrop ≥ t} (6)

where the crop function returns a square with area ratio r no less than a threshold t(0 < t ≤ 1). The
whole channel is a special case in cropping. There are three cropping choices: content only, style
only, and both. For content cropping, we crop A only when we use its standardized feature map.
In other words, no cropping applies to A when it provides its statistics to B. Cropping both means
cropping A and B no matter we employ their standardized feature map or statistics. The cropping
strategy can produce diverse styles for both the two-instance and one-instance CrossNorms.
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3.2 MODULAR DESIGN

SelfNorm and CrossNorm can naturally work in the feature space, making it flexible to plug them
into many network locations. Two questions come: how many units are necessary and where to place
them? To simplify the questions, we turn to the modular design by embedding them into a network
cell. For example, in ResNet (He et al., 2016), we put them into a residual module. The search space
significantly shrinks for the limited positions in a residual module. We will investigate the position
choices in experiments. The modular design allows using multiple SelfNorms and CrossNorms in
a network. We will show in the ablation study that accumulated style recalibrations are helpful for
model robustness. Since excessive style augmentations are harmful (Geirhos et al., 2019), we ran-
domly turn on only some CrossNorms in a forward process. Random sampling encourages diverse
augmentations even though the same data pass multiple times.

4 EXPERIMENT

We evaluate SelfNorm and CrossNorm on out-of-distribution data that arise from image corruptions
and dataset differences. The evaluation uses not only supervised and semi-supervised settings but
also image classification and segmentation tasks. In addition to the vision tasks, we also apply them
to a NLP task. Due to limited space, we leave all ablation studies in the appendix.

Image classification datasets. We use benchmark datasets: CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100, and ImageNet(Deng et al., 2009). To evaluate the model robustness against corruption,
we use the datasets: CIFAR-10-C, CIFAR-100-C, and ImageNet-C (Hendrycks & Dietterich, 2019).
These datasets are the original test data poisoned by 15 everyday image corruptions from 4 general
types: noise, blur, weather, and digital. Each noise has 5 intensity levels when injected into images.

Image segmentation datasets. We further validate our method using a domain generalization set-
ting, where the models are trained without any target domain data and tested on the unseen domain.
We use the synthetic dataset Grand Theft Auto V (GTA5) (Richter et al., 2016) as the source domain
and generalize to the real-world dataset Cityscapes (Cordts et al., 2016). GTA5 has the training, vali-
dation, and test divisions of 12,403, 6,382, and 6,181, more than those of 2,975, 500, and 1,525 from
Cityscapes. Despite the differences, their pixel categories are compatible with each other, making it
possible to evaluate models’ generalization capability from one to another.

Sentiment classification datasets. Besides vision tasks, we demonstrate that our method can also
work well on NLP tasks. We use the out-of-distribution (OOD) generalization setting in binary
sentiment classification. The model is trained on IMDb dataset (Maas et al., 2011) and is tested on
SST-2 testing dataset (Socher et al., 2013). The IMDb dataset collects highly polarized full-length
lay movie reviews with 25,000 positive and 25,000 negative reviews. The SST-2 contains 9613 and
1821 reviews for training and testing, which is also a binary sentiment classification dataset but
instead contains pithy expert movie reviews.

Metric. For image classification, we use test errors to measure the robustness. Given corruption type
c and severity s, letEc

s denote the test error. For CIFAR datasets, we use the average over 15 corrup-
tions and 5 severities: 1/75

∑15
c=1

∑5
s=1Ec,s. In contrast, for ImageNet, we normalize the corrup-

tion errors by those of AlexNet (Krizhevsky et al., 2012): 1/15
∑15

c=1(
∑5

s=1E
c
s/

∑5
s=1E

AlexNet
c,s ).

The above two metrics follow the convention (Hendrycks et al., 2020c) and are denoted as mean
corruption errors (mCE) whether they are normalized or not. Different from classification, segmen-
tation use the mean Intersection over Union (mIoU) over all categories as metric. For sentiment
classification, we report accuracy as the metric.

Hyper-parameters. In the experiments, a SelfNorm unit uses one fully connected layer, followed
by Batch Norm and a sigmoid layer. We put CrossNorm ahead of SelfNorm, and plug them into
every cell in a network, e.g., each residual module in a ResNet. During training, we turn on only
some CrossNorms with probability to avoid excessive data augmentation. Usually, we conduct a grid
search on four combinations of active numbers (1, 2) and probability (0.25, 0.5). For CrossNorm
with cropping, we sample the bounding box ratio uniformly and set the threshold t = 0.1.
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Table 1: mCE (%) comparison of CIFAR-10-C and CIFAR-100-C. SelfNorm&CrossNorm (SNCN)
obtains lower errors than most previous methods with different backbones. Albeit some higher errors
than AugMix, it is totally domain agnostic without relying on the image primitives, e.g., rotation, in
AugMix. As SNCN and AugMix are orthogonal, their joint usage brings new state-of-the-art results.

CIFAR-10-C Basic Cutout Mixup CutMix AutoAug AdvTr. AugMix SNCN SNCN+AugMix
AllConvNet 30.8 32.9 24.6 31.3 29.2 28.1 15.0 17.2 11.8
DenseNet 30.7 32.1 24.6 33.5 26.6 27.6 12.7 18.5 10.4
WideResNet 26.9 26.8 22.3 27.1 23.9 26.2 11.2 16.9 9.9
ResNeXt 27.5 28.9 22.6 29.5 24.2 27.0 10.9 15.7 9.1
Mean 29.0 30.2 23.5 30.3 26.0 27.2 12.5 17.0 10.3
CIFAR-100-C Basic Cutout Mixup CutMix AutoAug AdvTr. AugMix SNCN SNCN+AugMix
AllConvNet 56.4 56.8 53.4 56.0 55.1 56.0 42.7 42.8 36.8
DenseNet 59.3 59.6 55.4 59.2 53.9 55.2 39.6 48.5 37.0
WideResNet 53.3 53.5 50.4 52.9 49.6 55.1 35.9 43.7 33.4
ResNeXt 53.4 54.6 51.4 54.1 51.3 54.4 34.9 40.8 30.8
Mean 55.6 56.1 52.6 55.5 52.5 55.2 38.3 43.5 34.7

Table 2: Clean error and mCE (%) of ResNet50 trained 90 epochs on ImageNet. SNCN, using
simple domain-agnostic statistics, achieves comparable performance as AugMix. Jointly applying
SNCN with AugMix and IBN can produce the lowest clean and corruption errors.

Noise Blur Weather Digital
Aug. Clean Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mCE
Standard 23.9 79 80 82 82 90 84 80 86 81 75 65 79 91 77 80 80.6
Patch Uniform 24.5 67 68 70 74 83 81 77 80 74 75 62 77 84 71 71 74.3
Random AA* 23.6 70 71 72 80 86 82 81 81 77 72 61 75 88 73 72 76.1
MaxBlur pool 23.0 73 74 76 74 86 78 77 77 72 63 56 68 86 71 71 73.4
SIN 27.2 69 70 70 77 84 76 82 74 75 69 65 69 80 64 77 73.3
AugMix* 23.4 66 66 66 69 80 65 68 72 72 66 60 63 78 66 71 68.4
SNCN 23.3 66 67 65 77 89 76 80 72 72 67 59 47 83 62 72 70.4
SNCN+AugMix 22.3 61 62 60 70 77 62 68 62 65 63 55 43 73 55 66 62.8

4.1 ROBUSTNESS AGAINST UNSEEN CORRUPTIONS FOR IMAGE CLASSIFICATION

Supervised training on CIFAR. Following AugMix (Hendrycks et al., 2020c), we evaluate Self-
Norm and CrossNorm with four different backbones: an All Convolutional Network (Springenberg
et al., 2014), a DenseNet-BC (k = 12, d = 100) (Huang et al., 2017), a 40-2 Wide ResNet (Zagoruyko
& Komodakis, 2016), and a ResNeXt-29 (32×4) (Xie et al., 2017). We also use the same hyper-
parameters in the AugMix Github repository1.

According to Table 1, SelfNorm and CrossNorm can decrease the mean error by ∼12% on both
CIFAR-10-C and CIFAR-100-C, outperforming most previous approaches on robustness against
unseen corruptions. One possible explanation is that the corruptions, as demonstrated in Figure
12, mainly change image textures. SelfNorm and CrossNorm, through style recalibration and aug-
mentation, may help reduce the texture sensitivity and bias, making the classifiers more robust to
unseen corruptions. Also, the domain-agnostic SelfNorm and CrossNorm are orthogonal to Aug-
Mix, which relies on domain-specific operations. Their joint application can continue to lower the
mCEs by 2.2% and 3.6% on top of AugMix.

Supervised training on ImageNet. Following the AugMix Github repository, we train a ResNet-50
for 90 epochs with weight decay 1e-4. The learning rate starts from 0.1, divided by 10 at epochs 30
and 60. Note that AugMix reports the results of 180 epochs in their paper. For a fair comparison,
we also train it 90 epochs in our experiments. Besides, we also add Instance-batch normalization
(IBN) (Pan et al., 2018) in the final combination with AugMix. It was initially designed for domain
generalization but can also boost model robustness against corruption.

Table 2 gives the results on ImageNet. We can find that SelfNorm and CrossNorm can make the
corruption error drop by 10.2%. The clean error also descends by 0.6% simultaneously. More-
over, applying SelfNorm and CrossNorm on top of AugMix can significantly lower its clean and
corruption errors by 1.1% and 5.6%, achieving state-of-the-art performance. IBN also makes some
contributions here since it is complementary to other components.

1https://github.com/google-research/augmix
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Figure 4: CrossNorm for semi-supervised CIFAR-10 classification. We apply CrossNorm on top of
FixMatch with weak augmentation (WA) (Left), or strong RandAugment (RA) (Right). For either
case, CrossNorm (CN) can substantially reduce both clean and corruption errors. Compared with
RA, CrossNorm performs domain agnostic data augmentation, easily applicable to new domains.

Semi-supervised training on CIFAR. Apart from supervised training, we also evaluate CrossNorm
in semi-supervised learning. Following state-of-the-art FixMatch (Sohn et al., 2020) setting, we
train a 28-2 Wide ResNet for 1024 epochs on CIFAR-10. The SGD optimizer applies with Nesterov
momentum 0.9, learning rate 0.03, and weight decay 5e-4. The probability threshold to generate
pseudo-labels is 0.95, and the weight for unlabeled data loss is 1. We sample 250 and 4,000 la-
beled data with random seed 1, leaving the rest as unlabeled data. In each experiment, we apply
CrossNorm to all data or only the unlabeled and choose the better one. Our experiments use the Py-
torch FixMatch implementation 2, which has higher errors than the FixMatch reported. We choose
it because it has the most stars among all the Pytorch implementations on Github.

Figure 4 shows the semi-supervised results. We run FixMatch with the strong RandAugment (Cubuk
et al., 2019b) or only weak random flip and crop augmentations. With either FixMatch version,
CrossNorm can always decrease both the clean and corruption errors, demonstrating its effective-
ness in semi-supervised training. Especially, with the help of CrossNorm, training with 250 labels
even has 3% lower corruption error than with 1000 labels, according to the right sub-figure. Addi-
tionally, two points are noteworthy here. First, we try FixMatch with only weak augmentations to
simulate more general situations. For new domains other than natural images, humans may have the
limited domain knowledge to design advanced augmentation operations. Fortunately, CrossNorm is
domain-agnostic and easily applicable to such situations. Moreover, previous semi-supervised meth-
ods mainly focus on in-distribution generalization. Here we introduce out-of-distribution robustness
as another metric for more comprehensive evaluation.

4.2 GENERALIZATION FROM SYNTHETIC TO REALISTIC DATA FOR IMAGE SEGMENTATION

Training setup. We perform domain generalization from GTA5 (synthetic) to Cityscapes (realistic),
following the setting of IBN (Pan et al., 2018). It uses 1/4 training data in GTA5 to match the
data scale of Cityscapes. We train the FCN (Long et al., 2015) with ResNet50 backbone in source
domain GTA5 for 80 epochs with batch size 16. The network is initialized with ImageNet pre-
trained weights. Then we test the model on both the source domain and target domain. The training
uses random scaling, flip, rotation, and cropping (713 × 713) for data augmentation. We use the
2-instance CrossNorm with style cropping in this setting. Besides, we re-implement the domain
randomization (Yue et al., 2019) and make the training iterations the same as ours. It transfers the
synthetic images to 15 auxiliary domains with ImageNet image styles.

Results. Based on Table 3, SelfNorm and CrossNorm both can substantially increase the segmenta-
tion accuracy on the target domain by 8.5% and 10.6%. SelfNorm learns to highlight the discrimina-
tive styles that are likely to share across domains. CrossNorm performs style augmentation to make
the model focus more on domain-invariant features. SelfNorm and CrossNorm get comparable gen-
eralization performance as state-of-the-art IBN (Pan et al., 2018) and domain randomization (Yue
et al., 2019). However, CrossNorm significantly outperforms the domain randomization method
by 12.2% on the source accuracy. Because the domain randomization transfers external styles to
the source training data, causing dramatic distribution shifts. Moreover, combining SelfNorm and
CrossNorm gives the best generalization performance while still maintaining high source accuracy.

2https://github.com/kekmodel/FixMatch-pytorch
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Table 3: Segmentation results (mIoU) on GTAV-Cityscapes domain generalization using a FCN with
ResNet50. SelfNorm (SN) and CrossNorm (CN) are comparable with IBN and domain randomiza-
tion (DR) on the target domain. Combining SN and CN can achieve state-of-the-art performance.

Methods Baseline IBN DR SN CN SNCN

Source 63.7 64.2 49.0 64.6 61.2 63.5
Target 21.4 29.6 32.7 29.9 32.0 36.5

Table 4: Accuracy (Acc) on OOD generalization for sentiment classification using GloVe embedding
and ConvNets model. We train the model on IMDb source dataset and test on SST-2 target dataset.

Methods Baseline SN CN SNCN

Source 85.67 86.30 (↑ 0.63) 85.14 (↓ 0.53) 85.92 (↑ 0.25)
Target 71.86 73.93 (↑ 2.07) 73.03 (↑ 1.17) 74.91 (↑ 3.05)

4.3 OUT-OF-DISTRIBUTION GENERALIZATION FOR SENTIMENT CLASSIFICATION

Setup. We also conduct out-of-distribution generalization on the binary sentiment classification task
in the NLP field to validate the versatility of SelfNorm and CrossNorm. The model is trained on
the IMDb dataset and then tested on SST-2 dataset. Follow the setting of Hendrycks et al. (2020b),
we use GloVe (Pennington et al., 2014) word embedding and the Convolutional Neural Networks
(ConvNets) (Kim, 2014) as the classification model. We use the implementation of ConvNets in this
repository3. The convolutional layers with three kernel sizes (3,4,5) are used to extract n − gram
features within the review texts. The SelfNorm and CrossNorm are placed between the embedding
layer and the convolutional layers. We use the Adam optimizer and train the model for 20 epochs.

Results. From Table 4, we can find that SelfNorm improves the performance in both the source
and target domains by 2.07% and 0.63%. CrossNorm can also increase target accuracy without
much degradation in the source domain. Combining them gives a 3.05% accuracy boost. This
experiment indicates that SelfNorm and CrossNorm can also work in the NLP area, not limited to
the vision tasks. Despite the lack of intuitive explanations as for the image data, the mean and
variance statistics in NLP data are also useful in facilitating out-of-distribution generalization.

4.4 VISUALIZATION

Apart from the quantitative comparisons, we also provide some visualization results of SelfNorm
and CrossNorm to understand their effects better. It is nontrivial to visualize them directly in feature
space. To deal with this, we map the feature changes made by SelfNorm and CrossNorm back to
image space by inverting the feature representations (Mahendran & Vedaldi, 2015). For detailed
experimental settings, refer to the appendix.

To visualize SelfNorm at a network location, we first forward an image to obtain the target repre-
sentation immediately after the SelfNorm. Then we turn off the chosen SelfNorm and optimize the
original image to make its representation fit the target one. In this way, we can examine SelfNorm’s
effect by observing changes in image space. As shown in Figure 6, SelfNorm can primarily reduce
the contrast and color at the first network block. The effect becomes more subtle as SelfNorm goes
deeper into the network. One possible explanation is that the high-level representations lose many
low-level details, making it difficult to visualize their changes.

In addition to visualizing individual SelfNorms, it is also interesting to see their compound effect.
To this end, we reconstruct an image from random noises by matching its representation with a given
one. The reconstructed image can show what information is preserved by the feature representation.
By comparing two reconstructed images from a network with or without SelfNorm, we can observe
the joined recalibration effects of SelfNorms before a selected location. From Figure 7, we can find
SelfNorms in the first two network blocks can suppress much style information and preserve object
shapes. The reconstructions from block 3 do not look visually informative due to the high-level
abstraction. Even so, SelfNorms can restrain the high-frequency signals kept in the vanilla network.

3https://github.com/bentrevett/pytorch-sentiment-analysis
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CN at the start of block 1CN in image space CN at the end of block 1

Figure 5: CrossNorm visualization at image level (Left), the head (Middle) and tail (Right) of block
1 in a WideResNet-40-2. Both the content (Row) and style (Column) images are from CIFAR-10.
The style rendering changes from global to local as CrossNorm gets deeper in the network.

SN at the start of block 1 SN at the end of block 1 SN at the end of block 2 SN at the end of block 3

Figure 6: Visualizing 4 single SelfNorms by comparing images before (Top) and after (Bottom)
them. The left two, lying in shallow locations, can adjust styles by suppressing color and adding blur.
As SelfNorm goes deeper, the recalibration effect is subtle, due to the high-level feature abstraction.

Input

Plain network +SelfNorm Plain network +SelfNorm Plain network +SelfNorm

The end of block 1 The end of block 2 The end of block 3

Reconstructed images from intermediate CNN features

Figure 7: Visualizing accumulated SelfNorms by comparing inverted images. SelfNorms in block
1 can wash away much style information preserved in the vanilla network. Similarly, the plain net-
work’s final representation retains some high-frequency signals which are suppressed by SelfNorms.

In the CrossNorm visualization, we pair one content image with multiple style images for better
illustration. We first forward them to get their representations at a chosen position. Then, we com-
pute the standardized features from the content image representation and the means and variances
of the style image representation. The optimization starts from the content image and tries to fit its
representation to the target one mixing the standardized features with different means and variances.
Figure 5 shows diverse style changes made by CrossNorm. The style changes become more local
and subtle as CrossNorm moves deeper in the network.

5 CONCLUSION

In this paper, we have presented SelfNorm and CrossNorm, two simple yet effective normalization
techniques to improve OOD robustness. They form a unity of opposes as they confront and conform
to each other in terms of approach (statistics usage) and goal (OOD robustness). Beyond their
extensive applications, they may also shed light on developing domain agnostic methods applicable
to multiple fields such as vision and language, and broad OOD generalization circumstances such
as unseen corruptions and distribution gaps across datasets. Given the simplicity of SelfNorm and
CrossNorm, we believe there is substantial room for improvement. The current channel-wise mean
and variance are not optimal to encode diverse styles. One possible direction is to explore better
style representations.
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Figure 8: Illustration of SelfNorm (SN) and CrossNorm (CN) positions in a residual module.
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Figure 9: Study of Modular positions (left) and CrossNorm variants (right). SelfNorm and Cross-
Norm both get the lowest errors at the post-addition position. Second, the 2-instance mode consis-
tently outperforms the 1-instance one, and proper cropping can decrease the error.

6 SUPPLEMENTARY

6.1 ABLATION STUDY ON DESIGN CHOICES

All the experiments here use a 40-2 Wide ResNet, measured by the mCE on CIFAR-100-C.

CrossNorm variants. CrossNorm can be in 1-instance or 2-instance mode with four cropping
options. Figure 9 compares their mCEs. The 2-instance mode constantly gets lower errors than
the 1-instance. Furthermore, cropping can help decrease the error since it can encourage the style
augmentation diversity. Note that style cropping may not always be superior. We find that the best
cropping choice may change over backbones, datasets, and joint application with SelfNorm.

Modular positions. Here we investigate four positions in a residual module, illustrated in Figure
8. We can find that, in Figure 9, both SelfNorm and CrossNorm work the best at the post-addition
position. For positions in other module types, refer to the ablation study in Section 6.2. Further, we
find that their order seems to have little influence on the performance, as indicated in Table 5.

Blocks choices for SelfNorm and CrossNorm. After narrowing down their positions in a cell, we
still need to study which blocks in a network should build on the cells with them. According to
Table 6, They both perform the best when plugged into all blocks.

Ablating components. SelfNorm learns to recalibrate test styles to decrease texture sensitivity,
while CrossNorm augments training styles to reduce texture bias. Although focusing on distinct
aspects, they can lower the corruption error both separately and jointly, according to Table 7. On
top of them, cropping and the consistency regularization in AugMix can further advance model
robustness. Besides, SelfNorm outperforms SE (Hu et al., 2018) for model robustness because it
takes advantage of the style information.

6.2 ABLATION STUDY ON CIFAR

In addition to the residual module, we also investigate the positions of SelfNorm and CrossNorm
in the cells of AllConvNet, DenseNet, and ResNeXt. Figure 10 illustrates the positions in the All-
ConvNet and DenseNet cells. The position results of SelfNorm and CrossNorm on two datasets
CIFAR-10-C and CIFAR-100-C are given in Tables 8, 9, 10, and 11. We also report the results of
SelfNorm and CrossNorm with different cropping choices in Tables 12 and 13. The full component
ablation studies with different backbones are given in Tables 14 and 15.
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Table 5: Order of SelfNorm and CrossNorm. In this experiment, they both are at the post-addition
position in a residual cell.

Order SN→CN CN→SN
mCE(%) 46.9 46.6

Table 6: Block choices of SelfNorm and CrossNorm. We compare the mCEs (%) when applying
SelfNorm and CrossNorm to image space or different blocks in a WideResNet-40-2. The choice of
all blocks gives the lowest errors for both of them.

Stages N/A Image Block 1 Block 2 Block 3 All
SelfNorm 53.3 52.9 48.9 52.2 51.3 47.4
CrossNorm 53.3 54.3 52.2 51.2 51.5 48.8

Table 7: Ablation study of SE, SelfNorm(SN), CrossNorm(CN), cropping, and consistency regular-
ization(CR). SN obtains much lower corruption error than SE, justifying its robustness superiority.
Besides, SN and CN can work together in reducing mCE, and cropping and CR can help further.

Basic SE SE(post) SN CN SNCN SNCN+Crop SNCN+Crop+CR
mCE(%) 53.3 52.3 51.0 47.4 48.8 46.6 44.5 43.7

6.3 VISUALIZATION CONTINUED

Visualization setup. Our visualization builds on the technique: understanding deep image repre-
sentations by inverting them (Mahendran & Vedaldi, 2015). The goal is to find an image whose
feature representation best matches the given one. The search is done automatically by a SGD opti-
mizer with learning rate 1e4, momentum 0.9, and 200 iterations. The learning rate is divided by 10
every 40 iterations. During the optimization, the network is in its evaluation mode with its parame-
ters fixed. In the experiment, we use WideResNet-40-2 and images from CIFAR-10. In visualizing
CrossNorm, we use the training images and a model trained for 1 epoch. The SelfNorm visualization
uses test images and a well-trained model. We use different settings for them because CrossNorm is
for training, while SelfNorm works in testing.

More visualization results. Figure 11, extending Figure 5, shows more CrossNorm visualizations
in deeper network blocks. Figure 12 gives an illustration of 15 corruptions used in robustness evalu-
ation on CIFAR and ImageNet. Moreover, Figure 13 shows some synthetic images from GTA5 and
realistic ones from Cityscapes. The visualization of CrossNorm applied to the synthetic images is
provided in Figure 14.

6.4 ABLATION STUDY ON IMAGENET

Table 16 reports the results of applying SelfNorm or CrossNorm with IBN. We can see that they
can cooperate to improve corruption robustness. Moreover, in Tables 17 and 18, we also investigate
the SelfNorm and CrossNorm positions in a residual module using ImageNet. Similar to the CIFAR
results, the post-addition position performs the best for corruption robustness.

We also compare CrossNorm to Stylized-ImageNet, which transfers styles from external datasets
to perform style augmentation. Stylized-ImageNet finetunes a pre-trained ResNet-50 for 45 epochs
with double data (stylized and original ImageNets) in each epoch. To compare CrossNorm with
Stylized-ImageNet, we perform the finetuning for 90 epochs using only the original ImageNet. In
Table 19, although Stylized-ImageNet has 2% lower corruption error than CrossNorm, its clean
error is 3.8% higher. Because the external styles in Stylized-ImageNet cause large distribution
shifts, impairing its clean generalization. In contrast, The more consistent yet diverse internal styles
help CrossNorm decreases both corruption and clean errors.
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Figure 10: Illustration of SelfNorm (SN) and CrossNorm (CN) positions in AllConvNet block, and
dense cells in DenseNet. For blocks in AllConvNet, we name the position after convolution layer as
1, after normalization layer as 2, and after GELU layer as 3. For dense cells in DenseNet, we label
the position before feature concatenation as Pre, and after concatenation as Post.

6.5 ABLATION STUDY ON GENERALIZATION FROM SYNTHETIC TO REALISTIC DATA

In addition to Table 3, Table 20 provides the ablation study on cropping for domain generalization
from GTA5 to Cityscapes.

Table 8: Ablation study of the impact of different SelfNorm position for AllConvNet, DenseNet,
WIdeResNet and ResNeXt on CIFAR-10-C measured by mCE

Position 1 2 3 -
AllConvNet 24.01 26.38 25.56 -
Position Pre Post - -
DenseNet 23.40 21.96 - -
Position Residual Post Pre Identity
WideResNet 22.69 21.29 20.78 22.29
Position Residual Post Pre Identity
ResNeXt 21.94 24.76 21.49 21.99

Table 9: Ablation study of the impact of different CrossNorm position for AllConvNet, DenseNet,
WIdeResNet and ResNeXt on CIFAR-10-C measured by mCE

Position 1 2 3 -
AllConvNet 25.99 26.27 26.84 -
Position Pre Post - -
DenseNet 24.72 29.17 - -
Position Residual Post Pre Identity
WideResNet 25.20 21.62 24.91 23.27
Position Residual Post Pre Identity
ResNeXt 26.71 22.37 23.75 26.92
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Table 10: Ablation study of the impact of different SelfNorm position for AllConvNet, DenseNet,
WIdeResNet and ResNeXt on CIFAR-100-C measured by mCE

Position 1 2 3 -
AllConvNet 50.30 51.63 51.03 -
Position Pre Post - -
DenseNet 53.86 54.67 - -
Position Residual Post Pre Identity
WideResNet 49.28 47.44 49.82 48.43
Position Residual Post Pre Identity
ResNeXt 47.56 49.00 50.86 50.44

Table 11: Ablation study of the impact of different CrossNorm position for AllConvNet, DenseNet,
WIdeResNet and ResNeXt on CIFAR-100-C measured by mCE

Position 1 2 3 -
AllConvNet 52.20 52.49 52.69 -
Position Pre Post - -
DenseNet 55.44 57.57 - -
Position Residual Post Pre Identity
WideResNet 52.06 48.76 51.74 50.26
Position Residual Post Pre Identity
ResNeXt 51.47 46.95 47.87 50.22

Table 12: Ablation study of the impact of SelfNorm + CrossNorm with different cropping, including
neither, content, style and both, for AllConvNet, DenseNet, WIdeResNet and ResNeXt on CIFAR-
10-C measured by mCE

Backbone Neither Content Style Both

AllConvNet, 1 18.98 20.29 18.82 20.28
DenseNet, Conv1 Pre 18.75 18.23 18.70 18.83
WideResNet, Post 17.93 17.99 16.77 17.47
ResNeXt, Post 17.73 18.52 18.37 18.59

Table 13: Ablation study of the impact of SelfNorm + CrossNorm with different cropping, including
neither, content, style and both, for AllConvNet, DenseNet, WIdeResNet and ResNeXt on CIFAR-
100-C measured by mCE

Backbone Neither Content Style Both

AllConvNet, 1 44.17 46.92 43.86 46.08
DenseNet, Conv1 Pre 51.38 49.40 49.13 48.97
WideResNet, Post 46.58 45.08 45.82 44.46
ResNeXt, Post 41.03 44.85 42.96 46.52
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Table 14: Ablation study of each component of our methods, including SelfNorm, CrossNorm with
cropping, consistency and combination with AugMix, for AllConvNet, DenseNet, WIdeResNet and
ResNeXt on CIFAR-10-C measured by mCE

Backbone Basic SN CN SN+CN SN+CN+Crop AugMix SNCN+Crop
+Crop +Consistency +AugMix

AllConvNet, 1, style 30.80 24.01 25.99 18.82 17.24 15.00 11.79
DenseNet, Conv1 Pre, both 30.70 21.96 24.72 18.83 18.53 12.7 10.40
WideResNet, Post, both 26.90 20.78 21.62 17.47 16.93 11.2 9.94
ResNeXt, Post, neither 27.50 21.49 22.37 17.73 15.69 10.90 9.09

Table 15: Ablation study of each component of our methods, including SelfNorm, CrossNorm with
cropping, consistency and combination with AugMix, for AllConvNet, DenseNet, WIdeResNet and
ResNeXt on CIFAR-100-C measured by mCE

Backbone Basic SN CN SN+CN SN+CN+Crop AugMix SNCN+Crop
+Crop +Consistency +AugMix

AllConvNet, 1, style 56.40 50.30 52.20 43.86 42.83 42.7 36.80
DenseNet, Conv1 Pre, both 59.30 53.86 55.44 48.97 48.48 39.60 36.95
WideResNet, Post, both 53.30 47.44 48.76 44.46 43.70 35.90 33.38
ResNeXt, Post, neither 53.40 47.56 46.95 41.03 40.84 34.9 30.76

Table 16: Ablation study of IBN, SelfNorm(SN), CrossNorm(CN), consistency regularization(CR),
and AugMix(AM) on ImageNet-C with ResNet50. IBN, originally designed for domain generaliza-
tion, can also decrease mCE. Both SN and CN can further lower the error based on IBN. Combining
them with AM gives the best robustness performance.

ResNet50 ResNet50+IBN(a) ResNet50+IBN(b)
Basic Basic +CN +CN+CR +CN+AM Basic +SN +SN+AM +SNCN+AM

Clean err(%) 23.9 23.2 23.1 22.6 22.5 24.0 23.5 22.3 22.3
mCE(%) 80.6 75.1 73.2 73.6 66.4 74.1 72.6 64.1 62.8

Table 17: Position investigation of SelfNorm in a residual module of ResNet50 trained 90 epochs
on ImageNet.

Modular Position Identity Pre-Residual Post-Residual Post-Addition
Clean error (%) 24.0 23.0 23.2 23.7
mCE(%) 75.5 75.8 74.8 73.4

Table 18: Position investigation of CrossNorm in a residual module of ResNet50 trained 90 epochs
on ImageNet.

Modular Position Identity Pre-Residual Post-Residual Post-Addition
Clean error (%) 25.2 23.4 23.5 23.4
mCE(%) 78.2 75.8 77.5 75.3

Table 19: Ablation study of Stylized-ImageNet (SIN), SelfNorm(SN), CrossNorm(CN), and crop-
ping with ResNet50 trained 90 epochs on ImageNet. Compared with SIN, CN holds a better balance
between clean and corruption errors. SN also works well in decreasing the corruption error while
maintaining low clean error. Combining SN and CN can further lower both errors.

Basic SIN SN CN SNCN SNCN+Crop
Clean error (%) 23.9 27.2 23.7 23.4 23.3 23.3
mCE(%) 80.6 73.3 73.4 75.3 70.4 71.1
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Table 20: Ablation on GTAV-Cityscapes domain generalization. Mean IoU for both within-domain
and cross-domain evaluation are reported. All methods use FCN with ResNet50 as backbone net-
work. We use style-only crop for segmentation.

Methods FCN Baseline SN CN CN+Crop SNCN SNCN+Crop

Source 63.7 64.6 61.8 61.2 65.0 63.5
Target 21.4 29.9 31.5 32.0 34.1 36.5

Style images Style images Style images

CN at the end of block 2 CN at the start of block 3CN at the start of block 2

Figure 11: CrossNorm visualization at the head (Left), the tail of (Middle) block 2 and the start
of block 3 (Right) in a WideResNet-40-2. Both the content (Row) and style (Column) images
are from CIFAR-10. Compared to CrossNorms in block 1, shown in Figure 5, the CrossNorms in
blocks 2 and 3 have weaker style transfer effects. Because the channel-wise means and variances in
high-level feature maps may contain less low-level visual information.

Figure 12: A demostration of corrupted images in ImageNet-C dataset (Hendrycks & Dietterich,
2019). 15 types of algorithmically generated corruptions from noise, blur, weather, and digital
categories are applied to images to create corrupted dataset.
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Figure 13: Some examples of segmentation dataset. The first row are images from Cityscapes
dataset, while the second row are images from GTA5 dataset.

Figure 14: A visualization of CrossNorm with crop style used on image level. The two images on
the first column are the original images in the GTA5 dataset and are in the same training batch. We
applied CrossNorm to these two images several times and got the following three pairs of images.
By calculating style from random crops, CrossNorm can perform a variety of style augmentation.It
should be noted that we use CrossNorm in both image and feature level, we only visualize in image
level here for simplicity.
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