Under review as a conference paper at ICLR 2025

GOAL-CONDITIONED REINFORCEMENT LEARNING
WITH VIRTUAL EXPERIENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Goal-conditioned reinforcement learning often employs a technique known as
Hindsight Experience Replay (HER) for data augmentation by relabeling goals.
However, HER limits goal relabeling to a single trajectory, which hinders the
utilization of experiences from diverse trajectories. To address this issue, we
present a curriculum learning method to construct virtual experiences, incorpo-
rating actual state transitions and virtual goals selected from the replay buffer.
Considering that virtual experiences may contain a lot of noise, we also propose a
self-supervised subgoal planning method that guides the learning of virtual expe-
riences by imitating the subgoal-conditioned policy. Our intuition is that achiev-
ing a virtual goal may be challenging for the goal-conditioned policy, whereas
simplified subgoals can provide effective guidance. We empirically show that
the virtual experiences from diverse historical trajectories significantly boost the
sample-efficiency compared to the existing goal-conditioned reinforcement learn-
ing and hierarchical reinforcement learning methods, even enabling the agent to
learn tasks it has never experienced.'

1 INTRODUCTION

Goal-conditioned reinforcement learning (GCRL) is an advanced form of deep reinforcement learn-
ing (RL) that aims to find an optimal solution for tasks involving multiple goals simultaneously and
requiring long-term decision-making. For instance, it can effectively guide a multi-legged robot to
a predetermined location on a map (Paul et al., 2019) or skillfully manipulate a robotic arm to grasp
objects on a platform (Zhang et al., 2020). Unlike many existing methods that necessitate intricate
reward functions tailored to each task (Ng et al., 1999; Brys et al., 2014; Devidze et al., 2022),
GCRL simplifies the problem’s complexity by relying solely on binary reward signals that indicate
goal achievement (Nair et al., 2018; Liu et al., 2022). Nevertheless, binary rewards introduce the
challenge of reward sparsity.

Humans possess the ability to synthesize past experiences and utilize this knowledge to efficiently
adapt to new tasks. Building upon this concept, HER (Andrychowicz et al., 2017) introduces a
method to reconstruct data from unsuccessful past experiences, partially mitigates the challenge of
sparse rewards by selecting the actual reached states in the trajectory as the relabeled goals. How-
ever, HER requires limiting the relabeled goals and state transitions within a single task trajectory,
which is not conducive to integrating experience from different tasks. For example, once the skills
of “grabbing apples” and “opening a drawer” are mastered, there is no need to relearn them from
scratch when performing the task of “putting apples into a drawer”; instead, these skills can be
combined.

As demonstrated in HER, merely broadening the selection scope of relabeled goals to the entire
replay buffer yields no benefit. An intuitive explanation for this is that, without real trajectory sup-
port, the connection between actual state transitions and virtual goals remains tenuous, injecting
substantial noise into the reconstructed data. During policy learning, such data not only fail to pro-
vide valuable experience but also undermine learning stability. To address this issue, we introduce
curriculum learning when selecting virtual goals and use subgoals to simplify these goals. Inspired
by prior work (Pitis et al., 2020), we propose a method for selecting virtual goals based on task

'Code is available at ht tps: //anonymous. 4open.science/r/VE-7224/

https://anonymous.4open.science/r/VE-7224/

Under review as a conference paper at ICLR 2025

I

(a) The high state probability (b) The left shows random sampling of states, relabeled as goals,
density near sa and sp does from the replay buffer. The right demonstrates filtering these rela-
not reflect the reachability of beled goals g by increasing difficulty, determined by task probabil-
task (sa,sB). ity density e(sa, g) (e.g. selecting @ to ® in training progresses).

Figure 1: Illustration of (a) the disadvantage of state probability density and (b) expanding the
sampling range to the replay buffer versus our approach for selecting by task probability density in
the U-shape AntMaze environment (AntMaze-U).

probability density. This approach aims to provide virtual goals of increasing difficulty, thereby
reducing subgoal planning complexity and improving the accuracy of subgoal-conditioned policies.
Furthermore, we propose a simple self-supervised subgoal planning method that differs from pre-
vious studies (see Section 2 for details). This method, similar to high-level policies in hierarchical
RL, leverages sampled self-supervised data in place of traditional reward signals to learn. Our key
contributions are as follows:

» Task-probability-density-based curriculum learning: initially, we expand the selection
scope of relabeled goals to the entire replay buffer, including not only actual goals within
the same trajectory but also virtual goals across different trajectories. Subsequently, we en-
visage that gradual task difficulty facilitates the learning of long-term goals and improves
the precision of subgoal planning. Hence, we propose using task probability density rather
than state probability density to monitor an agent’s learning progress and use it as a refer-
ence for selecting virtual goals. Implementing curriculum learning based on task probabil-
ity density can further enhance the success rate of achieving multiple goals.

* Self-supervised subgoal planning: to effectively learn from virtual experiences, we pro-
pose a self-supervised subgoal planning method. Simplified subgoals reduce the task’s
complexity, and subgoal-conditioned policies can serve as reasonable imitation targets for
goal-conditioned policies, thereby constraining and guiding the policy improvement pro-
cess.

In summary, we propose a general framework for utilizing virtual experience (VE) to improve
sample-efficiency in GCRL, and demonstrate its performance over existing GCRL and hierarchical
RL methods in various robot navigation and control tasks based on the MuJoCo simulator (Todorov
et al., 2012). The experimental results indicate that the proper use of virtual experience can signifi-
cantly accelerate the learning of multiple goals. Moreover, when combined with subgoal planning,
it provides valuable guidance for achieving complex long-term goals. This approach can even assist
agents in accomplishing tasks they have never encountered before.

2 RELATED WORK

Goal relabeling. HER demonstrates that off-policy deep RL algorithms can reuse data in the replay
buffer by relabeling goals in episodic trajectories. It is widely utilized as a core component in
many related studies (Levy et al., 2017; Ren et al., 2019; Pitis et al., 2020; Durugkar et al., 2021;
Kim et al., 2023). A growing consensus suggests that HER can be viewed as implicit curriculum
learning, structuring curricula within historical trajectories by using transition data. CHER (Fang
et al., 2019) optimizes the curriculum by considering the similarity and diversity of relabeled goals,
but still does not overcome the limitations of a single trajectory. (Kuang et al., 2020) and (Pong
et al., 2019; Pitis et al., 2020) also use the density estimation model to aid in goal selection. By
prioritizing low-density goals based on the density estimation of the achieved goals, they increase
the likelihood of these goals becoming candidates, thus facilitating curriculum learning.

Under review as a conference paper at ICLR 2025

These approaches are similar to ours, but they assume that, under the premise of a fixed initial
state, a visited state is regarded as the achieved goal. However, when the initial state distribution
encompasses the entire state space, a visited state cannot reliably indicate that the goal has been
achieved, as a complete task is defined by both the initial state and the goal (see Figure 1 (a)). Our
idea is to estimate the task probability density to track the learning progress of the agent, which is
also applicable to the case of a fixed initial state.

Subgoal planning in GCRL. The curriculum learning mentioned above can be regarded as plan-
ning within exploration or learning process. Planning is also a crucial concept in hierarchical RL.
When confronted with a long-horizon problem, high-level policies plan with temporally extended
actions, known as abstract actions, directing the low-level policies to execute primitive actions to
complete the interaction (Bacon et al., 2017; Park et al., 2024). In the context of GCRL, these ab-
stract actions can be considered as subgoals employed as targets for the low-level policies. Current
approaches to subgoal planning can primarily be categorized into learning-based and search-based
methods. (Badrinath et al., 2024) treats the midpoint of the path as a subgoal in the context of
offline RL and trains a subgoal prediction module using a transformer. (Jurgenson et al., 2020) es-
tablishes a connection between subgoal planning and the dynamic programming equation, which
inherently benefits navigation and obstacle avoidance tasks. However, extending this approach to
high-dimensional goal spaces remains challenging. These learning-based methods generally require
only a single forward inference to accomplish subgoal planning, making them more efficient than
search-based methods. But they also encounter challenges of learning. In contrast, VE can accu-
rately predict subgoals based only on sampled self-supervised signals. Additionally, it is a common
practice to apply search-based subgoal planning in graphs (Huang et al., 2019; Eysenbach et al.,
2019; Hoang et al., 2021; Zhang et al., 2021; Kim et al., 2021; 2023). Specifically, these methods
construct a graph where nodes and edges correspond to states and inter-state distances respectively,
and various historical experiences are linked together by the graph. The purpose of planning is to
find the shortest path consisting of nodes to reach the goal, where the nodes can be regarded as the
subgoals. To apply graph-based planning to complex environments, some work focuses on learning
robust representations that cover the entire state space. Under the constraint of a limited number of
nodes, (Hoang et al., 2021) measures the similarity between subsequent features to ensure that the
nodes cover as large an area as possible. (Zhang et al., 2021) learns a latent space and obtains graph
nodes through clustering. The adjacent nodes reflect the temporal reachability. Others consider
combining traditional path planning methods, such as farthest point sampling (Huang et al., 2019),
to find shortest paths based on the graph (Kim et al., 2021; 2023).

Although graphs reducing the complexity of planning compared to state space, they still face chal-
lenges related to computational complexity and suboptimality. As PIG (Kim et al., 2023) demon-
strates, searching for shortest paths for tasks in each batch of training data significantly increases
computational overhead, limiting the batch size to a small value. Moreover, a finite number of nodes
cannot plan optimal paths for all tasks. In contrast, VE is not subject to this limitation. It’s similar in
form to the high-level policy in hierarchical RL, but it does not control agent exploration; it is solely
used to guide policy learning.

3 PRELIMINARY

3.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

GCRL aims to learn policies that can achieve multiple goals. Our reinforcement learning agent inter-
acts with a discounted, infinite-horizon, goal-conditioned Markov decision process (MDP) (Sutton,
2018), defined by the tuple (S, A, G, p,r,7). S, A, and G are the state, action and goal spaces, re-
spectively, and v € (0, 1) is the discount factor. The transition function is denoted as p(s¢41]s:, at)
where s;, s;+1 € S and a; € A, and the reward function as r(s¢, a;, g). We set the reward r to —1
for all actions until the agent reaches the goal. With the goal distribution p(g), the objective of an
agent is to find the optimal policy 7*(-|s, g) that maximizes the expected sum of discounted rewards
in T steps

T
J(m) = Egrp(g),50mp7 (150,9) [Z ' (St’at’g)] (D
=0

Under review as a conference paper at ICLR 2025

We follow the standard off-policy actor-critic paradigm (Silver et al., 2014; Mnih et al., 2016; Fuji-
moto et al., 2018). Specifically, we sample a batch of data from the replay buffer 5. In the policy
evaluation phase, an goal-conditioned action-value function (critic) Q(s, a, g) (Schaul et al., 2015)
with parameters 3 gets update by minimizing the Bellman error

QBk+1 = arg m[}nE(st,at,st+1,g)~B [yt - Qﬁk (Stv atvg)]Z 2

with the target value y; = 7(s¢, at, 9) + VEa, . ~n(lsiti,g) (@8 (St415 G11, 9)].

During the policy improvement phase, the policy (actor) m with parameters 6 is updated in the
direction that maximizes the expected value of current critic ().

3)

Moy, = argmax B, g5 [Q (5,70, (al5,).)

3.2 GOAL RELABELING

In this paper, we assume states and goals share the same data space denoted by S = G, allowing
each state to be treated as a goal. Typically, historical data is stored in a buffer as trajectories
B = {71, 72, ...}, where each trajectory 7; = {si,al, si,a},...,s%, g'} represents the exploration
history of a task (s}, g'). We formalize the go relabeling method in Hindsight Experience Replay
(Andrychowicz et al., 2017) as follows

(sy, at, 5§+17 g, 7'(5%+17 g')) = (sy, ay, 5;+1a 3115+n7 7"(3§+1» 32+n)) “4)
where (s, at, g') is simplified as r(s{1,¢') and n € [1,T — t]. This implies that we can use
future states s; ,,, or final states s7 within the same trajectory as relabeled goals and recalculate the

rewards r. These reconstructed data allow any task from that trajectory to have a chance to receive
a positive reward signal.

w

)X

X

*

Vi),

g w9
e
. r
V(fw’y) ' o° n(als,g) -~~~
) v R) K | imitation
' . $9:9 ' learning
* ik s, . %(___ﬂ_prior¢ y

Ao i)

-0 --"

als,s;) -~
(als, s,)

Figure 2: VE consists of three parts. Left: the red gradient area represents the goal range learned
from state s, recorded by task probability density estimation. We select the goal on the boundary as
the relabeled goal. Middle: it illustrates the learning process of self-supervised subgoal planning.
When the subgoal s, generated by the high-level policy 7" is not better than the sampled subgoal Sgs
the probability of the sampled subgoal 7" (Sgls, g) is increased. Right: during policy improvement,
the goal-conditioned policy is required to imitate the subgoal-conditioned policy.

4 LEARNING GOAL-CONDITIONED POLICY WITH VIRTUAL EXPERIENCES

In this section, we introduce a new framework named VE, which consists of three main parts: (1)
filtering relabeled goals by task probability density for building a step-by-step curriculum; (2) a
subgoal planning method based on self-supervised learning for simplifying the relabeled goals; and
(3) taking subgoal-conditioned policies as imitation targets to accelerate policy improvement. We
provide an illustration of our framework base on AntMaze-U in Figure 2.

4.1 RELABELING GOALS TO CONSTRUCT VIRTUAL EXPERIENCE

As introduced in Section 3.2, the scope of goal relabeling in HER is limited. Our idea is that any
goal can be used for relabeling when reconstructing data, such as the goal sampled from replay
buffer or designed by a human. We term this approach generalized goal relabeling and present it as
a more generalized form compared to Formula (4):

(&)

(Siv a’iv Si-‘,—hgia T(Si-i-lvgi)) — (S;a aia S7t;+17 gja T(Si-i-lvgj))

Under review as a conference paper at ICLR 2025

In this paper, we discuss the relabeled goal g’ sampled from the states of replay buffer. If j = i,
it is equivalent to HER, and we refer to these goals as actual goals. Otherwise, if j # i, these are
termed virtual goals. Intuitively, a curriculum that gradually increases in difficulty can help an agent
complete tasks faster. As shown in the Figure 2 (Left), given a state s, we hope that the virtual goal
g in the virtual experience is on the boundary of the reachable state from s. In order to effectively
evaluate the reachability of the task (s, g), we propose estimating the task probability density e in
curriculum, acting as a filter to screen suitable virtual goals from random sampling.

Specifically, we establish a dedicated buffer 5; to record the learned data. Inspired by previous
work (Pitis et al., 2020), we approximate the learning frequency of tasks during training as their
probability density. When screening the virtual goal for a state s, our initial step is to sample a
set of states from the replay buffer B which serve as candidate virtual goals g. Subsequently, we
compute their task probability density e(s, g) and select one that satisfies conditions (e.g. 0.8¢ <
e(s, g) < 1.2e, with € denoting the mean) as the virtual goal. It is crucial to note that our method of
employing a fixed range to filter out virtual goals on the boundary is empirical and performs well in
simple environments (see Figure 5). This process will benefit from future improvements. For details
on the learning process of task probability densities, please refer to Appendix A.

A significant advantage of virtual experience is that it broadens the distribution of tasks in the re-
constructed data, particularly for tasks that are difficult to achieve through traditional exploration.
Learning these tasks through virtual experience, however, is inherently challenging. Firstly, from a
policy perspective, there is a lack of connection between the original state transitions (s¢, ai, si 41)
and the relabeled goals ¢7. This reduces the accuracy of policy evaluation. Secondly, policy im-
provements based on virtual experience are also inefficient. So we simplify the virtual goal through
the subgoal planning method in Section 4.2.

4.2 SELF-SUPERVISED SUBGOAL PALNNING

We implement subgoal planning through a high-level policy 7" (s, g, k) similar to that used in hi-
erarchical RL. It is important to emphasize that subgoals are only utilized for policy improvement
and do not guide exploration. Consistent with previous work, we consider the state value function
[V (s, g)| as the discounted distance from the state s to the goal g. Based on this, we define the
transfer distance vector v(s, {s4 }x, g) using the subgoal sequence {sq4}r = {Sg,, Sg,, -, Sg,, } aS:

”U(S, {sg}kvg) = [|V(Sa 391)|) |V(591’892)‘ "y |V(sgk—1’89k)|) |V(89k’g)|}—r (6)

The high-level policy 7 with parameters ¢ is trained to predict optimal subgoals that minimize the
p-norm of the transition distance vector with loss

‘Cﬂ'h (¢) = IE(s,g)r\aB,sgk_ ~mh(-|s,9,k) [d(sv {Sg}kv g)] (7)
where d(s, {sg}k, 9) = [[v(s, {sg}x, 9)|,,-

The novelty of our approach lies in applying the idea of Advantage-Weighted Regression (AWR)
(Peng et al., 2019) to the learning of high-level policies. Specifically, we equate the self-supervised
signal d(s, {Sy }«, g) to the value @) in the advantage function A = @) — V, where the prediction of
the high-level policy d(s, {s4}x, g) corresponds to the value V. The difference is that we compare
the advantages of sampled subgoals over those output by high-level policies, rather than comparing
the advantage of the current policy over the historical (or mixed) policy as in AWR. Consequently,
we propose randomly sampling states from the replay buffer as subgoals {s,}. If the advantage
A > 0, it indicates that the prediction of the high-level policy is inferior to the sampled subgoals
and should be adjusted to approximate them. Conversely, if the advantage A < 0, the prediction of
high-level policy should deviate from the sampled subgoals. The gradient of loss £ () is

VoLan(0) = Vorsyimbisi, ~i5,} 108 (55015, 9)A™" (s, 9) (8)

where A™" (s,9) = ds,1,~8(5,{Sg ks 9) —dis,}mmn (8, {8g }k, g). We will introduce methods for
choosing the number of subgoals k and the p-norm in the Appendix C.

4.3 SUBGOAL-CONDITIONED IMITATION LEARNING

In this paper, we consider the control problem in continuous space, so we assume that the action
follows a Gaussian distribution. The process of the goal-conditioned policy imitating the subgoal-

Under review as a conference paper at ICLR 2025

—

(a) AntMaze-U (b) AntMaze-S (c) AntMaze-II(d) AntMaze-W (e) Sawyer (f) Reacher

Figure 3: Visualizations of our experimental environments, where the Sawyer is a pixel-based task.
When trained in AntMaze, an agent starts at a random point, and aims to reach a random goal. The
most challenging tasks used for evaluation in AntMaze: the blue point and the position of an ant
indicates the goal and the initial point, respectively.

conditioned policy can be written as Dy (777" (s, s4,)||7(s,g)). Additionally, the optimization
objective of imitation learning can be weighted into the policy improvement as a regularization term

k
o TL0T
Moy = AGMAXE(s g) o5 5, e | Q (5,70, (5,9),9) = > Dxu(a " (s, 50,) |0, (5,9))
i=1
)

By generating subgoal-conditioned policies based on simplified subgoals, we recognize the key role
of prior policies 7P"%°" in imitation learning. Previous methods utilize historical (Pertsch et al.,
2021), expert (Sonabend et al., 2020), or current policies (Kim et al., 2023) as prior policies, while
we conduct a comparison and select the soft-updated historical policies (see Figure 7 right for more
details). This selection stems from the reason that expert policies are usually difficult to obtain,
historical policies lag in acquiring knowledge, and current policies may lack stability. In contrast,
the soft-updated historical policy strikes a good balance between historical and current policies. The
full algorithm is summarized in the Appendix B.

5 EXPERIMENTS

Our experiments aim to answer the following questions: (1) Can VE improve sample-efficiency and
performance in continuous control tasks compared to the baseline? (2) Is curriculum learning based
on task probability density effective? (3) What impact does the proportion of virtual experiences in
the training data have on the policy? (4) How does imitating subgoal-conditioned policies influence
goal-conditioned policy learning? 5 Can VE integrate knowledge from different tasks?

5.1 EXPERIMENTAL SETUP

Environments. Following the experimental setup of previous research (Kim et al., 2023), we design
a series of challenging environments based on MuJoCo simulator (Todorov et al., 2012). Specifi-
cally, our navigation task consists of {U, S, II, W}-shaped AntMaze environments, and our robotic
arm control tasks involve Sawyer and Reacher (see Figure 3 for the visualization of environments),
with Sawyer being a pixel-based task. In contrast to (Huang et al., 2019; Kim et al., 2023), where
the goal space is defined on the 2-dimension that represents the (z,y) position of agent in AntMaze
tasks, we use a entire 31-dimensional state space as the goal space following the setting of RIS
(Chane-Sane et al., 2021). In the Reacher task, the goal space is 3-dimension. The configuration of
the Sawyer task remains consistent with (Chane-Sane et al., 2021), where we obtain a pixel repre-
sentation of the target through pre-sampling. We provide more details in Appendix F.

Implementation. VE is based on the standard Actor-Critic framework. In order to reduce the impact
of) value overestimation, we use double @) value function. During the network update, we set the
target network for the actor and the critic, and adopt a soft update method with the coefficient Se-3.
We use the actor target policy as the prior policy, which can effectively ensure the stable convergence
of the policy in our experiments. For the baseline, we follow the original setup (see more details in
Appendix G).

Evaluation. Our experimental settings for navigation include random start points and random end-
points, requiring the agent to master the entire map. This setup is more challenging than the one with

Under review as a conference paper at ICLR 2025

M VE M RIS @ PIG [HIGL [GesL [SAC+HER
1.0 1.0 1.0
Los Los Los
o [-4 o
w n n
@ 0.6 @ 0.6 @ 0.6
g g g
Z04 204 204
2 g g
202 /,/ 202 202
0.0f —— 0.0 0.0
0 250 500 0 250 500 0 250 500
Enveronment Steps (x1000) Enveronment Steps (x1000) Enveronment Steps (x1000)
(a) AntMaze-U (b) AntMaze-S (c) AntMaze-II
1.0 1.0 1.0
Sos £os Sos
o o o
206 $06 $06
g 5]
204 304 304
g g g
202 / 202 202
0.0 0.0 0.0
0 250 500 0 50 100 0 150
Enveronment Steps (x1000) Enveronment Steps (x1000) Enveronment Steps (x1000)
(d) AntMaze-W (e) Sawyer (f) Reacher

Figure 4: Learning curves for agents in different environments. All methods are run with 4 seeds,
and the solid and shaded lines represent mean and standard deviation, respectively. It is important
to note that PIG, HIGL and GCSL cannot handle pixel-based tasks (Sawyer), and both HIGL and
GCSL are nearly unsuccessful in complex navigation tasks.

fixed start and end points. Additionally, for each navigation map, we define the most difficult task as
the farthest path between the origin and destination (see Figure 3). Test results for the random task
are reported using four different seeds, with 100 test episodes conducted every 5,000 training steps.
For visual clarity, we smooth all the curves equally.

Baselines. We select several representative methods as comparison baselines (see the Appendix H
for detailed hyperparameter settings). PIG (Kim et al., 2023): A subgoal self-imitation framework
based on graph planning, where subgoals are planned on the graph using a skipping mechanism.
The version combined with MSS (Huang et al., 2019) is utilized in the experiment; HIGL (Kim
et al.,, 2021): A hierarchical RL algorithm combined with path planning. It maintains a queue
of subgoals by computing novelty and coverage, selecting appropriate subgoals for the low-level
policy through path planning; RIS (Chane-Sane et al., 2021): A method that predicts the midpoint
of a path as a subgoal, and also uses the subgoal to guide the current policy learning; GCSL (Ghosh
etal., 2019): An imitation learning method for generating supervised data by relabeling trajectories.
It achieves further goals based on the optimal substructure of GCRL by continuously imitating
successful trajectories; SAC (Haarnoja et al., 2018): A classic RL algorithm based on maximum
entropy, and it has a good performance in continuous control tasks. We combine SAC and HER to
adapt to GCRL.

5.2 RESULTS

In Figure 4, our proposed VE demonstrates a substantial performance advantage over other methods
across various control tasks. Methods such as PIG and HIGL, which integrate historical experience
by building a graph, require a planning strategy or high-level policy when testing. In contrast, our
method relies solely on goal-conditioned policy. Furthermore, building a graph model increases
the computational complexity, causing PIG and HIGL need more training steps to achieve optimal
performance, as described in the original results (see (Kim et al., 2023)).

Additionally, it should be emphasized that, except for VE and RIS, the goal space used by other
methods includes only coordinate positions in the AntMaze environments. This simplification sig-
nificantly reduces the complexity of subgoal planning and the learning of goal-conditioned policies.
This also highlights the advantage of VE in handling high-dimensional goal spaces. Compared to

Under review as a conference paper at ICLR 2025

(a) AntMaze-U (b) AntMaze-W

Figure 5: We visualize the comparison between task probability density (up) and state probability
density (down) during the training process in AntMaze-U and AntMaze-W (the state s in e(s, g) is
chosen to be located as shown in Figure 3, and the values of e are normalized in each subfigure),
illustrating the curriculum learning composed of virtual goals with gradually increasing difficulty.

RIS, our subgoal planning demonstrates greater accuracy (see Appendix D.1). Furthermore, the ef-
ficiency of VE in learning multiple tasks has improved due to curriculum learning, which screens
suitable virtual goals. In contrast to GCSL, which merely imitates historical trajectories, VE en-
hances training data by incorporating virtual experiences, thereby achieving higher sample utiliza-
tion. Since our method ultimately focuses on imitation learning in Equation (9), SAC+HER can be
regarded as a baseline without imitation learning. From the results, we can see that SAC+HER can-
not learn reliable policies. Then, we evaluate the performance of VE and RIS on the most difficult
tasks (see Figure 6). This implies that the application of virtual transition experiences can be highly
beneficial in overcoming challenging tasks. Additional results are available in the Appendix D.2.

5.3 ABLATION STUDIES

In this section, we conduct ablation validation experiments on various key components of VE to
demonstrate the effectiveness of our method. All experiments were carried out in U-shaped and
W-shaped maps.

Goal relabeling with task probability density. Goal relabel-

ing is a crucial method for constructing virtual experiences. We 10

experimentally verify the impact of different ratios of actual and

virtual experiences on VE. The results, as shown in Figure 7 go8

(left), indicate that the optimal ratio is "a:v=0.5:0.5". Notably, %0-6

when relying solely on actual experiences (“a:v=1.0:0"), the 304

policy performs comparably to SAC+HER, demonstrating our 30'2 —

method’s effective utilization of these samples for learning. In — RIS

contrast, relying exclusively on virtual experiences ("a:v=0:1.0") 0.05 125 250

results in the policy failing to learn effectively. We attribute this Enveronment Steps (x1000)

to actual experiences enabling the agent to quickly master simple
tasks, while virutal experiences help the agent tackle more chal-
lenging, long-horizon tasks. When the agent has not yet learned
simple tasks, it cannot acquire knowledge from virtual experi-
ence. Furthermore, we compare the effects of screening virtual
targets based on task probability density versus randomly sampling virtual goals. The Figure 7
(middle) shows that providing virtual goals with gradually increasing difficulty in course learning
can help further improve learning efficiency. The visualization result of task probability density is
shown in Figure 5. The state probability density (down) can only assess the frequency of visiting
a state, not the reachability of task. In contrast, the task probability density (up) can monitor the
agent’s learning progress and offer curriculum of gradually increasing difficulty during training.

Figure 6: Average success rate of
VE and RIS in the most difficult
task on AntMaze-U.

Under review as a conference paper at ICLR 2025

1.0 1.0 — 1.01+
/
I Q i3
508 av=0:1.0 + 508 508
@ —— a:v=0.1:0.9 @ o w/ ba
I 06 — a:v=0.3:0.7 g 06 g 06 w/ oa
é 0.4 — a:v=0.5:0.5 é 0.4 éo 4 w/ 0s
5 — aw=0.7:0.3 5 & w/ 0s_oa
z 0.2 — a:v=0.9:0.1 Z 0.2 — VE z 0.2 w/rs
a:v=1.0:0 VE w/o cl — ours
0.0 0.0 0.0
100 200 0 100 200 0 100 200
Enveronment Steps (x1000) Enveronment Steps (x1000) Enveronment Steps (x1000)

Figure 7: We investigate (left) the impact of different ratios of actual goals (a) and virtual goals (V)
on VE, (middle) the impact of curriculum learning (cl) on VE, and (right) the impact of different
subgoal strategies and prior strategies on VE. Here, “0s” denotes oracle subgoals, “0a” denotes
oracle actions, ’ba” denotes behavioral actions, and “’rs” denotes random subgoals. All the above
experiments are tested in environment AntMaze-U.

Self-Supervised Subgoal Planning. We devise two alternatives to demonstrate the effectiveness of
our subgoal planning model (see Figure 7 (right)): sampling subgoals by method o0s” or rs.” It is
evident that more precise subgoals can significantly expedite the learning of goal-conditioned poli-
cies. We also observe that the oracle subgoal does not demonstrate substantial improvement during
the initial stages of training. Our assumption is that, at this stage, the learning task is fundamentally
simple, causing the high-level policy planning subgoals to align closely with the oracle subgoals.
We visualize the subgoals of the testing phase, with more details provided in the Appendix D.3.

Subgoal-Conditioned Imitation Learning. The core idea of

our method of using virtual experience is to imitate the subgoal- 10
conditioned policy. Combined with the Equation 9, our method
directly applies the knowledge contained in the virtual expe- 50°
rience to the policy instead of the value function. Intuitively, %05 random_task
this approach is expected to be more efficient than first optimiz- 2.4 difficult_task
ing the value function and subsequently improving the policy }jo'z
by maximizing the value function. To further verify the excep-
0.0

o

100 200

tional capability of the VE in integrating historical experience,
Enveronment Steps (x1000)

we design an experiment on AntMaze-U. During training, we
constrain the range of random task generation so that the initial
state and the goal appear only on the same side of the U-shaped
map. We evaluate the average success rate on both random tasks
and the most difficult tasks, reflecting the VE’s ability to inte-
grate knowledge learned on both sides of the map. As shown in Figure 8, even under task constraints,
the VE successfully solves all navigation tasks on AntMaze-U, including the most challenging ones,
with only slightly reduced learning efficiency compared to unrestricted conditions.

Figure 8: Average success rate of
VE on constrained AntMaze-U.

6 CONCLUTSION

Limitations and Future Work. While VE has shown promising results, it is essential to acknowl-
edge certain limitations. For instance, the hyperparameter k is related to the task’s scale. For more
complex environments, accurate subgoals with different decision horizons can help further improve
the quality of subgoal-conditioned policies. At the same time, complex environments also introduce
challenges in estimating task probability density. Future research can consider applying subgoals
to both agent exploration and policy learning. Moreover, filtering low-quality subgoal-conditioned
policies or considering safety constraints in subgoal planning (Garcia & Fernandez, 2015; Gu et al.,
2022) represents potential directions for future investigation.

We propose a goal-conditioned reinforcement learning method, VE, that integrates knowledge from
different historical tasks by constructing virtual experiences through a curriculum. We highlight that
simply using virtual experiences does not effectively aid policy learning, whereas the self-supervised
subgoal planning we propose significantly reduces the difficulty of achieving virtual goals. By
imitating subgoal-conditioned policies, the agent is expected to overcome the exploration dilemma
and accomplish tasks that require complex long-term decisions.

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We provide the implementation details of our method in Section 5.1 and Appendix G. We also
open-source our codebase.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Anirudhan Badrinath, Yannis Flet-Berliac, Allen Nie, and Emma Brunskill. Waypoint transformer:
Reinforcement learning via supervised learning with intermediate targets. Advances in Neural
Information Processing Systems, 36, 2024.

Tim Brys, Anna Harutyunyan, Peter Vrancx, Matthew E Taylor, Daniel Kudenko, and Ann Nowé.
Multi-objectivization of reinforcement learning problems by reward shaping. In 2014 interna-
tional joint conference on neural networks (IJCNN), pp. 2315-2322. IEEE, 2014.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International Conference on Machine Learning, pp. 1430-1440.
PMLR, 2021.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. Advances in Neural Information Processing
Systems, 35:5829-5842, 2022.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic motivation
for reinforcement learning. Advances in Neural Information Processing Systems, 34:8622—-8636,
2021.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in Neural Information Processing Systems, 32,
2019.

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight
experience replay. Advances in neural information processing systems, 32, 2019.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International conference on machine learning, pp. 1515-1528.
PMLR, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Javier Garcia and Fernando Ferndndez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437-1480, 2015.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint
arXiv:1912.06088, 2019.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and

Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

10

Under review as a conference paper at ICLR 2025

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018.

Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Carvalho, and Honglak Lee. Successor
feature landmarks for long-horizon goal-conditioned reinforcement learning. Advances in Neural
Information Processing Systems, 34:26963-26975, 2021.

Edward S Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for exploration.
arXiv preprint arXiv:2303.13002, 2023.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. Advances in Neural Information Processing Systems, 32, 2019.

Tom Jurgenson, Or Avner, Edward Groshev, and Aviv Tamar. Sub-goal trees a framework for goal-

based reinforcement learning. In International conference on machine learning, pp. 5020-5030.
PMLR, 2020.

JooSeuk Kim and Clayton D Scott. Robust kernel density estimation. The Journal of Machine
Learning Research, 13(1):2529-2565, 2012.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical
reinforcement learning. Advances in Neural Information Processing Systems, 34:28336-28349,
2021.

Junsu Kim, Younggyo Seo, Sungsoo Ahn, Kyunghwan Son, and Jinwoo Shin. Imitating graph-based
planning with goal-conditioned policies. arXiv preprint arXiv:2303.11166, 2023.

Yingyi Kuang, Abraham Itzhak Weinberg, George Vogiatzis, and Diego R Faria. Goal density-based
hindsight experience prioritization for multi-goal robot manipulation reinforcement learning. In
2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-
MAN), pp. 432-437. IEEE, 2020.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. arXiv preprint arXiv:1712.00948, 2017.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Prob-
lems and solutions. arXiv preprint arXiv:2201.08299, 2022.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928—-1937. PMLR, 2016.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. Advances in neural information processing systems,

31, 2018.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks
via visual subgoal generation. In International Conference on Learning Representations, 2019.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278-287. Citeseer, 1999.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. The Journal of
Machine Learning Research, 22(1):2617-2680, 2021.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions. Advances in Neural Information Processing Systems,
36, 2024.

Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury. Learning from trajectories via subgoal
discovery. Advances in Neural Information Processing Systems, 32, 2019.

11

Under review as a conference paper at ICLR 2025

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188-204. PMLR, 2021.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In International Conference on
Machine Learning, pp. 7750-7761. PMLR, 2020.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. Exploration via hindsight goal
generation. Advances in Neural Information Processing Systems, 32, 2019.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The annals of
mathematical statistics, pp. 832-837, 1956.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312-1320. PMLR, 2015.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387-395. Pmlir, 2014.

Aaron Sonabend, Junwei Lu, Leo Anthony Celi, Tianxi Cai, and Peter Szolovits. Expert-supervised
reinforcement learning for offline policy learning and evaluation. Advances in Neural Information
Processing Systems, 33:18967—-18977, 2020.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Lunjun Zhang, Ge Yang, and Bradly C Stadie. World model as a graph: Learning latent landmarks
for planning. In International Conference on Machine Learning, pp. 12611-12620. PMLR, 2021.

Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value dis-
agreement. Advances in Neural Information Processing Systems, 33:7648-7659, 2020.

12

Under review as a conference paper at ICLR 2025

A TASK PROBABILITY DENSITY

In order to track the agent’s progress in learning different tasks, we approximate the training fre-
quency of the task as the task probability density e. This is based on the simple intuition that the
more frequently a task is trained, the higher its probability of being sampled. Given an initial state,
we then select one from candidate virtual goals that aligns with the current learning progress frontier
to guide the learning process. Specifically, we compare two commonly used probability density esti-
mation methods, KDE (Kim & Scott, 2012) and Flow (Papamakarios et al., 2021). Our experiments
found that the Flow model had better performance in high-dimensional space. At the same time, the
Flow model based on RealNVP (Dinh et al., 2016) was more efficient in the calculation, and its time
consumption was significantly reduced compared to the KDE method. Therefore, we implemented
the Flow model based on RealNVP to estimate task probability density. We designate a dedicated
replay buffer B; for recording recent training data. The Flow model is updated in parallel with the
policy learning process to effectively track learning progress.

B ALGORITHM

We provide algorithm that represent VE in Algorithm 1.

Algorithm 1 VE
Initialize replay buffer 5, 5,
Initialize Q, 7, Wg
Initialize task probability density model (Flow model based on RealNVP) e
1: fork=1,2,...do
2: Collect experience in B using 7y
Sample batch data d ~ B
Go relabeling with task probability density model e
Store batch data d in B,
Update task probability density model e with data from buffer B,
Sample batch state s ~ B as subgoal baseline s
Planning subgoals with 7T(Z’
Update () using Equation equation 2 (Policy Evaluation)
10: Update ﬂ'g using Equation equation 8 (Self -Supervised Subgoal Planning)
11: Update 7y using Equation equation 9 (Policy Improvement with Subgoal-Conditioned Imita-
tion Learning)
12: end for

R A S

C SELF-SUPERVISED SUBGOAL PLANNING

In Section 4.2, we discusse how to perform subgoal planning via self-supervised learning. There are
two key parameters, the norm p and the number of subgoals k.

First, we demonstrate that under the definition of reward function in Section 3.1, using the 1-norm
leads to subgoal degradation, whereas using the 2-norm and the co-norm can theoretically learn the
optimal subgoal estimate.

Obviously, according to the definition of value function (r = —1,~v = 0.99), we can get

V=r+yr+y2r+--+~Tr (10)

= —(1 — 4")(omit coefficient)

13

Under review as a conference paper at ICLR 2025

and based on Equation 6, we can get
d = l[o(s, {sg}x,9)l, (11)

‘
= Qo IV(se))?

k

=D =ty

i=1

Since f(z) = 2P (z € (0,1),p > 1) is a convex function when p > 2, let z; = 1 — »% and
> t; = T. Using Jensen’s inequality, we know that when p = 1, the minimum value of L is
obtained att;y = t3 = -+ = t,_1 = land t, = T — k + 1. This means that the number of k¥ — 1
subgoals degenerate into adjacent states, which is not conducive to high-level policy learning. And
when p > 2, the minimum value of d is obtained at t; = to = --- = t;, = T'/k. This is equivalent
to equally partitioning the optimal path from the state s to the goal g among the k£ subgoals. We
experimentally compared the results for p = {1,2,00} and k = {1,2} on AntMaze environments
in Figure 9.

1.0 1.0
£os8 Los
© Y @ Y
o o
0.6 %06
9] o
5 5
»n 0.4 »n 0.4
g g
< 0.2 <0.2
0'00 100 200 0'00 250 500
Enveronment Steps (x1000) Enveronment Steps (x1000)
(a) AntMaze-U (b) AntMaze-I1

Figure 9: Learning curves for agents in (a) AntMaze-U and (b) AntMaze-1I with different hyperpa-
rameters p and k.

We firstly observe that when p = 1, the agent is incapable of learning strategies to address a variety
of tasks, which aligns with our theoretical proof. Although the inference indicates that when p = 2 or
p = 00, the high-level policy can formulate accurate subgoals, the empirical evidence suggests that
a degradation of the goal-conditioned policy occurs when p = 2. We speculate that this occurrence
might be due to the necessity for the sampled subgoals to secure an overall smaller discounted
transfer distance to provide a better self-supervisory signal. When p = oo, only the maximum
element in the discounted transfer vector, namely, the longest part of the total trajectory, needs to be
considered, thereby stabilizing the training process. Another potential reason could be that due to
the presence of the discount factor, long-term tasks are more heavily impacted by the deviation in
the state value calculation, leading to the instability of subgoal planning.

Further observations reveal that when p = oo and the number of subgoals is two or more, the
efficiency of the goal-conditioned policy update is remarkable in the early stages, yet dwindles
over time. We conjecture that this may be attributed to the immense challenge of concurrently and
randomly sampling more than one subgoal and positioning them on the optimal trajectory. However,
itis comparatively simpler when only one subgoal. Based on overall observation, we selected p = oo
and k£ = 1 due to their demonstrable stability and efficiency.

D ADDITIONAL EXPERIMENTS

D.1 SUBGOAL LOSS
We calculate the subgoal losses for VE, VE without curriculum learning, and RIS on AntMaze-U

(see Figure 10), derived by computing the Mean Squared Error (MSE) in correlation with the oracle
subgoal.

14

Under review as a conference paper at ICLR 2025

o0 — VE
c VE w/o cl
© 8
o — RIS
a
< 6
(o]
()]
S 4
(7]
o
3: 2
0 100 200

Enveronment Steps (x1000)

Figure 10: Subgoal losses of VE, VE without curriculum learning (cl) and RIS on AntMaze-U.

D.2 RESULTS ON THE MOST DIFFICULT TASKS

We evaluate our method on all maps of AntMaze (see Figure 11), comparing the average success
rate with RIS on the most difficult tasks (all other methods are 0).

1.0 1.0
208 208
o o
806 806
[o Y
9] [}
5 5
»n 0.4 »n 0.4
2 4
<0.2{ — VE <0.2

— RIS
0'00 125 250 0'00 200 400
Enveronment Steps (x1000) Enveronment Steps (x1000)
(a) AntMaze-U (b) AntMaze-S

1.0 - 1.0
£0.8 £0.8
o o
£0.6 206
[o Y
o) [}
S 5
n 0.4 n 0.4
g g
< 0.2 < 0.2

0.0 0.0

0 250 500 0 250 500 750
Enveronment Steps (x1000) Enveronment Steps (x1000)
(C) AntMaze-11 (D) AntMaze-W

Figure 11: Average success rate of VE and RIS in the most difficult task.

In Figure 12, we also visualize the final states on the map.

D.3 VISUALIZATION OF SUBGOAL PLANNING

We visualize the subgoal planning of VE in all navigation tasks, and the results are shown in the
Figure 13.

15

Under review as a conference paper at ICLR 2025

810

811

812

813

814

815 B <
816 g
817
818
819
820
821
822
zzi (a) AntMaze-U (b) AntMaze-S (c) AntMaze-IT (d) AntMaze-W

825 Figure 12: The results of three methods on the most difficult tasks in four navigation environments.
826 We test at different checkpoints: AntMaze-U at 150k environment steps; AntMaze-S at 200k envi-
827 ronment steps; AntMaze-Pi at 300k environment steps and AntMaze-W at 500k environment steps.
828

829

830

831

832

833

834

835 * g Sg

836

837 X w
838
839
840
841
842 *
843
844
845
846 *
847 (a) AntMaze-U
848

849 > [l V< 3
850 %

851

B aliela|n

853

854 ¥

855

*
I>r
*
Y
r ¥ 1 x ¥ F *
iﬁ')(A
856
w

[o VE ° PIG o RIS }

c"'S\O

X%

=

—
F

—
—

(b) AntMaze-S

—F

— P

: plamlqnlsg

* #h
858
859 (c) AntMaze-I1 (d) AntMaze-W
860
861

862
863

Figure 13: Visualization of subgoal planning on all maps of AntMaze.

16

Under review as a conference paper at ICLR 2025

E ADDITIONAL RELATED WORKS

Determining an appropriate goal for the agent remains an ongoing challenge. (Florensa et al., 2018)
define a reward to quantify the agent’s proficiency during the testing phase. This reward, informed
by the most recent test results, serves as a measure throughout the training process to identify areas
where the agent excels or needs improvement. This evaluative information is then used to set goals
for the subsequent phase. As the agent’s capabilities improve, the goals gradually become more
challenging until the desired objectives are achieved. (Hu et al., 2023) introduce PEG, an approach
based on a world model that uses the Go-Explore framework to facilitate exploration. To reduce
the computational burden associated with evaluating the agent’s capabilities, PEG extrapolates the
process within the world model instead of directly interacting with the real environment. Skew-Fit
(Pong et al., 2019) samples states from a replay buffer and assigns more weight to rare states. It
then trains a generative model with these weighted samples. By sampling new states with goals
proposed from this generative model, a higher entropy state distribution is obtained in the next
iteration. (Nair & Finn, 2019) train a subgoal generative model and a transfer prediction model.
For a given goal, a series of subgoals are generated from the subgoal generative model, and the
transfer prediction model is used to plan a sequence of actions to achieve these subgoals. In contrast,
our work focuses on learning strategies from virtual experiences. Our method can be enhanced
by selecting suitable virtual goals through curriculum learning or alternative approaches, and by
utilizing improved subgoal planning techniques.

F ENVIRONMENT DETAILS

F.1 REACHER

A robotic arm aims to make its end-effector reach the target position on 3D space. The state space
of the arm is 17-dimension, including the positions, angles, and velocities of itself, and the action-
space is 7-dimension. Initial point and target goal are set randomly at the start of episode both at
training and test time. The agent should reach the target point within 100 steps.

F.2 SAWYER

It is a vision-based robotic manipulation task where an agent controls a 2 DoF robotic arm from
image input and must manipulate a puck positioned on the table. The agent observes a 84 x 84 RGB
image showing a top-down view of the scene. The dimension of the workspace are 40cm x 20cm
and the puck has a radius of 4cm. We consider that the goal is achieved if both the arm and the puck
are within Scm of their respective target positions.

F.3 ANTMAZE

A quadruped ant robot is trained to reach a random goal from a random location. The states of ant
is 31-dimension, including positions and velocities. An ant should reach the target point within 600
steps.

G IMPLEMENTATION DETAILS

From Equation 6, we can see that the number of subgoals % controls the distance between them. The
high-level policy outputs the distribution of subgoal. For each &, we sample 10 subgoals from the
distribution to calculate the mean in Equation 9.

The choice of task probability density estimation model mainly considers computational efficiency
and support for high-dimensional data (e.g., the state space in AntMaze has 31 dimensions). We
compare the results of the kernel density estimation (KDE) (Rosenblatt, 1956) and Flow (Papa-
makarios et al., 2021), and found that the KDE method only supports low-dimensional samples
(e.g., x and y coordinates), so we finally adopt the Flow model based on ReaINVP (Dinh et al.,
2016) and follow basic parameters. More importantly, when a large number of candidate virtual
goals need to be processed, the calculation speed of the Flow model is significantly better than that
of the KDE model.

17

Under review as a conference paper at ICLR 2025

Hyperparameter Reacher AntMaze Sawyer
Q hidden sizes [256,256] [256,256] [256, 256]
Policy hidden sizes [256, 256] [256,256] [256, 256]
Subgoal prediction hidden sizes [256, 256] [256, 256] [256, 256]
Hidden activation functions ReLU ReLU ReLU
Batch size 1024 2048 1024
Replay buffer size le6 le6 le5
Discount factor 0.99 0.99 0.99
polyak for target networks Se-3 Se-3 Se-3
Critic learning rate le-3 le-3 2e-3
Policy learning rates le-3 le-3 Se-3
Subgoal prediction learning rate le-4 le-4 le-3
Flow model learning rate le-3 le-3 le-3
Flow model learning batch size 1024 1024 1024
actual goal:virtual goal 0.5:0.5 0.5:0.5 0.5:0.5
o 0.1 0.1 0.1

Table 1: Hyperparameters for VE.

The goal space of the Reacher environment is defined as (x, y, z) in Euclidean space. We transform
each state of the agent into a corresponding achieved goal, and use the state-value function V' alone
to estimate the distance between the achieved goal and the desired goal.

In the Sawyer environment, we use the same encoder as RIS (Chane-Sane et al., 2021). The en-
coder compresses the received 84 X 84 RGB image into a 32-dimensional vector, and it updates
synchronously with the critic network. The gradients of the encoder are subsequently truncated.

H HYPERPARAMETERS

The hyperparameters we adopt in VE are shown in the Table 1. Each comparison baseline uses
the best parameters of the source code. We divide the experimental environment into two classes:
state-based “"Reacher” and ”AntMaze” and pixel-based "Sawyer”. In "Reacher” and ”AntMaze,”
we search the learning rate (subgoal prediction, policy, critic) from the candidates 0.0001, 0.001,
0.01 for VE with a 3 x 3 x 3 grid. We use the same parameters in these environments. However,
in ”Sawyer,” we discover that appropriately increasing the learning rate is a better choice. For the
baselines (RIS, PIG, HIGL), they use the same experimental environment as ours. So we keep the
parameters in the original paper (as the authors have tuned). For the others (GCSL, SAC+HER), we
adjust them using a parameter search method similar to VE.

18

	Introduction
	Related work
	Preliminary
	Goal-conditioned reinforcement learning
	Goal relabeling

	Learning goal-conditioned policy with virtual experiences
	Relabeling goals to construct virtual experience
	Self-supervised subgoal palnning
	subgoal-conditioned imitation learning

	Experiments
	Experimental setup
	Results
	Ablation studies

	Conclutsion
	Reproducibility Statement
	task probability density
	algorithm
	self-supervised subgoal planning
	Additional EXPERIMENTS
	Subgoal loss
	Results on the most difficult tasks
	Visualization of subgoal planning

	Additional Related Works
	Environment Details
	Reacher
	Sawyer
	AntMaze

	Implementation Details
	Hyperparameters

