GOAL-CONDITIONED REINFORCEMENT LEARNING WITH VIRTUAL EXPERIENCES

Anonymous authors

Paper under double-blind review

Abstract

Goal-conditioned reinforcement learning often employs a technique known as *Hindsight Experience Replay* (HER) for data augmentation by relabeling goals. However, HER limits goal relabeling to a single trajectory, which hinders the utilization of experiences from diverse trajectories. To address this issue, we present a curriculum learning method to construct virtual experiences, incorporating actual state transitions and virtual goals selected from the replay buffer. Considering that virtual experiences may contain a lot of noise, we also propose a self-supervised subgoal planning method that guides the learning of virtual experiences by imitating the subgoal-conditioned policy. Our intuition is that achieving a virtual goal may be challenging for the goal-conditioned policy, whereas simplified subgoals can provide effective guidance. We empirically show that the virtual experiences from diverse historical trajectories significantly boost the sample-efficiency compared to the existing goal-conditioned reinforcement learning and hierarchical reinforcement learning methods, even enabling the agent to learn tasks it has never experienced.¹

025 026

004

010 011

012

013

014

015

016

017

018

019

021

023

1 INTRODUCTION

027 028 029

Goal-conditioned reinforcement learning (GCRL) is an advanced form of deep reinforcement learning (RL) that aims to find an optimal solution for tasks involving multiple goals simultaneously and requiring long-term decision-making. For instance, it can effectively guide a multi-legged robot to a predetermined location on a map (Paul et al., 2019) or skillfully manipulate a robotic arm to grasp objects on a platform (Zhang et al., 2020). Unlike many existing methods that necessitate intricate reward functions tailored to each task (Ng et al., 1999; Brys et al., 2014; Devidze et al., 2022), GCRL simplifies the problem's complexity by relying solely on binary reward signals that indicate goal achievement (Nair et al., 2018; Liu et al., 2022). Nevertheless, binary rewards introduce the challenge of reward sparsity.

Humans possess the ability to synthesize past experiences and utilize this knowledge to efficiently
adapt to new tasks. Building upon this concept, HER (Andrychowicz et al., 2017) introduces a
method to reconstruct data from unsuccessful past experiences, partially mitigates the challenge of
sparse rewards by selecting the actual reached states in the trajectory as the relabeled goals. However, HER requires limiting the relabeled goals and state transitions within a single task trajectory,
which is not conducive to integrating experience from different tasks. For example, once the skills
of "grabbing apples" and "opening a drawer" are mastered, there is no need to relearn them from
scratch when performing the task of "putting apples into a drawer"; instead, these skills can be
combined.

As demonstrated in HER, merely broadening the selection scope of relabeled goals to the entire replay buffer yields no benefit. An intuitive explanation for this is that, without real trajectory support, the connection between actual state transitions and virtual goals remains tenuous, injecting substantial noise into the reconstructed data. During policy learning, such data not only fail to provide valuable experience but also undermine learning stability. To address this issue, we introduce curriculum learning when selecting virtual goals and use subgoals to simplify these goals. Inspired by prior work (Pitis et al., 2020), we propose a method for selecting virtual goals based on task

⁰⁵³

¹Code is available at https://anonymous.4open.science/r/VE-7224/

(a) The high state probability (b) The left shows random sampling of states, relabeled as goals, density near s_A and s_B does from the replay buffer. The right demonstrates filtering these relanot reflect the reachability of beled goals g by increasing difficulty, determined by task probabil-task (s_A, s_B) .

Figure 1: Illustration of (a) the disadvantage of state probability density and (b) expanding the sampling range to the replay buffer versus our approach for selecting by task probability density in the U-shape AntMaze environment (AntMaze-U).

probability density. This approach aims to provide virtual goals of increasing difficulty, thereby reducing subgoal planning complexity and improving the accuracy of subgoal-conditioned policies. Furthermore, we propose a simple self-supervised subgoal planning method that differs from previous studies (see Section 2 for details). This method, similar to high-level policies in hierarchical RL, leverages sampled self-supervised data in place of traditional reward signals to learn. Our key contributions are as follows:

- **Task-probability-density-based curriculum learning:** initially, we expand the selection scope of relabeled goals to the entire replay buffer, including not only actual goals within the same trajectory but also virtual goals across different trajectories. Subsequently, we envisage that gradual task difficulty facilitates the learning of long-term goals and improves the precision of subgoal planning. Hence, we propose using task probability density rather than state probability density to monitor an agent's learning progress and use it as a reference for selecting virtual goals. Implementing curriculum learning based on task probability density can further enhance the success rate of achieving multiple goals.
- Self-supervised subgoal planning: to effectively learn from virtual experiences, we propose a self-supervised subgoal planning method. Simplified subgoals reduce the task's complexity, and subgoal-conditioned policies can serve as reasonable imitation targets for goal-conditioned policies, thereby constraining and guiding the policy improvement process.

In summary, we propose a general framework for utilizing virtual experience (VE) to improve sample-efficiency in GCRL, and demonstrate its performance over existing GCRL and hierarchical RL methods in various robot navigation and control tasks based on the MuJoCo simulator (Todorov et al., 2012). The experimental results indicate that the proper use of virtual experience can significantly accelerate the learning of multiple goals. Moreover, when combined with subgoal planning, it provides valuable guidance for achieving complex long-term goals. This approach can even assist agents in accomplishing tasks they have never encountered before.

2 RELATED WORK

Goal relabeling. HER demonstrates that off-policy deep RL algorithms can reuse data in the replay buffer by relabeling goals in episodic trajectories. It is widely utilized as a core component in many related studies (Levy et al., 2017; Ren et al., 2019; Pitis et al., 2020; Durugkar et al., 2021; Kim et al., 2023). A growing consensus suggests that HER can be viewed as implicit curriculum learning, structuring curricula within historical trajectories by using transition data. CHER (Fang et al., 2019) optimizes the curriculum by considering the similarity and diversity of relabeled goals, but still does not overcome the limitations of a single trajectory. (Kuang et al., 2020) and (Pong et al., 2019; Pitis et al., 2020) also use the density estimation model to aid in goal selection. By prioritizing low-density goals based on the density estimation of the achieved goals, they increase the likelihood of these goals becoming candidates, thus facilitating curriculum learning.

These approaches are similar to ours, but they assume that, under the premise of a fixed initial state, a visited state is regarded as the achieved goal. However, when the initial state distribution encompasses the entire state space, a visited state cannot reliably indicate that the goal has been achieved, as a complete task is defined by both the initial state and the goal (see Figure 1 (a)). Our idea is to estimate the task probability density to track the learning progress of the agent, which is also applicable to the case of a fixed initial state.

114 Subgoal planning in GCRL. The curriculum learning mentioned above can be regarded as plan-115 ning within exploration or learning process. Planning is also a crucial concept in hierarchical RL. 116 When confronted with a long-horizon problem, high-level policies plan with temporally extended 117 actions, known as abstract actions, directing the low-level policies to execute primitive actions to 118 complete the interaction (Bacon et al., 2017; Park et al., 2024). In the context of GCRL, these abstract actions can be considered as subgoals employed as targets for the low-level policies. Current 119 approaches to subgoal planning can primarily be categorized into learning-based and search-based 120 methods. (Badrinath et al., 2024) treats the midpoint of the path as a subgoal in the context of 121 offline RL and trains a subgoal prediction module using a transformer. (Jurgenson et al., 2020) es-122 tablishes a connection between subgoal planning and the dynamic programming equation, which 123 inherently benefits navigation and obstacle avoidance tasks. However, extending this approach to 124 high-dimensional goal spaces remains challenging. These learning-based methods generally require 125 only a single forward inference to accomplish subgoal planning, making them more efficient than 126 search-based methods. But they also encounter challenges of learning. In contrast, VE can accu-127 rately predict subgoals based only on sampled self-supervised signals. Additionally, it is a common 128 practice to apply search-based subgoal planning in graphs (Huang et al., 2019; Eysenbach et al., 129 2019; Hoang et al., 2021; Zhang et al., 2021; Kim et al., 2021; 2023). Specifically, these methods construct a graph where nodes and edges correspond to states and inter-state distances respectively, 130 and various historical experiences are linked together by the graph. The purpose of planning is to 131 find the shortest path consisting of nodes to reach the goal, where the nodes can be regarded as the 132 subgoals. To apply graph-based planning to complex environments, some work focuses on learning 133 robust representations that cover the entire state space. Under the constraint of a limited number of 134 nodes, (Hoang et al., 2021) measures the similarity between subsequent features to ensure that the 135 nodes cover as large an area as possible. (Zhang et al., 2021) learns a latent space and obtains graph 136 nodes through clustering. The adjacent nodes reflect the temporal reachability. Others consider 137 combining traditional path planning methods, such as farthest point sampling (Huang et al., 2019), 138 to find shortest paths based on the graph (Kim et al., 2021; 2023). 139

Although graphs reducing the complexity of planning compared to state space, they still face challenges related to computational complexity and suboptimality. As PIG (Kim et al., 2023) demonstrates, searching for shortest paths for tasks in each batch of training data significantly increases computational overhead, limiting the batch size to a small value. Moreover, a finite number of nodes cannot plan optimal paths for all tasks. In contrast, VE is not subject to this limitation. It's similar in form to the high-level policy in hierarchical RL, but it does not control agent exploration; it is solely used to guide policy learning.

146 147 148

149 150

151

3 PRELIMINARY

3.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

152 GCRL aims to learn policies that can achieve multiple goals. Our reinforcement learning agent inter-153 acts with a discounted, infinite-horizon, goal-conditioned Markov decision process (MDP) (Sutton, 154 2018), defined by the tuple (S, A, G, p, r, γ). S, A, and G are the state, action and goal spaces, respectively, and $\gamma \in (0,1)$ is the discount factor. The transition function is denoted as $p(s_{t+1}|s_t, a_t)$ 155 where $s_t, s_{t+1} \in \mathcal{S}$ and $a_t \in \mathcal{A}$, and the reward function as $r(s_t, a_t, q)$. We set the reward r to -1156 for all actions until the agent reaches the goal. With the goal distribution $\rho(q)$, the objective of an 157 agent is to find the optimal policy $\pi^*(\cdot|s,g)$ that maximizes the expected sum of discounted rewards 158 in T steps 159

160

$$J(\pi) = \mathbb{E}_{g \sim \rho(g), s_t \sim p^{\pi}(\cdot|s_0, g)} \left[\sum_{t=0}^T \gamma^t r(s_t, a_t, g) \right]$$
(1)

We follow the standard off-policy actor-critic paradigm (Silver et al., 2014; Mnih et al., 2016; Fujimoto et al., 2018). Specifically, we sample a batch of data from the replay buffer \mathcal{B} . In the policy evaluation phase, an goal-conditioned action-value function (critic) Q(s, a, g) (Schaul et al., 2015) with parameters β gets update by minimizing the Bellman error

$$Q_{\beta_{k+1}} = \arg\min_{g} \mathbb{E}_{(s_t, a_t, s_{t+1}, g) \sim \mathcal{B}} \left[y_t - Q_{\beta_k}(s_t, a_t, g) \right]^2 \tag{2}$$

167 168 169

172 173 174

175 176

177

178

179

180

181 182

187 188

189

190

191

192

193

194

166

with the target value $y_t = r(s_t, a_t, g) + \gamma \mathbb{E}_{a_{t+1} \sim \pi(\cdot | s_{t+1}, g)} [Q_{\beta_k}(s_{t+1}, a_{t+1}, g)].$

During the policy improvement phase, the policy (actor) π with parameters θ is updated in the direction that maximizes the expected value of current critic Q.

$$\pi_{\theta_{k+1}} = \arg\max_{a} \mathbb{E}_{(s,g)\sim\mathcal{B}} \left[Q\left(s, \pi_{\theta_k}(a|s,g), g\right) \right]$$
(3)

3.2 GOAL RELABELING

In this paper, we assume states and goals share the same data space denoted by S = G, allowing each state to be treated as a goal. Typically, historical data is stored in a buffer as trajectories $\mathcal{B} = \{\tau_1, \tau_2, ...\}$, where each trajectory $\tau_i = \{s_0^i, a_0^i, s_1^i, a_1^i, ..., s_T^i, g^i\}$ represents the exploration history of a task (s_0^i, g^i) . We formalize the go relabeling method in Hindsight Experience Replay (Andrychowicz et al., 2017) as follows

$$(s_{t}^{i}, a_{t}^{i}, s_{t+1}^{i}, g^{i}, r(s_{t+1}^{i}, g^{i})) \to (s_{t}^{i}, a_{t}^{i}, s_{t+1}^{i}, s_{t+n}^{i}, r(s_{t+1}^{i}, s_{t+n}^{i}))$$
(4)

where $r(s_t^i, a_t, g^i)$ is simplified as $r(s_{t+1}^i, g^i)$ and $n \in [1, T - t]$. This implies that we can use future states s_{t+n}^i or final states s_T^i within the same trajectory as relabeled goals and recalculate the rewards r. These reconstructed data allow any task from that trajectory to have a chance to receive a positive reward signal.

Figure 2: VE consists of three parts. Left: the red gradient area represents the goal range learned from state s, recorded by task probability density estimation. We select the goal on the boundary as the relabeled goal. Middle: it illustrates the learning process of self-supervised subgoal planning. When the subgoal s_g generated by the high-level policy π^h is not better than the sampled subgoal \hat{s}_g , the probability of the sampled subgoal $\pi^h(\hat{s}_g|s,g)$ is increased. Right: during policy improvement, the goal-conditioned policy is required to imitate the subgoal-conditioned policy.

201 202 203

204

205

206

207

208 209

210

4 LEARNING GOAL-CONDITIONED POLICY WITH VIRTUAL EXPERIENCES

In this section, we introduce a new framework named VE, which consists of three main parts: (1) filtering relabeled goals by task probability density for building a step-by-step curriculum; (2) a subgoal planning method based on self-supervised learning for simplifying the relabeled goals; and (3) taking subgoal-conditioned policies as imitation targets to accelerate policy improvement. We provide an illustration of our framework base on AntMaze-U in Figure 2.

4.1 RELABELING GOALS TO CONSTRUCT VIRTUAL EXPERIENCE

As introduced in Section 3.2, the scope of goal relabeling in HER is limited. Our idea is that any goal can be used for relabeling when reconstructing data, such as the goal sampled from replay buffer or designed by a human. We term this approach *generalized goal relabeling* and present it as a more generalized form compared to Formula (4):

$$(s_t^i, a_t^i, s_{t+1}^i, g^i, r(s_{t+1}^i, g^i)) \to (s_t^i, a_t^i, s_{t+1}^i, g^j, r(s_{t+1}^i, g^j))$$
(5)

In this paper, we discuss the relabeled goal g^j sampled from the states of replay buffer. If j = i, it is equivalent to HER, and we refer to these goals as *actual goals*. Otherwise, if $j \neq i$, these are termed *virtual goals*. Intuitively, a curriculum that gradually increases in difficulty can help an agent complete tasks faster. As shown in the Figure 2 (Left), given a state *s*, we hope that the virtual goal *g* in the virtual experience is on the boundary of the reachable state from *s*. In order to effectively evaluate the reachability of the task (s, g), we propose estimating the task probability density *e* in curriculum, acting as a filter to screen suitable virtual goals from random sampling.

223 Specifically, we establish a dedicated buffer \mathcal{B}_l to record the learned data. Inspired by previous 224 work (Pitis et al., 2020), we approximate the learning frequency of tasks during training as their 225 probability density. When screening the virtual goal for a state s, our initial step is to sample a 226 set of states from the replay buffer \mathcal{B} which serve as candidate virtual goals q. Subsequently, we compute their task probability density e(s, q) and select one that satisfies conditions (e.g. $0.8\bar{e} <$ 227 $e(s,g) < 1.2\bar{e}$, with \bar{e} denoting the mean) as the virtual goal. It is crucial to note that our method of 228 employing a fixed range to filter out virtual goals on the boundary is empirical and performs well in 229 simple environments (see Figure 5). This process will benefit from future improvements. For details 230 on the learning process of task probability densities, please refer to Appendix A. 231

A significant advantage of virtual experience is that it broadens the distribution of tasks in the reconstructed data, particularly for tasks that are difficult to achieve through traditional exploration. Learning these tasks through virtual experience, however, is inherently challenging. Firstly, from a policy perspective, there is a lack of connection between the original state transitions $(s_t^i, a_t^i, s_{t+1}^i)$ and the relabeled goals g^j . This reduces the accuracy of policy evaluation. Secondly, policy improvements based on virtual experience are also inefficient. So we simplify the virtual goal through the subgoal planning method in Section 4.2.

239 240

246 247

250

262 263

267

268

4.2 Self-supervised subgoal palnning

We implement subgoal planning through a high-level policy $\pi^h(s, g, k)$ similar to that used in hierarchical RL. It is important to emphasize that subgoals are only utilized for policy improvement and do not guide exploration. Consistent with previous work, we consider the state value function |V(s,g)| as the discounted distance from the state s to the goal g. Based on this, we define the transfer distance vector $v(s, \{s_q\}_k, g)$ using the subgoal sequence $\{s_q\}_k = \{s_{q_1}, s_{q_2}, ..., s_{q_k}\}$ as:

$$v(s, \{s_g\}_k, g) = \left[|V(s, s_{g_1})|, |V(s_{g_1}, s_{g_2})|, \cdots, |V(s_{g_{k-1}}, s_{g_k})|, |V(s_{g_k}, g)| \right]^{\perp}$$
(6)

The high-level policy π^h with parameters ϕ is trained to predict optimal subgoals that minimize the p-norm of the transition distance vector with loss

$$\mathcal{L}_{\pi^h}(\phi) = \mathbb{E}_{(s,g)\sim\mathcal{B}, s_{g_k}\sim\pi^h(\cdot|s,g,k)}[d(s, \{s_g\}_k, g)] \tag{7}$$

251 where $d(s, \{s_g\}_k, g) = \|v(s, \{s_g\}_k, g)\|_p$.

The novelty of our approach lies in applying the idea of Advantage-Weighted Regression (AWR) 253 (Peng et al., 2019) to the learning of high-level policies. Specifically, we equate the self-supervised 254 signal $d(s, \{\hat{s}_q\}_k, g)$ to the value Q in the advantage function A = Q - V, where the prediction of 255 the high-level policy $d(s, \{s_q\}_k, g)$ corresponds to the value V. The difference is that we compare 256 the advantages of sampled subgoals over those output by high-level policies, rather than comparing 257 the advantage of the current policy over the historical (or mixed) policy as in AWR. Consequently, 258 we propose randomly sampling states from the replay buffer as subgoals $\{\hat{s}_q\}_k$. If the advantage 259 A > 0, it indicates that the prediction of the high-level policy is inferior to the sampled subgoals 260 and should be adjusted to approximate them. Conversely, if the advantage A < 0, the prediction of 261 high-level policy should deviate from the sampled subgoals. The gradient of loss $\mathcal{L}_{\pi^h}(\phi)$ is

$$\nabla_{\phi} \mathcal{L}_{\pi^h}(\phi) = \nabla_{\phi\{\hat{s_g}\}_k \sim \mathcal{B}, \hat{s_{g_k}} \sim \{\hat{s_g}\}} \log \pi^h_{\phi}(\hat{s_{g_k}}|s, g) A^{\pi^h}(s, g) \tag{8}$$

where $A^{\pi^h}(s,g) = d_{\{\hat{s_g}\}_k \sim \mathcal{B}}(s,\{\hat{s_g}\}_k,g) - d_{\{s_g\}_k \sim \pi^h}(s,\{s_g\}_k,g)$. We will introduce methods for choosing the number of subgoals k and the *p*-norm in the Appendix C.

4.3 SUBGOAL-CONDITIONED IMITATION LEARNING

²⁶⁹ In this paper, we consider the control problem in continuous space, so we assume that the action follows a Gaussian distribution. The process of the goal-conditioned policy imitating the subgoal-

(a) AntMaze-U(b) AntMaze-S (c) AntMaze- Π (d) AntMaze-W (e) Sawyer (f) Reacher

Figure 3: Visualizations of our experimental environments, where the Sawyer is a pixel-based task. When trained in AntMaze, an agent starts at a random point, and aims to reach a random goal. The most challenging tasks used for evaluation in AntMaze: the blue point and the position of an ant indicates the goal and the initial point, respectively.

conditioned policy can be written as $D_{\text{KL}}(\pi^{prior}(s, s_{g_k})||\pi(s, g))$. Additionally, the optimization objective of imitation learning can be weighted into the policy improvement as a regularization term

$$\pi_{\theta_{m+1}} = \arg\max_{\theta} \mathbb{E}_{(s,g)\sim\mathcal{B}, s_{g_k}\sim\pi^h} \left[Q\left(s, \pi_{\theta_m}(s,g), g\right) - \frac{\alpha}{k} \sum_{i=1}^k D_{\mathsf{KL}}(\pi^{prior}(s,s_{g_i})||\pi_{\theta_m}(s,g)) \right]$$
(9)

By generating subgoal-conditioned policies based on simplified subgoals, we recognize the key role of prior policies π^{prior} in imitation learning. Previous methods utilize historical (Pertsch et al., 2021), expert (Sonabend et al., 2020), or current policies (Kim et al., 2023) as prior policies, while we conduct a comparison and select the soft-updated historical policies (see Figure 7 **right** for more details). This selection stems from the reason that expert policies are usually difficult to obtain, historical policies lag in acquiring knowledge, and current policies may lack stability. In contrast, the soft-updated historical policy strikes a good balance between historical and current policies. The full algorithm is summarized in the Appendix B.

5 EXPERIMENTS

Our experiments aim to answer the following questions: (1) Can VE improve sample-efficiency and performance in continuous control tasks compared to the baseline? (2) Is curriculum learning based on task probability density effective? (3) What impact does the proportion of virtual experiences in the training data have on the policy? (4) How does imitating subgoal-conditioned policies influence goal-conditioned policy learning? 5 Can VE integrate knowledge from different tasks?

5.1 EXPERIMENTAL SETUP

Environments. Following the experimental setup of previous research (Kim et al., 2023), we design a series of challenging environments based on MuJoCo simulator (Todorov et al., 2012). Specifi-cally, our navigation task consists of $\{U, S, \Pi, W\}$ -shaped AntMaze environments, and our robotic arm control tasks involve Sawyer and Reacher (see Figure 3 for the visualization of environments), with Sawyer being a pixel-based task. In contrast to (Huang et al., 2019; Kim et al., 2023), where the goal space is defined on the 2-dimension that represents the (x, y) position of agent in AntMaze tasks, we use a entire 31-dimensional state space as the goal space following the setting of RIS (Chane-Sane et al., 2021). In the Reacher task, the goal space is 3-dimension. The configuration of the Sawyer task remains consistent with (Chane-Sane et al., 2021), where we obtain a pixel repre-sentation of the target through pre-sampling. We provide more details in Appendix F.

Implementation. VE is based on the standard Actor-Critic framework. In order to reduce the impact of Q value overestimation, we use double Q value function. During the network update, we set the target network for the actor and the critic, and adopt a soft update method with the coefficient 5e-3. We use the actor target policy as the prior policy, which can effectively ensure the stable convergence of the policy in our experiments. For the baseline, we follow the original setup (see more details in Appendix G).

Evaluation. Our experimental settings for navigation include random start points and random endpoints, requiring the agent to master the entire map. This setup is more challenging than the one with

Figure 4: Learning curves for agents in different environments. All methods are run with 4 seeds, and the solid and shaded lines represent mean and standard deviation, respectively. It is important to note that PIG, HIGL and GCSL cannot handle pixel-based tasks (Sawyer), and both HIGL and GCSL are nearly unsuccessful in complex navigation tasks.

345

346

fixed start and end points. Additionally, for each navigation map, we define the most difficult task as
the farthest path between the origin and destination (see Figure 3). Test results for the random task
are reported using four different seeds, with 100 test episodes conducted every 5,000 training steps.
For visual clarity, we smooth all the curves equally.

354 Baselines. We select several representative methods as comparison baselines (see the Appendix H 355 for detailed hyperparameter settings). PIG (Kim et al., 2023): A subgoal self-imitation framework based on graph planning, where subgoals are planned on the graph using a skipping mechanism. 356 The version combined with MSS (Huang et al., 2019) is utilized in the experiment; HIGL (Kim 357 et al., 2021): A hierarchical RL algorithm combined with path planning. It maintains a queue 358 of subgoals by computing novelty and coverage, selecting appropriate subgoals for the low-level 359 policy through path planning; **RIS** (Chane-Sane et al., 2021): A method that predicts the midpoint 360 of a path as a subgoal, and also uses the subgoal to guide the current policy learning; GCSL (Ghosh 361 et al., 2019): An imitation learning method for generating supervised data by relabeling trajectories. 362 It achieves further goals based on the optimal substructure of GCRL by continuously imitating 363 successful trajectories; SAC (Haarnoja et al., 2018): A classic RL algorithm based on maximum 364 entropy, and it has a good performance in continuous control tasks. We combine SAC and HER to 365 adapt to GCRL.

366 367

368

5.2 Results

In Figure 4, our proposed VE demonstrates a substantial performance advantage over other methods across various control tasks. Methods such as PIG and HIGL, which integrate historical experience by building a graph, require a planning strategy or high-level policy when testing. In contrast, our method relies solely on goal-conditioned policy. Furthermore, building a graph model increases the computational complexity, causing PIG and HIGL need more training steps to achieve optimal performance, as described in the original results (see (Kim et al., 2023)).

Additionally, it should be emphasized that, except for VE and RIS, the goal space used by other methods includes only coordinate positions in the AntMaze environments. This simplification significantly reduces the complexity of subgoal planning and the learning of goal-conditioned policies. This also highlights the advantage of VE in handling high-dimensional goal spaces. Compared to

Figure 5: We visualize the comparison between task probability density (up) and state probability density (down) during the training process in AntMaze-U and AntMaze-W (the state s in e(s, g) is chosen to be located as shown in Figure 3, and the values of e are normalized in each subfigure), illustrating the curriculum learning composed of virtual goals with gradually increasing difficulty.

399

400

401

402

403

404

405

393

394

395

RIS, our subgoal planning demonstrates greater accuracy (see Appendix D.1). Furthermore, the efficiency of VE in learning multiple tasks has improved due to curriculum learning, which screens suitable virtual goals. In contrast to GCSL, which merely imitates historical trajectories, VE enhances training data by incorporating virtual experiences, thereby achieving higher sample utilization. Since our method ultimately focuses on imitation learning in Equation (9), SAC+HER can be regarded as a baseline without imitation learning. From the results, we can see that SAC+HER cannot learn reliable policies. Then, we evaluate the performance of VE and RIS on the most difficult tasks (see Figure 6). This implies that the application of virtual transition experiences can be highly beneficial in overcoming challenging tasks. Additional results are available in the Appendix D.2.

406 407 408

409

5.3 ABLATION STUDIES

In this section, we conduct ablation validation experiments on various key components of VE to demonstrate the effectiveness of our method. All experiments were carried out in U-shaped and W-shaped maps.

413 Goal relabeling with task probability density. Goal relabel-414 ing is a crucial method for constructing virtual experiences. We 415 experimentally verify the impact of different ratios of actual and 416 virtual experiences on VE. The results, as shown in Figure 7 417 (left), indicate that the optimal ratio is "a:v=0.5:0.5". Notably, when relying solely on actual experiences ("a:v=1.0:0"), the 418 policy performs comparably to SAC+HER, demonstrating our 419 method's effective utilization of these samples for learning. In 420 contrast, relying exclusively on virtual experiences ("a:v=0:1.0") 421 results in the policy failing to learn effectively. We attribute this 422 to actual experiences enabling the agent to quickly master simple 423 tasks, while virutal experiences help the agent tackle more chal-424 lenging, long-horizon tasks. When the agent has not yet learned 425 simple tasks, it cannot acquire knowledge from virtual experi-426 ence. Furthermore, we compare the effects of screening virtual

Figure 6: Average success rate of VE and RIS in the most difficult task on AntMaze-U.

targets based on task probability density versus randomly sampling virtual goals. The Figure 7
(middle) shows that providing virtual goals with gradually increasing difficulty in course learning
can help further improve learning efficiency. The visualization result of task probability density is
shown in Figure 5. The state probability density (down) can only assess the frequency of visiting
a state, not the reachability of task. In contrast, the task probability density (up) can monitor the
agent's learning progress and offer curriculum of gradually increasing difficulty during training.

Figure 7: We investigate (**left**) the impact of different ratios of actual goals (a) and virtual goals (V) on VE, (**middle**) the impact of curriculum learning (cl) on VE, and (**right**) the impact of different subgoal strategies and prior strategies on VE. Here, "os" denotes oracle subgoals, "oa" denotes oracle actions, "ba" denotes behavioral actions, and "rs" denotes random subgoals. All the above experiments are tested in environment AntMaze-U.

Self-Supervised Subgoal Planning. We devise two alternatives to demonstrate the effectiveness of our subgoal planning model (see Figure 7 (right)): sampling subgoals by method "os" or "rs." It is evident that more precise subgoals can significantly expedite the learning of goal-conditioned policies. We also observe that the oracle subgoal does not demonstrate substantial improvement during the initial stages of training. Our assumption is that, at this stage, the learning task is fundamentally simple, causing the high-level policy planning subgoals to align closely with the oracle subgoals. We visualize the subgoals of the testing phase, with more details provided in the Appendix D.3.

454 Subgoal-Conditioned Imitation Learning. The core idea of 455 our method of using virtual experience is to imitate the subgoal-456 conditioned policy. Combined with the Equation 9, our method 457 directly applies the knowledge contained in the virtual experience to the policy instead of the value function. Intuitively, 458 this approach is expected to be more efficient than first optimiz-459 ing the value function and subsequently improving the policy 460 by maximizing the value function. To further verify the excep-461 tional capability of the VE in integrating historical experience, 462 we design an experiment on AntMaze-U. During training, we 463 constrain the range of random task generation so that the initial 464 state and the goal appear only on the same side of the U-shaped 465 map. We evaluate the average success rate on both random tasks 466 and the most difficult tasks, reflecting the VE's ability to inte-

Figure 8: Average success rate of VE on constrained AntMaze-U.

grate knowledge learned on both sides of the map. As shown in Figure 8, even under task constraints,
the VE successfully solves all navigation tasks on AntMaze-U, including the most challenging ones,
with only slightly reduced learning efficiency compared to unrestricted conditions.

⁴⁷¹ 6 CONCLUTSION

472

470

441

442

443

444

445 446

473 Limitations and Future Work. While VE has shown promising results, it is essential to acknowl-474 edge certain limitations. For instance, the hyperparameter k is related to the task's scale. For more 475 complex environments, accurate subgoals with different decision horizons can help further improve 476 the quality of subgoal-conditioned policies. At the same time, complex environments also introduce challenges in estimating task probability density. Future research can consider applying subgoals 477 to both agent exploration and policy learning. Moreover, filtering low-quality subgoal-conditioned 478 policies or considering safety constraints in subgoal planning (Garcia & Fernández, 2015; Gu et al., 479 2022) represents potential directions for future investigation. 480

We propose a goal-conditioned reinforcement learning method, VE, that integrates knowledge from
 different historical tasks by constructing virtual experiences through a curriculum. We highlight that
 simply using virtual experiences does not effectively aid policy learning, whereas the self-supervised
 subgoal planning we propose significantly reduces the difficulty of achieving virtual goals. By
 imitating subgoal-conditioned policies, the agent is expected to overcome the exploration dilemma
 and accomplish tasks that require complex long-term decisions.

486 7 REPRODUCIBILITY STATEMENT

We provide the implementation details of our method in Section 5.1 and Appendix G. We also open-source our codebase.

References

488

489

490 491

492

496

499

500

501

502

531

532

- Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
 McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re play. Advances in neural information processing systems, 30, 2017.
- Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31, 2017.
 - Anirudhan Badrinath, Yannis Flet-Berliac, Allen Nie, and Emma Brunskill. Waypoint transformer: Reinforcement learning via supervised learning with intermediate targets. *Advances in Neural Information Processing Systems*, 36, 2024.
- Tim Brys, Anna Harutyunyan, Peter Vrancx, Matthew E Taylor, Daniel Kudenko, and Ann Nowé.
 Multi-objectivization of reinforcement learning problems by reward shaping. In 2014 international joint conference on neural networks (IJCNN), pp. 2315–2322. IEEE, 2014.
- Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning with imagined subgoals. In *International Conference on Machine Learning*, pp. 1430–1440.
 PMLR, 2021.
- Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping
 for reinforcement learning under sparse rewards. *Advances in Neural Information Processing Systems*, 35:5829–5842, 2022.
- Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv preprint arXiv:1605.08803*, 2016.
- Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic motivation for reinforcement learning. *Advances in Neural Information Processing Systems*, 34:8622–8636, 2021.
- Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging planning and reinforcement learning. *Advances in Neural Information Processing Systems*, 32, 2019.
- Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight
 experience replay. Advances in neural information processing systems, 32, 2019.
- 525
 526
 527
 528
 Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for reinforcement learning agents. In *International conference on machine learning*, pp. 1515–1528. PMLR, 2018.
- Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor critic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.
 - Javier Garcia and Fernando Fernández. A comprehensive survey on safe reinforcement learning. Journal of Machine Learning Research, 16(1):1437–1480, 2015.
- Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach, and Sergey Levine. Learning to reach goals via iterated supervised learning. *arXiv preprint arXiv:1912.06088*, 2019.
- Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and
 Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. *arXiv* preprint arXiv:2205.10330, 2022.

540 541 542 543	Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In <i>International conference on machine learning</i> , pp. 1861–1870. PMLR, 2018.					
544 545 546	Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Carvalho, and Honglak Lee. Successor feature landmarks for long-horizon goal-conditioned reinforcement learning. <i>Advances in Neural Information Processing Systems</i> , 34:26963–26975, 2021.					
547 548 549	Edward S Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for exploration. arXiv preprint arXiv:2303.13002, 2023.					
550 551	Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal reaching. Advances in Neural Information Processing Systems, 32, 2019.					
552 553 554 555	Tom Jurgenson, Or Avner, Edward Groshev, and Aviv Tamar. Sub-goal trees a framework for g based reinforcement learning. In <i>International conference on machine learning</i> , pp. 5020–5 PMLR, 2020.					
556 557	JooSeuk Kim and Clayton D Scott. Robust kernel density estimation. <i>The Journal of Machine Learning Research</i> , 13(1):2529–2565, 2012.					
558 559 560	Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical reinforcement learning. <i>Advances in Neural Information Processing Systems</i> , 34:28336–28349, 2021.					
562 563	Junsu Kim, Younggyo Seo, Sungsoo Ahn, Kyunghwan Son, and Jinwoo Shin. Imitating graph-based planning with goal-conditioned policies. <i>arXiv preprint arXiv:2303.11166</i> , 2023.					
564 565 566 567	Yingyi Kuang, Abraham Itzhak Weinberg, George Vogiatzis, and Diego R Faria. Goal density-based hindsight experience prioritization for multi-goal robot manipulation reinforcement learning. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 432–437. IEEE, 2020.					
569 570	Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies with hindsight. <i>arXiv preprint arXiv:1712.00948</i> , 2017.					
571 572	Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Problems and solutions. <i>arXiv preprint arXiv:2201.08299</i> , 2022.					
574 575 576	Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In <i>International conference on machine learning</i> , pp. 1928–1937. PMLR, 2016.					
577 578 579 580	Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual reinforcement learning with imagined goals. <i>Advances in neural information processing systems</i> , 31, 2018.					
581 582	Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks via visual subgoal generation. In <i>International Conference on Learning Representations</i> , 2019.					
583 584 585	Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In <i>Icml</i> , volume 99, pp. 278–287. Citeseer, 1999.					
586 587 588	George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak- shminarayanan. Normalizing flows for probabilistic modeling and inference. <i>The Journal of</i> <i>Machine Learning Research</i> , 22(1):2617–2680, 2021.					
589 590 591	Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal- conditioned rl with latent states as actions. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.					
592 593	Sujoy Paul, Jeroen Vanbaar, and Amit Roy-Chowdhury. Learning from trajectories via subgoal discovery. Advances in Neural Information Processing Systems, 32, 2019.					

594 595 596	Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and scalable off-policy reinforcement learning. <i>arXiv preprint arXiv:1910.00177</i> , 2019.						
597 598	Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned skill priors. In <i>Conference on robot learning</i> , pp. 188–204. PMLR, 2021.						
599 600 601	Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain exploration for long horizon multi-goal reinforcement learning. In <i>International Conference on Machine Learning</i> , pp. 7750–7761. PMLR, 2020.						
602 603 604 605	Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew- fit: State-covering self-supervised reinforcement learning. <i>arXiv preprint arXiv:1903.03698</i> , 2019.						
606 607	Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. Exploration via hindsight goa generation. Advances in Neural Information Processing Systems, 32, 2019.						
608 609 610	Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. <i>The annals of mathematical statistics</i> , pp. 832–837, 1956.						
611 612	Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In <i>International conference on machine learning</i> , pp. 1312–1320. PMLR, 2015.						
613 614 615 616	David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmille Deterministic policy gradient algorithms. In <i>International conference on machine learning</i> , pp 387–395. Pmlr, 2014.						
617 618 619	Aaron Sonabend, Junwei Lu, Leo Anthony Celi, Tianxi Cai, and Peter Szolovits. Expert-supervised reinforcement learning for offline policy learning and evaluation. <i>Advances in Neural Information Processing Systems</i> , 33:18967–18977, 2020.						
620 621	Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.						
622 623 624	Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE, 2012.						
625 626 627	Lunjun Zhang, Ge Yang, and Bradly C Stadie. World model as a graph: Learning latent landmarks for planning. In <i>International Conference on Machine Learning</i> , pp. 12611–12620. PMLR, 2021.						
628 629	Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value disagreement. Advances in Neural Information Processing Systems, 33:7648–7659, 2020.						
631							
632 633							
634							
635 636							
637							
638 639							
640							
641							
642							
643							
644							
645							
646							

⁶⁴⁸ A TASK PROBABILITY DENSITY

649 650 651

652

653

654

655

656

657

658

659

660

In order to track the agent's progress in learning different tasks, we approximate the training frequency of the task as the task probability density e. This is based on the simple intuition that the more frequently a task is trained, the higher its probability of being sampled. Given an initial state, we then select one from candidate virtual goals that aligns with the current learning progress frontier to guide the learning process. Specifically, we compare two commonly used probability density estimation methods, KDE (Kim & Scott, 2012) and Flow (Papamakarios et al., 2021). Our experiments found that the Flow model had better performance in high-dimensional space. At the same time, the Flow model based on RealNVP (Dinh et al., 2016) was more efficient in the calculation, and its time consumption was significantly reduced compared to the KDE method. Therefore, we implemented the Flow model based on RealNVP to estimate task probability density. We designate a dedicated replay buffer \mathcal{B}_l for recording recent training data. The Flow model is updated in parallel with the policy learning process to effectively track learning progress.

665 666

667 668

701

B ALGORITHM

We provide algorithm that represent VE in Algorithm 1.

000									
669	Algorithm 1 VE								
670	Initialize replay buffer $\mathcal{B}, \mathcal{B}_l$								
671	Initialize $Q_{\beta}, \pi_{\theta}, \pi_{\phi}^{h}$								
672	Initialize task probability density model (Flow model based on RealNVP) e								
673	1:	: for $k = 1, 2,$ do							
674	2: Collect experience in \mathcal{B} using π_{θ}								
675	3:	Sample batch data $d \sim \mathcal{B}$							
676	4:	Go relabeling with task probability density model e							
677	5:	Store batch data d in \mathcal{B}_l							
678	6:	Update task probability density model e with data from buffer \mathcal{B}_l							
679	7:	Sample batch state $s \sim \mathcal{B}$ as subgoal baseline \hat{s}_g							
680	8:	Planning subgoals with π_{ϕ}^{h}							
681	9:	Update Q_{β} using Equation equation 2 (<i>Policy Evaluation</i>)							
682	10:	Update π^h_{ϕ} using Equation equation 8 (Self -Supervised Subgoal Planning)							
683	11:	Update π_{θ} using Equation equation 9 (Policy Improvement with Subgoal-Conditioned Imita-							
684		tion Learning)							
685	12:	end for							
686									
687									
688									
689									
690	С	SELF-SUPERVISED SUBGOAL PLANNING							
691									
692	In S	faction 4.2, we discusse how to perform subgeal planning via self supervised learning. There are							
693	113 section 4.2, we discusse now to perform subgoar pranning via sen-supervised learning. There are two key parameters, the norm <i>n</i> and the number of subgoals <i>k</i>								
	ι W Ο	$k \in \mathcal{F}$							

First, we demonstrate that under the definition of reward function in Section 3.1, using the 1-norm leads to subgoal degradation, whereas using the 2-norm and the ∞ -norm can theoretically learn the optimal subgoal estimate.

698	Obviously, according to the definition of value function ($r = -1, \gamma = 0.99$), we can get	
699		
700	$V = r + \gamma r + \gamma^2 r + \dots + \gamma^T r$	(10)

- $= -(1 \gamma^T)$ (omit coefficient)
 - 13

and based on Equation 6, we can get

704 705 706

708 709 710

719

720

721

722

723

724

725 726

727

728

729 730

$$d = \|v(s, \{s_g\}_k, g)\|_p$$
$$= (\sum_{i=1}^k |V(s_{g_i})|^p)^{\frac{1}{p}}$$
$$= (\sum_{i=1}^k (1 - \gamma^{t_i})^p)^{\frac{1}{p}}$$

(11)

711 Since $f(x) = x^p$ ($x \in (0,1), p \ge 1$) is a convex function when $p \ge 2$, let $x_i = 1 - \gamma^{t_i}$ and 712 $\sum t_i = T$. Using Jensen's inequality, we know that when p = 1, the minimum value of L is obtained at $t_1 = t_2 = \cdots = t_{k-1} = 1$ and $t_k = T - k + 1$. This means that the number of k - 1713 subgoals degenerate into adjacent states, which is not conducive to high-level policy learning. And 714 when $p \ge 2$, the minimum value of d is obtained at $t_1 = t_2 = \cdots = t_k = T/k$. This is equivalent 715 to equally partitioning the optimal path from the state s to the goal g among the k subgoals. We 716 experimentally compared the results for $p = \{1, 2, \infty\}$ and $k = \{1, 2\}$ on AntMaze environments 717 in Figure 9. 718

Figure 9: Learning curves for agents in (a) AntMaze-U and (b) AntMaze-II with different hyperparameters p and k.

733 We firstly observe that when p = 1, the agent is incapable of learning strategies to address a variety 734 of tasks, which aligns with our theoretical proof. Although the inference indicates that when p = 2 or 735 $p = \infty$, the high-level policy can formulate accurate subgoals, the empirical evidence suggests that 736 a degradation of the goal-conditioned policy occurs when p = 2. We speculate that this occurrence 737 might be due to the necessity for the sampled subgoals to secure an overall smaller discounted 738 transfer distance to provide a better self-supervisory signal. When $p = \infty$, only the maximum 739 element in the discounted transfer vector, namely, the longest part of the total trajectory, needs to be 740 considered, thereby stabilizing the training process. Another potential reason could be that due to 741 the presence of the discount factor, long-term tasks are more heavily impacted by the deviation in the state value calculation, leading to the instability of subgoal planning. 742

Further observations reveal that when $p = \infty$ and the number of subgoals is two or more, the efficiency of the goal-conditioned policy update is remarkable in the early stages, yet dwindles over time. We conjecture that this may be attributed to the immense challenge of concurrently and randomly sampling more than one subgoal and positioning them on the optimal trajectory. However, it is comparatively simpler when only one subgoal. Based on overall observation, we selected $p = \infty$ and k = 1 due to their demonstrable stability and efficiency.

749 750 751

753

D ADDITIONAL EXPERIMENTS

- 752 D.1 SUBGOAL LOSS
- We calculate the subgoal losses for VE, VE without curriculum learning, and RIS on AntMaze-U
 (see Figure 10), derived by computing the Mean Squared Error (MSE) in correlation with the oracle subgoal.

VE Avg. Subgoal Distance VE w/o cl RIS Enveronment Steps (x1000) Figure 10: Subgoal losses of VE, VE without curriculum learning (cl) and RIS on AntMaze-U. D.2 **RESULTS ON THE MOST DIFFICULT TASKS** We evaluate our method on all maps of AntMaze (see Figure 11), comparing the average success rate with RIS on the most difficult tasks (all other methods are 0). 1.0 1.0 8.0 gate 9.0 success Kate 9.0 success Kate 9.0 success Kate 8.0 Success Rate 9.0 Success Rate 9.0 Success Rate . б 0.2 . б 0.2 VE RIS 0.0↓ 0 0.0↓ 0 Enveronment Steps (x1000) Enveronment Steps (x1000) (a) AntMaze-U (b) AntMaze-S 1.0 1.0 success Rate 9.0 Success Rate 7.0 Success Rate 8.0 Success Rate 9.0 Success Rate 9.0 Success Rate . A 0.2 . 6 0.2 0.0↓ 0 0.0 0 Enveronment Steps (x1000) Enveronment Steps (x1000) (C) AntMaze-II (D) AntMaze-W Figure 11: Average success rate of VE and RIS in the most difficult task.

In Figure 12, we also visualize the final states on the map.

D.3 VISUALIZATION OF SUBGOAL PLANNING

⁸⁰⁹ We visualize the subgoal planning of VE in all navigation tasks, and the results are shown in the Figure 13.

Figure 12: The results of three methods on the most difficult tasks in four navigation environments. We test at different checkpoints: AntMaze-U at 150k environment steps; AntMaze-S at 200k environment steps; AntMaze-Pi at 300k environment steps and AntMaze-W at 500k environment steps.

Figure 13: Visualization of subgoal planning on all maps of AntMaze.

864 E ADDITIONAL RELATED WORKS

866 Determining an appropriate goal for the agent remains an ongoing challenge. (Florensa et al., 2018) 867 define a reward to quantify the agent's proficiency during the testing phase. This reward, informed 868 by the most recent test results, serves as a measure throughout the training process to identify areas where the agent excels or needs improvement. This evaluative information is then used to set goals for the subsequent phase. As the agent's capabilities improve, the goals gradually become more 870 challenging until the desired objectives are achieved. (Hu et al., 2023) introduce PEG, an approach 871 based on a world model that uses the Go-Explore framework to facilitate exploration. To reduce 872 the computational burden associated with evaluating the agent's capabilities, PEG extrapolates the 873 process within the world model instead of directly interacting with the real environment. Skew-Fit 874 (Pong et al., 2019) samples states from a replay buffer and assigns more weight to rare states. It 875 then trains a generative model with these weighted samples. By sampling new states with goals 876 proposed from this generative model, a higher entropy state distribution is obtained in the next 877 iteration. (Nair & Finn, 2019) train a subgoal generative model and a transfer prediction model. 878 For a given goal, a series of subgoals are generated from the subgoal generative model, and the 879 transfer prediction model is used to plan a sequence of actions to achieve these subgoals. In contrast, 880 our work focuses on learning strategies from virtual experiences. Our method can be enhanced 881 by selecting suitable virtual goals through curriculum learning or alternative approaches, and by utilizing improved subgoal planning techniques. 882

883 884

885

887

F ENVIRONMENT DETAILS

F.1 REACHER

A robotic arm aims to make its end-effector reach the target position on 3D space. The state space of the arm is 17-dimension, including the positions, angles, and velocities of itself, and the actionspace is 7-dimension. Initial point and target goal are set randomly at the start of episode both at training and test time. The agent should reach the target point within 100 steps.

892 893 F.2 SAWYER

It is a vision-based robotic manipulation task where an agent controls a 2 DoF robotic arm from image input and must manipulate a puck positioned on the table. The agent observes a 84 × 84 RGB image showing a top-down view of the scene. The dimension of the workspace are 40cm × 20cm and the puck has a radius of 4cm. We consider that the goal is achieved if both the arm and the puck are within 5cm of their respective target positions.

F.3 ANTMAZE

A quadruped ant robot is trained to reach a random goal from a random location. The states of ant is 31-dimension, including positions and velocities. An ant should reach the target point within 600 steps.

904 905

907

910

899 900

901

902

903

906 G IMPLEMENTATION DETAILS

From Equation 6, we can see that the number of subgoals k controls the distance between them. The high-level policy outputs the distribution of subgoal. For each k, we sample 10 subgoals from the

distribution to calculate the mean in Equation 9.

The choice of task probability density estimation model mainly considers computational efficiency and support for high-dimensional data (e.g., the state space in AntMaze has 31 dimensions). We compare the results of the kernel density estimation (KDE) (Rosenblatt, 1956) and Flow (Papamakarios et al., 2021), and found that the KDE method only supports low-dimensional samples (e.g., x and y coordinates), so we finally adopt the Flow model based on RealNVP (Dinh et al., 2016) and follow basic parameters. More importantly, when a large number of candidate virtual goals need to be processed, the calculation speed of the Flow model is significantly better than that of the KDE model.

0.1.0				
918	Hyperparameter	Reacher	AntMaze	Sawyer
919	Q hidden sizes	[256, 256]	[256, 256]	[256, 256]
920	Policy hidden sizes	[256, 256]	[256, 256]	[256, 256]
921	Subgoal prediction hidden sizes	[256, 256]	[256, 256]	[256, 256]
922	Hidden activation functions	ReLU	ReLU	ReLU
923	Batch size	1024	2048	1024
924	Replay buffer size	1e6	1e6	1e5
925	Discount factor γ	0.99	0.99	0.99
926	polyak for target networks	5e-3	5e-3	5e-3
927	Critic learning rate	1e-3	1e-3	2e-3
0.00	Policy learning rates	1e-3	1e-3	5e-3
920	Subgoal prediction learning rate	1e-4	1e-4	1e-3
929	Flow model learning rate	1e-3	1e-3	1e-3
930	Flow model learning batch size	1024	1024	1024
931	actual goal:virtual goal	0.5:0.5	0.5:0.5	0.5:0.5
932	α	0.1	0.1	0.1
933				

Table 1: Hyperparameters for VE.

The goal space of the Reacher environment is defined as (x, y, z) in Euclidean space. We transform each state of the agent into a corresponding achieved goal, and use the state-value function V alone to estimate the distance between the achieved goal and the desired goal.

In the Sawyer environment, we use the same encoder as RIS (Chane-Sane et al., 2021). The encoder compresses the received 84 X 84 RGB image into a 32-dimensional vector, and it updates synchronously with the critic network. The gradients of the encoder are subsequently truncated.

H HYPERPARAMETERS

The hyperparameters we adopt in VE are shown in the Table 1. Each comparison baseline uses the best parameters of the source code. We divide the experimental environment into two classes: state-based "Reacher" and "AntMaze" and pixel-based "Sawyer". In "Reacher" and "AntMaze, we search the learning rate (subgoal prediction, policy, critic) from the candidates 0.0001, 0.001, 0.01 for VE with a $3 \times 3 \times 3$ grid. We use the same parameters in these environments. However, in "Sawyer," we discover that appropriately increasing the learning rate is a better choice. For the baselines (RIS, PIG, HIGL), they use the same experimental environment as ours. So we keep the parameters in the original paper (as the authors have tuned). For the others (GCSL, SAC+HER), we adjust them using a parameter search method similar to VE.