
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GOAL-CONDITIONED REINFORCEMENT LEARNING
WITH VIRTUAL EXPERIENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Goal-conditioned reinforcement learning often employs a technique known as
Hindsight Experience Replay (HER) for data augmentation by relabeling goals.
However, HER limits goal relabeling to a single trajectory, which hinders the
utilization of experiences from diverse trajectories. To address this issue, we
present a curriculum learning method to construct virtual experiences, incorpo-
rating actual state transitions and virtual goals selected from the replay buffer.
Considering that virtual experiences may contain a lot of noise, we also propose a
self-supervised subgoal planning method that guides the learning of virtual expe-
riences by imitating the subgoal-conditioned policy. Our intuition is that achiev-
ing a virtual goal may be challenging for the goal-conditioned policy, whereas
simplified subgoals can provide effective guidance. We empirically show that
the virtual experiences from diverse historical trajectories significantly boost the
sample-efficiency compared to the existing goal-conditioned reinforcement learn-
ing and hierarchical reinforcement learning methods, even enabling the agent to
learn tasks it has never experienced.1

1 INTRODUCTION

Goal-conditioned reinforcement learning (GCRL) is an advanced form of deep reinforcement learn-
ing (RL) that aims to find an optimal solution for tasks involving multiple goals simultaneously and
requiring long-term decision-making. For instance, it can effectively guide a multi-legged robot to
a predetermined location on a map (Paul et al., 2019) or skillfully manipulate a robotic arm to grasp
objects on a platform (Zhang et al., 2020). Unlike many existing methods that necessitate intricate
reward functions tailored to each task (Ng et al., 1999; Brys et al., 2014; Devidze et al., 2022),
GCRL simplifies the problem’s complexity by relying solely on binary reward signals that indicate
goal achievement (Nair et al., 2018; Liu et al., 2022). Nevertheless, binary rewards introduce the
challenge of reward sparsity.

Humans possess the ability to synthesize past experiences and utilize this knowledge to efficiently
adapt to new tasks. Building upon this concept, HER (Andrychowicz et al., 2017) introduces a
method to reconstruct data from unsuccessful past experiences, partially mitigates the challenge of
sparse rewards by selecting the actual reached states in the trajectory as the relabeled goals. How-
ever, HER requires limiting the relabeled goals and state transitions within a single task trajectory,
which is not conducive to integrating experience from different tasks. For example, once the skills
of ”grabbing apples” and ”opening a drawer” are mastered, there is no need to relearn them from
scratch when performing the task of ”putting apples into a drawer”; instead, these skills can be
combined.

As demonstrated in HER, merely broadening the selection scope of relabeled goals to the entire
replay buffer yields no benefit. An intuitive explanation for this is that, without real trajectory sup-
port, the connection between actual state transitions and virtual goals remains tenuous, injecting
substantial noise into the reconstructed data. During policy learning, such data not only fail to pro-
vide valuable experience but also undermine learning stability. To address this issue, we introduce
curriculum learning when selecting virtual goals and use subgoals to simplify these goals. Inspired
by prior work (Pitis et al., 2020), we propose a method for selecting virtual goals based on task

1Code is available at https://anonymous.4open.science/r/VE-7224/

1

https://anonymous.4open.science/r/VE-7224/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) The high state probability
density near sA and sB does
not reflect the reachability of
task (sA, sB).

(b) The left shows random sampling of states, relabeled as goals,
from the replay buffer. The right demonstrates filtering these rela-
beled goals g by increasing difficulty, determined by task probabil-
ity density e(sA, g) (e.g. selecting ① to ⑤ in training progresses).

Figure 1: Illustration of (a) the disadvantage of state probability density and (b) expanding the
sampling range to the replay buffer versus our approach for selecting by task probability density in
the U-shape AntMaze environment (AntMaze-U).

probability density. This approach aims to provide virtual goals of increasing difficulty, thereby
reducing subgoal planning complexity and improving the accuracy of subgoal-conditioned policies.
Furthermore, we propose a simple self-supervised subgoal planning method that differs from pre-
vious studies (see Section 2 for details). This method, similar to high-level policies in hierarchical
RL, leverages sampled self-supervised data in place of traditional reward signals to learn. Our key
contributions are as follows:

• Task-probability-density-based curriculum learning: initially, we expand the selection
scope of relabeled goals to the entire replay buffer, including not only actual goals within
the same trajectory but also virtual goals across different trajectories. Subsequently, we en-
visage that gradual task difficulty facilitates the learning of long-term goals and improves
the precision of subgoal planning. Hence, we propose using task probability density rather
than state probability density to monitor an agent’s learning progress and use it as a refer-
ence for selecting virtual goals. Implementing curriculum learning based on task probabil-
ity density can further enhance the success rate of achieving multiple goals.

• Self-supervised subgoal planning: to effectively learn from virtual experiences, we pro-
pose a self-supervised subgoal planning method. Simplified subgoals reduce the task’s
complexity, and subgoal-conditioned policies can serve as reasonable imitation targets for
goal-conditioned policies, thereby constraining and guiding the policy improvement pro-
cess.

In summary, we propose a general framework for utilizing virtual experience (VE) to improve
sample-efficiency in GCRL, and demonstrate its performance over existing GCRL and hierarchical
RL methods in various robot navigation and control tasks based on the MuJoCo simulator (Todorov
et al., 2012). The experimental results indicate that the proper use of virtual experience can signifi-
cantly accelerate the learning of multiple goals. Moreover, when combined with subgoal planning,
it provides valuable guidance for achieving complex long-term goals. This approach can even assist
agents in accomplishing tasks they have never encountered before.

2 RELATED WORK

Goal relabeling. HER demonstrates that off-policy deep RL algorithms can reuse data in the replay
buffer by relabeling goals in episodic trajectories. It is widely utilized as a core component in
many related studies (Levy et al., 2017; Ren et al., 2019; Pitis et al., 2020; Durugkar et al., 2021;
Kim et al., 2023). A growing consensus suggests that HER can be viewed as implicit curriculum
learning, structuring curricula within historical trajectories by using transition data. CHER (Fang
et al., 2019) optimizes the curriculum by considering the similarity and diversity of relabeled goals,
but still does not overcome the limitations of a single trajectory. (Kuang et al., 2020) and (Pong
et al., 2019; Pitis et al., 2020) also use the density estimation model to aid in goal selection. By
prioritizing low-density goals based on the density estimation of the achieved goals, they increase
the likelihood of these goals becoming candidates, thus facilitating curriculum learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

These approaches are similar to ours, but they assume that, under the premise of a fixed initial
state, a visited state is regarded as the achieved goal. However, when the initial state distribution
encompasses the entire state space, a visited state cannot reliably indicate that the goal has been
achieved, as a complete task is defined by both the initial state and the goal (see Figure 1 (a)). Our
idea is to estimate the task probability density to track the learning progress of the agent, which is
also applicable to the case of a fixed initial state.

Subgoal planning in GCRL. The curriculum learning mentioned above can be regarded as plan-
ning within exploration or learning process. Planning is also a crucial concept in hierarchical RL.
When confronted with a long-horizon problem, high-level policies plan with temporally extended
actions, known as abstract actions, directing the low-level policies to execute primitive actions to
complete the interaction (Bacon et al., 2017; Park et al., 2024). In the context of GCRL, these ab-
stract actions can be considered as subgoals employed as targets for the low-level policies. Current
approaches to subgoal planning can primarily be categorized into learning-based and search-based
methods. (Badrinath et al., 2024) treats the midpoint of the path as a subgoal in the context of
offline RL and trains a subgoal prediction module using a transformer. (Jurgenson et al., 2020) es-
tablishes a connection between subgoal planning and the dynamic programming equation, which
inherently benefits navigation and obstacle avoidance tasks. However, extending this approach to
high-dimensional goal spaces remains challenging. These learning-based methods generally require
only a single forward inference to accomplish subgoal planning, making them more efficient than
search-based methods. But they also encounter challenges of learning. In contrast, VE can accu-
rately predict subgoals based only on sampled self-supervised signals. Additionally, it is a common
practice to apply search-based subgoal planning in graphs (Huang et al., 2019; Eysenbach et al.,
2019; Hoang et al., 2021; Zhang et al., 2021; Kim et al., 2021; 2023). Specifically, these methods
construct a graph where nodes and edges correspond to states and inter-state distances respectively,
and various historical experiences are linked together by the graph. The purpose of planning is to
find the shortest path consisting of nodes to reach the goal, where the nodes can be regarded as the
subgoals. To apply graph-based planning to complex environments, some work focuses on learning
robust representations that cover the entire state space. Under the constraint of a limited number of
nodes, (Hoang et al., 2021) measures the similarity between subsequent features to ensure that the
nodes cover as large an area as possible. (Zhang et al., 2021) learns a latent space and obtains graph
nodes through clustering. The adjacent nodes reflect the temporal reachability. Others consider
combining traditional path planning methods, such as farthest point sampling (Huang et al., 2019),
to find shortest paths based on the graph (Kim et al., 2021; 2023).

Although graphs reducing the complexity of planning compared to state space, they still face chal-
lenges related to computational complexity and suboptimality. As PIG (Kim et al., 2023) demon-
strates, searching for shortest paths for tasks in each batch of training data significantly increases
computational overhead, limiting the batch size to a small value. Moreover, a finite number of nodes
cannot plan optimal paths for all tasks. In contrast, VE is not subject to this limitation. It’s similar in
form to the high-level policy in hierarchical RL, but it does not control agent exploration; it is solely
used to guide policy learning.

3 PRELIMINARY

3.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

GCRL aims to learn policies that can achieve multiple goals. Our reinforcement learning agent inter-
acts with a discounted, infinite-horizon, goal-conditioned Markov decision process (MDP) (Sutton,
2018), defined by the tuple (S,A,G, p, r, γ). S , A, and G are the state, action and goal spaces, re-
spectively, and γ ∈ (0, 1) is the discount factor. The transition function is denoted as p(st+1|st, at)
where st, st+1 ∈ S and at ∈ A, and the reward function as r(st, at, g). We set the reward r to −1
for all actions until the agent reaches the goal. With the goal distribution ρ(g), the objective of an
agent is to find the optimal policy π∗(·|s, g) that maximizes the expected sum of discounted rewards
in T steps

J (π) = Eg∼ρ(g),st∼pπ(·|s0,g)

[
T∑

t=0

γtr (st, at, g)

]
(1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We follow the standard off-policy actor-critic paradigm (Silver et al., 2014; Mnih et al., 2016; Fuji-
moto et al., 2018). Specifically, we sample a batch of data from the replay buffer B. In the policy
evaluation phase, an goal-conditioned action-value function (critic) Q(s, a, g) (Schaul et al., 2015)
with parameters β gets update by minimizing the Bellman error

Qβk+1
= argmin

β
E(st,at,st+1,g)∼B [yt −Qβk

(st, at, g)]
2 (2)

with the target value yt = r(st, at, g) + γEat+1∼π(·|st+1,g) [Qβk
(st+1, at+1, g)].

During the policy improvement phase, the policy (actor) π with parameters θ is updated in the
direction that maximizes the expected value of current critic Q.

πθk+1
= argmax

θ
E(s,g)∼B [Q (s, πθk(a|s, g), g)] (3)

3.2 GOAL RELABELING

In this paper, we assume states and goals share the same data space denoted by S = G, allowing
each state to be treated as a goal. Typically, historical data is stored in a buffer as trajectories
B = {τ1, τ2, ...}, where each trajectory τi = {si0, ai0, si1, ai1, ..., siT , gi} represents the exploration
history of a task (si0, g

i). We formalize the go relabeling method in Hindsight Experience Replay
(Andrychowicz et al., 2017) as follows

(sit, a
i
t, s

i
t+1, g

i, r(sit+1, g
i)) → (sit, a

i
t, s

i
t+1, s

i
t+n, r(s

i
t+1, s

i
t+n)) (4)

where r(sit, at, g
i) is simplified as r(sit+1, g

i) and n ∈ [1, T − t]. This implies that we can use
future states sit+n or final states siT within the same trajectory as relabeled goals and recalculate the
rewards r. These reconstructed data allow any task from that trajectory to have a chance to receive
a positive reward signal.

Figure 2: VE consists of three parts. Left: the red gradient area represents the goal range learned
from state s, recorded by task probability density estimation. We select the goal on the boundary as
the relabeled goal. Middle: it illustrates the learning process of self-supervised subgoal planning.
When the subgoal sg generated by the high-level policy πh is not better than the sampled subgoal ŝg ,
the probability of the sampled subgoal πh(ŝg|s, g) is increased. Right: during policy improvement,
the goal-conditioned policy is required to imitate the subgoal-conditioned policy.

4 LEARNING GOAL-CONDITIONED POLICY WITH VIRTUAL EXPERIENCES

In this section, we introduce a new framework named VE, which consists of three main parts: (1)
filtering relabeled goals by task probability density for building a step-by-step curriculum; (2) a
subgoal planning method based on self-supervised learning for simplifying the relabeled goals; and
(3) taking subgoal-conditioned policies as imitation targets to accelerate policy improvement. We
provide an illustration of our framework base on AntMaze-U in Figure 2.

4.1 RELABELING GOALS TO CONSTRUCT VIRTUAL EXPERIENCE

As introduced in Section 3.2, the scope of goal relabeling in HER is limited. Our idea is that any
goal can be used for relabeling when reconstructing data, such as the goal sampled from replay
buffer or designed by a human. We term this approach generalized goal relabeling and present it as
a more generalized form compared to Formula (4):

(sit, a
i
t, s

i
t+1, g

i, r(sit+1, g
i)) → (sit, a

i
t, s

i
t+1, g

j , r(sit+1, g
j)) (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In this paper, we discuss the relabeled goal gj sampled from the states of replay buffer. If j = i,
it is equivalent to HER, and we refer to these goals as actual goals. Otherwise, if j ̸= i, these are
termed virtual goals. Intuitively, a curriculum that gradually increases in difficulty can help an agent
complete tasks faster. As shown in the Figure 2 (Left), given a state s, we hope that the virtual goal
g in the virtual experience is on the boundary of the reachable state from s. In order to effectively
evaluate the reachability of the task (s, g), we propose estimating the task probability density e in
curriculum, acting as a filter to screen suitable virtual goals from random sampling.

Specifically, we establish a dedicated buffer Bl to record the learned data. Inspired by previous
work (Pitis et al., 2020), we approximate the learning frequency of tasks during training as their
probability density. When screening the virtual goal for a state s, our initial step is to sample a
set of states from the replay buffer B which serve as candidate virtual goals g. Subsequently, we
compute their task probability density e(s, g) and select one that satisfies conditions (e.g. 0.8ē <
e(s, g) < 1.2ē, with ē denoting the mean) as the virtual goal. It is crucial to note that our method of
employing a fixed range to filter out virtual goals on the boundary is empirical and performs well in
simple environments (see Figure 5). This process will benefit from future improvements. For details
on the learning process of task probability densities, please refer to Appendix A.

A significant advantage of virtual experience is that it broadens the distribution of tasks in the re-
constructed data, particularly for tasks that are difficult to achieve through traditional exploration.
Learning these tasks through virtual experience, however, is inherently challenging. Firstly, from a
policy perspective, there is a lack of connection between the original state transitions (sit, a

i
t, s

i
t+1)

and the relabeled goals gj . This reduces the accuracy of policy evaluation. Secondly, policy im-
provements based on virtual experience are also inefficient. So we simplify the virtual goal through
the subgoal planning method in Section 4.2.

4.2 SELF-SUPERVISED SUBGOAL PALNNING

We implement subgoal planning through a high-level policy πh(s, g, k) similar to that used in hi-
erarchical RL. It is important to emphasize that subgoals are only utilized for policy improvement
and do not guide exploration. Consistent with previous work, we consider the state value function
|V (s, g)| as the discounted distance from the state s to the goal g. Based on this, we define the
transfer distance vector v(s, {sg}k, g) using the subgoal sequence {sg}k = {sg1 , sg2 , .., sgk} as:

v(s, {sg}k, g) =
[
|V (s, sg1)| , |V (sg1 , sg2)| , · · · ,

∣∣V (sgk−1
, sgk)

∣∣ , |V (sgk , g)|
]⊤

(6)

The high-level policy πh with parameters ϕ is trained to predict optimal subgoals that minimize the
p-norm of the transition distance vector with loss

Lπh(ϕ) = E(s,g)∼B,sgk∼πh(·|s,g,k)[d(s, {sg}k, g)] (7)

where d(s, {sg}k, g) = ∥v(s, {sg}k, g)∥p.

The novelty of our approach lies in applying the idea of Advantage-Weighted Regression (AWR)
(Peng et al., 2019) to the learning of high-level policies. Specifically, we equate the self-supervised
signal d(s, {ŝg}k, g) to the value Q in the advantage function A = Q− V , where the prediction of
the high-level policy d(s, {sg}k, g) corresponds to the value V . The difference is that we compare
the advantages of sampled subgoals over those output by high-level policies, rather than comparing
the advantage of the current policy over the historical (or mixed) policy as in AWR. Consequently,
we propose randomly sampling states from the replay buffer as subgoals {ŝg}k. If the advantage
A > 0, it indicates that the prediction of the high-level policy is inferior to the sampled subgoals
and should be adjusted to approximate them. Conversely, if the advantage A < 0, the prediction of
high-level policy should deviate from the sampled subgoals. The gradient of loss Lπh(ϕ) is

∇ϕLπh(ϕ) = ∇ϕ{ŝg}k∼B, ˆsgk∼{ŝg} log π
h
ϕ(ˆsgk |s, g)Aπh

(s, g) (8)

where Aπh

(s, g) = d{ŝg}k∼B(s, {ŝg}k, g)−d{sg}k∼πh(s, {sg}k, g). We will introduce methods for
choosing the number of subgoals k and the p-norm in the Appendix C.

4.3 SUBGOAL-CONDITIONED IMITATION LEARNING

In this paper, we consider the control problem in continuous space, so we assume that the action
follows a Gaussian distribution. The process of the goal-conditioned policy imitating the subgoal-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) AntMaze-U(b) AntMaze-S (c) AntMaze-Π(d) AntMaze-W (e) Sawyer (f) Reacher

Figure 3: Visualizations of our experimental environments, where the Sawyer is a pixel-based task.
When trained in AntMaze, an agent starts at a random point, and aims to reach a random goal. The
most challenging tasks used for evaluation in AntMaze: the blue point and the position of an ant
indicates the goal and the initial point, respectively.

conditioned policy can be written as DKL(π
prior(s, sgk)||π(s, g)). Additionally, the optimization

objective of imitation learning can be weighted into the policy improvement as a regularization term

πθm+1
= argmax

θ
E(s,g)∼B,sgk∼πh

[
Q (s, πθm(s, g), g)− α

k

k∑
i=1

DKL(π
prior(s, sgi)||πθm(s, g))

]
(9)

By generating subgoal-conditioned policies based on simplified subgoals, we recognize the key role
of prior policies πprior in imitation learning. Previous methods utilize historical (Pertsch et al.,
2021), expert (Sonabend et al., 2020), or current policies (Kim et al., 2023) as prior policies, while
we conduct a comparison and select the soft-updated historical policies (see Figure 7 right for more
details). This selection stems from the reason that expert policies are usually difficult to obtain,
historical policies lag in acquiring knowledge, and current policies may lack stability. In contrast,
the soft-updated historical policy strikes a good balance between historical and current policies. The
full algorithm is summarized in the Appendix B.

5 EXPERIMENTS

Our experiments aim to answer the following questions: (1) Can VE improve sample-efficiency and
performance in continuous control tasks compared to the baseline? (2) Is curriculum learning based
on task probability density effective? (3) What impact does the proportion of virtual experiences in
the training data have on the policy? (4) How does imitating subgoal-conditioned policies influence
goal-conditioned policy learning? 5 Can VE integrate knowledge from different tasks?

5.1 EXPERIMENTAL SETUP

Environments. Following the experimental setup of previous research (Kim et al., 2023), we design
a series of challenging environments based on MuJoCo simulator (Todorov et al., 2012). Specifi-
cally, our navigation task consists of {U, S, Π, W}-shaped AntMaze environments, and our robotic
arm control tasks involve Sawyer and Reacher (see Figure 3 for the visualization of environments),
with Sawyer being a pixel-based task. In contrast to (Huang et al., 2019; Kim et al., 2023), where
the goal space is defined on the 2-dimension that represents the (x, y) position of agent in AntMaze
tasks, we use a entire 31-dimensional state space as the goal space following the setting of RIS
(Chane-Sane et al., 2021). In the Reacher task, the goal space is 3-dimension. The configuration of
the Sawyer task remains consistent with (Chane-Sane et al., 2021), where we obtain a pixel repre-
sentation of the target through pre-sampling. We provide more details in Appendix F.

Implementation. VE is based on the standard Actor-Critic framework. In order to reduce the impact
of Q value overestimation, we use double Q value function. During the network update, we set the
target network for the actor and the critic, and adopt a soft update method with the coefficient 5e-3.
We use the actor target policy as the prior policy, which can effectively ensure the stable convergence
of the policy in our experiments. For the baseline, we follow the original setup (see more details in
Appendix G).

Evaluation. Our experimental settings for navigation include random start points and random end-
points, requiring the agent to master the entire map. This setup is more challenging than the one with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) AntMaze-U (b) AntMaze-S (c) AntMaze-Π

(d) AntMaze-W (e) Sawyer (f) Reacher

Figure 4: Learning curves for agents in different environments. All methods are run with 4 seeds,
and the solid and shaded lines represent mean and standard deviation, respectively. It is important
to note that PIG, HIGL and GCSL cannot handle pixel-based tasks (Sawyer), and both HIGL and
GCSL are nearly unsuccessful in complex navigation tasks.

fixed start and end points. Additionally, for each navigation map, we define the most difficult task as
the farthest path between the origin and destination (see Figure 3). Test results for the random task
are reported using four different seeds, with 100 test episodes conducted every 5,000 training steps.
For visual clarity, we smooth all the curves equally.

Baselines. We select several representative methods as comparison baselines (see the Appendix H
for detailed hyperparameter settings). PIG (Kim et al., 2023): A subgoal self-imitation framework
based on graph planning, where subgoals are planned on the graph using a skipping mechanism.
The version combined with MSS (Huang et al., 2019) is utilized in the experiment; HIGL (Kim
et al., 2021): A hierarchical RL algorithm combined with path planning. It maintains a queue
of subgoals by computing novelty and coverage, selecting appropriate subgoals for the low-level
policy through path planning; RIS (Chane-Sane et al., 2021): A method that predicts the midpoint
of a path as a subgoal, and also uses the subgoal to guide the current policy learning; GCSL (Ghosh
et al., 2019): An imitation learning method for generating supervised data by relabeling trajectories.
It achieves further goals based on the optimal substructure of GCRL by continuously imitating
successful trajectories; SAC (Haarnoja et al., 2018): A classic RL algorithm based on maximum
entropy, and it has a good performance in continuous control tasks. We combine SAC and HER to
adapt to GCRL.

5.2 RESULTS

In Figure 4, our proposed VE demonstrates a substantial performance advantage over other methods
across various control tasks. Methods such as PIG and HIGL, which integrate historical experience
by building a graph, require a planning strategy or high-level policy when testing. In contrast, our
method relies solely on goal-conditioned policy. Furthermore, building a graph model increases
the computational complexity, causing PIG and HIGL need more training steps to achieve optimal
performance, as described in the original results (see (Kim et al., 2023)).

Additionally, it should be emphasized that, except for VE and RIS, the goal space used by other
methods includes only coordinate positions in the AntMaze environments. This simplification sig-
nificantly reduces the complexity of subgoal planning and the learning of goal-conditioned policies.
This also highlights the advantage of VE in handling high-dimensional goal spaces. Compared to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) AntMaze-U (b) AntMaze-W

Figure 5: We visualize the comparison between task probability density (up) and state probability
density (down) during the training process in AntMaze-U and AntMaze-W (the state s in e(s, g) is
chosen to be located as shown in Figure 3, and the values of e are normalized in each subfigure),
illustrating the curriculum learning composed of virtual goals with gradually increasing difficulty.

RIS, our subgoal planning demonstrates greater accuracy (see Appendix D.1). Furthermore, the ef-
ficiency of VE in learning multiple tasks has improved due to curriculum learning, which screens
suitable virtual goals. In contrast to GCSL, which merely imitates historical trajectories, VE en-
hances training data by incorporating virtual experiences, thereby achieving higher sample utiliza-
tion. Since our method ultimately focuses on imitation learning in Equation (9), SAC+HER can be
regarded as a baseline without imitation learning. From the results, we can see that SAC+HER can-
not learn reliable policies. Then, we evaluate the performance of VE and RIS on the most difficult
tasks (see Figure 6). This implies that the application of virtual transition experiences can be highly
beneficial in overcoming challenging tasks. Additional results are available in the Appendix D.2.

5.3 ABLATION STUDIES

In this section, we conduct ablation validation experiments on various key components of VE to
demonstrate the effectiveness of our method. All experiments were carried out in U-shaped and
W-shaped maps.

Figure 6: Average success rate of
VE and RIS in the most difficult
task on AntMaze-U.

Goal relabeling with task probability density. Goal relabel-
ing is a crucial method for constructing virtual experiences. We
experimentally verify the impact of different ratios of actual and
virtual experiences on VE. The results, as shown in Figure 7
(left), indicate that the optimal ratio is ”a:v=0.5:0.5”. Notably,
when relying solely on actual experiences (”a:v=1.0:0”), the
policy performs comparably to SAC+HER, demonstrating our
method’s effective utilization of these samples for learning. In
contrast, relying exclusively on virtual experiences (”a:v=0:1.0”)
results in the policy failing to learn effectively. We attribute this
to actual experiences enabling the agent to quickly master simple
tasks, while virutal experiences help the agent tackle more chal-
lenging, long-horizon tasks. When the agent has not yet learned
simple tasks, it cannot acquire knowledge from virtual experi-
ence. Furthermore, we compare the effects of screening virtual
targets based on task probability density versus randomly sampling virtual goals. The Figure 7
(middle) shows that providing virtual goals with gradually increasing difficulty in course learning
can help further improve learning efficiency. The visualization result of task probability density is
shown in Figure 5. The state probability density (down) can only assess the frequency of visiting
a state, not the reachability of task. In contrast, the task probability density (up) can monitor the
agent’s learning progress and offer curriculum of gradually increasing difficulty during training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: We investigate (left) the impact of different ratios of actual goals (a) and virtual goals (V)
on VE, (middle) the impact of curriculum learning (cl) on VE, and (right) the impact of different
subgoal strategies and prior strategies on VE. Here, ”os” denotes oracle subgoals, ”oa” denotes
oracle actions, ”ba” denotes behavioral actions, and ”rs” denotes random subgoals. All the above
experiments are tested in environment AntMaze-U.

Self-Supervised Subgoal Planning. We devise two alternatives to demonstrate the effectiveness of
our subgoal planning model (see Figure 7 (right)): sampling subgoals by method ”os” or ”rs.” It is
evident that more precise subgoals can significantly expedite the learning of goal-conditioned poli-
cies. We also observe that the oracle subgoal does not demonstrate substantial improvement during
the initial stages of training. Our assumption is that, at this stage, the learning task is fundamentally
simple, causing the high-level policy planning subgoals to align closely with the oracle subgoals.
We visualize the subgoals of the testing phase, with more details provided in the Appendix D.3.

Figure 8: Average success rate of
VE on constrained AntMaze-U.

Subgoal-Conditioned Imitation Learning. The core idea of
our method of using virtual experience is to imitate the subgoal-
conditioned policy. Combined with the Equation 9, our method
directly applies the knowledge contained in the virtual expe-
rience to the policy instead of the value function. Intuitively,
this approach is expected to be more efficient than first optimiz-
ing the value function and subsequently improving the policy
by maximizing the value function. To further verify the excep-
tional capability of the VE in integrating historical experience,
we design an experiment on AntMaze-U. During training, we
constrain the range of random task generation so that the initial
state and the goal appear only on the same side of the U-shaped
map. We evaluate the average success rate on both random tasks
and the most difficult tasks, reflecting the VE’s ability to inte-
grate knowledge learned on both sides of the map. As shown in Figure 8, even under task constraints,
the VE successfully solves all navigation tasks on AntMaze-U, including the most challenging ones,
with only slightly reduced learning efficiency compared to unrestricted conditions.

6 CONCLUTSION

Limitations and Future Work. While VE has shown promising results, it is essential to acknowl-
edge certain limitations. For instance, the hyperparameter k is related to the task’s scale. For more
complex environments, accurate subgoals with different decision horizons can help further improve
the quality of subgoal-conditioned policies. At the same time, complex environments also introduce
challenges in estimating task probability density. Future research can consider applying subgoals
to both agent exploration and policy learning. Moreover, filtering low-quality subgoal-conditioned
policies or considering safety constraints in subgoal planning (Garcıa & Fernández, 2015; Gu et al.,
2022) represents potential directions for future investigation.

We propose a goal-conditioned reinforcement learning method, VE, that integrates knowledge from
different historical tasks by constructing virtual experiences through a curriculum. We highlight that
simply using virtual experiences does not effectively aid policy learning, whereas the self-supervised
subgoal planning we propose significantly reduces the difficulty of achieving virtual goals. By
imitating subgoal-conditioned policies, the agent is expected to overcome the exploration dilemma
and accomplish tasks that require complex long-term decisions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We provide the implementation details of our method in Section 5.1 and Appendix G. We also
open-source our codebase.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Anirudhan Badrinath, Yannis Flet-Berliac, Allen Nie, and Emma Brunskill. Waypoint transformer:
Reinforcement learning via supervised learning with intermediate targets. Advances in Neural
Information Processing Systems, 36, 2024.

Tim Brys, Anna Harutyunyan, Peter Vrancx, Matthew E Taylor, Daniel Kudenko, and Ann Nowé.
Multi-objectivization of reinforcement learning problems by reward shaping. In 2014 interna-
tional joint conference on neural networks (IJCNN), pp. 2315–2322. IEEE, 2014.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International Conference on Machine Learning, pp. 1430–1440.
PMLR, 2021.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. Advances in Neural Information Processing
Systems, 35:5829–5842, 2022.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic motivation
for reinforcement learning. Advances in Neural Information Processing Systems, 34:8622–8636,
2021.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in Neural Information Processing Systems, 32,
2019.

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight
experience replay. Advances in neural information processing systems, 32, 2019.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International conference on machine learning, pp. 1515–1528.
PMLR, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint
arXiv:1912.06088, 2019.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Carvalho, and Honglak Lee. Successor
feature landmarks for long-horizon goal-conditioned reinforcement learning. Advances in Neural
Information Processing Systems, 34:26963–26975, 2021.

Edward S Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for exploration.
arXiv preprint arXiv:2303.13002, 2023.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. Advances in Neural Information Processing Systems, 32, 2019.

Tom Jurgenson, Or Avner, Edward Groshev, and Aviv Tamar. Sub-goal trees a framework for goal-
based reinforcement learning. In International conference on machine learning, pp. 5020–5030.
PMLR, 2020.

JooSeuk Kim and Clayton D Scott. Robust kernel density estimation. The Journal of Machine
Learning Research, 13(1):2529–2565, 2012.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical
reinforcement learning. Advances in Neural Information Processing Systems, 34:28336–28349,
2021.

Junsu Kim, Younggyo Seo, Sungsoo Ahn, Kyunghwan Son, and Jinwoo Shin. Imitating graph-based
planning with goal-conditioned policies. arXiv preprint arXiv:2303.11166, 2023.

Yingyi Kuang, Abraham Itzhak Weinberg, George Vogiatzis, and Diego R Faria. Goal density-based
hindsight experience prioritization for multi-goal robot manipulation reinforcement learning. In
2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-
MAN), pp. 432–437. IEEE, 2020.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. arXiv preprint arXiv:1712.00948, 2017.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Prob-
lems and solutions. arXiv preprint arXiv:2201.08299, 2022.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. Advances in neural information processing systems,
31, 2018.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks
via visual subgoal generation. In International Conference on Learning Representations, 2019.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287. Citeseer, 1999.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. The Journal of
Machine Learning Research, 22(1):2617–2680, 2021.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions. Advances in Neural Information Processing Systems,
36, 2024.

Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury. Learning from trajectories via subgoal
discovery. Advances in Neural Information Processing Systems, 32, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In International Conference on
Machine Learning, pp. 7750–7761. PMLR, 2020.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. Exploration via hindsight goal
generation. Advances in Neural Information Processing Systems, 32, 2019.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The annals of
mathematical statistics, pp. 832–837, 1956.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

Aaron Sonabend, Junwei Lu, Leo Anthony Celi, Tianxi Cai, and Peter Szolovits. Expert-supervised
reinforcement learning for offline policy learning and evaluation. Advances in Neural Information
Processing Systems, 33:18967–18977, 2020.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Lunjun Zhang, Ge Yang, and Bradly C Stadie. World model as a graph: Learning latent landmarks
for planning. In International Conference on Machine Learning, pp. 12611–12620. PMLR, 2021.

Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value dis-
agreement. Advances in Neural Information Processing Systems, 33:7648–7659, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A TASK PROBABILITY DENSITY

In order to track the agent’s progress in learning different tasks, we approximate the training fre-
quency of the task as the task probability density e. This is based on the simple intuition that the
more frequently a task is trained, the higher its probability of being sampled. Given an initial state,
we then select one from candidate virtual goals that aligns with the current learning progress frontier
to guide the learning process. Specifically, we compare two commonly used probability density esti-
mation methods, KDE (Kim & Scott, 2012) and Flow (Papamakarios et al., 2021). Our experiments
found that the Flow model had better performance in high-dimensional space. At the same time, the
Flow model based on RealNVP (Dinh et al., 2016) was more efficient in the calculation, and its time
consumption was significantly reduced compared to the KDE method. Therefore, we implemented
the Flow model based on RealNVP to estimate task probability density. We designate a dedicated
replay buffer Bl for recording recent training data. The Flow model is updated in parallel with the
policy learning process to effectively track learning progress.

B ALGORITHM

We provide algorithm that represent VE in Algorithm 1.

Algorithm 1 VE
Initialize replay buffer B,Bl

Initialize Qβ , πθ, π
h
ϕ

Initialize task probability density model (Flow model based on RealNVP) e
1: for k = 1, 2, ... do
2: Collect experience in B using πθ

3: Sample batch data d ∼ B
4: Go relabeling with task probability density model e
5: Store batch data d in Bl

6: Update task probability density model e with data from buffer Bl

7: Sample batch state s ∼ B as subgoal baseline ŝg
8: Planning subgoals with πh

ϕ

9: Update Qβ using Equation equation 2 (Policy Evaluation)
10: Update πh

ϕ using Equation equation 8 (Self -Supervised Subgoal Planning)
11: Update πθ using Equation equation 9 (Policy Improvement with Subgoal-Conditioned Imita-

tion Learning)
12: end for

C SELF-SUPERVISED SUBGOAL PLANNING

In Section 4.2, we discusse how to perform subgoal planning via self-supervised learning. There are
two key parameters, the norm p and the number of subgoals k.

First, we demonstrate that under the definition of reward function in Section 3.1, using the 1-norm
leads to subgoal degradation, whereas using the 2-norm and the ∞-norm can theoretically learn the
optimal subgoal estimate.

Obviously, according to the definition of value function (r = −1, γ = 0.99), we can get

V = r + γr + γ2r + · · ·+ γT r (10)

= −(1− γT)(omit coefficient)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

and based on Equation 6, we can get
d = ∥v(s, {sg}k, g)∥p (11)

= (

k∑
i=1

|V (sgi)|p)
1
p

= (

k∑
i=1

(1− γti)p)
1
p

Since f(x) = xp (x ∈ (0, 1), p ≥ 1) is a convex function when p ≥ 2, let xi = 1 − γti and∑
ti = T . Using Jensen’s inequality, we know that when p = 1, the minimum value of L is

obtained at t1 = t2 = · · · = tk−1 = 1 and tk = T − k + 1. This means that the number of k − 1
subgoals degenerate into adjacent states, which is not conducive to high-level policy learning. And
when p ≥ 2, the minimum value of d is obtained at t1 = t2 = · · · = tk = T/k. This is equivalent
to equally partitioning the optimal path from the state s to the goal g among the k subgoals. We
experimentally compared the results for p = {1, 2,∞} and k = {1, 2} on AntMaze environments
in Figure 9.

(a) AntMaze-U (b) AntMaze-Π

Figure 9: Learning curves for agents in (a) AntMaze-U and (b) AntMaze-Π with different hyperpa-
rameters p and k.

We firstly observe that when p = 1, the agent is incapable of learning strategies to address a variety
of tasks, which aligns with our theoretical proof. Although the inference indicates that when p = 2 or
p = ∞, the high-level policy can formulate accurate subgoals, the empirical evidence suggests that
a degradation of the goal-conditioned policy occurs when p = 2. We speculate that this occurrence
might be due to the necessity for the sampled subgoals to secure an overall smaller discounted
transfer distance to provide a better self-supervisory signal. When p = ∞, only the maximum
element in the discounted transfer vector, namely, the longest part of the total trajectory, needs to be
considered, thereby stabilizing the training process. Another potential reason could be that due to
the presence of the discount factor, long-term tasks are more heavily impacted by the deviation in
the state value calculation, leading to the instability of subgoal planning.

Further observations reveal that when p = ∞ and the number of subgoals is two or more, the
efficiency of the goal-conditioned policy update is remarkable in the early stages, yet dwindles
over time. We conjecture that this may be attributed to the immense challenge of concurrently and
randomly sampling more than one subgoal and positioning them on the optimal trajectory. However,
it is comparatively simpler when only one subgoal. Based on overall observation, we selected p = ∞
and k = 1 due to their demonstrable stability and efficiency.

D ADDITIONAL EXPERIMENTS

D.1 SUBGOAL LOSS

We calculate the subgoal losses for VE, VE without curriculum learning, and RIS on AntMaze-U
(see Figure 10), derived by computing the Mean Squared Error (MSE) in correlation with the oracle
subgoal.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 10: Subgoal losses of VE, VE without curriculum learning (cl) and RIS on AntMaze-U.

D.2 RESULTS ON THE MOST DIFFICULT TASKS

We evaluate our method on all maps of AntMaze (see Figure 11), comparing the average success
rate with RIS on the most difficult tasks (all other methods are 0).

(a) AntMaze-U (b) AntMaze-S

(C) AntMaze-Π (D) AntMaze-W

Figure 11: Average success rate of VE and RIS in the most difficult task.

In Figure 12, we also visualize the final states on the map.

D.3 VISUALIZATION OF SUBGOAL PLANNING

We visualize the subgoal planning of VE in all navigation tasks, and the results are shown in the
Figure 13.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) AntMaze-U (b) AntMaze-S (c) AntMaze-Π (d) AntMaze-W

Figure 12: The results of three methods on the most difficult tasks in four navigation environments.
We test at different checkpoints: AntMaze-U at 150k environment steps; AntMaze-S at 200k envi-
ronment steps; AntMaze-Pi at 300k environment steps and AntMaze-W at 500k environment steps.

(a) AntMaze-U (b) AntMaze-S

(c) AntMaze-Π (d) AntMaze-W

Figure 13: Visualization of subgoal planning on all maps of AntMaze.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E ADDITIONAL RELATED WORKS

Determining an appropriate goal for the agent remains an ongoing challenge. (Florensa et al., 2018)
define a reward to quantify the agent’s proficiency during the testing phase. This reward, informed
by the most recent test results, serves as a measure throughout the training process to identify areas
where the agent excels or needs improvement. This evaluative information is then used to set goals
for the subsequent phase. As the agent’s capabilities improve, the goals gradually become more
challenging until the desired objectives are achieved. (Hu et al., 2023) introduce PEG, an approach
based on a world model that uses the Go-Explore framework to facilitate exploration. To reduce
the computational burden associated with evaluating the agent’s capabilities, PEG extrapolates the
process within the world model instead of directly interacting with the real environment. Skew-Fit
(Pong et al., 2019) samples states from a replay buffer and assigns more weight to rare states. It
then trains a generative model with these weighted samples. By sampling new states with goals
proposed from this generative model, a higher entropy state distribution is obtained in the next
iteration. (Nair & Finn, 2019) train a subgoal generative model and a transfer prediction model.
For a given goal, a series of subgoals are generated from the subgoal generative model, and the
transfer prediction model is used to plan a sequence of actions to achieve these subgoals. In contrast,
our work focuses on learning strategies from virtual experiences. Our method can be enhanced
by selecting suitable virtual goals through curriculum learning or alternative approaches, and by
utilizing improved subgoal planning techniques.

F ENVIRONMENT DETAILS

F.1 REACHER

A robotic arm aims to make its end-effector reach the target position on 3D space. The state space
of the arm is 17-dimension, including the positions, angles, and velocities of itself, and the action-
space is 7-dimension. Initial point and target goal are set randomly at the start of episode both at
training and test time. The agent should reach the target point within 100 steps.

F.2 SAWYER

It is a vision-based robotic manipulation task where an agent controls a 2 DoF robotic arm from
image input and must manipulate a puck positioned on the table. The agent observes a 84 × 84 RGB
image showing a top-down view of the scene. The dimension of the workspace are 40cm × 20cm
and the puck has a radius of 4cm. We consider that the goal is achieved if both the arm and the puck
are within 5cm of their respective target positions.

F.3 ANTMAZE

A quadruped ant robot is trained to reach a random goal from a random location. The states of ant
is 31-dimension, including positions and velocities. An ant should reach the target point within 600
steps.

G IMPLEMENTATION DETAILS

From Equation 6, we can see that the number of subgoals k controls the distance between them. The
high-level policy outputs the distribution of subgoal. For each k, we sample 10 subgoals from the
distribution to calculate the mean in Equation 9.

The choice of task probability density estimation model mainly considers computational efficiency
and support for high-dimensional data (e.g., the state space in AntMaze has 31 dimensions). We
compare the results of the kernel density estimation (KDE) (Rosenblatt, 1956) and Flow (Papa-
makarios et al., 2021), and found that the KDE method only supports low-dimensional samples
(e.g., x and y coordinates), so we finally adopt the Flow model based on RealNVP (Dinh et al.,
2016) and follow basic parameters. More importantly, when a large number of candidate virtual
goals need to be processed, the calculation speed of the Flow model is significantly better than that
of the KDE model.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Hyperparameter Reacher AntMaze Sawyer
Q hidden sizes [256, 256] [256, 256] [256, 256]

Policy hidden sizes [256, 256] [256, 256] [256, 256]
Subgoal prediction hidden sizes [256, 256] [256, 256] [256, 256]

Hidden activation functions ReLU ReLU ReLU
Batch size 1024 2048 1024

Replay buffer size 1e6 1e6 1e5
Discount factor γ 0.99 0.99 0.99

polyak for target networks 5e-3 5e-3 5e-3
Critic learning rate 1e-3 1e-3 2e-3

Policy learning rates 1e-3 1e-3 5e-3
Subgoal prediction learning rate 1e-4 1e-4 1e-3

Flow model learning rate 1e-3 1e-3 1e-3
Flow model learning batch size 1024 1024 1024

actual goal:virtual goal 0.5:0.5 0.5:0.5 0.5:0.5
α 0.1 0.1 0.1

Table 1: Hyperparameters for VE.

The goal space of the Reacher environment is defined as (x, y, z) in Euclidean space. We transform
each state of the agent into a corresponding achieved goal, and use the state-value function V alone
to estimate the distance between the achieved goal and the desired goal.

In the Sawyer environment, we use the same encoder as RIS (Chane-Sane et al., 2021). The en-
coder compresses the received 84 X 84 RGB image into a 32-dimensional vector, and it updates
synchronously with the critic network. The gradients of the encoder are subsequently truncated.

H HYPERPARAMETERS

The hyperparameters we adopt in VE are shown in the Table 1. Each comparison baseline uses
the best parameters of the source code. We divide the experimental environment into two classes:
state-based ”Reacher” and ”AntMaze” and pixel-based ”Sawyer”. In ”Reacher” and ”AntMaze,”
we search the learning rate (subgoal prediction, policy, critic) from the candidates 0.0001, 0.001,
0.01 for VE with a 3 × 3 × 3 grid. We use the same parameters in these environments. However,
in ”Sawyer,” we discover that appropriately increasing the learning rate is a better choice. For the
baselines (RIS, PIG, HIGL), they use the same experimental environment as ours. So we keep the
parameters in the original paper (as the authors have tuned). For the others (GCSL, SAC+HER), we
adjust them using a parameter search method similar to VE.

18

	Introduction
	Related work
	Preliminary
	Goal-conditioned reinforcement learning
	Goal relabeling

	Learning goal-conditioned policy with virtual experiences
	Relabeling goals to construct virtual experience
	Self-supervised subgoal palnning
	subgoal-conditioned imitation learning

	Experiments
	Experimental setup
	Results
	Ablation studies

	Conclutsion
	Reproducibility Statement
	task probability density
	algorithm
	self-supervised subgoal planning
	Additional EXPERIMENTS
	Subgoal loss
	Results on the most difficult tasks
	Visualization of subgoal planning

	Additional Related Works
	Environment Details
	Reacher
	Sawyer
	AntMaze

	Implementation Details
	Hyperparameters

