
Robot Fine-Tuning Made Easy: Pre-Training
Rewards and Policies for Autonomous Real-World

Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract: The pre-train and fine-tune approach in machine learning has been1

highly successful across various domains, enabling rapid task learning by utiliz-2

ing existing data and pre-trained models from the internet. We seek to apply this3

approach to robotic reinforcement learning, allowing robots to learn new tasks4

with minimal human involvement by leveraging online resources. We introduce5

ROBOFUME, a reset-free fine-tuning system that pre-trains a versatile manipu-6

lation policy from diverse prior experience datasets and autonomously learns a7

target task with minimal human input. In real-world robot manipulation tasks, our8

method can incorporate data from an external robot dataset and improve perfor-9

mance on a target task in as little as 3 hours of autonomous real-world experience.10

We also evaluate our method against various baselines in simulation experiments.11

Website: tinyurl.com/robofume12

Keywords: Autonomous RL, scalable robot learning, vision language models for13

robotics14

1 Introduction15

In many domains that involve machine learning, a widely successful paradigm for learning task-16

specific models is to first pre-train a general-purpose model from an existing diverse prior dataset,17

and then adapt the model with a small addition of task-specific data [1, 2, 3, 4, 5]. This paradigm is18

attractive to real-world robot learning, since collecting data on a robot is expensive, and fine-tuning19

an existing model on a small task-specific dataset could substantially improve the data efficiency20

for learning a new task. Pre-training a policy with offline reinforcement learning and then fine-21

tuning it with online reinforcement learning is a natural way to implement this paradigm in robotics.22

However, numerous challenges arise when using this recipe in practice. First, off-the-shelf robot23

datasets often use different objects, fixture placements, camera viewpoints, and lighting conditions24

compared to the local robot platform. This causes non-trivial distribution shifts between pre-training25

and online fine-tuning data, which makes effectively fine-tuning a robot policy difficult. Indeed,26

most existing works only show the benefit of the pre-train and fine-tune paradigm where the robot27

uses the same hardware instance in both pre-training and fine-tuning phases [6, 7]. Second, training28

or fine-tuning a policy in the real world often requires extensive human supervision, which includes29

manually resetting the environment between trials [8, 9, 10] and engineering reward functions [11,30

12, 7]. In this work, our goal is to address these two challenges and develop a practical framework31

that enables robot fine-tuning with minimal time and human effort.32

Over the past few years, there has been a lot of progress in designing efficient and autonomous33

reinforcement learning algorithms. However, no existing system could both utilize diverse demon-34

stration datasets and learn with minimal human supervision, without the need for human-engineered35

reward functions and manual environment resets. Some works propose to reduce the need for man-36

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://tinyurl.com/robofume

Figure 1: We propose a system that enables autonomous and efficient real-world robot learning. First, we
pre-train a multi-task policy and fine-tune a pre-trained Vision-Language Model (VLM) as a reward model
using diverse off-the-shelf demonstration datasets. Then, we fine-tune the pre-trained policy online reset-free
with the VLM reward model.

ual environment resets using reset-free RL [11, 7, 13], where an agent alternates between running37

a task policy and a reset policy during training while updating both with online experience. How-38

ever, these works do not leverage diverse off-the-shelf robot datasets. Recent advances in offline39

RL algorithms have enabled policies to leverage diverse offline data and improve further via online40

fine-tuning [14, 15], but these new methods have not been integrated into a system that aims at min-41

imizing human supervision in the fine-tuning phase. There are also works that propose to eliminate42

the need for human-specified reward functions by learning reward prediction models [16, 17, 18, 13],43

but we found that many of these proposed models can be brittle when deployed in a real-world RL44

fine-tuning setup. In summary, although prior works have presented individual components that are45

vital to building a working system for efficient and human-free robot learning, it is not clear which46

components one should use to put together such a system and how.47

We design ROBOFUME, a system that enables autonomous and efficient real-world robot learning48

by leveraging diverse offline datasets and online fine-tuning. Our system operates in two phases.49

In the pre-training phase, we assume access to a diverse prior dataset, a few task demonstrations50

and reset demonstrations of the target task, and a small collection of sample failure observations51

in the target task. From this data, we learn a language-conditioned, multi-task policy with offline52

RL. To cope with the distribution shift between the offline dataset and online interactions, we need53

an algorithm that could effectively digest diverse offline data, and display robust fine-tuning perfor-54

mance when placed into an environment different from those seen in the offline dataset. We find55

that calibrated offline RL techniques [15], by underestimating predicted values of the learned policy56

from offline data and correcting the scale of the learned Q-values, make sure that the pre-trained57

policy can effectively digest diverse offline data and continuously improve during online adaptation.58

To ensure the online fine-tuning phase requires minimal human feedback, we need to remove the59

need for reward engineering by learning a reward predictor. Our insight is to take a large vision-60

language model (VLM) to provide a robust pre-trained representation and fine-tune it with a small61

amount of in-domain data so that it is tailored for the reward classification setup. Pre-trained VLMs62

have already been trained on internet-scale visual and language data. This makes the model more63

robust to lighting and camera positioning variations than the models used in prior works. In the64

fine-tuning phase, a robot adapts the policy in the real world autonomously by alternating between65

attempting the task and attempting to reset the environment to the initial state distribution of the66

task. Meanwhile, the agent uses the pre-trained VLM model as a surrogate reward for updating the67

policy.68

We evaluate our framework by pre-training it on the Bridge dataset [19] and testing it on a diverse69

set of real-world downstream tasks: cloth folding, cloth covering, sponge pick-and-place, placing70

lid on a pot, and putting a pot in a sink. We find that our system provides substantial improvements71

over offline-only methods with as little as 3 hours of real-world training. We perform more quanti-72

tative experiments in a simulation setup, where we illustrate that our method outperforms imitation73

learning and offline RL methods that either do not perform fine-tuning online or do not incorporate74

diverse prior data.75

2

Our main contributions include (1) a fully autonomous system for pre-training from a prior robot76

dataset and fine-tuning on an unseen downstream task with a minimal number of resets and learned77

reward labels; (2) a method for fine-tuning pre-trained vision-language models and using them to78

construct a surrogate reward for downstream RL training.79

2 Related Work80

Offline RL. Offline RL algorithms [20, 21, 22, 23, 24, 25] provide a framework for initializing robot81

manipulation policies from offline demonstrations or interaction datasets. Such algorithms can also82

be extended to include an online fine-tuning phase after training a policy offline [26, 27, 28, 29,83

30, 31, 32, 15]. Our work utilizes a recent offline RL algorithm, calibrated Q-learning (CalQL)84

[15], a state-of-the-art method that effectively learns from offline data and continuously improves85

the policy’s performance online by explicitly correcting the scale of the learned Q-values. We show86

that integrating CalQL helps our framework effectively utilize diverse prior datasets that have large87

distribution shifts from real-world online interactions.88

Reset-free RL. Training an RL policy on a real robot typically requires manual environment resets.89

To eliminate such need to manually reset environments, prior works have studied approaches to90

learn robot policies in a ‘reset-free’ setup. Some work [33, 34, 11, 35, 36] cast the ‘reset-free’91

learning problem as a multi-task learning problem, observing that by learning a set of tasks where92

some of the tasks could reset others, an agent could then be trained to perform all of those tasks93

without needing manual resets. Other works [37, 38, 39, 12, 17, 13, 7] learn both a task policy and a94

reset policy for performing the task and resetting to the initial state distribution. Our work takes an95

approach between the two classes of approaches, learning a language-conditioned multi-task policy96

that can perform both the target task and the reset for the target task. Most of these prior works learn97

from scratch rather than incorporating prior data and assume that a reward function is available.98

ARIEL [7] combines incorporating prior data with reset-free learning but assumes a hand-crafted99

reward function for each environment. They also collect their own prior dataset on the same robot100

hardware set-up as their target task. MEDAL++ [13] learns a reward classifier with demonstration101

and online interaction data via adversarial training, but does not consider incorporating diverse prior102

data. Leveraging diverse, off-the-shelf prior demonstration datasets is desirable since these datasets103

are readily available to use and can help a system obtain a policy initialization for efficient fine-104

tuning on a target task. Our system offers an approach to both incorporate diverse prior data and105

improve the autonomy of the fine-tuning phase by learning a model for predicting rewards. In106

particular, we found out that by leveraging diverse demonstration data, our system requires only107

about 3 hours of training in the real world compared to 10-30 hours in MEDAL++.108

Reward learning. Early works have studied the problem of learning a reward or cost function in109

imitation learning. These works leverage inverse optimal control (IOC) or inverse reinforcement110

learning (IRL) to extract a reward function directly from expert demonstrations [40, 41, 42]. With111

the advent of deep neural networks, more recent works have explored learning a reward model112

for an imitation learning or RL policy [43, 44, 45, 46, 47, 17, 13]. When using classifier-based113

reward models in reinforcement learning, RL agents can exploit the learned model by exploring114

states unseen during classifier training, tricking the model to output incorrect rewards. To solve such115

an exploitation issue, many works that learn reward models leverage adversarial learning, where a116

system learns a discriminator that identifies states similar to those in demonstrations as positives and117

those visited by the policy as negatives [44, 47, 17, 13]. However, prior work has found this training118

objective to be sensitive to distribution shifts between offline and online setups, such as lighting and119

camera view changes [48]. In this work, we fine-tune vision language models (VLM), pre-trained on120

internet-scale data, to construct a reward model. Large scale pre-training can learn representations121

that are robust to natural variations such as lighting, camera shifts and distractors [49, 16].122

Leveraging pre-trained representations as reward predictors. Several recent works have shown123

positive results in utilizing pre-trained vision models [50, 16], large language models (LLMs) [51]124

or vision language models (VLMs) [52] as reward predictors. We tried VIP [16], a method that125

3

pre-trains a visual representation for generating dense reward functions for novel robotic tasks, and126

found it insufficient for the real-world robot fine-tuning setup. In this work, we fine-tune a pre-127

trained VLM [53] and find that it performs most effectively as a reward model. Our proposed system128

is flexible and can easily be adapted to use other pre-trained visual representations and VLMs.129

3 Preliminaries130

The goal of our method is to leverage diverse prior demonstration datasets and learn a novel target131

task autonomously in a robot hardware instance that is distinct from the one used to collect the132

datasets. Our method assumes access to a prior dataset Dprior = ∪N
j=1Dj = ∪N

j=1{(s
j
i , a

j
i , s

′j
i)}Ki=1,133

which consists of demonstrations of N different tasks τ1, . . . τk. We assume that all demonstration134

data uses image observations. The method will be tested on a downstream task τf , which is different135

from any of the prior tasks.136

To facilitate learning on the downstream task, we also assume the availability of a small set of target137

task demos Df , target task reset demos Db, and target task failure states D/. The reset demos Db138

come from the reset task τb which resets the environment from an end state of τf to the initial state139

distribution of τf . The failure states D/ consist entirely of image observations that correspond to140

unsuccessful states and are collected to aid with the VLM reward learning. In addition to all the141

given data (Dprior, Df , Db, D/), each task τ is also accompanied with a language description l.142

4 ROBOFUME143

Our work focuses on designing an efficient and scalable framework for pre-training on a diverse144

set of prior demonstrations and autonomously fine-tuning on target tasks. Our system consists of145

an offline pre-training phase and an online fine-tuning phase. In Section 4.1, we discuss how we146

pre-train a language-conditioned multi-task policy on diverse data that can be fine-tuned online effi-147

ciently. Online fine-tuning requires a reward function to label successes and failures. In Section 4.2,148

we introduce a VLM-based classifier for providing a reward signal to the policy in the fine-tuning149

phase. Finally, in Section 4.3, we describe how to autonomously adapt the pre-trained policy in150

the fine-tuning phase by utilizing the VLM-based reward classifier as a reward signal and chaining151

forward and backward behaviors to practice the task with minimal human interventions.152

4.1 Pre-Training a Multi-Task Policy on Diverse Prior Data153

Prior work has shown that training a policy using a conservative Q-value function is an effective154

way to obtain a good policy from an offline dataset [22, 24]. However, fine-tuning can be critical to155

learn competent policies as prior data may not provide sufficient coverage, especially for new tasks156

or scenes. We leverage CalQL [15] which modifies the conservative Q-learning algorithm CQL such157

that it enables efficient online fine-tuning by enforcing calibration on the Q-function (i.e. making158

the Q-value of the learned policy no lower than the Monte-Carlo returns in the prior dataset). CalQL159

allows us to improve the pre-trained policy efficiently with respect to online interactions.160

CalQL requires the training of an actor and a critic. Since we use image observations, we addition-161

ally train an encoder ϕ(simg) that projects the images into a lower-dimensional space before giving162

them as inputs to the actor and critic. The encoder ϕ is a 4-layer CNN, and is optimized exclu-163

sively against the critic loss. To best utilize the multi-task data, we encode task descriptions l using164

pre-trained CLIP embeddings, resulting in an embedding z = CLIP(l) which is used as the task165

representation. The policy then takes as inputs a concatenation of the encoded image observation166

ϕ(simg), task representation z, and proprioceptive information sp, processes the concatenated vector167

through an MLP, and produces the output action a.168

In addition to updating the policy using CalQL, we regularize policy learning with a behavior cloning169

(BC) loss, which encourages the behaviors to stay close to the seen demonstrations. Not only does170

this regularization improve performance of the offline pre-training, but we find that it also makes it171

4

less likely for the autonomous fine-tuning procedure to exploit false positive rewards from the VLM172

reward model. The weight of the BC regularization term is chosen such that the scales of the RL173

loss and the BC loss are similar throughout the pre-training phase. We train the policy π and the174

critic Q with datasets Dprior,Df ,Db. After the offline learning phase, the policy and critic contain175

knowledge of all tasks in the prior data and the target task.176

4.2 Fine-Tuning A Vision-Language Model for Rewards177

To improve the autonomy of the policy fine-tuning phase, our agent needs to perform online fine-178

tuning without manually labeled or engineered reward functions. To achieve this, we propose to179

fine-tune off-the-shelf vision-language models as reward predictors. Leveraging existing vision-180

language models offers a number of benefits compared to utilizing a pre-trained visual representa-181

tion or training a reward model from scratch using in-domain data: First, VLMs are trained on an182

Internet-scale dataset that contains diverse image and language contents. Such models possess bet-183

ter inductive biases and thus, can be more robust to natural shifts, such as perturbations to lighting184

conditions, or distractor objects that might be seen at test time. Second, since VLMs can take both185

visual and language information as input, they provide a natural interface for communicating the186

current observation and current task to the model when requesting a reward label.187

We design a VLM-based reward model that takes the current observation and the task name as input188

and outputs a binary label of whether the current observation corresponds to a successful state or an189

unsuccessful state with respect to the task. Given a task name (eg. ‘put green cabbage into sink’),190

we first use GPT4 to convert the name to a short question that could serve as a prompt to know if191

the task has been completed or not (eg. ‘is green cabbage placed in the sink?’). Then, we pass the192

converted prompt to a VLM together with the current image of the environment. The VLM outputs193

a sparse binary reward, returning success if the ‘yes’ token has a higher probability than ‘no’ token.194

We use MiniGPT4 [53] as the VLM for receiving (image, task prompt) pairs and answering whether195

the task has been successfully completed. We find the zero-shot performance of the pre-trained196

VLM to be unsatisfactory. To improve the VLM’s performance for reward modeling, we fine-tune197

it using the prior and target task data. In particular, for every demonstration, the last 3 states are198

used as success states and the ground truth answer is labeled as ‘Yes’; for all other states, we label199

the ground-truth answer as ‘No’. To provide the model with more information about failed states,200

we collect a small dataset D/ of images that correspond to unsuccessful states for the forward and201

backward target tasks. We find in our experiments that fine-tuning leads to a more accurate reward202

model.203

4.3 Autonomous Online Fine-tuning204

The offline pre-training phase produces a single language-conditioned policy π(·|s, l) that can per-205

form the target and reset tasks when provided their respective language instructions lf and lb. The206

policy is then deployed in a hardware setup for further online fine-tuning. The outline of our pre-207

training and fine-tuning pipeline is presented in the Appendix in Algorithm 1.208

Since we aim for a fully autonomous setup, we roll out the policy in a reset-free manner, alternating209

between attempting the target task τf with π(·|s, lf) and the reset task τb with π(·|s, lb). We use the210

fine-tuned VLM from the previous subsection as the sparse reward function for the RL algorithm.211

When the VLM predicts the task has been completed successfully, we terminate the episode and212

switch the language instruction for the policy to complete the other task. In addition to switching213

tasks upon completion as predicted by the VLM, we switch after a fixed number of timesteps (150) to214

ensure the robot does not become stuck in bad states. As mentioned in Section 4.1, we fine-tune the215

policy using CalQL with an additional BC regularization term on the critic. We find that without a216

BC regularization term, behaviors degrade over the course of training. By constraining the policy to217

stay close to the expert demonstrations from the target and reset tasks, the agent becomes less likely218

to exploit false-positives from the VLM reward model. We use the same fixed BC regularization219

weight throughout fine-tuning as we did on the offline pre-training phase. Our fine-tuning pipeline220

5

Figure 2: Illustrations of the five real-world evaluation tasks. (a) Sweep candies to the top of the tray. (b)
fold the yellow cloth. (c) cover a red wooden cube using the cloth. (d) place the lid on top of the metallic pot.
(e) move the orange pot from the sink to the drying rack.

is implemented on top of the implementation of MEDAL++ [13]. Please refer to this work for more221

details on our training procedure.222

5 Experiments223

We design our experiments to answer the following questions: Is our method able to improve its224

performance through near autonomous online interactions? How does our proposed VLM reward225

function mechanism compare to existing alternatives? And, how does each component of ROBO-226

FUME or data affect the performance of our method?227

5.1 Real Robot Experiments228

Setup. We evaluate ROBOFUME on five different real-robot manipulation tasks. We use a WidowX229

250 robotic arm with a single third-person camera (Logitech C920, resizing images to 100x100230

pixels). Figure 2 shows the five tasks we fine-tune and evaluate on. Our method runs autonomously231

executing back and forth the target task and the reset target task for a fixed number of steps or232

until the VLM predicts success. For tasks involving deformable objects (the two cloth tasks) we233

manually reset the object to the initial forward pose every 15-25 episodes, and for the rest of the tasks234

we reset every 30-35 episodes. Tasks that use the kitchen-sink environment (pot lid and pot pnp)235

frequently experience episode interruptions when the robot arm applies more than the maximum236

allowed torque, for example, when close to the sink borders. All tasks use 50 forward and 50237

backward demos for the target task, and fewer than 20 combined trajectories of failures. We use238

demos from the BridgeDataV2 [19, 54] for pre-training our language-conditioned policy, selecting239

approximately 1,000 trajectories with relevant behaviors per task.240

Results. Table 1 shows the results of our method after pretraining (labeled OFFLINE) and after au-241

tonomous fine-tuning (labeled FT 30K STEPS), comparing with a behavior cloning (BC) baseline.242

BC trains a language-conditioned policy on all the prior and target data. After 30k steps of au-243

tonomous online interaction, our method shows relative improvement of 51% upon the pre-trained244

performance, and outperforms BC by 58% on an average. For pick and place tasks (pot lid and245

pot pnp), the fine-tuned policy was more likely to retry the action if it initially failed to grasp the246

object. For candy sweeping, BC and the pre-trained policy were prone to overshooting and pushing247

on the border of the tray after the first sweep, whereas fine-tuning the policy enabled the policy to248

chain multiple sweeping attempts for higher success. Additionally, we find that policies learned by249

ROBOFUME (both offline and after fine-tuning) to be more robust to scene distractors on the candy250

sweeping task, as reported in Table 3. The policies were trained without any distractors, but multiple251

objects not seen during training were placed in the background during evaluation. ROBOFUME252

policies retained 68% of its original performance, compared to BC which retained only 10% of its253

original performance. We hypothesize that BC might be more sensitive to spurious features, whereas254

ROBOFUME learns from more predictive features, leading to more robust policies.255

5.2 Simulation Experiments and Ablations256

We use a suite of simulated robotic manipulation environments to ablate contributions of different257

components of our algorithm. We test on three simulated environments used in [6]. We consider258

6

0k 50k 100k 150k
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Weight Task

BC
MEDAL++ w/o Prior Data
MEDAL++ w/ Prior Data
ARIEL+VLM
RoboFuME (Ours)

0k 50k 100k 150k
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Vase Task

0k 50k 100k 150k
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Bench Task

Figure 3: Performance of our method on three simulated environments. We report the success rate over the
course of training, averaged over three seeds. Our method ROBOFUME outperforms BC, ARIEL+VLM [7],
and MEDAL++ [13] consistently on all three domains.

Task BC ROBOFUME
(OFFLINE)

ROBOFUME
(FT 30K STEPS)

Cloth Covering 45% 60% 80%
Cloth Folding 60% 70% 85%
Candy Sweeping 31% 47% 66%
Pot Lid 60% 40% 95%
Pot PNP 45% 35% 55%

Table 1: Real-robot results on 5 manipulation tasks. Our method significantly improves over both offline-
only and BC performance after 30k steps of online interaction (2-4 hours). For the Candy sweeping we report
the average percentage of candies out of a total of 7 that are placed in the top third of the tray by the end of the
evaluation. For all other tasks, we report success rate over 20 trials.

three bin-sorting tasks in which different objects (a vase, a tiny bench, and a dumbbell weight) have259

to be placed on the correct bin based on the language instruction, given only a sparse binary reward.260

We provide 10 forward and reset demonstrations for each task, 30 failure demos, and 10 demos each261

for 20 prior tasks that show picking and placing diverse objects on the same environment. For all262

methods that require online experience, we reset the environment every 1,000 environment steps, i.e.263

every 25 episodes of interactions. We compare our method against the following baselines: (1) BC264

behavior clones on all prior and target data; (2) MEDAL++ learns separate forward and backward265

policies from target forward and backward task demonstrations and performs reset-free learning us-266

ing an adversarially trained classifier as a reward signal; (3) MEDAL++ with prior data modifies267

MEDAL++ to a single language-conditioned multi-task policy and adds all prior demonstration data268

into the replay buffer; (4) ARIEL+VLM modifies ARIEL [7] to use our VLM reward models as re-269

ward signal, instead of a handcrafted ground-truth reward. The results of our simulation experiments270

are presented in Figure 3. In all simulation tasks, our method ROBOFUME consistently outperforms271

0k 20k 40k 60k 80k 100k 120k 140k
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

RL Design Choices on Vase Task

Ours
Ours w/o Language Conditioning
Ours w/o CalQL w/o CQL

Ours w/o CalQL
Ours w/o CalQL w/o CQL w/ AWAC

Figure 4: Performance of our method on the Vase simulated task with different actor-critic update ob-
jectives. Fine-tuning with CalQL is critical to obtain stable improvements on this task, as training with CQL,
AWAC, or SAC yields poor performance. We also find that language-conditioned policies perform slightly
better than one-hot task IDs in simulation.

7

0k 20k 40k 60k 80k 100k 120k 140k
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Reward Model Choices on Vase Task

Ours VIP CNN BC VICE

Figure 5: Performance of our method on the simulated Vase task using different reward functions. Our
method uses a fine-tuned VLM reward function and outperforms VICE rewards, whereas CNN and VIP rewards
fail to improve online.

prior methods, achieving success rates at least 20% higher than all baselines within 200k steps of272

online fine-tuning.273

Ablations on RL Algorithm Design Choices. We evaluate our method trained with different critic274

and actor optimization procedures on the Vase simulated task, shown in Figure 4. Training with275

CalQL was the only method that yielded strong improvements in this task, with the other methods276

either failing completely or obtaining very poor performance. We find that training without the277

CalQL stabilizes training, while the losses for other methods would explode given the limited data.278

Ablations on Reward Models. We compare our VLM reward function against other choices of279

automatic reward functions on the Vase simulated task in Figure 5. VICE [47] adversarially trains280

a binary classifier using positive samples from successful demonstrations, and labeling online expe-281

rience as negative. We find that offline pre-training sufficiently limits the exploitation of the frozen282

VLM reward, outperforming VICE and thus, bypassing the need for adversarially trained reward283

functions. Such adversarial training can often learn to discriminate based on spurious shifts in the284

real world, such as lighting or scene changes, leading to instability in training outside simulation.285

VIP [16] trains a representation function such that the distance in representation space between the286

current observation and a goal image can be used to construct a dense reward function. We find that287

in the Vase simulated task, VIP fails to obtain good behaviors. Qualitatively, we observe VIP to288

be prone to false positives, which are exploited by the RL algorithm. To test the importance of the289

VLM large-scale pre-training compared to our fine-tuning procedure, we train a CNN classifier from290

scratch using the same data as we used to fine-tune the VLM, leading to unsatisfactory performance291

compared to fine-tuning a VLM.292

5.3 Additional Analysis293

In order to understand the performance of our method in the real robot experiments better, we per-294

formed additional analysis to examine various aspects of our framework. Please find these experi-295

ments in the Appendix.296

6 Conclusion and Future Work297

We introduced an autonomous framework that leverages existing diverse prior robot demonstration298

datasets and improves performance in a new robot manipulation skill by finetuning online. By299

combining state-of-the-art offline-to-online RL algorithms, reset-free RL, and VLM-based reward300

models, our framework can fine-tune efficiently and nearly autonomously. Integrating this work301

with new VLM models that can exhibit robust zero-shot performance on unseen manipulation tasks302

and improving the reset efficiency of this framework are promising directions for future research.303

8

References304

[1] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding305

by generative pre-training. 2018.306

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional307

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.308

[3] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are309

unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.310

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,311

P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances312

in neural information processing systems, 33:1877–1901, 2020.313

[5] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable314

vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern315

recognition, pages 16000–16009, 2022.316

[6] A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and S. Levine. Pre-training for robots: Offline317

rl enables learning new tasks from a handful of trials. arXiv preprint arXiv:2210.05178, 2022.318

[7] H. R. Walke, J. H. Yang, A. Yu, A. Kumar, J. Orbik, A. Singh, and S. Levine. Don’t start from319

scratch: Leveraging prior data to automate robotic reinforcement learning. In Conference on320

Robot Learning, pages 1652–1662. PMLR, 2023.321

[8] V. Kumar, E. Todorov, and S. Levine. Optimal control with learned local models: Application322

to dexterous manipulation. In 2016 IEEE International Conference on Robotics and Automa-323

tion (ICRA), pages 378–383. IEEE, 2016.324

[9] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman. Deep predictive policy training using325

reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots and326

Systems (IROS), pages 2351–2358. IEEE, 2017.327

[10] K. Ploeger, M. Lutter, and J. Peters. High acceleration reinforcement learning for real-world328

juggling with binary rewards. In Conference on Robot Learning, pages 642–653. PMLR, 2021.329

[11] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-330

free reinforcement learning via multi-task learning: Learning dexterous manipulation behav-331

iors without human intervention. In 2021 IEEE International Conference on Robotics and332

Automation (ICRA), pages 6664–6671. IEEE, 2021.333

[12] C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta, G. Berseth, and S. Levine. Fully334

autonomous real-world reinforcement learning with applications to mobile manipulation. In335

Conference on Robot Learning, pages 308–319. PMLR, 2022.336

[13] A. Sharma, A. M. Ahmed, R. Ahmad, and C. Finn. Self-improving robots: End-to-end au-337

tonomous visuomotor reinforcement learning. arXiv preprint arXiv:2303.01488, 2023.338

[14] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.339

arXiv preprint arXiv:2110.06169, 2021.340

[15] M. Nakamoto, Y. Zhai, A. Singh, M. S. Mark, Y. Ma, C. Finn, A. Kumar, and S. Levine.341

Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning. arXiv preprint342

arXiv:2303.05479, 2023.343

[16] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and A. Zhang. Vip: Towards344

universal visual reward and representation via value-implicit pre-training. arXiv preprint345

arXiv:2210.00030, 2022.346

9

[17] A. Sharma, R. Ahmad, and C. Finn. A state-distribution matching approach to non-episodic347

reinforcement learning. arXiv preprint arXiv:2205.05212, 2022.348

[18] Y. J. Ma, W. Liang, V. Som, V. Kumar, A. Zhang, O. Bastani, and D. Jayaraman.349

Liv: Language-image representations and rewards for robotic control. arXiv preprint350

arXiv:2306.00958, 2023.351

[19] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and352

S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.353

arXiv preprint arXiv:2109.13396, 2021.354

[20] Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline reinforcement learning. arXiv355

preprint arXiv:1911.11361, 2019.356

[21] X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and357

scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.358

[22] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,359

and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.360

[23] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-361

based offline policy optimization. Advances in Neural Information Processing Systems, 33:362

14129–14142, 2020.363

[24] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforce-364

ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.365

[25] W. Zhou, S. Bajracharya, and D. Held. Plas: Latent action space for offline reinforcement366

learning. In Conference on Robot Learning, pages 1719–1735. PMLR, 2021.367

[26] N. Ashvin, D. Murtaza, G. Abhishek, and L. Sergey. Accelerating online reinforcement learn-368

ing with offline datasets. CoRR, vol. abs/2006.09359, 2020.369

[27] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn. Offline reinforcement learning from images370

with latent space models. In Learning for Dynamics and Control, pages 1154–1168. PMLR,371

2021.372

[28] J. Lyu, X. Ma, X. Li, and Z. Lu. Mildly conservative q-learning for offline reinforcement373

learning. Advances in Neural Information Processing Systems, 35:1711–1724, 2022.374

[29] A. Beeson and G. Montana. Improving td3-bc: Relaxed policy constraint for offline learning375

and stable online fine-tuning. arXiv preprint arXiv:2211.11802, 2022.376

[30] J. Wu, H. Wu, Z. Qiu, J. Wang, and M. Long. Supported policy optimization for offline re-377

inforcement learning. Advances in Neural Information Processing Systems, 35:31278–31291,378

2022.379

[31] S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin. Offline-to-online reinforcement learning via380

balanced replay and pessimistic q-ensemble. In Conference on Robot Learning, pages 1702–381

1712. PMLR, 2022.382

[32] M. S. Mark, A. Ghadirzadeh, X. Chen, and C. Finn. Fine-tuning offline policies with optimistic383

action selection. In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.384

[33] K. Lu, A. Grover, P. Abbeel, and I. Mordatch. Reset-free lifelong learning with skill-space385

planning. arXiv preprint arXiv:2012.03548, 2020.386

[34] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan. Learning to walk in the real world with minimal387

human effort. arXiv preprint arXiv:2002.08550, 2020.388

10

[35] A. Gupta, C. Lynch, B. Kinman, G. Peake, S. Levine, and K. Hausman. Demonstration-389

bootstrapped autonomous practicing via multi-task reinforcement learning. arXiv preprint390

arXiv:2203.15755, 1, 2022.391

[36] K. Xu, Z. Hu, R. Doshi, A. Rovinsky, V. Kumar, A. Gupta, and S. Levine. Dexterous manipula-392

tion from images: Autonomous real-world rl via substep guidance. In 2023 IEEE International393

Conference on Robotics and Automation (ICRA), pages 5938–5945. IEEE, 2023.394

[37] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine. Leave no trace: Learning to reset for safe and395

autonomous reinforcement learning. arXiv preprint arXiv:1711.06782, 2017.396

[38] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine. The397

ingredients of real-world robotic reinforcement learning. arXiv preprint arXiv:2004.12570,398

2020.399

[39] A. Sharma, A. Gupta, S. Levine, K. Hausman, and C. Finn. Autonomous reinforcement learn-400

ing via subgoal curricula. Advances in Neural Information Processing Systems, 34:18474–401

18486, 2021.402

[40] A. Y. Ng, S. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,403

page 2, 2000.404

[41] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Pro-405

ceedings of the twenty-first international conference on Machine learning, page 1, 2004.406

[42] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum entropy inverse reinforce-407

ment learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.408

[43] J. Ho, J. Gupta, and S. Ermon. Model-free imitation learning with policy optimization. In409

International conference on machine learning, pages 2760–2769. PMLR, 2016.410

[44] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information411

processing systems, 29, 2016.412

[45] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via413

policy optimization. In International conference on machine learning, pages 49–58. PMLR,414

2016.415

[46] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement416

learning. arXiv preprint arXiv:1710.11248, 2017.417

[47] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. Variational inverse control with events: A418

general framework for data-driven reward definition. In Proceedings of the 32nd International419

Conference on Neural Information Processing Systems, NIPS’18, page 8547–8556, Red Hook,420

NY, USA, 2018. Curran Associates Inc.421

[48] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine. End-to-end robotic reinforcement422

learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.423

[49] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-424

tation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.425

[50] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain.426

Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE international427

conference on robotics and automation (ICRA), pages 1134–1141. IEEE, 2018.428

[51] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-T. L. Chiang, T. Erez,429

L. Hasenclever, J. Humplik, et al. Language to rewards for robotic skill synthesis. arXiv430

preprint arXiv:2306.08647, 2023.431

11

[52] Y. Du, K. Konyushkova, M. Denil, A. Raju, J. Landon, F. Hill, N. de Freitas, and S. Cabi.432

Vision-language models as success detectors. arXiv preprint arXiv:2303.07280, 2023.433

[53] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny. Minigpt-4: Enhancing vision-language434

understanding with advanced large language models. arXiv preprint arXiv:2304.10592, 2023.435

[54] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao, P. Hansen-Estruch,436

Q. Vuong, A. He, et al. Bridgedata v2: A dataset for robot learning at scale. arXiv preprint437

arXiv:2308.12952, 2023.438

12

7 Appendix439

7.1 Method Details440

We present an overview of our system in Algorithm 1.441

Algorithm 1: RoboFuME
Initialize agent A = {ϕ, π,Q} and pre-trained VLM r̂.
Initialize forward and backward tasks τf , τb.
// Prepare data and train VLM reward classifier.
Dprior,Df ,Db,D/ ← load data().
r̂ ← finetune vlm(r̂, {Dprior,Df ,Db,D/}).
// Offline pre-training phase.
A.update buffer(Dprior,Df ,Db).
for t = 1 to Toffline do
A.update params with calql().

// Online fine-tuning phase.
s← env.reset(); l← τf .get task lang().
for t = 1 to Tonline do

a← A.act(s, l); s′ ← env.step(a).
A.update buffer({s, a, s′, r̂(s)}).
for i = 1 to Nutd ratio do
A.update params with calql().

if switch then
// Switch task after a fixed interval.
l← env.switch(τf , τb).get task lang().

if interrupt then
// Allow occasional human intervention.
s← env.reset(); l← τf .get task lang().

else
s← s′.

7.2 Additional Analysis in Real Robot Experiments442

Task FP FN Accuracy Precision

Cloth Covering 6.3% 80.9% 89.4% 15.3%
Cloth Folding 1.2% 59.8% 84.1% 92.0%
Pot PNP 6.1% 81.3% 86.9% 24.3%

Table 2: VLM reward model accuracy during real robot fine-tuning. The low false positive (FP) rate
indicates that online training has minimal reward exploitation.

Task BC ROBOFUME
(offline)

ROBOFUME
(fine-tuned @30k)

Candy Sweeping 31% → 3% 47% → 31% 66% → 45%

Table 3: Robustness of learned policy to distractors. Entries in this table show the performance of the
learned policy “before” → “after” adding distractors to the scene in the candy-sweeping task. Our system
learns a policy that is much more robust to the distractors.

How Accurate is the VLM Reward? We analyze the performance of the VLM reward over the443

course of fine-tuning for real-robot experiments. In Table 2, we report the false positive rate, false444

negative rate, accuracy, and precision metrics for the VLM reward. The metrics are computed on445

the data collected during fine-tuning against a hand-engineered ground truth reward. We observe446

that while false negative rates are high, false positive rates are low across all tasks. This asymmetry447

13

Task ROBOFUME
(offline)

ROBOFUME
w/o Prior Data

ROBOFUME w/o
Language Cond.

Candy Sweeping 47% 23% 13%

Table 4: Evaluating effectiveness of prior data and language conditioned policies. Results show that using
prior data and using language conditioning positively affected the offline performance of our system.

is crucial for successful RL fine-tuning, as RL policies can learn poor behaviors by exploiting false448

positives, but labeling some successful rollouts as negatives does not necessarily impede learning.449

How Important is Diverse Prior Data and Language Conditioning? We ablate the contribution450

of diverse prior data and language-conditioned policies to ROBOFUME by evaluating the offline451

performance on the candy sweeping task, reported in Table 4. When pre-training without using prior452

data, that is, exclusively using target data, our method is able to sweep less than half the amount453

of candies on average. Similarly, we find that one-hot task encodings perform substantially worse454

than language-conditioned policies, as the prior dataset used in real-robot training is larger and more455

diverse compared to the simulation experiments.456

14

	Introduction
	Related Work
	Preliminaries
	RoboFuME
	Pre-Training a Multi-Task Policy on Diverse Prior Data
	Fine-Tuning A Vision-Language Model for Rewards
	Autonomous Online Fine-tuning

	Experiments
	Real Robot Experiments
	Simulation Experiments and Ablations
	Additional Analysis

	Conclusion and Future Work
	Appendix
	Method Details
	Additional Analysis in Real Robot Experiments

