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ABSTRACT

Robot learning is witnessing a significant increase in the size, diversity, and com-
plexity of pre-collected datasets, mirroring trends in domains such as natural lan-
guage processing and computer vision. Many robot learning methods treat such
datasets as multi-task expert data and learn a multi-task, generalist policy by train-
ing broadly across them. Notably, while these generalist policies can improve
the average performance across many tasks, the performance of generalist poli-
cies on any one task is often suboptimal due to negative transfer between parti-
tions of the data, compared to task-specific specialist policies. In this work, we
argue for the paradigm of training policies during deployment given the scenar-
ios they encounter: rather than deploying pre-trained policies to unseen prob-
lems in a zero-shot manner, we non-parametrically retrieve and train models di-
rectly on relevant data at test time. Furthermore, we show that many robotics
tasks share considerable amounts of low-level behaviors and that retrieval at the
“sub”-trajectory granularity enables significantly improved data utilization, gen-
eralization, and robustness in adapting policies to novel problems. In contrast,
existing full-trajectory retrieval methods tend to underutilize the data and miss
out on shared cross-task content. This work proposes STRAP, a technique for
leveraging pre-trained vision foundation models and dynamic time warping to re-
trieve sub-sequences of trajectories from large training corpora in a robust fash-
ion. STRAP outperforms both prior retrieval algorithms and multi-task learning
methods in simulated and real experiments, showing the ability to scale to much
larger offline datasets in the real world as well as the ability to learn robust con-
trol policies with just a handful of real-world demonstrations. Project videos at
https://strapaper.github.io/strap.github.io/

1 INTRODUCTION
Few Demos

  

Robust Policy

Offline Dataset

Retrieval

Figure 1: STRAP: Sub-trajectory retrieval for training
robust policies during deployment.

Robot learning techniques have shown the abil-
ity to shift the process of designing robot con-
trollers from a large manual or model-based
process to a data-driven one (Francis et al.,
2022; Hu et al., 2023). Especially, end-to-end
imitation learning with, e.g., diffusion mod-
els (Chi et al., 2023; Wang et al., 2024) and
transformers (Haldar et al., 2024), have shown
impressive success. While imitation learning
can be effective for performing particular tasks
with targeted in-domain data collection, this
process can be expensive and time-consuming
in terms of human effort. This becomes a chal-
lenge as we deploy robots into dynamic envi-
ronments such as homes and offices, where new tasks and environments are commonplace and
constant data collection is impractical.

Multi-task policy learning is often applied in such situations, where data across multiple tasks is
used to train a large task- or instruction-conditioned model that has the potential to generalize to
new problems. While multi-task learning has seen successes in certain settings (Reed et al., 2022;
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Brohan et al., 2023), the performance of a multi-task, generalist policy is often lower than task-
specific, specialist policies. This can be attributed to the model suffering from negative transfer and
sacrificing per-task performance to improve the average performance across tasks. This challenge is
exacerbated in unseen tasks or domains since zero-shot generalization is challenging and collecting
large amounts of in-domain fine-tuning data can be expensive. In this work, we consider training
expert models during test time as a better way to use pre-collected datasets and enable few-shot
imitation learning for new tasks.

In particular, we build on the paradigm of non-parametric data retrieval, where a small amount of
in-domain data collected at test-time is used to retrieve a subset of particularly “relevant” data from
the training corpus. This retrieved data can then be used for robust and performant model training
on new tasks. In this sense, the retrieved data can guide learned models towards desired behavior;
however, the question becomes: How do we sub-select which data to retrieve from a large, pre-
existing corpus?

Several prior techniques have studied the problem of non-parametric retrieval from the perspective of
learning latent embeddings that encode states (Du et al., 2023), skills (Nasiriany et al., 2022), optical
flow (Lin et al., 2024), and learned affordances (Kuang et al.). Most techniques are challenging to
apply out of the box for two primary reasons. Firstly, they require training domain-specific encoders
to embed states, skills, or affordances: this makes it challenging to apply to demonstrations collected
in the open world, where visual appearance can show wide variations. Secondly, they often retrieve
entire trajectories, limiting the policies’ ability to use data from other tasks that may share common
components with the desired test-time behavior. These challenges limit both the broad applicability
of these retrieval methods and the amount of cross-task data sharing. How can we design easy-to-use
off-the-shelf retrieval methods that maximally utilize the training data for test-time adaptation?

The key insight in this work is that retrieval methods do not need to measure the similarity between
entire trajectories (or individual states), but rather between sub-trajectories of the desired behavior
at test-time and corresponding sub-trajectories of the training data. Notably, these sub-trajectories
do not need to come from tasks that are similar in entirety to the desired test-time tasks. Instead,
sub-components of many related tasks can be shared to enable robust, test-time policy training. For
example, as shown in Fig. 1, for the multi-stage task of “pick up the mug, put it in the drawer,
and close it”, both “pick up the mug, put in on top of the drawer” and “close the bottom drawer,
open the top drawer” contain sub-tasks that when retrieved provide useful training data. Our pro-
posed method, Sub-sequence Trajectory Retrieval for Augmented Policy Learning (STRAP), uses a
small amount of in-domain trajectories collected at test-time to retrieve and train on these relevant
sub-trajectories across a large multi-task training corpus. The resulting policies show considerable
improvements in robustness and generalization over previous retrieval methods, zero-shot multi-task
policies, or policies that are trained purely on test-time in-domain data.

We show how STRAP can be used with minimal effort across training and evaluation domains with
non-trivial visual differences. Our method first compares sub-trajectory similarity using features
from off-the-shelf foundation models, e.g., DINOv2 (Oquab et al.); these features capture strong
notions of “object-ness”, discarding spurious visual differences such as lighting, texture, and local
changes in object appearance. Secondly, our method leverages time-invariant alignment techniques,
such as dynamic time warping (Giorgino, 2009), to compute the similarity between sub-trajectories
of different lengths, removing requirements for retrieved trajectories to have a similar length and in-
creasing the applicability of STRAP across tasks and domains. Lastly, we show how STRAP can be
applied to arbitrary test corpora, with sub-trajectories being automatically extracted by our frame-
work, thereby removing the requirement for manual segmentation of relevant sub-trajectories from
the training corpus. We demonstrate how STRAP can be used out of the box to augment any few-
shot imitation learning algorithm, providing significant gains in generalization at test-time, while
avoiding expensive, test-time in-domain data collection. We instantiate STRAP with transformer-
based imitation learning policies and show the benefits of few-shot sub-trajectory retrieval on the
LIBERO (Liu et al., 2024) benchmark in simulation and real-world imitation learning problems.

2 RELATED WORK

Retrieval for Behavior Replay: A considerable body of work has explored retrieval-based ap-
proaches for robotic manipulation, where the retrieval of relevant past demonstrations aids in re-
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playing past experiences. The choices of embedding space hereby range from off-the-shelf mod-
els (Di Palo & Johns, 2024; Malato et al., 2024) like DINO (Caron et al., 2021), training encoders
on the offline dataset (Pari et al., 2022) to abstract representation like object shapes (Sheikh et al.).
Some works do not directly replay actions but add a layer of abstraction following sub-goals (Zhang
et al., 2024), affordances (Kuang et al.) or keypoints (Papagiannis et al.). A key assumption of
these methods is that the offline data either exactly resembles expert demonstrations collected in the
test environment or that intermediate representations can bridge the gap. These drawbacks limit the
usage of large multi-task datasets collected in various domains.

Retrieval for Few-shot Imitation Learning: Retrieval for policy learning tries to mitigate these
issues by learning policies from the retrieved data. While retrieval has shown to benefit policy
learning from sub-optimal single-task data (Yin & Abbeel, 2024), most work focuses on retrieving
from large multi-task datasets like DROID (Khazatsky et al., 2024) or OpenX (Collaboration et al.,
2023) containing expert demonstrations. BehaviorRetrieval (BR) (Du et al., 2023) and FlowRe-
trieval (FR) (Lin et al., 2024) train an encoder-decoder model on state-action and optical flow
respectively. Related to our work, SAILOR (Nasiriany et al., 2022) imposes skill constraints on
the embedding space, clustering similar skills together to later retrieve those. A significant down-
side of training custom representations is that these methods do not scale well to the increasing size
of available offline datasets and are unable to deal with significant visual and semantic differences.
Moreover, techniques like BehaviorRetrieval and FlowRetrieval retrieve individual states, rather than
sub-trajectories like our work, where sub-trajectory retrieval enables maximal data sharing between
seemingly different tasks while capturing temporal information.

Learning from Sub-trajectories: Several works propose to decompose demonstrations into
reusable sub-trajectories, e.g., based on end-effector-centric or full proprioceptive state-action tran-
sitions (Li et al., 2020; Belkhale et al., 2024; Shankar et al., 2022; Myers et al., 2024; Francis et al.,
2022). Belkhale et al. (2024) propose to decompose demonstrations into end-effector-centric sub-
tasks, e.g., ”move forward” or ”rotate left”. The authors show that by decomposing and re-labeling
the language instructions into a shared vocabulary, knowledge from multi-task datasets can be better
shared when training multi-task policies. Myers et al. (2024) leverage VLMs to decompose demon-
strations into sub-trajectories to better learn to imitate them. To our knowledge, we propose the
first robot sub-trajectory retrieval mechanism, for partitioning large offline robotics datasets and for
enabling cross-task positive transfer during policy learning.

3 PRELIMINARIES

3.1 DYNAMIC TIME WARPING

To match sequences of potentially variable length during retrieval, we build on an algorithm called
dynamic time warping (DTW) (Müller, 2021). DTW methods compute the similarity between two
time series that may vary in time or speed, e.g., different video or audio sequences. This algorithm
aligns the varying length sequences by warping the time axis of the series using a set of step sizes to
minimize the distance between corresponding points while obeying boundary conditions.

DTW algorithms are given two sequences, X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}, where
m ̸= n, and a corresponding cost matrix C(xi, yj) that assigns the cost of assigning element xi of
sequence X to correspond with element yj of sequence Y . The goal of DTW is to find a mapping
between X and Y that minimizes the total cumulative distance between the assigned elements of
both sequences while obeying boundary and continuity conditions. Dynamic time warping methods
solve this problem efficiently using dynamic programming methods.

A cumulative distance matrix D is computed via dynamic programming as follows: D(0, 0) =
C(0, 0), D(n, 1) =

∑n
k=1 C(k, 1) for n ∈ [1 : N ] and D(1,m) =

∑m
k=1 C(1, k) for m ∈ [1 : M ].

Then the following dynamic programming calculation is performed:

D(i, j) = C(xi, yj) + min{D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)}, (1)

where C(xi, yj) is the distance between points xi and yj . We assume this cost matrix is pre-
provided, and we describe how we compute this from raw camera images in Sec. 4.3. The optimal
alignment between the sequences is found by backtracking from D(n,m) to D(0, 0). This guaran-
tees that the start is matched to the start and the end is matched to the end or that the pairs (x0, y0)
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"Put the white pen in the red plastic cup"

"Push the button on the toaster"

"Pick up the marker and put it in the mug"

           

Figure 2: Overview of STRAP: 1) demonstrations Dtarget and offline datasets Dprior are encoded
into a shared embedding space using a vision foundation model, 2) automatic slicing generates sub-
trajectories which 3) S-DTW matches to corresponding sub-trajectories in Dprior creating Dretrieval,
4) training a policy on the union of Dretrieval and Dtarget results in better performance and robustness.

and (xn, ym) are the start and end of the path. This optimal paring path consists of the best possible
alignment between X and Y such that the cumulative cost between all matched pairs is minimized.
DTW, as described, is widely used in time-series analysis, speech recognition, and other domains
where temporal variations exist between sequences. In the context of our retrieval problem, DTW is
used to go beyond retrieving exactly matched sequences to matching variable length subsequences,
as we describe below.

Subsequence dynamic time warping (S-DTW) is an extension of the DTW algorithm for sce-
narios where a shorter query sequence must be matched to a portion of a longer reference se-
quence. Given a query sequence X = {x1, x2, . . . , xn} and a much longer reference sequence
Y = {y1, y2, . . . , ym}, the goal of S-DTW is to find a subsequence of Y (of a potentially different
length from X), denoted Yi:j where i ≤ j, that has the minimal DTW distance to X .

The cumulative cost matrix D for S-DTW is computed similarly to the traditional DTW described
above but allows alignment to start and end at any point in R. D is initialized as

D(0, 0) = C(0, 0),

D(n, 1) =

n∑
k=1

C(k, 1) for n ∈ [1 : N ],

D(1,m) = C(1,m) for m ∈ [1 : M ]

and then completed using dynamic programming following Eq. (1). This ensures that the query
can match any sub-sequence of the reference. Once the cumulative cost matrix is computed, the
optimal alignment is found by backtracking from the minimal value in the last row of the matrix,
i.e., min(D(n, j)) for j ∈ {1, . . . ,m}. This gives the subsequence of Y that best aligns with X ,
obeying only temporality while relaxing the boundary condition. As we will show, using S-DTW
for data retrieval enables the maximal retrieval of data across tasks in a retrieval-augmented policy
training setting, as described in Sec. 4.3.

4 STRAP: SUB-SEQUENCE ROBOT TRAJECTORY RETRIEVAL FOR
AUGMENTED POLICY TRAINING

4.1 PROBLEM SETTING: RETRIEVAL-AUGMENTED POLICY LEARNING

We consider a few-shot learning setting where we’re given a target dataset Dtarget =
{(si0, ai0, si1, ai1, . . . , siHi

, aiHi
, li)}Ni=1 containing expert trajectories of states s (e.g., observations
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"Put the black bowl in the bottom drawer of the cabinet and close it"

"Put the black bowl on top of the cabinet" "Close the bottom drawer of the cabinet and open the top drawer"

S-DTW Matching

Figure 3: Sub-trajectory matching: S-DTW matches the sub-trajectories of Dtarget (top) to the
relevant segments in Dprior. A feature of S-DTW is that the start and end of the trajectories do not
have to align, finding optimal matches for each pairing.

like camera views o and propriception x), actions a (such as robot controls), and task-specifying
language instructions l. This target dataset is collected in the test environment and task, but there
is only a small set of N trajectories, which limits generalization for models trained purely on such
a small dataset. Since Dtarget is often insufficient to solve the task alone, we posit that generaliza-
tion can be accomplished by non-parametrically retrieving data from an offline dataset Dprior. This
offline dataset Dprior = {(sj0, a

j
0, s

j
1, a

j
1, . . . , s

j
Hj

, ajHj
, lj)}Mj=1 can contain data from different envi-

ronments, scenes, levels of expertise, tasks, or embodiments. Notably, the set of tasks in the offline
dataset do not need to overlap with the set of tasks in the target dataset. We assume that the offline
dataset shares matching embodiment with the target dataset and consists of expert-level trajectories,
but may consist of a diversity of scenes and tasks that vary widely from the target dataset Dtarget.

Given Dprior and Dtarget, the goal is to learn a language-conditioned policy πθ(a|s, l) that can predict
optimal actions a in the target environment when prompted with the current state s and language
instruction l. Assuming we can obtain a measure of success (such as task completion), and a broad
set of initial conditions s0 ∼ ρtest(s0) in the test environment. The objective of policy learning is to
determine the policy parameters θ to maximize the expected success metric when evaluated on test
conditions, under the policy πθ and test-time environment dynamics. Since we are only provided
a limited corpus of data, Dtarget, in the target domain, these policy parameters cannot be learned
by simply performing maximum likelihood on Dtarget. Instead, we will present an approach where
a smaller, “relevant” subset of the offline dataset Dretrieval ⊆ Dprior is retrieved non-parametrically
and then mixed with the smaller in-domain dataset Dtarget to construct a larger, augmented training
dataset, i.e., Dtarget ∪ Dretrieval, which is most relevant to the desired test-time conditions ρtest(s0).
This can then be used for training policies via imitation learning, as we will describe in Sec. 4.5.
Doing so avoids an expensive generalist training procedure and rather focuses the learned model to
being a high-performing specialist in a particular setting of interest. The key questions becomes -
How can we define what subset of the offline dataset Dprior is relevant to construct Dretrieval?

To handle the unique nature of robotic data, e.g., multi-modal and temporally dependent, we design
STRAP for retrieval-augmented policy learning. Firstly, we need to define the unit of retrieval.
Rather than retrieving individual state-action pairs or entire trajectories, STRAP crucially retrieves
sub-trajectories. We also propose a method to automatically segment trajectories in Dtarget into such
sub-trajectories (Sec. 4.2). Secondly, we need to define a suitable distance metric for a pair of sub-
trajectories (Sec. 4.3). Then, we need a computationally efficient algorithm to retrieve relevant sub-
trajectories non-parametrically from the training set (Sec. 4.4). Finally, we put everything together
and train policies based on retrieved data (Sec. 4.5).

4.2 SUB-TRAJECTORIES FOR DATA RETRIEVAL

To make the best use of the training dataset while capturing temporal task-specific dynamics, we ex-
pand the notion of retrieval from being able to retrieve entire trajectories or single states to retrieving
variable-length sub-trajectories. In doing so, retrieval can capture the temporal dynamics of the task,
while still being able to share data between seemingly different tasks with potentially different task
instruction labels. We define a sub-trajectory as a consecutive subset of a trajectory tia:b ⊆ T i with
the sub-trajectory tia:b = (sia, s

i
a+1, . . . , s

i
b) including timestep a to b of the whole trajectory T i

of length Hi. Most long-horizon problems observed in robotics datasets (Liu et al., 2024; Khaz-
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atsky et al., 2024; Collaboration et al., 2023) naturally contain multiple such sub-trajectories. For
instance, the task shown in Eq. 3 can be decomposed into “put the bowl in the drawer” and “close
the drawer”. Note that we do not require these trajectories to explicitly have a specific semantic
meaning, but semantically meaningful sub-trajectories often coincide with those most commonly
encountered across tasks as we see in our experimental evaluation.

Given this definition of a sub-trajectory, our proposed retrieval technique only requires segmenting
the target demonstrations into sub-trajectories Ttarget = {ti1:a, tia:b, . . . , tiHi−pi:Hi

,∀T i ∈ Dtarget}
but not the much larger offline training dataset Dprior. Instead, appropriate sub-sequences will be
retrieved from this dataset using a DTW based retrieval algorithm (Sec. 4.4). This makes the pro-
posed methodology far more practical since Dprior is much larger than Dtarget. While this separation
into sub-trajectories can be done manually during data collection, we propose an automatic tech-
nique for sub-trajectory separation that yields promising empirical results. Building on techniques
proposed by Belkhale et al. (2024), we split the demonstrations into atomic chunks, i.e., lower-level
motions, before retrieving similar sub-trajectories with our matching procedure (Sec. 4.4). In partic-
ular, we propose a simple proprioception-based segmentation technique that optimizes for changes
in the robot’s end-effector motion indicating the transition between two chunks. For example, a
Pick&Place task can be split into picking and placing separated by a short pause when grasping the
object. Let xt be a vector describing the end-effector position at timestep t. We define ”transition
states” where the absolute velocity drops below a threshold: ∥ẋ∥ < ϵ 1. We empirically find that
this proprioception-driven segmentation can perform reasonable temporal segmentation of target
trajectories into sub-components. This procedure can certainly be improved further via techniques
in action recognition using vision-foundation models (Team et al., 2023), or information-theoretic
segmentation methods (Jiang et al., 2022).

4.3 FOUNDATION MODEL-DRIVEN RELEVANCE METRICS FOR RETRIEVAL

Given the definition and automatic segmentation of sub-trajectories, we must define a measure of
similarity that allows for the retrieval of appropriate relevant sub-trajectory data from Dprior, and
at the same time is robust to variations in visual appearance, distractors, and irrelevant spurious
features. While prior work has suggested objectives to train such similarity metrics through repre-
sentation learning (Du et al., 2023; Lin et al., 2024; Kuang et al.), these methods are often trained
purely in-domain, making them particularly sensitive to aforementioned variations. While using
more lossy similarity metrics based on optical flow (c.f. (Lin et al., 2024)) or language (Zha et al.,
2024) can help with this fragility, it often fails to capture the necessary task-specific or semantic
details. This suggests the need for a robust, domain-agnostic similarity metric that can easily be
applied out-of-the-box.

In this work, we will adopt the insight that vision(-language) foundation models (Oquab et al.; Rad-
ford et al., 2021) offer off-the-shelf solutions to this problem of measuring the semantic and visual
similarities between sub-trajectories, capturing object- and task-centric affordances, while being ro-
bust to low-level variations in scene appearance. Trained on web-scale real-world image(-text) data,
these models are typically robust to low-level perceptual variations, while providing semantically
rich representations that naturally capture a notion of object-ness and semantic correspondence. De-
noting a vision foundation model as F(·), we can compute the pairwise distance of two camera
views with an L2 norm2 in embedding space, i.e., ||F(oi) − F(oj)||2. While aggregation methods
such as temporal averaging could be used to go from embedding of a single image to that of a sub-
trajectory, they lose out on the actions and dynamics. We instead opt for a sub-trajectory matching
procedure based on the idea of DTW (Giorgino, 2009) and use the embeddings for finding maxi-
mally relevant sub-trajectories. Given two sub-trajectories, ti and tj , we compute a pairwise cost
matrix C ∈ R|ti|×|tj |, where its value is as computed by:

C(i, j) = ||F(oi)−F(oj)||2 (2)

1For trajectories involving “stop-motion”, this heuristic returns many short chunks as the end-effector idles,
waiting for the gripper to close. To ensure a minimum length, we merge neighboring chunks until all are ≥ 20.

2Other cost metrics such as (1-cosine similarity) could be used here as well.
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Algorithm 1 STRAP (Dtarget, Dprior, K, ϵ, F)

Require: demos Dtarget, offline dataset Dprior, vision foundation model F , # retrieved chunks K,
chunking threshold ϵ;

1: /* Pre-processing */
2: Ttarget ← SubTrajSegmentation(Dtarget, ϵ); ▷ Heuristic demo chunking
3: Eprior ← {{F(ot)|ot ∈ T}|T ∈ Dprior}; ▷ Embed Dprior
4: Etarget ← {{F(ot)|ot ∈ T}|T ∈ Ttarget}; ▷ Embed chunked Dtarget
5: /* Sub-trajectory Retrieval using S-DTW*/
6: for Starget ∈ Dtarget do
7: M← []; ▷ Initialize empty match storage
8: for Tprior ∈ Dprior do
9: D ← computeCostMatrix(Etarget, Eprior); ▷ Eq. (2)

10: Mi,j ← extractSubTrajectory(D,Tprior); ▷ Dynamic Programming
11: end for
12: end for
13: Dretrieval ← retrieveTopKMatches(M,K); ▷ Sec. 4.4
14: /* Policy Learning */
15: repeat
16: sample B ∼ Dtarget ∪ Dretrieval to update policy πθ with loss L(B; θ) ▷ Eq. (3)
17: until πθ converged; return πθ

4.4 EFFICIENT SUB-TRAJECTORY RETRIEVAL WITH SUBSEQUENCE DYNAMIC TIME
WARPING

Given the above-mentioned definitions of sub-trajectories and foundation-model-driven similarity
metrics, we instantiate an algorithm to find the K most relevant sub-trajectories Tmatch from the
offline dataset Dprior for each sub-trajectory t segmented from Dtarget. Sub-trajectories may have
variable lengths and temporal positioning within a trajectory caused by varying tasks, platforms,
or demonstrators. We employ S-DTW to match the target sub-trajectories Ttarget to appropriate
segment Tmatch in Dprior (Sec. 3.1). S-DTW scales naturally with these challenges and allows for
retrieval from diverse, multi-task datasets. On deployment, subsequence dynamic time warping
accepts a query sub-sequences from the target dataset, i.e., ttarget, and uses dynamic programming to
compute matches that are maximally aligned with the query Tmatch = {SDTW(t,Dprior),∀t ∈ Ttarget}
along with matching costs, D. To construct Dretrieval, we select the K matches with the lowest
cost uniformly across the sub-trajectories in Ttarget, i.e., the same number of matches for each query
until K matches are retrieved. We note that the resulting set of matches can contain duplicates
if the demonstrations share similar chunks, but argue that if a chunk occurs multiple times in the
demonstrations, it is important to the task and should be “up-weighted” in the training set – in
this case through duplicated retrieval. For each match, we also retrieve its corresponding language
instruction. The training dataset then contains a union of the target dataset Dtarget and the retrieved
dataset Dretrieval, Dtarget ∪ Dretrieval. This significantly larger, retrieval-augmented dataset can then be
used to learn policies via imitation learning, leading to robust, generalizable policies as we describe
below.

4.5 PUTTING IT ALL TOGETHER: STRAP

To start the retrieval process, we encode image observations in Dtarget and Dprior using a vision
foundation model, e.g., DINOv2 (Oquab et al.) or CLIP (Radford et al., 2021). To best leverage
the multi-task trajectories in Dprior, we split the demonstrations in Dtarget into atomic chunks based
on a low-level motion heuristic. Then we generate matches between chunked Dtarget and Dprior and
construct Dretrieval by selecting the top K matches uniformly across all chunks. Combining Dretrieval
with Dtarget forms our dataset for learning a policy. In a standard policy learning setting, noisy
retrieval data can lead to negative transfer, e.g., when observations similar to the target data are
labeled with actions that achieve a different task. Without conditioning, such contaminated samples
hurt the policy’s downstream performance. We propose to use a language-conditioned policy to
deal with this inconsistency. With conditioning, the policy can distinguish between samples from
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Stove-Moka Bowl-Drawer Soup-Cheese Mug-Mug Book-Caddy Table Sink Stove

Figure 12: Tasks in Dtarget: LIBERO-10 (left) and real-world DROID-Kitchen (right).

different tasks, separating misleading from expert actions while benefiting from positive transfer
from the additional training data and context of the language conditioning.

We use behavior cloning (BC) to learn a visuomotor policy π similar to Haldar et al. (2024); Nasiri-
any et al. (2024). We choose a transformer-based (Vaswani, 2017) architecture feeding in a his-
tory of the last h observations st−h:t and predicting a chunk of h future actions using a Gaus-
sian mixture model action head. We sample batches from the union of Dtarget and Dretrieval, as in
B ∼ Dtarget ∪ Dretrieval. As proposed in Haldar et al. (2024) we compute the multi-step action loss
and add an L2 regularization term over the model weights θ, resulting in the following loss function:

L(B; θ) = 1

|B|
∑

(si−h:i,ai:i+h,l)∈B
− log(πθ(ai:i+h|si−h:i, l)) + λ∥θ∥22 (3)

with policy πθ and hyperparameter λ controlling the regularization.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

Task Definition: We demonstrate the efficacy of STRAP in simulation on the LIBERO bench-
mark (Liu et al., 2024), in two real-world scenarios following the DROID (Khazatsky et al., 2024)
hardware setup. Eq. 12 shows the target tasks and samples from the retrieval datasets. For more task
details please refer to Appendix A.2.1.

• LIBERO: We evaluate STRAP on 10 long-horizon tasks of the LIBERO benchmark (Liu et al.,
2024) which include diverse objects, layouts, and backgrounds. We randomly sample 5 demon-
strations from LIBERO-10 as Dtarget and utilize the 4500 trajectories in LIBERO-90 as Dprior. The
evaluation environments randomize the target object poses, providing an ideal test bed for robust-
ness. We report the top five tasks and average LIBERO-10 performance in Tab. 1 and provide the
remaining ones in the appendix (Tab. 3).

• DROID-Kitchen: Scaling STRAP to more realistic scenarios, we evaluate STRAP on vegetable
pick-and-place in three real kitchen environments. We collect 50 multi-task demonstrations in
every scene totaling 150 demonstrations in Dprior (Kitchen). Task combinations are sampled ran-
domly from three possible tasks per environment and without replacement. Every demonstration
consists of two unique tasks with randomized object poses and appearances. Dtarget is specific to
each environment and contains 3 demonstrations of one of the three possible tasks. To investi-
gate STRAP’s scalability to larger datasets, we construct an additional Dprior consisting of 5000
demonstrations from the DROID datasets and 50 demonstrations collected in the same environ-
ment as Dtarget (Kitchen-DROID). During the evaluation, we randomize the object pose within a
20× 20cm grid with varying orientations.

Baselines and Ablation: We compare STRAP to the following baselines and ablations and refer
the reader to Appendix A.1 for implementation details and Appendix A.3 for extensive ablations.

• Behavior Cloning (BC) behavior cloning using a transformer-based policy trained on Dtarget;
• Fine-tuning (FT) behavior cloning using a transformer-based policy pre-trained on Dprior and

fine-tuned on Dtarget;
• Multi-task Policy (MT) transformer-based multi-task policy trained on Dprior and Dtarget;
• BR (BehaviorRetrieval) (Du et al., 2023) prior work that trains a VAE on state-action pairs for

retrieval and uses cosine similarity to retrieve single state-action pairs;
• FR (FlowRetrieval) (Lin et al., 2024) same setup as BR but VAE is trained on pre-computed

optical flow from GMFlow (Xu et al., 2022);
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Table 1: Baselines: Performance of baselines, ablations and variations of STRAP on the LIBERO-10 tasks
(Eq. 12). DINOv2 and CLIP features perform similarly, making STRAP flexible in the encoder choice. Addi-
tional results in Tab. 3. Bold indicates best and underline runner-up results.

Task Stove-Moka Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy LIBERO-10

BC 77.3%± 4.4 71.3%± 5.7 27.3%± 2.2 38.0%± 5.7 75.3%± 1.4 37.9%± 27.2
FT 86.0%± 1.4 91.0%± 0.7 38.0%± 2.8 43.0%± 0.7 100.0%± 0.0 51.7%± 35.7
MT 66.0%± 14.1 45.0%± 30.4 19.0%± 13.4 31.0%± 16.3 100.0%± 0.0 37.7%± 32.6

BR 80.0%± 1.6 72.0%± 7.7 26.0%± 5.3 40.0%± 8.6 16.0%± 1.9 33.4%± 25.1
FR 76.0%± 6.6 54.7%± 12.0 24.7%± 8.6 29.3%± 1.4 52.0%± 5.9 33.1%± 23.0

D-S 70.7%± 7.9 65.3%± 2.0 18.0%± 3.4 16.0%± 0.9 57.3%± 2.9 28.4%± 26.4
D-T 78.7%± 2.7 75.3%± 2.7 37.3%± 6.6 63.3%± 3.6 79.0%± 5.0 41.4%± 30.8

STRAP (CLIP, K=100) 86.0%± 4.1 90.7%± 2.2 42.0%± 0.9 54.7%± 3.3 83.3%± 3.0 44.9%± 32.7
STRAP (DINOv2, K=100) 85.3%± 2.2 91.3%± 2.2 42.7%± 7.2 57.3%± 7.7 85.3%± 2.8 45.6%± 32.6

STRAP (DINOv2, best K) 94.0%± 1.4 96.0%± 0.0 42.7%± 7.2 69.0%± 0.7 94.0%± 4.2 58.1%± 32.0

• D-S (DINOv2 state) same as BR and FR but uses off-the-shelf DINOv2 (Oquab et al.) features
instead of training a VAE;

• D-T (DINOv2 trajectory) retrieves full trajectories (rather than sub-trajectories) with S-DTW and
DINOv2 features;

5.2 EXPERIMENTAL EVALUATION

Our evaluation aims to address the following questions: (1) Does sub-trajectory retrieval improve
performance in few-shot imitation learning? (2) How effective are the representations from vision-
foundation models for retrieval? (3) What types of matches are identified by S-DTW?

Does sub-trajectory retrieval improve performance in few-shot imitation learning? STRAP out-
performs the retrieval baselines BR and FR on average by +24.7% and +25.0% across all 10 tasks
(Tab. 1). These results demonstrate the policy’s robustness to varying object poses. BC represents a
strong baseline on the LIBERO task as the benchmark’s difficulty comes from pose variations during
evaluation. By memorizing the demonstrations, BC achieves high success rates, outperforming BR
and FR by +4.5% and +4.8% across all 10 tasks. In our real-world experiments, BC performs much
worse due to the increased randomization during evaluation. The policy replays the demonstrations
in Dtarget, failing to adapt to new object poses.

Table 2: Real-world results: DROID-Kitchen

Kitchen Kitchen+DROID
Table Sink Stove Table Sink Stove

BC 12.50 10.00 14.28 12.50 10.00 14.28
FT 20.00 27.27 30.43 28.00 8.69 22.72
MT 4.34 31.57 45.00 2.00 0.00 0.00

STRAP 36.36 61.36 57.12 56.81 63.04 45.45

Pre-training a policy on Dprior and fine-
tuning it on Dtarget (FT) emerges as the
most competitive baseline underperform-
ing STRAP by only −6.4%. Training a
multi-task policy (MT) matches BC on
average but shows improvements when
Dprior contains demonstrations or envi-
ronments overlapping with Dtarget. Intro-
ducing larger randomization to Dprior and
the evaluation as part of the real-world experiments hurts the performance of both methods. Specif-
ically, we find checkpoint selection for FT difficult as it’s easy for the policy to under- or overfit the
demonstrations, leading to degenerate behavior or exact replay. We found MT training challenging
as the policy (Haldar et al., 2024; Nasiriany et al., 2024) sometimes ignores the language instruction
and solves a task seen in Dprior instead of the conditioned Dtarget. We hypothesize that this behavior
emerges due to the data imbalance of Dprior and Dtarget. Finally, augmenting Dprior with 5000 tra-
jectories from the DROID dataset amplifies these challenges leading to an even larger performance
gap. In our real-world evaluations, we find STRAP to experience surprising generalization behavior
to poses unseen in Dtarget. The policy further shows recovery behavior, completing the task even
when the initial grasp fails and alters the object’s pose. Since STRAP’s policy training stage is inde-
pendent of the size of Dprior but the dataset size is determined by hyperparameter K, it can naturally
deal with adding in larger datasets like DROID maintaining performance.

How important are sub-trajectories for retrieval and how many should be retrieved? To in-
vestigate the efficacy of sub-trajectories, we compare sub-trajectory retrieval with S-DTW (STRAP)
to retrieving full trajectories with S-DTW (D-T) in Tab. 1. We find sub-trajectory retrieval to im-
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Figure 13: Tasks distribution in Dretrieval for different retrieval methods with target task “put the
black bowl in the bottom drawer of the cabinet and close it”.

prove performance by +4.1% across all 10 tasks. We hypothesize that full trajectories can contain
segments irrelevant to the task, effectively hurting performance and reducing the accuracy of the
cumulative cost. Varying the number of retrieved segments K, we find that the optimal value for K
is highly task-dependent with some tasks benefiting from retrieving less and some from retrieving
more data. We hypothesize that K depends on whether tasks leverage (positive transfer) or suf-
fer (negative transfer) from multi-task training. We report the results for the best K in Tab. 1 and
provide the full search in Tab. 9.

How effective are the representations from vision-foundation models for retrieval? Next, we
ablate the choice of foundation model representation in STRAP with fixed K = 100. We com-
pare CLIP, a model trained through supervised learning on image-text pairs, with DINOv2, a self-
supervised model trained on unlabeled images. We don’t find any representation to significantly
outperform the other with DINOv2 separated from CLIP by only +0.7% across all 10 tasks. To
show the efficacy of vision-foundation models for retrieval, we replace the in-domain feature extrac-
tors from prior work (BR, FR) trained on Dprior with an off-the-shelf DINOv2 encoder model (D-S).
Comparing them in their natural configuration, i.e., state-based retrieval using cosine similarity al-
lows for a side-by-side comparison of the representations. Tab. 1 shows the choice of representation
to depend on the task with no method outperforming the others on all tasks. Since D-S has no notion
of dynamics and task semantics due to single-state retrieval, BR and FR outperform it by +5.0%
and +4.7%, respectively. We highlight that vision foundation models don’t have to be trained on
Dprior and, therefore, scale much better with increasing amounts of trajectory data and on unseen
tasks.

What types of matches are identified by S-DTW? To understand what data STRAP retrieves, we
visualize the distribution over tasks as a function of Dretrieval proportion in Figure 13. The figure
visualizes the top five tasks retrieved and accumulates the rest into the “others” category. It becomes
clear that STRAP retrieves semantically relevant data – each task shares at least one sub-task with
the target task. For example, ”put the black bowl in the bottom drawer of the cabinet”, ”close the
bottom drawer of the cabinet ...” (Eq. 3). Furthermore, STRAP’s retrieval is sparse, only selecting
data from 5/90 semantically relevant tasks and ignoring irrelevant ones. We observe that DINOv2
features are surprisingly agnostic to different environment textures, retrieving data from the same
task but in a different environment (c.f. Eq. 13, ”put the black bowl in the bottom drawer of the
cabinet and close it”). Furthermore, DINOv2 is robust to object poses retrieving sub-trajectories
that ”close the drawer” with the bowl either on the table or in the drawer (c.f. Eq. 31, ”close the
bottom drawer of the cabinet and open the top drawer”). Trained on optical flow, FR has no notion
of visual appearance, failing to retrieve most of the semantically relevant data.

6 CONCLUSION

We introduce STRAP as an innovative approach for leveraging visual foundation models in few-
shot robotics manipulation, eliminating the need to train on the entire retrieval dataset, and allowing
it to scale with minimal compute overhead. By focusing on sub-trajectory retrieval using S-DTW,
STRAP improves data utilization and captures dynamics more effectively. Overall, our approach out-
performs standard fine-tuning and multi-task approaches as well as state-of-the-art retrieval methods
by a large margin, showcasing robust performance in challenging real-world scenarios.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we report runs over multiple seeds (1234, 42, 4325), seeding the retrieval
procedure Tab. 9 as well as the training Tab. 1 and Tab. 3. This comprehensive approach allowed
us to verify the consistency of our results across various runs ensuring reproducibility. We conduct
all baseline and ablation experiments on the LIBERO-10 simulated benchmark and report hyperpa-
rameters in Appendix A.1 and Sec. 5.1. We will include a code release with our final paper, pro-
viding detailed instructions for reproducing our experiments exactly. This release will encompass
all necessary components, including data preprocessing scripts, vision foundation model inference,
hyperparameters, and evaluation scripts.
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via search in demonstration dataset. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 7590–7594. IEEE, 2024.

Vivek Myers, Chunyuan Zheng, Oier Mees, Kuan Fang, and Sergey Levine. Policy adaptation via
language optimization: Decomposing tasks for few-shot imitation. In 8th Annual Conference on
Robot Learning, 2024.

Meinard Müller. Fundamentals of Music Processing: Using Python and Jupyter Notebooks.
Springer Cham, 2 edition, 2021. ISBN 978-3-030-69807-2. URL https://doi.org/10.
1007/978-3-030-69808-9.

Soroush Nasiriany, Tian Gao, Ajay Mandlekar, and Yuke Zhu. Learning and retrieval from prior
data for skill-based imitation learning. In Conference on Robot Learning, 2022.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for gener-
alist robots. arXiv preprint arXiv:2406.02523, 2024.
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A APPENDIX

A.1 SIMULATION EXPERIMENTS

Table 3: Baselines (sim): Performance of different methods on LIBERO-10 tasks in simulation. Bold indi-
cates best and underline runner-up results.

Method Mug-Microwave Moka-Moka Soup-Sauce Cream-Cheese-Butter Mug-Pudding

BC 28.0%± 0.9 0.0%± 0.0 17.3%± 4.5 26.7%± 4.3 18.0%± 2.5
Fine-Tuning 38.0%± 5.7 0.0%± 0.0 5.0%± 2.1 81.0%± 3.5 35.0%± 3.5
Multi-Task 10.0%± 7.1 0.0%± 0.0 24.0%± 17.0 73.0%± 13.4 9.0%± 2.1

BR (Du et al., 2023) 28.7%± 3.9 0.0%± 0.0 13.3%± 3.8 32.0%± 4.3 26.0%± 1.9
FR (Lin et al., 2024) 27.3%± 1.4 0.0%± 0.0 11.3%± 3.0 41.3%± 5.5 14.7%± 1.1

D-S 30.0%± 3.4 0.0%± 0.0 4.7%± 0.5 16.0%± 5.7 6.0%± 0.9
D-T 34.7%± 2.0 0.0%± 0.0 4.7%± 1.1 27.3%± 4.5 14.0%± 3.4

STRAP (CLIP, K=100) 30.0%± 2.5 0.0%± 0.0 8.7%± 6.3 29.3%± 10.5 24.0%± 4.3
STRAP (DINOv2, K=100) 29.3%± 2.7 0.0%± 0.0 16.7%± 2.0 29.3%± 11.3 18.7%± 1.4

STRAP (DINOv2, best K) 32.0%± 5.7 0.0%± 0.0 61.0%± 6.4 61.0%± 0.7 31.0%± 2.1

Hyperparameters: All results are reported over 3 training and evaluation seeds (1234, 42, 4325).
We fixed both the number of segments retrieved to 100, the camera viewpoint to the agent view
image for retrieval, and the number of expert demonstrations to 5. We use the agent view (exocentric)
observations for the retrieval and train policies on both agent view and in-hand observations. Our
transformer policy was trained for 300 epochs with batch size 32 and an epoch every 200 gradient
steps.

Baseline implementation details: Following Lin et al. (2024), we retrieve single-state action
pairs for the state-based retrieval baselines (BR, FR, D-S) and pad them by also retrieving the states
from t−h to t+h− 1 to make the samples compatible with our transformer-based policy. We refer
the reader to Appendix A.3 for extensive ablation.

Remaining results on LIBERO-10 Tab. 3 shows the results for the remaining LIBERO-10 task
not reported in the main sections. Both FR and BR outperform STRAP on the Cream-Cheese-Butter
task. We hypothesize that our chunking heuristic generates sub-optimal sub-trajectories (too long)
causing them to contain multiple different semantic tasks, leading to worse matches in our retrieval
datasets and eventually in decreasing downstream performance.

A.2 REAL-WORLD EXPERIMENTS

Hyperparameters: For retrieval, we average the embeddings per time-step across the left, right,
and in-hand camera observations and fix the number of segments retrieved to 100. We train policies
on all three image observations for 200 epochs with batch size 32 and an epoch every 100 gradient
steps.

A.2.1 FRANKA-PEN-IN-CUP

Task: We evaluate STRAP’s ability to retrieve from ”unrelated” tasks in a pen-in-cup scenario. The
offline dataset Dprior consists of 100 single-task demonstrations across 10 tasks and Dtarget contains
3 demonstrations for the pen-in-cup task. While some share sub-tasks, e.g., ”put the pen next to
the markers”, ”put the screwdriver into the cup”, ”put the green marker into the mug”, others are
unrelated, e.g., ”make a hotdog”, ”push over the box”, ”pull the cable to the right”. Note that the
target task is not part of Dprior! We demonstrate STRAP’s ability to an unseen pose, and object and
target appearance.
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Table 4: Franka-Pen-in-Cup: real-world results.

Pen-in-Cup base OOD
Pick Place Pick Place

BC 100% 100% 0% 0%
STRAP 100% 90% 100% 100%

Figure 14:
chess

Figure 15:
cube stacking

Figure 16:
hotdog

Figure 17:
knock over box

Figure 18:
marker in mug

Figure 19:
medicine pnp

Figure 20:
dispense soap

Figure 21:
pull cable right

Figure 22:
pen next to pens

Figure 23:
screwdriver

Figure 24: Franka-Pen-in-Cup: Environment setup for the tasks in Dprior.

Language Instructions Dprior

chess ”Move the king to the top right of the chess board”
cube stacking ”Stack the blue cube on top of the tower”

hotdog ”Put the hotdog in the bun”
knock over box ”Knock over the box”
marker in mug ”Put the marker in the mug”
medicine pnp ”Pick up the medicine box on the right and put it next to the other medicine boxes”
dispense soap ”Press the soap dispenser”

pull cable right ”Pull the cable to the right”
pen next to pens ”Put the pen next to the markers”

screwdriver ”Pick up the screwdriver and put it in the cup”

Table 5: Franka-Pen-in-Cup: Task/language instructions for the real-world dataset Dprior.
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A.2.2 DROID-KITCHEN

Figure 25:
table

Figure 26:
sink

Figure 27:
stove

Figure 28: DROID-Kitchen: Environment setup for the tasks in Dprior. Task-relevant objects are
marked by red circles. From left to right, the objects are table: carrot, chips bag, can; sink: pepper,
soap dispenser, sponge; stove: chili, chicken, utensil. We randomize the object pose and type, e.g.,
color or style during data collection.

Language Instructions Dprior Language Instruction Dtarget

table ”press the soap dispenser”,
”pick up the sponge and put it in the sink”,

”pick up the pepper and put it in the sink”

”pick up the pepper and put it in the sink”

sink ”pick up the carrot and put it on the plate”,
”pick up the chips bag and put it on the plate”,
”pick up the can and move it next to the table”

”pick up the can and move it next to the
table”

stove ”pick up the chicken wing and put it in the pan”,
”pick up the utensil and put it in the pan”,

”pick up the chili and put it in the pan”

”pick up the chili and put it in the pan”

Table 6: DROID-Kitchen: Task/language instructions for the real-world datasets Dprior and Dtarget.
Each task in Dprior consists of two unique tasks randomly sampled from the available instructions.
The chosen instructions are concatenated by the filler ”, then”. In the table environment, for example,
a task might be ”pick up the sponge and put it in the sink, then press the soap dispenser”.

A.3 ABLATIONS

Table 7: Ablations - Retrieval Method: We explore different approaches for trajectory-based retrieval. Be-
sides the heuristic reported in the main paper, we experiment with a sliding window approach that segments
a trajectory into sub-trajectories of equal length (here: 30). We use S-DTW for both sliding window sub-
trajectories and full trajectories.

Method Stove-Moka Bowl-Cabenet Mug-Microwave Moka-Moka Soup-Cream-Cheese

Sub-traj 76.0%± 4.71 75.33%± 2.72 26.0%± 1.89 0.0%± 0.00 37.33%± 6.62
Full traj 78.67%± 2.72 68.67%± 1.44 34.67%± 1.96 0.0%± 0.00 28.67%± 3.81

Method Soup-Sauce Cream-Cheese-Butter Mug-Mug Mug-Pudding Book-Caddy

Sub-traj 40.00%± 0.94 27.33%± 2.18 63.33%± 3.57 30.00%± 3.40 79.0%± 4.95
Full traj 4.67%± 1.09 27.33%± 4.46 43.33%± 1.09 14.0%± 3.4 68.0%± 5.66
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Figure 29: Ablations - K (Num Segments Retrieved): The figure shows mean success and stan-
dard deviation for different values of K.
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Table 8: Ablations - K (Num Segments Retrieved): Tuning K improves the success rates reported
in Tab. 1 on 8/10 tasks. The optimal value for K is highly task-dependent with some tasks benefiting
from retrieving less (Stove-Pot, Bowl-Cabinet, Soup-Cheese, Mug-Microwave) and some from re-
trieving more (Mug-Mug, Book-Caddy, Soup-Sauce, Cream cheese-Butter, Mug-Pudding) data. We
hypothesize that K depends on whether tasks leverage (positive transfer) or suffer (negative transfer)
from multi-task training.

K Stove-Moka Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

K = 100 86.0%± 4.3 94.5%± 0.83 35.0%± 2.5 61.0%± 5.12 89.5%± 3.56
K = 200 94.0%± 1.41 96.0%± 2.83 33.0%± 2.12 56.0%± 4.24 89.0%± 4.95
K = 500 88.0%± 2.83 95.0%± 0.71 31.0%± 6.36 65.0%± 2.12 88.0%± 4.24
K = 1000 86.0%± 1.41 96.0%± 0.00 32.0%± 2.83 69.0%± 0.71 94.0%± 4.24
K = 2000 72.0%± 4.24 74.0%± 1.41 25.0%± 4.95 42.0%± 4.24 73.0%± 2.12
K = 4000 76.0%± 1.41 73.0%± 6.36 29.0%± 2.12 39.0%± 0.71 78.0%± 0.0

K Mug-Microwave Pots-On-Stove Soup-Sauce Cream cheese-Butter Mug-Pudding

K = 100 27.5%± 3.11 0.0%± 0.00 45.5%± 10.52 50.0%± 5.61 24.0%± 2.12
K = 200 32.0%± 5.66 0.0%± 0.00 31.0%± 2.12 46.0%± 2.83 22.0%± 8.49
K = 500 27.0%± 3.54 0.0%± 0.00 37.0%± 3.54 44.0%± 9.9 31.0%± 2.12
K = 1000 23.0%± 0.71 0.0%± 0.00 61.0%± 6.36 61.0%± 0.71 27.0%± 2.12
K = 2000 27.0%± 3.54 0.0%± 0.0 12.0%± 1.41 27.0%± 3.54 14.0%± 1.41
K = 4000 32.0%± 2.83 0.0%± 0.0 12.0%± 2.83 30.0%± 1.41 13.0%± 3.54

Table 9: Ablations - Retrieval Seeds: We run STRAP on different retrieval seeds on a subset of LIBERO-10
tasks using 10 expert demos as Dretrieval. We report results over all possible combinations of 3 training and 3
retrieval seeds

Method Stove-Moka Mug-Cabinet Book-Caddy

BC Baseline 81.78%± 2.6 83.11%± 2.69 93.11%± 1.57
STRAP 86.89%± 1.51 88.67%± 2.11 98.0%± 1.04

A.4 ADDITIONAL BASELINES

Table 10: Diffusion Policy Baselines: Performance on LIBERO-10 tasks using diffusion policies (DP) (Chi
et al., 2023) without language conditioning for BehaviorRetrieval (BR) (Du et al., 2023), FlowRetrieval
(FR) (Lin et al., 2024). These experiments replicate the training setup for BR and FR.

Method Stove-Moka Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

BR 36.67%± 1.44 68.0%± 2.49 34.0%± 2.49 55.33%± 1.44 42.0%± 1.63
FR 68.67%± 2.37 56.0%± 4.32 18.0%± 3.4 56.0%± 3.4 35.33%± 6.28

Method Mug-Microwave Pots-On-Stove Soup-Sauce Cream cheese-Butter Mug-Pudding

BR 30.67%± 0.54 0.00%± 0.00 10.67%± 1.96 24.0%± 0.94 9.33%± 1.44
FR 32.67%± 3.31 68.0%± 2.49 6.0%± 0.00 35.33%± 0.54 8.0%± 1.89

A.5 COMPLEXITY AND SCALABILITY

A.5.1 ENCODING TRAJECTORIES WITH VISION FOUNDATION MODELS

The embeddings forDprior can be precomputed and reused for every new retrieval process. Embed-
ding a dataset with total timesteps T and number of camera views V scales linear with O(T ∗ V ).
We benchmark Huggingface’s DINOv2 implementation3 on an NVIDIA L40S 46GB using batch
size 32. Encoding a single image takes 2.83ms ± 0.08 (average across 25 trials). The wall clock
time for encoding the entire DROID dataset ( 18.9M timesteps, single-view) therefore sums up to
only 26h.

3https://huggingface.co/docs/transformers/en/model_doc/dinov2

19

https://huggingface.co/docs/transformers/en/model_doc/dinov2


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.5.2 SUBSEQUENCE DYNAMIC TIME WARPING

In contrast to the embedding process, retrieval must be run for every deployment scenario. S-DTW
consists of two stages: computing the distance matrix D and finding the shortest path via dynamic
programming. Computing the distance matrix has complexity O(n ·m · E) with E the embedding
dimension, n the length of the sub-trajectory in Dtarget, and m the length of the trajectory in Dprior.
DTW and backtracking have complexities ofO(n ·m) andO(n), respectively. These stages have to
be run sequentially for each sub-trajectory (∈ Dtarget) and trajectory (∈ Dprior) but don’t depend
on the other (sub-)trajectories. Therefore, STRAP has a runtime complexity ofO(N ∗M) with N the
number of sub-trajectories in Dtarget and M the number of trajectories in Dprior. Our implementa-
tion largely follows4. We use numba5 to compile python functions into optimized machine code and
warm-start every method by running it three times. Following the statistics of DROID, we choose
a trajectory length of 250 (Dtarget and Dprior) and a single demonstration from Dtarget split into
5 sub-trajectories of length 50 each and embed each timestep into a 768-dimensional vector mim-
icking DINOv2 embeddings. We benchmark S-DTW and report the wall clock time (average over
10 trials) in Eq. 30. For an offline dataset the size of DROID (76k), retrieval takes approximately
300sec. Note that computing the distance matrix can be expressed as matrix multiplications and can
leverage GPU deployment and custom CUDA kernels for even greater speedup.

A.5.3 POLICY TRAINING

The training process also has to be repeated for every deployment scenario. We use robomimic6 and
train policies for 200 epochs with a batch size of 32 and 100 gradient steps per epoch on an NVIDIA
L40S 46GB. Training a single policy takes 35min± 4 (average over 10 trials).

A.5.4 INCREASING THE DATASET SIZE

Overall, STRAP scales linearly with new trajectories added to Dprior. STRAP encodes the new tra-
jectories using an off-the-shelf vision foundation model, eliminating the need to re-train the encoder
like in previous approaches (BR, FR). Retrieving data with S-DTW scales linearly with the size of
Dprior, allowing for retrieval within 5min even from the largest available datasets like DROID.
Finally, STRAP ’s policy learning stage is independent of the size of Dprior and only depends on
the amount of retrieved data K, making it more scalable than common pre-training + fine-tuning or
multi-task approaches that have to be re-trained when new trajectories are added to Dprior.
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Figure 30: STRAP Runtime: We benchmark STRAP’s retrieval step on varying sizes of Dprior and
report the average wall clock time over 10 trials.

4https://www.audiolabs-erlangen.de/resources/MIR/FMP/C7/C7S2_
SubsequenceDTW.html

5https://numba.pydata.org/
6https://github.com/ARISE-Initiative/robomimic/tree/robocasa
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A.6 QUALITATIVE RESULTS

0 100 200

Matches Start Index
0

5

10

15

20

C
ou

nt
 (k

)

100 200 300

Matches End Index
0

2

5

8

10

12

15

25 50 75 100 125 150

Matches Length
0

2

4

6

8

10

Figure 31: Match distribution Dprior for STRAP with target task: ”put the black bowl in the
bottom drawer of the cabinet and close it”. S-DTW finds the best matches regardless of start and
end points or trajectory length. This results in a distribution over start and end points as well as a
variety of trajectory lengths retrieved.
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