
MGit: A Model Versioning and Management System

Wei Hao * 1 2 Daniel Mendoza * 1 3 Rafael da Silva 4 Deepak Narayanan 1 5

Amar Phanishayee 4 Asaf Cidon 2 Junfeng Yang 2

Abstract
New ML models are often derived from existing
ones (e.g., through fine-tuning, quantization or
distillation), forming an ecosystem where mod-
els are related to each other and can share struc-
ture or even parameter values. Managing such
a large and evolving ecosystem of model deriva-
tives is challenging. For instance, the overhead
of storing all such models is high, and models
may inherit bugs from related models, complicat-
ing error attribution and debugging. In this paper,
we propose a model versioning and management
system called MGit that makes it easier to store,
test, update, and collaborate on related models.
MGit introduces a lineage graph that records the
relationships between models, optimizations to
efficiently store model parameters, and abstrac-
tions over this lineage graph that facilitate model
testing, updating and collaboration. We find that
MGit works well in practice: MGit is able to re-
duce model storage footprint by up to 7×. Addi-
tionally, in a user study with 20 ML practitioners,
users complete a model updating task 3× faster
on average with MGit.

1. Introduction
ML models are deployed across a wide set of tasks, span-
ning different target hardware, data and label availability
regimes. In all of these disparate use cases, it has became
increasingly common for models to be generated from ex-
isting ones. For instance, when a large amount of super-
vised data might not be available for a particular task, pre-
trained models created by self-supervised pretraining on a
large unlabeled dataset can be fine-tuned on a smaller la-
beled dataset (Pratt, 1992; Torrey & Shavlik, 2010; Weiss
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et al., 2016; Bommasani et al., 2021). For efficient exe-
cution on low-powered devices like mobile phones or em-
bedded devices, full-precision models trained on datacenter
accelerators are often quantized, pruned, and distilled (Ba
& Caruana, 2014; Polino et al., 2018; Guo et al., 2021;
Hao et al., 2022). In regimes where new data is constantly
streaming in (e.g., in recommendation systems), models are
continuously trained (Baylor et al., 2019; Liu, 2017). In
complex deployments like self-driving cars, an individual
model might be composed of several related sub-models
built collaboratively (e.g., Tesla’s Autopilot software sys-
tem (Karpathy, 2019) in 2019 had multiple components us-
ing the same shared backbone models to detect key visual
elements like traffic lights and human beings).

Unfortunately, no existing system allows for the easy man-
agement of these related (or derived) models. Exist-
ing widely-used frameworks like PyTorch (Paszke et al.,
2019), TensorFlow (Abadi et al., 2016) and Hugging Face
Transformers (Wolf et al., 2019) support the development
and management of single models at a time, but do not store
dependence information across different models.

In this paper, we show that this is an untapped opportunity.
Without automated lineage tracking, various tasks in the
model management life cycle are hard and inefficient:

• Model storage and memory redundancy. Many
models share parameter values, or have minor devi-
ations, leading to redundancy.

• Model debugging. It is hard to collectively debug
models that are themselves derived from other mod-
els. Does an undesired behavior originate in a given
model or in an upstream model?

• Model updating. It is hard to update related models
and keep them in sync. If a certain model is updated,
how should dependent models be updated?

• Model collaboration. It is hard for multiple users to
collaboratively develop models and determine if con-
current changes made to the model conflict.

To leverage the opportunity presented by lineage tracking,
we design and build a system called MGit. MGit makes the
following contributions.

Lineage graph. MGit proposes a lineage graph data struc-
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ture to track provenance across ML models through de-
pendency edges, and uses creation functions to optionally
record how models are derived from their parents. The lin-
eage graph also stores other metadata like test functions
that can be used for model monitoring. A lineage graph can
be created automatically from existing model checkpoints,
or manually through a Python or command-line interface.

Storage and memory deduplication. MGit incorporates
optimizations to more efficiently store model parameters in
the lineage graph: it uses content-based hashing and indi-
rection to store parameters shared across models efficiently,
and can compress the deltas between non-shared parame-
ters of parent and child models efficiently with no change
in underlying model accuracy. MGit derives deltas between
models of different architectures by using a diff primitive
to automatically match the layers of the same dimension
between models. MGit’s storage optimizations are able to
compress model checkpoints by up to 7× relative to stor-
ing each model separately. These optimizations can also be
used to conduct memory-efficient collocated inference of
related models with little change in accuracy.

Support for disparate applications. In our evaluation,
we show that MGit can automatically track dependencies
across fine-tuned models, models created using federated
learning, and also models specialized for edge devices.
Once constructed, the lineage graph can be used to test
models and perform diagnostics using a traversal primi-
tive. This primitive can also be used to automatically up-
date models given upstream updates. We also provide a
merge primitive that supports collaboration use cases.

We have open sourced our implementation of MGit at
https://github.com/msr-fiddle/mgit.

2. Target Settings
MGit is useful in various target settings where models are
derived from other models. We describe some of these set-
tings below; this list is not intended to be exhaustive.

Adaptation. Transfer learning (Pratt, 1992; Torrey &
Shavlik, 2010; Weiss et al., 2016) has been widely adopted
to specialize models to downstream tasks, especially in set-
tings where a large labeled dataset might not be available.
For example, a model trained with a masked language mod-
eling objective (MLM) using self-supervision can then be
fine-tuned on various text classification tasks with small la-
beled datasets; the Hugging Face model repository (Wolf
et al., 2019) has more than 27,000 BERT model derivatives.

Model versioning. Model updates (e.g., to fix an undesired
behavior or to train a model on new training data) can create
new versions of a model. In such cases, users often do
not just value the latest model version: for instance, a new

Modelm3
cr3(m1, m2) =	m1	+	m2	

Modelm1
cr1	=	None

Modelm2
cr2	= None

Modelm4
cr4(m3)	=	…

…

Modelm3’
cr3’(m3)	=	…

Modelm4’
cr4’(m3’)	=	…

…

Figure 1: Example lineage graph. Nodes in the graph are
models; direct relationships between models are tracked
through edges. Each model node can be associated with an
optional creation function cr that specifies how the model
can be created from its parent nodes. For example, model
m3 in this example is created by summing m1 and m2. Prove-
nance edges are shown as solid lines and versioning edges
are shown as dashed lines. Models are created by following
solid edges only. Two models can have both provenance
and versioning edges between them.

model version might suffer from a functionality regression
discovered later, forcing a rollback to an older version.

Federated learning (FL). Federated learning (Konečnỳ
et al., 2016; Li et al., 2020) makes it possible to train mod-
els in a decentralized way, ensuring that the entire training
dataset does not need to be available in a single central lo-
cation. This is advantageous in application settings where
privacy concerns might preclude data being uploaded to a
central repository or network bandwidth is limited. In FL,
multiple copies of a model are updated independently, in-
ducing new model derivatives, and then coalesced periodi-
cally to obtain the global shared model.

Specialization to edge devices. Dense full-precision mod-
els often can be too memory- or compute-intensive to run
efficiently on edge devices like mobile phones, necessitat-
ing edge-adaptation techniques like quantization and prun-
ing (Hao et al., 2022). When employed, such techniques
create new derived models.

Multi-task learning (MTL). In MTL, a single model is
trained on multiple tasks, resulting in per-task “backbones”
and a few task-specific parameters (Ruder, 2017). This has
been shown to improve model generalization.

3. Lineage Graph
To automatically track model derivatives, MGit proposes a
lineage graph data structure. Individual models are repre-
sented as nodes in the lineage graph. A given lineage graph
is only intended to keep track of related models; a com-
pany’s image classification and language models would be
stored in separate lineage graphs for instance.
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Component Description

Node ML models are represented in the lineage graph as nodes. Each node has an optional creation
function cr that tracks how the model can be created from its parents. Nodes are also associated
with other relevant metadata like the model type and a unique name.

Provenance edge Edge between a model and model(s) derived from it. Tracks how models are created. Can be
followed to determine the root cause of a model regression, or to update models when an upstream
model is modified.

Versioning edge Edge between two consecutive versions of the same model. Used to track versions of a model, and
can be queried (e.g., to run tests on all versions of a given model).

Table 1: Components of MGit’s lineage graph.

Lineage graphs have two different types of edges: prove-
nance and versioning, shown as solid and dashed edges in
Figure 1. Provenance edges are used to track which models
are derived from another. A provenance edge from model
A to model B indicates that B is derived from A using
some function of model A’s parameters, which is (option-
ally) defined by an MGit creation function (§3.1.2). Exam-
ples of “derived” relationships in the lineage graphs consid-
ered in our evaluation include: B is derived from A after re-
moving / adding certain layers, B (e.g., a model trained for
sentiment analysis) is derived from A (e.g., a model trained
for masked language modeling) after changing a few layers
and fine-tuning, and B is derived from A through param-
eter pruning. A model with no provenance relation with
another indicates that the model is not derived from an al-
ready existing model in the lineage graph. In other words,
the model is created through some black-box process that
MGit does not have visibility into. Provenance edges are
useful to monitor the behavior of models as they are de-
rived from each other (e.g., track if an undesired behavior
originates in a given model or in an upstream model), and is
used for other MGit functionality like run_update_cascade,
which is described in §5.

Versioning edges are used to subjectively track versions of
a given model, and thus require user annotation (in MGit,
these are specified using the add_version_edge API). They
are useful for tracking how models change with time in-
dependent of provenance. Versioning edges capture cases
where a model A for a target application is replaced by a
new model A′. A versioning edge does not imply a prove-
nance edge: if A′ is trained from scratch, then there is
no provenance between A and A′. For example, when a
model service for image classification replaces a ResNet-
50 model with a ResNet-101 model trained from scratch,
the ResNet-101 model becomes the next version of the
ResNet-50 model though it is not derived directly from the
ResNet-50 model (i.e., the weights of the ResNet-50 model
are not used to create the ResNet-101 model). In this case,
there is a version edge between the ResNet-50 and ResNet-

101 models, but no provenance edges. Traversal functions
can visit nodes through these versioning edges (e.g., we can
compute how “robust” to perturbations different versions
of the same model are). Two models can be connected by
both provenance and versioning edges (e.g., m3 and m3’ in
Figure 1 are connected by a solid provenance edge and a
dashed versioning edge; m3’ is created from m3 and is also
annotated as the next version of m3). Models connected by
provenance edges are not necessarily different versions. In
Figure 1, m4’ is not the next version of m3’.

The lineage graph also tracks other metadata, such as the
model type and a unique name, which is useful for testing
models, updating them, and mutating the graph. An exam-
ple is shown in Figure 1.

3.1. Interface

MGit can be used from both command line and Python.
Its command-line interface is analogous to that of git, and
enables users to effortlessly view the lineage graph, mutate
it, run registered tests, etc. The Python interface also allows
specification of a model’s creation function. To facilitate
both interfaces, changes to metadata are serialized to disk
at the end of every operation, and de-serialized at the start
of every operation. MGit’s full API is shown in Table 4 in
the Appendix §A.1.

3.1.1. NODE AND EDGE ADDITION

MGit’s API supports adding or removing edges and nodes.
Node and edge addition can be directly integrated into
larger applications. For example, a federated learning con-
troller (Konečnỳ et al., 2016) can create new nodes (and
corresponding edges) in the corresponding lineage graph
directly in code using the Python API.

3.1.2. CREATION FUNCTION

Each node is associated with an optional creation function
cr that specifies how the model is created from its par-

3



MGit: A Model Versioning and Management System

ents. Creation functions follow the same code-style as typ-
ical ML programs (i.e., a main training loop, data loading,
model initialization, definition of a loss function, etc.). The
creation function facilitates automated model updating if
an upstream model in the lineage is updated. Creating a
new model involves calling the function cr, and then call-
ing add_edge and/or add_version_edge. A model’s creation
function has one argument for each of the node’s “prove-
nance parents”.

Fine-tuning and adaptation. Fine-tuning and other light-
weight adaptation techniques (e.g., adapters (Rebuffi et al.,
2017), BitFit (Zaken et al., 2021)) involve initializing a new
model from the parent’s checkpoint (full checkpoint or par-
tial with parameters for a subset of layers copied over), and
then running training iterations:

class CreationFunctionFineTuning:
def __init__(self):
self.lg, self.data_loader = mg.LineageGraph(<

filepath>), torch.DataLoader(<filepath>)

def initialize_model(self, parent_list):
self.child_model, parent_model = Model(),

parent_list[0].get_model()
copy_parameters(parent_model, self.child_model)

// Copy parameters from parent_model.
self.child_model.head = initialization(

child_head_dimensions) // Initialize head.

def run_iteration(self):
batch = next(self.data_loader) // Iterate

through data using DataLoader.
loss = cross_entropy_loss_fn(self.child_model(

batch)) // Forward pass.
loss.backward(); optimizer.step() // Backward

pass -> Step optimizer.

def __call__(self, parent_list):
self.initialize_model(parent_list)
while self.data_loader.has_next():
self.run_iteration()

return self.child_model

Edge device specialization. Quantization and pruning
also fit into this framework. For example, a simple form
of quantization can just downcast each parameter tensor,
which is easy to encode in a cr function. Distillation is
similar, but with a more complex creation function.

Multi-task learning. Typically, some parameters of a
multi-task model are shared across tasks, while some pa-
rameters are not. MGit facilitates multi-task learning by
automatically synchronizing updates of shared parameters
across models. We can also use creation functions to train
models in an MTL fashion by specifying the shared pa-
rameters in the creation function. Pseudocode is in Ap-
pendix §A.2.

3.1.3. TRAVERSALS

Traversals are specified as an iterator over the lineage graph
nodes. Nodes can be visited in arbitrary orders. Simple
example traversals are BFS and DFS. Traversals can also
specify the types of edges that should be traversed. For ex-
ample, to test all versions of a particular model, we could
use a traversal that starts at the first version of the given
model and then only follows versioning edges. More com-
plex traversals like binary search (for test bisections) are
also possible using Python generators. We detail how we
leverage traversals over MGit’s lineage graph to automate
model updating and testing in §5.

3.2. Graph Construction

Graphs can be constructed manually or automatically.

Manual construction. Users can manually add nodes
to the lineage graph and specify their provenance, using
the provided add_node, add_edge, add_version_edge and
register_creation_function APIs. These are available
both in the command-line interface or in Python. For exam-
ple, an FL controller implemented in Python can register
nodes and edges in code. Similarly, fine-tuning code can
directly register edges between the parent model and new
child model.

Automated construction. To alleviate manual effort,
MGit can automatically infer provenance edges between
models constructed outside MGit’s API based on structural
and parameter similarity.

We use a custom diff primitive to compute the differences
between two models, both structural (connectivity between
layers of the model) and contextual (values of parameters
in the model). diff makes no assumptions on the model’s
architecture, and can also be used for dynamic models like
MoEs (Fedus et al., 2022; Du et al., 2022) that use rout-
ing layers with learned parameters, since diff only looks
at layer parameters and layer connectivity which is agnos-
tic to dynamic control flow. After obtaining both models’
DAG representations (Reed et al., 2022) where layers and
their connectivities are represented as nodes and edges in
the DAGs, diff runs a hash-table-based graph matching al-
gorithm (Appendix §A.4.) that returns the layers and edges
to add and remove to produce model B from model A.
MGit calculates two scores dstructural and dcontextual based on
the number of edges in the diff output:

dstructural/contextual =
|edgesstructural/contextual

diff |
|edgesA|+ |edgesB |

(1)

For a model x, MGit locates the model in the graph that
has the smallest contextual and then structural divergence
score with x; this node is chosen as the parent of x. The au-
tomated algorithm only adds provenance edges; versioning
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edges require user annotation. If no model is sufficiently
contextually or structurally similar, x is added as a root
(node with no parents). We show the runtime scaling of
this algorithm in Figure 5 for large lineage graphs in Ap-
pendix §C.1.

4. Storage and Memory Optimizations
In this section, we describe how MGit leverages the lineage
graph to minimize storage and memory footprint for model
parameters.

Content-based hashing. MGit uses content-based hashing
to encode parameters, allowing it to avoid storing redun-
dant copies of parameters. MGit manages a global hash
table that stores the parameters of all models in a lineage
graph. The SHA-256 hash of each parameter tensor (using
both tensor value and its shape) is used as the hash key.

Delta compression. The non-identical parameters of par-
ent and child models might only differ slightly. This moti-
vates the use of compression and decompression of param-
eter deltas, which can be sparse for similar models. Pre-
vious work (Hu et al., 2020) explored various lossy and
lossless compression methods for delta compression and
concluded that combining quantization, which converts the
delta from a float array to an integer array (lossy), with loss-
less compression of the subsequent quantized delta works
well for many models. MGit extends this approach for delta
compression between models in the lineage graph.

One challenge in compressing deltas across models is the
fact that parent and child models in the lineage graph might
not have identical architectures. To circumvent this, MGit
employs a longest common subsequence algorithm to com-
pute a mapping between parameters of the model that have
the same shape. For models with the same architecture,
this creates a mapping between corresponding parameters
of the same layer.

Given a mapping of parameters (p1, p2) of two differ-
ent models, MGit first computes the delta ∆p between
each pair of parameters and then quantizes ∆p (Hu et al.,
2020):

∆p = p1 − p2,∆pquantized =

⌊
∆p

2 · log(1 + ϵ)
+ 0.5

⌋
(2)

MGit then uses compressor and decompressor modules to
losslessly compress ∆pquantized. Different lossless com-
pression techniques can be used like RLE (Robinson &
Cherry, 1967) and LZMA (Igor, 1998); each of these pro-
vide different tradeoffs between compression ratio and run-
time (§6.2).

ϵ is a configurable error bound. Larger ϵ leads to more val-
ues in ∆pquantized being driven to 0, contributing to a higher

compression ratio after lossless compression. However, in-
creasing ϵ also reduces the faithfulness of ∆pquantized to ∆p
and may cause a larger deviation in model accuracy. By
default, we set ϵ = 10−4.

MGit only accepts the delta compression if the compres-
sion results in storage saving and an accuracy drop within
a configurable threshold (if tests are registered). Each
delta-compressed parameter will be stored on disk as the
compressed delta along with a pointer to the parent layer
to facilitate future decompression. If not, compression is
rejected and the uncompressed model is persisted (Algo-
rithm 3 in Appendix). This procedure can be applied re-
cursively. That is, the delta can be computed between the
layers of a child model and a parent model that is itself
delta compressed. Loading a model instance then involves
recursively decompressing up the chain until the first an-
cestor node that is not delta compressed.

Memory optimization during inference. These tech-
niques can be extended to perform memory-efficient col-
located inference of multiple related models. Similar to re-
lated work (Li et al., 2022; Padmanabhan et al., 2023; Zhou
et al., 2022), MGit can load unique weight tensors into
GPU memory by leveraging the same content-based hash-
ing techniques described above; this not only decreases
memory footprint of inference, but can also increase in-
ference throughput by increasing the arithmetic efficiency
of the underlying operators. MGit can also more aggres-
sively reduce memory consumption even in settings where
model parameters are different by identifying small param-
eter deltas and squashing them to zero; only a single copy
of the parameters is then loaded during collocated model
inference. We provide more details in Appendix §C.2.

5. Higher-Level Functions on Lineage Graph
Various higher-level workflows around testing, updating
and collaboration can now be built on top of the lineage
graph and the abstractions it exposes.

Testing. Given a lineage graph, MGit exposes APIs to ex-
amine models in the graph. Testing can be thought of as
executing per-node test functions t as part of a graph traver-
sal. MGit provides a way to register functions both for in-
dividual models and for all models of a specific type. Users
can specify a regex re; for every node encountered in the
traversal, all registered tests whose names match re are run.
Running the same test for multiple related models allows
users to track model regressions more easily (e.g., all de-
scendants of a particular model might show poor accuracy
on a particular test) and correlate dependency information
with model accuracy on various tasks. Users can also use
this workflow to search for the upstream model where a
certain unintended behavior originated.
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Is same layer changed
by both users?

Conflict
User intervention

Do layers have a
dependency?

Possible conflict
Run tests

No conflict
Automatically merge

yes

yes

no

no

Figure 2: Decision tree for merging changes. If a layer is
changed by both users, manual merging is required because
of the conflict. Otherwise, if changed layers have a depen-
dency, a conflict is possible and tests are required to verify
whether this is the case. If neither of the above conditions
is true, the merge can be done automatically.

We can also execute other per-model functions as diagnos-
tics. For example, we could compute the deltas between
every model and its parent(s), or measure the sparsity lev-
els of models.

Model updating. When users update a model, they need
to create a new node in the lineage graph by using MGit’s
add function; MGit does not support in-place updates to
models. This will then provide users the option to auto-
matically trigger the update cascade on downstream de-
pendent models. In the most basic form of model updat-
ing, when a new version of a model is created, provenance
edges in the lineage graph are followed to produce a new
set of model versions for all of the model’s descendants
(run_update_cascade API). We use a modified BFS traver-
sal, where a node is visited only once all of its parents have
been visited, to ensure that the creation function is called
only when all required upstream models are available. A
new version of the model is computed using the node’s reg-
istered cr function; MGit never overwrites existing mod-
els with its automated functionality since users might want
to vet new models. MGit’s storage optimizations ensures
that keeping all model versions is cost effective. Full pseu-
docode is in Algorithm 1 in the Appendix.

We can use MTL to continuously share parameters across
models even across updates by using an appropriate cre-
ation function (§3.1.2). The traversal to re-train models
needs to ensure that full MTL groups are executed only
once all MTL groups on which they depend complete. Ad-
ditionally, individual creation functions cr are not called.
Instead, we take all desired functions cr_1, cr_2, ...,

cr_n and merge them into cr’ that returns n new models.
Internally, this merged creation function cr’ ensures that
weights are shared, appropriate loss functions are used, etc.

Collaboration. MGit also supports collaboration work-
flows through a merge primitive. The objective of this prim-

Name Description # Nodes / # Edges

G1 NLP models downloaded from Hugging-
Face.

23 / 21

G2 BERT-style models specialized for NLP
tasks using fine-tuning and other lightweight
adaptation techniques. Some models are
trained using different datasets, creating
multiple versions.

91 / 171

G3 Vision models trained in a decentralized
fashion using Federated Learing.

60 / 95

G4 Vision models with pruned model weights
for edge devices.

22 / 19

G5 BERT-style models specialized for NLP
tasks with Muti-Task Learning to enforce
parameter sharing.

10 / 9

G6 Pythia-6.9B checkpoints from EleutherAI
(sampled every 1000 steps).

10 / 9

Table 2: Lineage graphs considered in evaluation.

itive is to identify if concurrent changes made to a given
model are “compatible” or not. Changes made to the same
layers of a given model need to be manually merged (akin
to a manual merge for a merge conflict in git). Changes
made to different layers of a model are also not necessarily
compatible: in cases of a dependency between two layers
(i.e., one layer consumes the output of the other eventually
or a downstream layer consumes the outputs of both layers)
changed by different users, additional tests are needed to
verify that the concurrent changes did not result in a model
regression. We provide more details in Appendix §A.4.

6. Evaluation
In this section, we evaluate MGit’s storage optimizations,
and its utility when developing and debugging models. Un-
less otherwise noted, experiments were run on a worksta-
tion with 4 NVIDIA RTX A6000 GPUs with CUDA 11.7.

6.1. Lineage Graphs

Table 2 shows the lineage graphs considered in this evalu-
ation, reflecting various applications that create ML model
derivatives (§2). G1 was automatically constructed using
the algorithm outlined in §3.2. 22 out of 23 nodes were cor-
rectly inserted, while one node was misidentified by MGit
(bert-base-uncased). MGit’s API allows errors made
by the automated algorithm to be corrected manually by
users (using the remove functions in the API). The auto-
mated graph construction function is able to correctly in-
sert models that have frozen weights inherited from their
parent model by computing structural and contextual di-
vergence scores between model pairs. Graphs G2 through
G6 were manually created using the add functions, in con-
junction with the training APIs used to create the models.
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Graph Compression technique Comp. ratio ↑ Accuracy ∆ ↓ Per-model ↓
Max. Avg. compression time

G1

MGit (LZMA + Hash) 2.14 0.09 0.01 35.7 mins
MGit (RLE + Hash) 1.13 1.02 0.08 30.9 mins
MGit (Hash) 1.05 0.00 0.00 12.0 mins
Full 1.83 0.08 0.00 36.5 mins
Full w/o quantization 0.87 0.00 0.00 29.8 mins

G2

MGit (LZMA + Hash) 5.35 0.01 0.00 7.4 mins
MGit (RLE + Hash) 1.84 0.01 0.00 4.1 mins
MGit (Hash) 1.01 0.00 0.00 0.1 min
Full 1.85 0.00 0.00 14.6 mins
Full w/o quantization 0.78 0.00 0.00 3.8 mins

G3

MGit (LZMA + Hash) 6.96 0.11 0.01 2.5 mins
MGit (RLE + Hash) 3.11 0.49 0.03 2.4 mins
MGit (Hash) 1.00 0.00 0.00 1.1 mins
Full 2.29 0.25 0.06 4.0 mins
Full w/o quantization 0.72 0.06 0.01 2.8 mins

G4

MGit (LZMA + Hash) 2.57 0.35 0.07 2.5 mins
MGit (RLE + Hash) 2.04 0.35 0.07 2.5 mins
MGit (Hash) 1.00 0.00 0.00 1.1 mins
Full 2.57 0.37 0.07 3.0 mins
Full w/o quantization 1.47 0.07 0.01 2.6 mins

G5 MGit (Hash) 4.93 0.00 0.00 0.1 min

G6 MGit (LZMA + Hash) 2.64 0.02 0.01 2.7 mins

Table 3: Compression ratio, maximum / average accuracy
delta across models in lineage graph, and per-model com-
pression time of delta compression techniques for various
lineage graphs. Full is the approach of using quantization
and LZMA on full models instead of the deltas.

We provide more details about these lineage graphs in Ap-
pendix §B; we are also open sourcing code to re-create
these lineage graphs on Github.

6.2. Storage Optimization

We now evaluate MGit’s storage optimizations. Table 3
shows the results for various MGit configurations, combin-
ing the content-based hashing and delta compression tech-
niques described in §4. We show results for two versions of
the delta compression algorithm: one that uses LZMA for its
lossless compressor / decompressor, and another that uses
RLE instead. We also show the content-based hashing tech-
nique alone (Hash). For G4, we quantize parameters be-
fore calculating deltas so that the sparsity is preserved in
each model. Additionally, we implemented two baselines
that run LZMA on either a quantized version or the original
full model (Full and Full w/o quantization). We show
three metrics: compression ratio (larger is better), maxi-
mum accuracy delta between original uncompressed mod-
els and models in the compressed lineage graph (smaller
is better), and average compression + testing runtime per
model (smaller is better).

As a lossless storage method, content-based hashing shows
storage savings proportional to the number of parameters
duplicated across models in the lineage graph. We observe
that these numbers are 9.4%, 16.5% and 79.6% for G1, G2
and G5 respectively. G5 has more duplicate parameters

since its models were explicitly trained to share parameter
values using MTL. LZMA shows the best compression ra-
tio across all graphs for delta compression methods which
are lossy due to the quantization step.

Quantization and LZMA applied to the full models re-
sults in worse compression ratios than the default MGit ap-
proach (compressing deltas) except for G4. There are three
reasons for this: first, the fraction of compressed parame-
ters in G4 is lower compared with G2 and G3 due to accu-
racy check failures. Second, deltas between corresponding
layers of (parent, child) model pairs in G4 is larger than
the deltas between models in other graphs as a result of
how the models were derived from each other (L1 prun-
ing instead of fine-tuning). Third, the three roots models in
G4 were not compressed in MGit whereas they were in the
Full baseline. This is an optimization that can be possibly
added to MGit.

Methods with larger compression ratios take longer to com-
press. We believe an average runtime of even 10-15 min-
utes per model is reasonable given long model training
times (G1 takes particularly long because we ran tests on
CPUs instead of GPUs). Compression time can be further
reduced by compressing layers concurrently. For example,
in G6, MGit conducts compression in parallel and reduces
the per-model compression time from 44.4 to 2.7 minutes.

6.3. Memory Optimization

We ran experiments to demonstrate how MGit can op-
timize memory by colocating models during inference,
thereby reducing GPU memory consumption. We collocate
Llama-2-7b with Llama-2-7b-chat (Touvron et al., 2023),
which share the same architecture but have different param-
eter values. We evaluate the memory savings when 30%,
60% and 90% of corresponding layers are merged by MGit,
and the corresponding set of shared weights is loaded from
Llama-2-7b-chat. Our results show that collocation saves
0.5%, 16.2% and 39.3% of GPU memory in these three
setting, compared with loading two models independently.
However, due to the merged weights, we observe a decrease
in efficacy of the Llama-2-7b model (measured in terms of
accuracy norm, multiple-choice scores and bits-per-byte),
ranging from -0.6% to +12.2% compared with conducting
inference on the original Llama-2-7b model. Moreover, we
observe a speed up in inference by up to 1.5× since model
collocation and merging involves batching of the merged
layers, increasing the arithmetic efficiency of the computa-
tion. We provide more details in Appendix §C.2.

6.4. Functionality

MGit enables functionality that is hard to perform without
a model management system.

7



MGit: A Model Versioning and Management System

RoBERTa-base	m1
cr1	=	None

Model	m3
cr3(m1)	=	QQP

RoBERTa-base	m1’
cr1’(m1)	=	RobustTraining

Model	m3’
cr3’(m1’)	=	cr3(m1’)

Model	m2
cr2(m1)	=	QNLI

……

1	model	per	GLUE	task	(9	tasks	in	total) 1	model	per	GLUE	task
(9	tasks	in	total)

Figure 3: Lineage graph G2, along with the new mod-
els auto-generated using MGit’s run_update_cascade func-
tionality. The parent MLM model initially has 9 chil-
dren (one corresponding to each GLUE task), connected
by provenance edges. When the parent MLM model is
updated (green box) to be robust to input data pertur-
bations (e.g., text with various types of typos), MGit’s
run_update_cascade function is triggered, which automati-
cally generates new versions of the GLUE models (orange
boxes) that are also robust to perturbations.

Testing. We found MGit to be useful in testing models by
providing a way to combine dependency information with
testing functions. For example, MGit facilitates running
test bisections, searching for the first model in a lineage
chain which fails a particular test. In the best case, we
found that failing models can be found as much as 1.5×
faster using test bisections. We expect this improvement to
be even greater for deeper lineage chains where asymptotic
improvements matter more.

Model training and updating. MGit’s lineage graph and
creation functions can also be leveraged to train models that
share state. G5 was trained using MTL (§3.1.2) to create
RoBERTa models for 9 different GLUE tasks (Wang et al.,
2018); the models in G5 shared 98% of their parameters
(only parameters in the model heads were not shared).

We also evaluate MGit’s automated model updating func-
tionality (run_update_cascade API). For G2 and G5, we try
to more efficiently build task-specific models robust to var-
ious perturbations by fine-tuning the parent MLM model
(m1) with perturbed data, generating a new model m1’. We
then run run_update_cascade to automatically generate new
children m2’, m3’, . . ., m10’ from m1’ by reusing the creation
functions that facilitated the creation of m2, etc. from m1.
This process is visualized in Figure 3. These creation func-
tions do not use perturbed data at all; any ability of m2’, m3’,
. . ., m10’ to be more robust on the perturbed GLUE tasks is
passed down from its parent model m1’. The perturbations
inject common misspellings and grammatical errors often
found in real-world natural language processing data in-
cluding random character or word deletion, swapping, and
insertion (Moradi & Samwald, 2021). Figure 4 shows the
accuracy differences between the new models m2’, m3’, . . .,
m10’ and the original models m2, m3, . . ., m10 for all 9 GLUE
tasks with 9 unique data perturbations per task (each data
point represents a unique task and perturbation). For most
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Figure 4: Accuracy difference between models produced
by MGit’s automated model updating feature and base
models for various GLUE tasks.

perturbations and GLUE tasks, the new models are more
robust (accuracy difference > 0).

6.5. User Study

We conducted an IRB-approved user study with 20 par-
ticipants (Computer Science graduate students), to test
whether users are more productive debugging and updat-
ing models using MGit compared with using regular model
APIs such as Hugging Face’s Transformers library. Users
were randomly and evenly assigned to two groups: a con-
trol group that uses Transformers APIs and a test group
that uses MGit. We tried to ensure that proficiency in the
Transformers library, age and gender were equally dis-
tributed between the two groups (shown in Table 6 in Ap-
pendix §D). Both groups were first provided a tutorial on
using APIs for loading, training and inference NLP models,
and were then asked to perform model debugging and up-
dating tasks. At the end of the study, both groups were in-
troduced to the concepts underlying MGit, and were asked
to rate its (estimated) helpfulness in solving these tasks (on
a scale from 0 to 10).

Model debugging. In this task, users were first shown
a bug in a language model. We used a real-world bug
taken from 66 related issues in the Transformers repos-
itory (Hugging Face Transformers, d), where a particular
sub-group of models return NaN in their output when loaded
in fp16 precision. A detailed discussion of this bug is in
Appendix §D. The participants were then asked to find as
many buggy models as possible from a pool of 91 models
in 15 minutes. MGit users were able to zero in on buggy
models that share common structure quickly by leverag-
ing the lineage graph, while control users were forced to
rely on random sampling. As a result, the average numbers
of buggy models found by MGit users and Transformers

users (out of 8) was 5.3 and 0.5, respectively. We ran a t-test
between the numbers of buggy models found by each group
and the p-value is 3.6× 10−5(< 0.05) which demonstrates
statistical significance. The average helpfulness rating of
MGit and its traversal API was 8.6 and 9.2 in the control
and test group respectively.
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Model updating. In this task, users were first shown how
various perturbations can decrease the evaluation accuracy
of two models (a parent MLM model m1 and a sequence
classification model m2). Users were also shown how to
build a model m1’ robust to various perturbations by fine-
tuning m1 with perturbed data. Finally, users were asked to
build a robust m2’, similar to the setup in G2 in §6.4. We
observe that all MGit users used the run_update_cascade

API to efficiently produce m2’. On the other hand, only
four control users accomplished the task in the time con-
straint of 40 minutes. These users used one of three dif-
ferent methods: (1) manually adapting m2’ from m1’, (2)
manually constructing a perturbed dataset and fine-tuning
m2 on it, and (3) further tuning m2 on the unperturbed
dataset it was trained with. We measured the average time
taken by two groups of users on this task (we conserva-
tively mark incompletes with a time “score” of 40 min-
utes). The control group took 35.7 minutes on average,
while the test group took 11.3 minutes; MGit users com-
pleted the task 3× faster on average. This has a p-value
of 5.8 × 10−7(< 0.05). The average helpfulness rating of
MGit and its run_update_cascade API was 9.2 and 9.9 in
the control and test group respectively.

7. Related Work
We now briefly discuss other work related to MGit and the
model management problem it tackles.

Model repositories and versioning systems. Similar to
MGit, ModelHub (Miao et al., 2016) provides a git-like
interface for managing models. However, ModelHub is not
intended for derived ML models, and also does not present
solutions for automated model updating, testing, and col-
laboration. Hugging Face Model Hub (Hugging Face, b;
Wolf et al., 2019) is a widely-used model repository where
users can upload their trained models; however, it does not
record provenance information. MLflow (Zaharia et al.,
2018), ModelDB (Vartak et al., 2016) and DVC (Barrak
et al., 2021) provide ways to understand ML model per-
formance (by tracking the code, data and hyperparameters
used to create a model), and also deploy models in down-
stream applications. These systems also keep track of mod-
els’ version IDs. However, beyond adding version IDs,
these systems do not track relationships between models.

Git-Theta (Kandpal et al., 2023) is a Git extension designed
for multi-user model collaboration. While Git-Theta par-
tially supports the collaboration use case (i.e., merge) con-
sidered in our paper by providing a Git-like interface, and
has some supports for efficient storage (only using locality-
sensitive hashing, not with additional delta compression
like in MGit), there are some key differences between
the systems. Git-Theta focuses more on the versioning
of individual models, optimizing for detailed parameter-

level tracking and management of changes within a sin-
gle model. In contrast, MGit’s scope is broader, aiming
to manage a network of models. MGit emphasizes the re-
lationships and lineage among different models, making it
more suitable for scenarios where multiple models are de-
rived from each other or share components. MGit proposes
a unifying set of abstractions, most importantly the lineage
graph and methods to traverse, mutate and access it, that
can be used by ML developers to efficiently debug and up-
date models that are related to each other; Git-Theta cannot
perform these important functions.

Debugging in ML. Testing and debugging is crucial for
deploying ML models. Checklist (Ribeiro et al., 2020) ob-
serves many state-of-the-art models often exhibit bugs and
offers test templates for NLP models. AdaTest (Ribeiro &
Lundberg, 2022) recommends test cases using a ML model,
and MLEXray (Qiu et al., 2022) helps monitor and de-
bug edge-deployed models. Model assertions (Kang et al.,
2020) identify invariants that should hold for model outputs
corresponding to related inputs and correct discrepancies.

After finding undesired behaviors in models, ideally we
would like to make scoped changes, updating only what’s
necessary without altering other already desired behaviors,
without having to retrain from scratch. AdaTest (Ribeiro
& Lundberg, 2022) aids in generating new training data
with a human-in-the-loop for NLP model bug fixing. Exter-
nal learned editors (Cao et al., 2021; Mitchell et al., 2021;
Hase et al., 2021) can adjust raw fine-tuning gradients to
scope changes. MGit provides a framework to automati-
cally identify and update models that might depend on a
buggy model, obviating the need to manually update them.

Data provenance. MGit does not explicitly track changes
in datasets (Wonsil et al., 2023). Fine-grained tracking of
datasets and their effect on the quality of models in the lin-
eage graph is exciting future work.

8. Conclusion
ML models are increasingly derived from prior models.
This greatly complicates modern ML workflows: diagnos-
ing and updating models is more challenging than ever on
account of these dependencies. In this paper, we propose
a system called MGit that tries to ease this burden using
a lineage graph that records dependencies between models
and abstractions over the lineage graph that facilitate better
testing, updating, collaboration and inference. MGit’s stor-
age optimizations reduce the model storage footprint by up
to 7×. We also found MGit improves user productivity: in
a user study, users were able to patch a buggy model on
average 3× faster with MGit. Our implementation is open
sourced at https://github.com/msr-fiddle/mgit.
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Impact Statement
This paper presents a new model versioning and manage-
ment system. MGit can improve the reliability of machine
learning by facilitating robust version control and model
management, ensuring accurate tracking of updates and
modifications, potentially leading to more stable and trust-
worthy AI systems.
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A. Additional Details on MGit’s Design and
Abstractions

In this section, we provide additional details on MGit’s de-
sign and the abstractions it exposes to applications.

A.1. Components and API

Table 4 shows MGit’s API. This API allows both mutation
of the lineage graph and traversals over the models in it
(with functionality that supports running tests and updating
models as a part of a traversal).

A.2. Creation Functions with Multi-Task Learning

MGit supports the creation of models with shared parame-
ters through a custom creation function:

class CreationFunctionMultiTaskLearning:
def __init__(self):
self.lg = mg.LineageGraph(<filepath>)
self.data_loader = torch.DataLoader(<filepath>)

def initialize_model(self, parent_list):
self.child_model = Model()
parent = parent_list[0]
sibling = parent.get_children()[0]
if sibling != self:
// Share parameters with siblings.
self.lg.share_parameters(sibling.get_model(),

self.child_model)
else:
// Copy parameters from parent_model.
self.lg.copy_parameters(parent.get_model(),

self.child_model)
// Randomly initialize head.
self.child_model.head = random_initialization(

child_head_dimensions)

A.3. Model Updating

Algorithm 1 shows pseudocode for the MGit’s cascading
model update functionality, where new versions of models
can be created in response to the creation of a new version
of an upstream model.

Algorithm 1 Pseudocode for model updating.

def run_update_cascade(m, m’, skip_fn, terminate_fn):
// Create new versions of all children of m, given
// update of m to m’.

// First, create (empty) next versions of models.
skip_fn2 = lambda x: skip_fn(x) or x == m
for x in BFS(m, skip_fn2, terminate_fn):
// Get next version of each parent of x if it
// exists, otherwise get current version.
ps’ = [get_next_version(p) for p in x.parents]
x’ = x.cr.initialize(ps’)

// Add provenance and version edges, and copy
// creation function.
add_edge(p’, x’) for p’ in ps’
add_version_edge(x, x’)
x’.cr = x.cr

// Next, start traversal at children of m’, and
// train models by calling creation function.
// traversal_all_parents_first returns an iterator
// over nodes (or group of nodes if using MTL) such
// that a node is visited only once _all_ of its
// parents (parent MTL groups if using MTL) are
// visited.
skip_fn2 = lambda x: skip_fn(x) or x == m’
for xs’ in traversal_all_parents_first(m’, skip_fn2

, term_fn):
if isinstance(xs’, list):
// Run MTL using combined creation function.
merged_cr(xs’, xs’.parents)

else:
// Otherwise, call individual model node’s
// creation function.
[x’] = xs’
x’.cr(x’.parents)
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API Name Description

add_node(x, xn, [optional] cr) Adds a model x as a node to the lineage graph with name xn. A creation
function cr can be optionally specified.

add_edge(x, y) Adds a provenance edge between nodes x and y. Calls add_node(x) and
add_node(y) if nodes x and y do not already exist.

add_version_edge(x, y) Adds a versioning edge between nodes x and y. x and y must have the
same model type. Calls add_node if x and y do not exist.

remove_edge(x, y, type) Removes provenance or versioning (specified by type) between node x

and y.
remove_node(x) Removes node x and its sub-tree from the lineage graph. Calls

remove_edge on x and all of its parents and all edge types.

register_creation_function(x, cr) Registers a creation function cr for node x. The creation function spec-
ifies how the model x should be created from its parents. The creation
function can also be used to specify MTL groups.

register_test_function(t, tn, [

optional] x, [optional] mt)

Registers a test t with name tn either for a specific model x or for all
models of type mt (only one of x or mt should be specified).

deregister_test_function(tn, [optional

] x, [optional] mt)

De-registers a test with name tn either for a specific model x or for all
models of type mt (only one of x or mt should be specified).

traversal() Returns an iterator of individual nodes or a group of nodes encountered
in a traversal. An example traversal is BFS.

get_next_version(x) Returns the next version of model x if it exists.

merge(x1, x2) Try to automatically merge the models pointed to by x1 and x2; if not
possible, manually request conflict resolution from user.

run_tests(i, [optional] re) Runs all registered tests matching the specified optional regex re on all
nodes returned by the iterator i.

run_function(i, f) Runs function f (e.g., compute the parameter norm of the model) on all
nodes returned by the iterator i.

run_update_cascade(m, m’, skip_fn,

terminate_fn)

Trigger update cascade as a result of the model update m → m’. Nodes
are visited once all their parents are visited, starting from m with pro-
vided skip and termination functions. A new version of a model is
created if it has a registered creation function cr.

Table 4: MGit API. We show both the lower-level API that can be used to access and mutate the lineage graph directly, as
well as higher-level methods that provide more sophisticated functionality.
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A.4. Implementation of Key Primitives

diff and merge are two key MGit primitives that power its
automated graph construction algorithm and its collabora-
tion functionality.

Diff primitive. Algorithm 2 shows full pseudocode for
MGit’s diff primitive.

Merge primitive. MGit’s merge primitive helps support
collaboration use cases, where multiple users might make
“edits” to the same model concurrently. merge is given two
models (models created by concurrent edits) and their clos-
est common ancestor (the original model on which changes
were made concurrently) in the lineage graph as input. It
returns three possible results:

• Conflict. At least one common layer is updated by
both changes. In this case, manual intervention is re-
quired.

• Possible conflict. Two layers changed by different
users have a “dependency”. Consequently, additional
tests are needed to verify that the concurrent changes
did not result in a model regression.

• No conflict. No common layer updated by both users,
and no dependency between the any two of the users’
changes. In this case, the merge can be processed au-
tomatically.

The decision tree shown in Figure 2 summarizes the con-
flict detection approach implemented in the merge primi-
tive. Let m1 and m2 be the models created by different users
starting from model m. Then the above checks can be per-
formed by first computing d1 = diff(m, m1) and d2 = diff

(m, m2), and then performing a DFS through the models to
check for dependencies between the changed layers.

Algorithm 2 Peudocode for diff between two models m1
and m2.

def module_diff(m1, m2):
// m1 and m2 are DAG representations of the input
// models. DAG nodes are torch.nn.module layers
// (e.g.,Linear, Conv2D). An edge between two nodes
// indicates dataflow. We want to compute the diff
// (the nodes and edges to remove and add to
// convert m1 to m2).

// Compute hash tables of nodes/ edges for m1 and
// m2 where values are node / edge lists sorted in
// topological order. The hash of an edge is the
// hash of its end points.
N1, E1 = generate_hash_table(m1)
N2, E2 = generate_hash_table(m2)

// Iterate over E1: if a hash exists in E2,
// greedily match each edge in two edge lists.
// Before deciding on a matching, check the nodes
// in these edges and only commit when
// corresponding nodes have the same matched
// status. Matching a node in m1 with more than one
// node in m2 is not allowed.
Matches_N, Matches_E = {}, {}
for hash in E1:
es1 = E1[hash], es2 = E2[hash]
for e1 in es1:
for e2 in es2:
if check(e1, e2):
e1[0].matched, e1[1].matched = True, True
e2[0].matched, e2[1].matched = True, True
Matches_N.add((e1[0],e2[0]), (e1[1],e2[1]))
Matches_E.add((e1,e2))
E2[hash].drop(e2)

es2 = E2[hash]

// Match nodes that do not belong to common edges.
for hash in N1:
ns1 = [n1 in N1[hash] if n1.matched = False]
ns2 = [n2 in N2[hash] if n2.matched = False]
for i in range(min(len(ns1, ns2))):

ns1[i].matched, ns2[i].matched = True, True
Matches_N.add((ns1[i], ns2[i]))

// Sort Matches_N/E by topological order of nodes /
// edges in m1 and remove inverse matches.
// E.g., A-B-A-C and A-B-C-A should have a node
// matching of only {A, B, C (or A)}.
Matches_N = filter(sort(Matches_N))
Matches_E = filter(sort(Matches_E))

// Add_N/E are the unmatched nodes / edges in m2.
// Del_N/E are the unmatched nodes / edges in m1.
Add_E = E2.difference(e2 in Matches_E)
Del_E = E1.difference(e1 in Matches_E)
Add_N = N2.difference(n2 in Matches_N)
Del_N = N1.difference(n1 in Matches_N)

return Add_E, Add_N, Del_E, Del_N
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Algorithm 3 Pseudocode for delta compression.

def delta_compression(m2, m1, t_thr):
// m1 and m2 are the parent and child models. We
// want to compress m2 - m1.
// t_thr is a user-configurable test accuracy
// threshold. If the model m2’ after compression
// has an accuracy difference larger than t_thr,
// model compression is rejected.

// First, run LCS to find a mapping between
// parameters of the same shape.
(P1, P2) = lcs(m1, m2)

// Calculate quantized deltas between parameter
sets.

D = quantize(P1, P2)

// Compressor performs lossless compression.
// Possible options are RLE, LZMA, etc.
CD, storage_saving = compressor(D)
if storage_saving < 1:
return False, None, m2

else:
P2’ = dequantize(D, P1)

// Restore parameters that are not compressed.
m2’ = m2.difference(P2).union(P2’)
if (run_tests(m2) - run_tests(m2’)) / run_tests(

m2) > t_thr:
return False, None, m2

else:
return True, CD, m2’

A.5. Delta Compression

Algorithm 3 shows full pseudocode for MGit’s delta com-
pression algorithm, used to optimize the storage footprint
of the parameters of models in a lineage graph.

B. Descriptions of Lineage Graphs
In this section, we describe the lineage graphs used in our
evaluation in more detail.

G1. G1 is a lineage graph created from NLP models down-
loaded directly from the HuggingFace model hub (Hugging
Face, b). The full list of models used in G1 is:

• bert-base-cased

• bert-base-uncased

• aloxatel/bert-base-mnli

• ericRosello/bert-base-uncased-

fine-tuned-squad-frozen-v2

• deepset/bert-base-uncased-squad2

• bert-large-uncased

• bert-large-cased

• TehranNLP-org/bert-large-mnli

• roberta-base

• deepset/roberta-base-squad2

• textattack/roberta-base-MNLI

• roberta-large

• roberta-large-mnli

• deepset/roberta-large-squad2

• albert-base-v2

• twmkn9/albert-base-v2-squad2

• prajjwal1/albert-base-v2-mnli

• distilbert-base-uncased

• distilbert-base-cased

• twmkn9/distilbert-base-uncased-squad2

• ericRosello/distilbert-base-uncased-

fine-tuned-squad-frozen-v2

• google/electra-small-generator

• howey/electra-small-mnli

We then ran MGit’s automated graph construction method
on these models to create a lineage graph. As noted ear-
lier, 22 out of 23 nodes are correctly inserted relative to
a “gold” lineage graph. The only mis-inserted model is
bert-base-uncased. The automated graph construction
function is able to correctly insert models, including some
that have frozen weights inherited from their parent model,
by computing structural and contextual divergence scores
between model pairs.

G2. We started with a vanilla RoBERTa model trained on
the standard masked language modeling (MLM) objective,
and then fine-tuned task-specific models for each of the
GLUE tasks (Wang et al., 2018). We created 10 versions of
each task-specific model by fine-tuning on additional per-
turbed data (Moradi & Samwald, 2021).

G3. We trained a ResNet-50 image classification
model (He et al., 2016) on the ImageNet-1K dataset (Deng
et al., 2009) using federated learning. Each worker oper-
ates on a data silo with a subset of the 1000 labels in the
ImageNet-1K dataset. We ran experiments with 40 work-
ers (data silos), and 10 rounds of federated averaging. In
each round, 5 of 40 workers are randomly sampled.

G4. To create models that can be deployed on the edge,
we pruned three image classification models to varying de-
grees: ResNet-50, DenseNet121 (Huang et al., 2017) and
MobileNet-v3 (Howard et al., 2017). For each model archi-
tecture, we create models progressively greater sparsities in
a two-step process. In the first step, a model with sparsity
si is created by masking out the si fraction of its non-zero
parameters with lowest magnitude. We then check if the
resulting model is accurate enough, and if not, we fine-tune
the model on ImageNet-1K to further improve accuracy
while preserving its sparsity.

G5. We use MTL to create RoBERTa models for GLUE
tasks with shared weights. This is similar to G2.

G6. We use the last 10 Pythia check-
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Figure 5: Average per-model insertion time for lineage
graphs of different sizes.

points released from EleutherAI, i.e.,
EleutherAI/pythia-6.9b/revision/step134000

through EleutherAI/pythia-6.9b/revision/step144000.

C. Additional Results
In this section, we show results on the scalability of the
lineage graph auto-insertion algorithm, and the impact of
merging similar layers on inference latency and accuracy
in the collocated model inference setting.

C.1. Scalability Evaluation of Auto-Insertion

Figure 5 shows the average insertion time per-model for
lineage graphs of different sizes when using the auto-
insertion algorithm described in §3.2. We create larger
graphs by scaling up G1 (§6.1) by a desired factor: for
example, our graph with 92 models or nodes is created by
replicating each model in G1’s model pool 4 times. “Auto-
inserting” a model into the lineage graph involves a pair-
wise comparison with all other models already in the lin-
eage graph followed by add_node and add_edge operations
(both time complexity O(1)); consequently, the average
per-model runtime increases quadratically with the size of
the graph. We believe that with large lineage graphs with
hundreds of models, average insertion times of 40 seconds /
model are reasonable, especially when compared to model
training time which is often many hours or days.

C.2. Collocated Model Inference

When serving multiple model derivatives on the same host
(i.e., model collocation), MGit’s diff primitive can be
used to automatically identify shared parameters between
models. At inference, inputs to the shared layers can be
batched, which increases arithmetic efficiency and thus
also throughput. The higher throughput can result in lower
latencies compared to sequential execution. For sets of
models which have no shared parameters, MGit can iden-
tify pairs of layers with the same structure and small L2 dis-
tance; these layers can then be merged into a single layer.
Merging layers may lower inference accuracy.
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Figure 6: Improvement in latency of generating next token
when using collocated models compared with sequential
execution. Different sequence lengths are shown in differ-
ent colors.

To illustrate the trade-off between accuracy and efficiency
with model collocation, we show the accuracy versus per-
centage of merged layers when collocating Llama-2-7b

with Llama-2-chat-7b (Touvron et al., 2023) in Table 5
on the ARC (Clark et al., 2018), TruthfulQA (Lin et al.,
2021), and Pile (Gao et al., 2021) datasets. As the per-
centage of merged layers increases, the accuracy degrades.
Without collocation, Llama-2-7b performs better on the
Pile dataset but worse on the ARC and TruthfulQA dataset
compared to Llama2-chat-7b. With 90% model colloca-
tion, Llama-2-7b performs better on the ARC and the Pile
dataset but worse on the TruthfulQA dataset compared with
Llama-2-chat-7b.

To show the benefit of merging similar layers on collocated
inference, Figure 6 plots the average speedup (computed
as ratio of latencies) versus batch size for different percent-
ages of merged layers and input sequence lengths when col-
locating the same two models. Model collocation achieves
a latency improvement of up to 1.5× when the percentage
of merged layers is 90% and the input sequence length is
32 with a batch size of 4. The speedup plateaus to 1 as
the percentage of merged layers decreases and the input
sequence length and the aggregated batch size increases.
This is because the baseline of running models sequentially
becomes more efficient as the problem size along various
dimensions increases. The memory consumption of model
merging saves 0.5%, 16.2% and 39.3% GPU memory when
the percentage of shared layers are 30%, 60% and 90% re-
spectively.

D. Additional Details on the User Study
Table 6 has statistics on the users who participated in our
user study.

The bug we asked users to find in the first task of the user
study is commonly found in T5 models (Raffel et al., 2020)
but rarely in others; these T5 models were pre-trained with
a mixed-precision recipe of bf16 (Google) and fp32 but are
commonly loaded for inference in fp16 which can cause
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Metric Dataset 30% collocation (%) 60% collocation (%) 90% collocation(%)

ac_norm ↑ ARC +0.4 +2 +2.9

mc ↑ TruthfulQA -0.6 +1 +5.2

bpb ↓ Pile (Arxiv) +0.9 +2.3 +12.2

Table 5: Change in model accuracy on three datasets as the collocation percentage increases.

overflow (Hugging Face, a). This bug was first reported
from a T5 model user on 11/5/2020 (Hugging Face, c) and
was fixed multiple times between 2020 and 2023 (Hug-
ging Face Transformers, b). During these three years,
the bug was fixed in multiple T5 derivative models like
T5, T5v1.1 and longT5. However, since model lineage
was not tracked, the exact same patches needed to be ap-
plied multiple times on the other T5 models: a PR patching
T5-base models was merged on 1/8/2021 (Hugging Face
Transformers, c) and a PR patching longT5 was merged
on 9/28/2022 (Hugging Face Transformers, a) due to the
same issue. Given an example of one buggy model, users
should be able to quickly identify other buggy models and
apply patches efficiently. However, for the simplicity of
the user study, we only ask the users to find as many buggy
models as possible without constructing patches.

When selecting the models in this task, we randomly
picked eight T5 models from HuggingFace that show this
buggy behaviour. We pick 83 other non-buggy models
from G1 randomly to try to keep the proportion of T5 mod-
els in the pool roughly the same as in the Hugging Face
model repository.
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ID Age Gender Proficiency with
Transformers

Number of found
buggy models

Time to patch
model (mins)

Helpfulness rating

A0 24 Female Intermediate 1 40 8 / 9

A1 22 Female Intermediate 1 40 9 / 8

A2 25 Female Intermediate 0 33.2 9 / 10

A3 22 Male Intermediate 0 38.9 7 / 8

A4 25 Male Proficient 1 22.2 10 / 10

A5 22 Male Intermediate 1 40 9 / 9

A6 24 Male Intermediate 0 40 8 / 9

A7 25 Male Proficient 1 40 8 / 9

A8 24 Male Proficient 0 40 8 / 10

A9 24 Male Intermediate 0 22.7 10 / 10

B0 26 Female Intermediate 7 7.1 8 / 9

B1 26 Female Intermediate 3 8.8 10 / 10

B2 25 Female Proficient 7 15.9 10 / 10

B3 23 Male Intermediate 4 11 9 / 10

B4 23 Male Intermediate 5 12.6 10 / 10

B5 22 Male Proficient 7 15 8 / 10

B6 24 Male Intermediate 7 9.8 10 / 10

B7 25 Male Proficient 7 11.3 9 / 10

B8 24 Male Intermediate 1 11.3 9 / 10

B9 25 Male Proficient 5 9.8 9 / 10

Table 6: Statistics of users who participated in our user study. Users A0 through A9 were in the control group, while users
B0 through B9 were in the test group.
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