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ABSTRACT

The embedding space of language models is widely believed to capture the se-
mantic relationships; for instance, embeddings of digits often exhibit an ordered
structure that corresponds to their natural sequence. However, the mechanisms
driving the formation of such structures remain poorly understood. In this work,
we interpret the embedding structures via the token relationships. We propose
a set of probability signatures that reflect the semantic relationships among to-
kens. Through experiments on the composite addition tasks using the linear model
and feedforward network, combined with theoretical analysis of gradient flow dy-
namics, we reveal that these probability signatures significantly influence the em-
bedding structures. We further generalize our analysis to large language models
(LLMs). Our results show that the probability signatures are faithfully aligned
with the embedding structures, particularly in capturing strong pairwise similar-
ities among embeddings. Our work offers a universal analytical framework that
investigates how token relationships direct embedding geometries, empowering
researchers to trace how gradient flow propagates token relationships onto em-
bedding structures of their models.

1 INTRODUCTION

In recent years, deep neural network-based large language models (LLMs) have demonstrated re-
markable performance (Comanici et al.,2025;|OpenAl et al.} 2024} DeepSeek-Al et al.|[2025). The
development of these models has largely followed what Richard Sutton termed “the bitter lesson”—
that the most effective approach to improving Al performance has historically been to leverage
greater computational resources, larger models, and more data, rather than incorporating human
knowledge or specialized architectures (Sutton,|2019). This trend has been formalized through scal-
ing laws (Kaplan et al., 2020). While these scaling laws provide valuable quantitative predictions for
model performance, they also reveal a concerning limitation: achieving further significant improve-
ments may require prohibitively large increases in model and data size, making continued scaling
increasingly impractical and resource-intensive.

A more sustainable path forward lies in developing a mechanistic understanding of deep learn-
ing’s success. Recent research has uncovered key properties such as the edge-of-stability phe-
nomenon (Wu et al., 2018} |Cohen et al., 2021), frequency principle (Xu et al.l 2020; 2025a), at-
tention patterns (Elhage et al.| 2021} |Olsson et al., 2022; [Bhojanapalli et al. [2020), and parameter
distribution characteristics (Kovaleva et al., 2021} |Dar et al., [2023). Among these, the structure of
the embedding space is fundamental: it serves as the gateway through which tokens are encoded,
forming the basis of all subsequent learning. Indeed, embeddings often capture intuitive seman-
tics—for instance, embeddings of digits 1,2,...,9 form an ordered structure reflecting their numer-
ical sequence (Mikolov et al.l |2013b; [Ethayarajh et al., 2019; [Zhang et al.| 2024} |Yao et al., [2025)).
Yet, what drives this alignment between embedding geometry and semantic structure remains an
open question: the precise mechanisms linking data distribution to embedding organization are still
poorly characterized.

In this work, we establish a mechanistic link between embedding geometry and token relationship
through the lens of gradient flow dynamics. For each token, we propose a set of probability signa-
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Figure 1: Left: The PCA projection of embedding vectors of the digits 1,2, 3,--- ,9in Qwen2.5 3B-
base. Right: The PCA projection of the probability signatures of the digits 1,2, 3, --- , 9 estimated
by subsets of Pile(detailed formulation see (@)).

tures based on its statistical relationships with the other tokens (e.g., label distribution, co-occurrence
patterns). Such probability signatures systematically capture inherent token-level relationships and
reflect semantic structures. Our gradient flow analysis reveals that these signatures actively govern
the evolution of embedding vectors, forging a deterministic connection between probability signa-
ture and embedding structure. This is illustrated in Figure [T} both the embeddings of digits 1,2,...,9
in Qwen2.5 3B-base (Team, [2024) and their probability signatures estimated from the Pile cor-
pus (Gao et al., [2020; Biderman et al.,|2022) exhibit an ordered arrangement aligned with their natu-
ral sequence, suggesting that probability signatures are the prime driver of embedding organization.
We instantiate this framework by deriving the exact signature sets for linear models and feedforward
networks, showing how architecture determines which token relationships are encoded. Through
carefully controlled synthetic tasks, we verify that manipulating probability signatures predictably
reshapes the embedding space. Finally, we extrapolate our framework to LLMs, demonstrating that
even in realistic training regimes, next-token and previous-token distributions dominate the dynam-
ics of embedding and unembedding vectors in Qwen2.5 and Llama-2 architectures.

The primary contribution of this work is a universal analytical framework that investigates how token
relationships direct embedding geometries. Through exact gradient flow analysis, we demonstrate
that any embedding-based architecture encodes a specific, predictable subset of data distribution
statistics into its token representations. This framework not only explains observed embedding
structures as a deterministic consequence of probability signatures, but also predicts which proba-
bility signatures dominate in a given model, transforming representation learning from a black-box
phenomenon into a transparent, distribution-driven process.

2 RELATED WORK

Parameter analysis in LLMs Investigating the underlying parameter properties in LLMs is cru-
cial for understanding the foundation of models. Some works focus on the specific modules in
models. [Elhage et al.| (2021); |Olsson et al.| (2022)) uncover mechanisms such as induction heads
from the attention module. Bhojanapalli et al.| (2020) reveals the rank-collapse phenomenon of the
attention matrix. |Geva et al.| (2021} 2022); Dai et al.|(2022)) investigates the characteristics and func-
tions of the FFN in LLMs. Additionally, analysis of a single neuron has been widely employed in
mechanism interpretation, particularly in circuits analysis [Hanna et al.|(2023)); Wang et al|(2023);
Hanna et al.| (2024)); [Wang et al.| (2025)), sparse autoencoders (SAE) [Huben et al.| (2024)); [Bricken
et al.| (2023), transcoders |[Dunefsky et al.| (2024)), and cross-layer transcoders (CLT) Ameisen et al.
(2025). There are also some studies investigating the global properties of all parameters. Dar et al.
(2023); Katz et al.|(2024) introduce a framework for interpreting all parameters of Transformer mod-
els by projecting them into the embedding space. Kovaleva et al.| (2021)); [Yu et al.| (2025) provide
an analysis of the parameter distribution, demonstrating the significance of these outliers. In this
work, we will focus on the embedding space, explaining the formation of its structure from both
experimental and theoretical perspectives.
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Embedding structure and representation learning Since the introduction of static word em-
beddings by Mikolov et al.| (2013a); [Pennington et al.| (2014) and the adoption of contextualized
embeddings (Devlin et al., 2019} |Peters et al.l |2018)), significant attention has been devoted to
analyzing embedding properties. (Gao et al.| (2019); |[Ethayarajh| (2019)); Timkey & van Schijndel
(2021)) explore the anisotropy of embedding space, while |Cai et al. (2021) show that embeddings
exhibit isotropy within clusters. |Liu et al.| (2022)) offers insights into grokking by emphasizing the
role of well-organized embedding structures. [Zhang et al.| (2024) establishes a connection between
embedding structure and model generalization, and |Yao et al.| (2025) provides an analysis of this
relationship. Crucially, these studies characterize embedding geometry post hoc, treating it as an
empirical phenomenon to be observed rather than a deterministic outcome to be explained. In con-
trast, we mechanistically interpret how embedding structures arise from token relationships. Our
gradient-flow-driven framework reveals that token-wise probability signatures dictate the evolution
of embedding vectors, offering not merely a new perspective, but a predictive, architecture-agnostic
protocol for understanding representation formation.

3 PRELIMINARY

3.1 EMBEDDING-BASED MODEL

We denote the models functioning on the trainable embedding of the input sequence as embedding-
based models. We provide the following formulation:

Definition 1. Given a vocabulary V C N*1 with size dyon, we denote e, € R as the one-
hot vector of x for any x € V. The trainable embedding matrix and unembedding matrix are
WE ¢ RiXdvor gnd WU € Re&vov*d pespectively. For a sequence X = [x1,72,--- ,x1] € VE
with length L. The trainable embedding of X and an embedding-based model F taking X as input
could be formulated as

Wi =WFex = [WE WE, ..

xrq1? x2)

F(X) = WG (WE),

. aWwEL]a

where G means the mapping in the hidden space, Wf: = WEe,, represents the embedding vector
of elements x; € X.

Embedding-based models have been widely applied in various domains, particularly in NLP. In this
work, our objective is to investigate how the token relationships impact the characteristics of the
embedding space. We will begin with the following simplified models, facilitating our analysis.

* Linear model. Fiip (X) =WV Y _ WE.

* Feedforward network. Fy, (X) = W0 (3, cx W.F), where o denotes the element-
wise nonlinear activation.

Furthermore, we will provide an elementary analysis of the Transformer architecture in language
tasks and verify our results by the Qwen2.5 architecture and the Llama 2 architecture (Touvron
et al.l [2023)).

3.2 TOKEN RELATIONSHIPS & PROBABILITY SIGNATURES

In natural language, a token’s meaning is fully constituted by its statistical context: how it pre-
dicts downstream labels, what tokens it co-occurs with, and how these relationships jointly evolve.
Formally, these semantic regularities manifest as conditional probability distributions over the vo-
cabulary. Denote the label of a sequence X by y and assume (X, y) ~ 7. For a token « in input X,
we consider four representative families of such distributions:

* Label relationship: P, (y = v | € X) encodes what x signals about the output—e.g., “excel-
lent” in a review robustly predicts a positive label v, while “frustrated” skews toward negative.

* Co-occurrence relationship: P,(z' € X | © € X) captures syntactic-semantic neighbor-
hoods—*stock™ frequently co-occurs with “market” but rarely with “apple” (in the financial
sense). Higher-order terms like P (2’, 2" € X | © € X)) encode compositional contexts.
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* Joint relationship: The joint P,(z' € X,y = v | # € X) reveals context-dependent label-
ing—*“apple” co-occurring with “pie” predicts a food label, while with “store” predicts a tech
label.

* Inverse relationship: P, (z; € X | y = z) describes what precedes a token as its cause—the
tokens that predict x itself (e.g., what contexts make “surprised” likely to appear).

These token-wise relationships are semantic primitives: they are computable from data, indepen-
dent of any model, but depend on the contexts and tokenizers, yet fully determine the token’s func-
tional role in the corpus. Critically, a sequence of length L yields exponentially many such rela-
tionships—our four families merely scratch the surface. Rather than exhaustively enumerating
them, we propose a systematic principle: the gradient flow dynamics of any embedding-based
model will automatically select a specific subset of these relationships to encode. To showcase
this principle, we distill each family into a compact probability signature—a vector/matrix that
aggregates the relevant conditional probabilities (Definition [2). This choice is deliberate: we aim
not to prescribe a fixed signature set, but to demonstrate that any such set derived from gradient flow
analysis will faithfully sculpt the embedding space.

Definition 2 (Probability Signatures). For token x € V, we define four probability signatures that
capture distinct token relationships:

¢z:ZPﬂ(y:V|m€X)el,, ¢f:ZIP’ﬂ(x’€X|x€X)em/,
vey z’'eV

¢§\y:ZIPW(I’ eX,y=v|zeX)e, xel, @X= Z P (2 € X |y=1)e,.
v,z’ x’' eV

We have ¢¥, pX X € Rbvov, (bfly € RvobXdvob,

x

Each probability signature is a data-derived feature vector/matrix for x. For example, the v-th
element of ¢¥ is P,(y = v | * € X). The signatures above are exemplars; our framework
empowers researchers to derive more probability signatures for their models of interest by tracing
how gradient flow propagates token relationships onto embedding structures.

4 GRADIENT FLOW OF EMBEDDING VECTOR

To understand why embeddings organize as they do, we examine the continuous dynamics of train-
ing via gradient flow, the limit of gradient descent as the learning rate vanishes. This tool acts as
a microscope, revealing the “force field” that sculpts each embedding vector. Formally, Given a

dataset { (X, y") }fvzl with loss function ¢ = ¢ (F (X%;6) ,y"), the gradient descent implies that

ot — gk = L SN %—g lgp—g. Then the gradient flow of @ is defined as:
dg . gFFl gk AT
—_— = llm —_— = — .
dt n—0 n N = tol7)

Our goal is to trace how this dynamics acts on the embedding vector W.F for any token = € V.
Using the standard cross-entropy loss:

F (XY .
::—log exp ( )y'b

v Sy exp F(X7);

(" = —log Softmax (F (XZ))

we derive the exact evolution equation:

Proposition 1. Let © represent the Hadamard product and T mean the matrix transpose. Given an
embedding-based model F with an embedding matrix W . For any token x € V, the gradient flow
of WE (the embedding vector of =) can be formulated as follow when N — oo:

W’ in U,T (1) E
praiall ZPﬂ(y:V|m€X)(W’eV)®IEﬂ[G (WX)\xEX,y:V}
vey

“E, [(WU’Tp) ©GCW (WE) |z e XD

= pin (U¢;§{ _E, {(WU’Tp) ©GW (WE) |z e XD :
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where U € RI*dvor  gnd  the wv-th column of U  equals (WU’Te,,) ®
E, [G(l) (W)]g) |z e X,y= 1/]. % denotes the ratio of input sequences containing T in
the training set, G) represents the derivative of G with respect to W.F and p = softmax (F (X)).

This equation reveals that ¢¥ drives W” toward a direction determined by the token-label seman-
tics. This means: if two tokens share similar label distributions, their embeddings will be forced
to evolve in similar directions from the very start of training. The emergence of other probability

signatures ((bf s ¢§f|y) is dependent on the formulation of GG, as we will show next.
To make this analysis concrete, we dissect linear model and feedforward networks, deriving their

exact probability signature sets from Proposition [I| This demonstrates how our framework system-
atically extracts the relevant probability signatures for any given G.

4.1 LINEAR MODEL

For linear models Fi;y,, the hidden mapping G is simply the sum of embeddings. Substituting this
into Proposition [I] yields a simplified dynamics where the gradient flow depends on only two prob-
ability signatures:

Corollary 1 (Embedding of Linear Model). Let N — oo, 7 denotes the data distribution over the
training set. The gradient flow of W.F in Fy,, can be approximated by
dWE 1
dt vob

=Wt (qsz - T WIWEer +n), (M

where 1) denotes the data-independent and higher-order terms.

The Corollary|[T|indicates that the term ¢Y acts as the primary steering force. Early in training, when
|[WUYWE| is small, ¢¥ alone dictates the update direction. The term ¢X modulates the embedding
update based on contextual co-occurrence statistics, but its influence is scaled by ﬁ WUYWE and
thus emerges later in training.

Experimental Validation: Controllable Addition Tasks If two tokens a, o satisfy ¢¥% ~ ¢?,

E.Tyx/E
and X ~ ¢X, Corollary|l|forces their embeddings to align: cos(WE WE) = %
1. We design three variable-controlled addition tasks to isolate and verify each probabiﬁty sig-
nature’s influence. In each task, @Y or ¢=X or both of them will be identical across . Assuming
all tokens belong to positive integers, and we denote an anchor set by A, whose elements repre-
sent different addition operations, i.e., anchor o; means addition with «;. Given a input sequence
X = [z, a1, as), we define the following tasks:

%

* Addition task (Varying ¢¥). y = faaa (X) = 2+ a1 + a2, «1,a2 € A. For each anchor pair
(a1, @2), z is sampled from the same set Z with ZN A = (. In this task, ¢§ are identical across
anchors while ¢Y, are distinct with varying anchors a.

+ Addition task with the same value domain (Varying ¢X). y = fadd (X)) = z+a1 +
a2, ai,ay € A. For anchor pair (a1,a2), 2 € Z(a,,0,) = Y — a1 — @z where ) denotes
the label set, which is identical for all anchor pairs. In fadd, ¢aX are distinct across anchors o
while @Y, are identical for all & € A.

* Module addition (Both signatures identical). Yy = fmea(X) = minZ +
(2+ a1 +ay mod | Z]), aj,az € Aand z € Z. Both ¢X and ¢ are identical with
different anchors.

In this work, we set A = {11,12,---,20} and Y = Z = {101,102, - - - ,140}. Figure[2JA visual-
izes the probability signature similarities for each task, confirming our manipulations. The detailed
mathematical formulations of these signatures in each task are provided in Appendix

Results: 'l:heory Predicts Embedding Structure We train Fy;;, for each task with d = 200. Tasks
fada and f.qq are well learned, while fy,04 fails to be fitted. The details are provided in Appendix
Figure 2(B represents the value of cos (W, W 1) in the three tasks.
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Figure 2: A: The heatmap of cos (¢, ¢%,) and cos (¢X,¢X) in three addition tasks. B: The
heatmap of cos (WZ, WE) in Fy;, across different tasks.

cos(@¥, ¢%)  cos(@f, %)

» Task f,qq: different anchor embeddings quickly form an ordered structure, where the cosine
similarity gets smaller as the anchor distance gets larger. The distribution of cos (Wf , Wﬁ) is

consistent with the cos (¢Y,, ¢?,) (FigureA), implying the impact of ¢¥ in directing W 2.
* Task fadd: The anchor embeddings also develop a similar hierarchical structure, aligned with

the structure of ¢X in fadd. But its convergence is slower, validating that ¢¥ dominates early
dynamics.

» Task f,0q4: Although the task is unsolvable by a linear model, all anchor embeddings collapse to
the same direction, exactly as Corollary [T|predicts when both signatures are identical.

4.2 FFN UNLOCKS JOINT RELATIONSHIPS: SOLVING THE MODULAR ADDITION PUZZLE

Recall that in Section@ the linear model failed to learn fy,,q4, whose embeddings collapsed to a
single direction. It’s not because the task lacked structure, but the linear model cannot encode the

probability signature ¢>§|y. We find that the nonlinear activation could resolve this problem and
provide the following results.

Corollary 2 (Embedding of FFN). Let N — oo, 7 denotes the data distribution over the training
set. The gradient flow of WF in F,, could be approximated by
AW E
dt

where T € R¥*dvovxdwor T, = WUV © WE forv,2’ € V and 0 otherwise. € represents the
higher-order term.

: 1
= yin (WU’T (¢g - bWUW%f ) +T- ¢ + e) , )

This is a qualitative leap beyond Fj;,: The new term T - qbf‘y directly encodes how the presence

of z influences the co-occurrence distribution conditioned on future labels. For fi,04, qbfly varies
systematically with « (shown in Figure 3] A), thereby providing the necessary signal that the lin-

ear model could not access. We train the f,0q with Fi, to test whether d)iﬂy enables structure
formation. Figure[3|B depicts the cosine similarity among anchor embeddings, demonstrating that
the embedding structure in fp,oq is ordered, which validates our analysis. This contract validates
that the specific probability signatures encoded are architecture-dependent, but the governing prin-
ciple—gradient flow transforms signatures into structure—is universal.

Geometric Proof: PCA Visualization of Signature-Embedding Alignment Proposition [T] and
Corollaries make algebraic predictions; we now render them as visible geometry. Figure []
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Figure 3: A: The heatmap of cos ( Xly, qu‘y) in fuod. B: cos (WE, WE) in Fyg, learning fioa.

projects all probability signatures (left 3 columns) and learned embeddings (right 2 columns) into
2D space via PCA. This result reveals that in Fj;,, the embedding structure is primarily influenced
by ¢¥ and ¢X. Specifically, when both ¢¥ and ¢X are controlled in f,04, the embedding struc-
ture is chaotic. Besides, the embedding space in Fi, is impacted by another probability signature

q&iﬂy. These phenomena are consistent with our theoretical analysis, illustrating that analyzing the
embedding space via the gradient flow and linking to the token relationships is viable.

4 ¢X pX1y Fiin : W§ Fim: W&
20 1] 1516 15 16 20 1]
a9 12
19 12 14 27 14 17
fadd 0 28 13 8 of a8 13
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20 1] Jdeas 16 A5 Jd5 16
. 17
19 12 17 14 14
fada 28 ol a8 13 a7 14 | o 13 as
o as 13 0 12 19
17 14 19 12 a8 13| ;
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0 0 0 0 0
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49 12 éa 17
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Figure 4: PCA projection of the three types of probability signatures and the embedding vectors in
By, and Figy, (epoch 120).

5 GRADIENT FLOW OF UNEMBEDDING VECTOR

Our analysis thus far has focused on the encoding side—how tokens are embedded into hidden space.
A complete theory must also explain the decoding side: how the unembedding matrix WY learns
to map hidden representations back to token probabilities. Remarkably, gradient flow reveals a per-
fect symmetry: just as embeddings evolve under token-level probability signatures, unembeddings
evolve under inverse signatures that capture how tokens are predicted from contexts.

Proposition 2. Given an embedding-based model F with an unembedding matrix WU . For any
token v € V, the gradient flow of WY (the v-th row of WV ) can be written as
AWV
dt

ou T T
— POUE, [G (WE) |y = u} _E, [pl,G (WE) } ,
where 19" denotes the ratio of sequences whose label is v and p, means the v-th element of p.

Specifically, we have the following formulation for the linear model:
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Corollary 3 (Unembedding of Linear Model). Let N — oo, m denotes the data distribution over
the training set. The gradient flow of WY in Fy;, could be approximated by
awy?
== Lt (WEeX) 4, 3)
where 1) denotes the output term.

Corollary [3 I demonstrates that ¢ directs the dynamics of the unembedding Vector We extract
the unembedding matrix from the addition tasks and compare its geometry to ¢:X. Figure [5| re-
veals the same striking alignment observed for embeddings. Figure[3| B depicts the distribution of
cos (X, @), which is aligned with the distribution of the cos (WY, WY). Furthermore, Fig-
ure [5|C compares the PCA projection of ¢:X and WV in all tasks, revealing a high consistency and
validating our analysis. This symmetric validation completes our framework: Gradient flow does
not arbitrarily shape parameters—it encodes data statistics into model weights with mathematical
precision, whether on the input or output side.

os(Wy, W, X X U
p Epoch 60 10 E och 120 10 cos(% o) @ Wy
- O TR .' 5254
S .1£ ¢ 156 Iuﬁ;sﬁ
e 148 158 s 158
. s g _. 146 10| 0| . 144 160
L 0. 87 144 162 142 ¥»2
aed o 1142 154 140 64
Tk 4 156 138 16
) 0 0
o 1.0 1 0 1 0
113@2}213 .139 101
2115 27 $137
1 . 113 0135 103
111 ];2;] o '.113331 105
109 ol 107
F 0.87 | - fdoe1 g
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Figure 5: A: The heatmap of the cos (WY, W) in Fy;, during the training process. B: The

v

heatmap of cos (@7, ;¥ ) across different tasks. C: PCA projection of ;X and WY (epoch 120).
6 LANGUAGE MODEL

Our analysis of synthetic tasks demonstrates that gradient flow dynamics encode probability signa-
tures into embedding structures. We now ask: Does this principle scale to language models trained
on real-world corpora? A full analysis of all terms in Proposition [I] for Transformers would be
intractable and, more importantly, unnecessary for validating our core contribution. We therefore
adopt a minimalist validation strategy: analyze the dominant probability signature predicted by gra-
dient flow and test whether it alone can predict embedding structure. If this simplified analysis
succeeds, it proves that our framework captures the essential mechanism and researchers can then
extend it to additional modules as needed.

For decoder-only Transformers with next-token prediction, the gradient flow of embeddings is dom-
inated by the next-token distribution since the model could be formulated as follows.

Fan (X) = WY (WE + F (X))
Formally, given the training corpus {X i }ij\il, we define the following probability signatures for any

seV:
d)next Z P, Ut:_ll {Xt—i-l —_— | X, = 3}) €y,
s'ey

pre = Z IP Ut 11 {Xt = S | Xt+1 = S}) €y,
s'eV

“
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We derive the following result:

Corollary 4. Let N — oo, 7 denotes the token distribution in the training dataset. The gradient
flow of the embedding vector WE of token s could be fomulated as

awr .
s :TISHWU’TQZ)?eXt 4 ,’,]E
dt
Furthermore, the gradient flow of the unembedding vector WU could be approximated as
dWsU out E U
— wW pre
dt ( )

The n¥ and nY denote the output probability and the higher-order term.

Probability signatures impact the embedding space in language models Corollary [4] suggests
that given any token s, the distributions of its next token and previous token significantly impact
its embedding. To verify this result, we trained a group of Qwen2.5 models on different subsets of
the Pile. Figure[§| A shows these similarity matrices for the dataset Pile-dm-mathematics, where the
tokens displayed are those that occur most frequently in the corpus. We define the following corre-
lation coefficient Reos (W, %) := Corr (cos (WE, WE) , cos (¢2°F, ¢2*")), and similarly
Reos (WY, @P™). Figure ELB tracks the Reos (W, ") and Reos (WY, P™) across all sub-
sets during training (20 epochs). Correlations increase during the first epoch, indicating that gradient
flow rapidly encodes next-token and previous-token statistics into embeddings and unembeddings.
After reaching peak alignment, correlations plateau and dip slightly, showing that the embedding
structure is still largely impacted by ¢2°** and ™. The fact that a single simplified probability
signature maintains predictive power throughout training, proves that our gradient flow analysis cap-
tures the essential mechanism of embedding structure. Researchers can now systematically uncover
additional probability signatures (e.g., from attention patterns or higher-order terms) to account for
residual variance. Furthermore, we find that the probability signatures reflect the strong connections
of embeddings more faithfully, and we provide a detailed analysis in the Appendix Addition-
ally, we provide another set of experiments using the Llama?2 architecture in Append%

B
cos(WE, WE) N cos(¢pret, pIext) ) Arxiv Pile-cc Pubmed Wikipedia Mathmatics
#Z| i e ) 0.6 05 0.5
\m i . 0.5 0.6
c ~
% %0.4 0.4 04 0.4
F txw 0.3 0.4

03 0.3

102 10% 4x10* 10> 10* 4x10* 10> 10* 4x10% 102 10* 4x10* 10> 10* 4x10*
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Corr:0.6872
os(WY, wY) cos(gP'e, p2'¢)
; 0.8 0.8
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< N & 0.6
n 2 506 06 0.6
[ [ E 0.4
S 3 04 0.4
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Figure 6: A: Heatmap of cos (WE, wh ) (left up), cos (2°*t, p2*Y) (right up), cos (WSU, Wg)
(left down) and cos (2™, %) (right up) in the experiment on dataset Pile-dm-mathematics (1

epoch). B: The dynamics of Reos (W2, ¢"") (top) and Reos (WY, P™) (bottom) during train-
ing (20 epochs) across different datasets.

Validating with the open-source model Since general-purpose pretrained base models are trained
on broad corpora, we attempt to directly estimate their embedding structure by the probability

signature. We employ Qwen2.5-3B-base for comparison and define b = Ut + L, since
WE = WUT in Qwen2.5-3B-base (the detail is provided in Appendlxu We compute d)é from

the subsets of Pile. As shown in Figure|7 A the structure of (bg could capture the main properties of
the embedding structure, particularly the presence of sub-blocks with high similarity. Furthermore,
we examine the instance for the digits ranging from 1 to 9. Figure [T]exhibits the PCA projections
of WE and ¢, while Figure illustrates their respective cosine similarities cos (W2, W) and
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cos ((]35, (;NSS/> , with both figures revealing an ordered organization aligned with the numerical se-

quence. However, this estimation does not always hold. On the one hand, |Zhang et al.| (2024) finds
that initialization scale significantly affects the emergence of such embedding structures, demon-
strating that in the NTK regime, the embedding structure may fail to capture token relationships. On
the other hand, since probability signatures are computed from the training dataset, obtaining the
correct data distribution becomes difficult when the corpus is carefully curated.

A cos(WE, WE) . cos(ds, bs) . B cos(WE, WE) . cos(Ps, Ps') N
1 W"""
l : ; I
W W - usssymelor gty W W
c c § i = =
$ < I 4 2 2
g ,2 [a) [a)
[ oseien Tt '.
Ll - i 0 nidie
e feeipn ' — —— '0 0 0
Token s Corr:0.5586 Token s Digit s Corr:0.6184 Digit s

Figure 7: cos (WE, W) of the Qwen2.5-3B-base and cos ((ﬁs,qgs/) respectively, with the
frequently-appearing tokens (A) and the digits from 0 to 9 (B).

7 DISCUSSION & CONCLUSION

We have shown that the geometry of embedding spaces is not a mysterious emergent phenomenon,
but a deterministic encoding of probability signatures sculpted by gradient flow dynamics. More
importantly, we have demonstrated that this encoding can be reverse-engineered: given any
embedding-based architecture, our framework systematically extracts the exact set of statistical re-
lationships that drive embedding evolution. This transforms representation learning from a black
box into a transparent, distribution-driven process.

Guidance for Model Architectures and Training Methods We illustrate that each architecture
implicitly selects which probability signatures it can encode. Our gradient-flow analysis makes this
selection explicit and quantifiable: Corollary[T]proves that linear models cannot encode joint token-

label relationships ((ﬁfly). Any task requiring this relationship will fail, regardless of scale. Adding

a nonlinear activation unlocks qbf'y (Corollary , enabling models to learn such semantics. This
suggests a principled architecture search: introduce modules whose Jacobians G!) encode desired
probability signatures. On the other hand, our results have shown that the loss function is not merely
a performance metric but also a gradient flow sculptor that determines which probability signatures
dominate. Corollary El shows that next-token prediction makes ¢2** the dominant signature, em-
bedding tokens based on immediate neighbors. This explains why standard autoregressive models
excel at local coherence but struggle with long-range dependencies. If the loss predicts k future
tokens, gradient flow will encode the k-gram relationship distribution. This provides a theoretical
explanation for why multi-token prediction could easily capture the global relationships

2024).

Future Work We deliberately analyzed only four signature families and a simplified LLM gra-
dient flow. This was not due to theoretical incompleteness, but to demonstrate the framework’s

modular extensibility. Just as we derived ¢§Iy for feedforward networks and ¢2°** for Transform-
ers, researchers can now systematically mine custom signatures for their architectures of interest.
The framework is designed to be extended. As a future direction, we will focus on analyzing the
probability signatures in the self-attention module and the completed Transformer layer. This is not
a correction to our theory, but its natural evolution.

REFERENCES

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,

10



Under review as a conference paper at ICLR 2026

Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer—-circuits.pub/2025/attribution—-graphs/methods.htmll

Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Low-
rank bottleneck in multi-head attention models. In Hal Daumé III and Aarti Singh (eds.), Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 864—873. PMLR, 13-18 Jul 2020. URL https:
//proceedings.mlr.press/v119/bhojanapalli20a.html.

Stella Biderman, Kieran Bicheno, and Leo Gao. Datasheet for the pile. arXiv preprint
arXiv:2201.07311, 2022.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth Church. Isotropy in the contextual embedding
space: Clusters and manifolds. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=xYGNO860OWDH.

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065,
2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, and Inder-
jit Dhillon et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities, 2025.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8493-8502, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.581. URL https://aclanthology.org/
2022 .acl-1long.581/\

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. Analyzing transformers in embedding
space. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), 2023.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, and Runxin Xu
et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URLhttps://arxiv.org/abs/2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805!

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable
Ilm feature circuits. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Process-
ing Systems, volume 37, pp. 24375-24410. Curran Associates, Inc., 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
208f4db0464ccSbbe9dS5ebbeadb9f308-Paper—-Conference.pdf.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep

11


https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://proceedings.mlr.press/v119/bhojanapalli20a.html
https://proceedings.mlr.press/v119/bhojanapalli20a.html
https://openreview.net/forum?id=xYGNO86OWDH
https://aclanthology.org/2022.acl-long.581/
https://aclanthology.org/2022.acl-long.581/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://proceedings.neurips.cc/paper_files/paper/2024/file/2b8f4db0464cc5b6e9d5e6bea4b9f308-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2b8f4db0464cc5b6e9d5e6bea4b9f308-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiao-
jun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
1JCNLP), pp. 55-65, Hong Kong, China, November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-1006. URL https://aclanthology.org/D19-1006/

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. Towards understanding linear word analo-
gies. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
2019.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. Representation degeneration
problem in training natural language generation models. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=SkEYojRgtm.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, Online and Punta Cana, Dominican Republic, November 2021. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL https:
//aclanthology.org/2021.emnlp-main.446/.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 30—45, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.3. URL
https://aclanthology.org/2022.emnlp-main.3/.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 15706—15734. PMLR, 21-27 Jul 2024. URL
https://proceedings.mlr.press/v235/gloeckle24a.html.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=p4PckNQR8k.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going beyond
circuit overlap when finding model mechanisms. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=TZ0CCGDcuT.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=F76bwRSLeK.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

12


https://aclanthology.org/D19-1006/
https://openreview.net/forum?id=SkEYojRqtm
https://aclanthology.org/2021.emnlp-main.446/
https://aclanthology.org/2021.emnlp-main.446/
https://aclanthology.org/2022.emnlp-main.3/
https://proceedings.mlr.press/v235/gloeckle24a.html
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=TZ0CCGDcuT
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK

Under review as a conference paper at ICLR 2026

Shahar Katz, Yonatan Belinkov, Mor Geva, and Lior Wolf. Backward lens: Projecting lan-
guage model gradients into the vocabulary space. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 2390-2422, Miami, Florida, USA, November 2024. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.142. URL https:
//aclanthology.org/2024.emnlp-main.142/.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. BERT busters: Out-
lier dimensions that disrupt transformers. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp- 3392-3405, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.findings-acl.300. URL https://aclanthology.org/2021.findings-acl.
300/}

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-
wards understanding grokking: An effective theory of representation learning. In Advances in
Neural Information Processing Systems, 2022.

Tao Luo, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang. Phase diagram for two-layer relu neural
networks at infinite-width limit. Journal of Machine Learning Research, 22(71):1-47, 2021.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space, 2013a. URL |https://arxiv.org/abs/1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, 2013b.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, and Florencia
Leoni Aleman et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.
08774.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word
representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
1532-1543, Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.
3115/v1/D14-1162. URL https://aclanthology.org/D14-1162/.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations. In Marilyn Walker, Heng Ji,
and Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pp. 2227-2237, New Orleans, Louisiana, June 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/N18-1202. URL https://aclanthology.org/N18-1202/.

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 13(1):38, 2019.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://gwenlm.
github.io/blog/gqwen2.5/.

William Timkey and Marten van Schijndel. All bark and no bite: Rogue dimensions in transformer
language models obscure representational quality. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 4527-4546, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.372. URL https://aclanthology.org/2021.emnlp-main.372/.

13


https://aclanthology.org/2024.emnlp-main.142/
https://aclanthology.org/2024.emnlp-main.142/
https://aclanthology.org/2021.findings-acl.300/
https://aclanthology.org/2021.findings-acl.300/
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://aclanthology.org/D14-1162/
https://aclanthology.org/N18-1202/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://aclanthology.org/2021.emnlp-main.372/

Under review as a conference paper at ICLR 2026

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4dul.

Xu Wang, Yan Hu, Wenyu Du, Reynold Cheng, Benyou Wang, and Difan Zou. Towards under-
standing fine-tuning mechanisms of LLMs via circuit analysis. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
45ETiFd60a.

Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
dynamical stability perspective. Advances in Neural Information Processing Systems, 31, 2018.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. Communications in Computational Physics,
28(5):1746-1767, 2020.

Zhi-Qin John Xu, Yaoyu Zhang, and Tao Luo. Overview frequency principle/spectral bias in deep
learning. Communications on Applied Mathematics and Computation, 7(3):827-864, 2025a.

Zhi-Qin John Xu, Yaoyu Zhang, and Zhangchen Zhou. An overview of condensation phenomenon
in deep learning. arXiv preprint arXiv:2504.09484, 2025b.

Junjie Yao, Zhongwang Zhang, and Zhi-Qin John Xu. An analysis for reasoning bias of language
models with small initialization. In Forty-second International Conference on Machine Learning,
2025.

Mengxia Yu, De Wang, Qi Shan, Colorado Reed, and Alvin Wan. The super weight in large language
models, 2025. URL https://arxiv.org/abs/2411.07191l

Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu. Initializa-
tion is critical to whether transformers fit composite functions by reasoning or memorizing. In
Advances in Neural Information Processing Systems, 2024.

14


https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=45EIiFd6Oa
https://openreview.net/forum?id=45EIiFd6Oa
https://arxiv.org/abs/2411.07191

Under review as a conference paper at ICLR 2026

LLMS USAGE

In this work, the LLMs are employed to correct grammatical errors and inappropriate words.

A EXPERIMENTAL SETUPS

Addition tasks For each type of addition task, we trained a linear model Fj;, and a Feedforward
network Fy,. The hidden size d = 200, and we employed the ReLU as the activation function. Each
dataset contains 50000 data pairs. The training is conducted for 1000 epochs with a batch size of
100. The AdamW optimizer is employed with an initial learning rate of 10~°. Inspired by the work
of Luo et al.| (2021); Xu et al.[(2025b), we initialize the model parameters by W; ; ~ N (0, d’o's) s
indicating a small initialization scale.

Language models In the analysis of the LLMs, we employ the Qwen2.5 architecture with 12
layers and 12 attention heads in each layer. We set up that the hidden size is 512, and the intermediate
size in FFN is 1024. The dimension of the key vectors and value vectors in each head is 64. Similarly,
we initialize the parameter by W, ; ~ N/ (07 dfnl) where di, means the input dimension of W. We
select five subsets of Pile, including Pile-arxiv, Pile-dm-mathematics, Pile-cc, Pile-pubmed-central,
and Pile-wikipedia-en. The length of each sequence is 2048. The training is conducted for 1 epoch
in each experiment, with the AdamW optimizer and a cosine learning rate schedule utilized. The
initial learning rate is 10~%.

B ADDITION TASK

B.1 PROBABILITY SIGNATURES IN ADDITION TASKS

We provide a formulation of the following probability in the three addition tasks. We denote U (.A)
and U (Z) as the discrete uniform distribution over A and Z, respectively. A and Z are the random
variables following U (A) and U (Z). For the task fyqq, we have that

1
P.ly=v|iaeX)=P,(A+Z=v—aqa), ]P’,r(ze.)c'|a€X):@,
1
Pﬂ(zEX|a€X,y:V):IP’W(A:Vfa—z):m&,_a_ze/\,
1
Pﬂ(o/eX|0¢€X,y:zx):]P’TF(Z:V—a—o/)ZE(S,,_Q_Q@Z,

P.zeX|y=v)=P,(A+A=v—2), PrlaeX|y=v)=P, (A+Z=v—a),

where o, o' € A, z € Z.It’s noted that besides the co-occurrence probability P (z € X | a € X),
the value of other ones is dependent on « or v. Figure [§] (left) displays the distribution of these
probabilities, which intuitively reveals the cause of the hierarchy structure in the similarity matrix.
Similarly, for f,q4, denote Y ~ U () and we have

1
Pﬂ(y:y|a€X):m, P,(zeX|aeX)=P, (Y -A=z+aq),
1
]P’W(ZEX|a€X7y:1/):IP’,T(A:1/—a—z):Wéy,a,zeA,
1
Pﬂ(o/EX|oz€X,y:1/):E,

P.zeX|y=v)=P, (A+A=v—2), PrlaeX|y=v)=P,(A+Z=v—a).
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For fi0d4, we have

1 1
—, PrzeX|aceX)=——
2]

P.y=v|aeX)= B

1
P (Z €X | aceX,y= V) = mau—minz—(a—zmod\Zl)E(Amod|Z|)a

1
E
P.(ze X |y=v)=P,((A+ Amod|Z|) = v —min Z — (z mod| Z|)) ,
P.(aeX|y=v)=P; ((A+ Z mod|Z|) = v — min Z — (a« mod| Z|)) .

P.(d eX|aeX,y=v)=

Figure[§] depicts all these probability distributions.
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Figure 8: Probability signatures in each task under distinct o and v. In the distribution of
P.(2' e X,y=v|ae X), v = 150is displayed in faqq and v = 120 in fadqq and fiod, since
150 and 120 are the average label value in each task.
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B.2 TRAINING RESULT

Figure @] shows the training accuracy of Fj;, and Fg, on the three addition tasks. The results reveal
that both f,qq and f.qq are learned well by the linear model, whereas f,,q requires the nonlinear
model to achieve an effective fit.
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Figure 9: Training accuracy of the Fj;, (left) and Fy, (right) on the three addition tasks.

B.3 QUANTIFY THE HIERARCHY EMBEDDING STRUCTURE

In the addition tasks, the anchors exhibit a strict ordering due to the numerical sequence. This
provides an ideal setting for the embedding space to develop a corresponding ordered relationship.
To formally quantify the formation of the ordered structure, we define the following metric:

Rorder (W) = Corr (cos (WE,WE) Ja—ad'|).

Rorder (W) reflects the relationship between embedding similarity and anchor difference. A
strong negative Rorder (Wf ) (approximately —1) indicates that the similarity decreases system-
atically with increasing anchor difference, confirming the presence of a hierarchical organization in
the anchor embeddings. Figuredepicts the corresponding evolution of Ry der (Wf ) in F};, and
Fin, which is consistent with our analysis.
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Figure 10: Dynamics of Rorder (WJ‘;J ) in Fy;, (left) and Fiy, (right). Line colors represent task
types.

B.4 UMEMBEDDING MATRIX IN FEEDFORWARD NETWORK

Figure [TT] displays the structure of the unembedding matrix in Fi, with the three types of addition
tasks. The distribution of cos (W) (A) and the PCA projection (B) jointly reveal that the unem-
bedding vectors of those label tokens establish a hierarchy structure, which is consistent with their
natural sequence.

18



Under review as a conference paper at ICLR 2026
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Figure 11: A: The heatmap of the cos (W5 ) with label index in Fi, during the training process. B:
PCA projection of Wg in Fiy, (epoch 120).

C LANGUAGE MODELS

C.1 COMPLETE RESULTS

Figurerepresents the cosine similarity distribution of W¥, ¢"*x* WU and P at epoch 1 in
the other 4 subsets of Pile we selected, exhibiting an analogous phenomenon with the observation
in Figure @ The distribution representations ¢"*** and P could effectively capture the high
similarity among embedding vectors and unembedding vectors, respectively. Figure [I3]depicts the
comparison at epoch 20.

C.2 TIED EMBEDDING

In the Qwen2.5-3B-base model, W = WU.T which aims for computational source saving. Under
this condition, we have that
dWE

7 — ’I“LHWU’T(Z)geXt + ,rgutWEgopre +n

S
— WE (,r‘isn()bgext T T;)utsogre) +n.
Since the next-token-prediction, each token will be an input and an output, except the last token in a

sequence, resulting in 71* ~ 79U, Denote ry = i and ¢, = P2** + PP, then we have

AWE
dt

= 'I‘SWE(fN)S +n.

C.3 PROBABILITY SIGNATURE CAPTURE STRONG EMBEDDING SIMILARITIES

We find that the probability signatures reflect the strong connections of embeddings more faithfully.
As shown in FigureA, the correlation between Corr (cos (WE, W) | cos (¢2°*t, ¢"***)) and
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Arxiv cos(WE, WE) L cos(¢prext, ¢gexf)1 Ny cos(gpPre, p°'¢)

Pile-cc

s s S

Figure 12: Heatmap of cos (WF, WE) (left up), cos (¢2°, ") (right up), cos (WI, W)

(left down) and cos (2™, ) (right up) (epoch 1) in each experiment with distinct dataset. The

tokens displayed are those with the most appearances in the dataset.

cos (WE, W¥E) is plotted against for all tokens s, demonstrating stronger consistency in high-
similarity regions. We define pcoqw =) and pcos(d,neias the percentile matrix of each elements

in cos (WF) and cos (¢"*"), respectively. Figure [14{B displays the distribution of peog(gnext),
conditioned on different intervals of the p..sw =), and Figure C shows the average value of
Deos(gnext) Within each interval of poswwy. It can be observed that the alignment is significantly
stronger in the regions with large embedding similarity.

Remark about Figure|[I4 A In each subset D;,i = 1,2,--- M, we define the set S; = {s} }30;1

as the set of the C; tokens which appear most frequently in D;. Based on the dataset D;, and denote
W Ei as the embedding matrix of the model corresponding to dataset D;, we compute that

cosp, (Wf,WE) - [cos (WEWE>] e R,
J J s'eS;
and

cosp, ( gfxt’(ﬁnext) — [COS( E?Xty gl/ext):| c ]Rci.
i J s'€S;
for any token sj. € S;. Then we define the correlation coefficient
Rp, (s}) = Corr (cosDi <Ws]f, WE> , COSD, ( ;‘f’“,¢“€"t>)
J
and the average embedding similarity as

- 1
Meanw = p, (s}) = & 08D, (WS‘?,WE) - 1.
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Figure 13: Heatmap of cos (WSE , Wf ) (left up), cos (@2, @p17**) (right up), cos (WSU, WSI,J)
(left down) and cos (@B, /) (right up) (epoch 20) in each experiment with distinct dataset. The

tokens displayed are those with the most appearances in the dataset.
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Figure 14: A: Relation between Corr (cos (WE, W¥)  cos (92", ")) and the average value
of cos (WSE JWE ) Each point denotes a token s. B: Distribution of pegg(gnext), conditioned on
intervals 0 ~ 10%,40 ~ 50% and 90 ~ 100% of the p.osw=). C: Average value of pegg(gmest)
within each interval of pos(w =)-
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Then we concatenate the metrics with all token sg» €8;,7=1,2,---,C; and all datasets S;,7 =
1,2,---, M, ie.
E E next next _ i\1t=12,, M Ej\f C;
Corr (cos (WS W ),cos (d)s , @ )) = [RDl. (Sj)}j:]wl'”yci € Rxi=1 %

Mean (cos (WE, W¥)) = [Meanw = p, (3;)];?122 ]g c REL. Ci,

Figure |§I displays the relation between Corr (cos (WGE ,WE) , COS (qbge"t,qﬁ”e"t)) and

Mean (cos (WSE , WE)) revealing a positive correlation. In our work, M = 5, and we set
up C; = 10000 for each dataset.

Remark about Figure 14 B & C In each subset D;,i = 1,2,--- M, we define the set S; =
{s§ }]0;1 as the set of the C; tokens which appear most frequently in D;. We compute that

COSp;, (WE) = [cos (WSEi7 Wf)} c RCixCi

s,8’€S;

and
cosp, (d)next) _ [COS (¢2€Xt7 ??Xt)]&s/esi c Rci XCi.
Then translate the similarity matrix into a percentile formulation, i.e.

Peosp, (WE) = Percentile (cole. (WE)) s Peosp, (¢next) = Percentile (COSDi (d)“e"t))

and pCOS(WE) = [pCOSDi(WE)L:I o M7 pcos(q’)uext) = |:pCOSDi(¢next):|i:1 - M. FigureHD

and E reveal the distribution and average value of pgog(gnext), where k x 10% < Deos(wE) <
(k+1) x10%,k=0,1,2,---,09.

Case Analysis We provide a detailed case to explain the group of tokens exhibiting high embed-
ding similarities. In experiments on the Pile-dm-mathematics dataset, tokens such as “/a”, “/b”,
“/c”, and “/d” often serve as denominators in mathematical expressions. Figure |15|shows the co-
sine similarities of both their embedding vectors and distribution representations, which are notably
high for all tokens except “/e”, which does not appear in the dataset. These tokens share highly sim-
ilar semantics and also exhibit very similar next-token distributions, most frequently followed by
“*” or “)”. This similarity in next-token distribution leads to strong similarities in their embedding
vectors. This example vividly illustrates how data distribution shapes semantic structure within the
embedding space, particularly in the case of tokens with high semantic affinity.
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COS(W¢neXt)

cos(WE)
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Ja/b/c/d/e [flg/h fi [j [k /NIminjolpla/r/s [t lulviwix]y/z

/a
Jalb/c/d/e [flg/n[i [i/k /I/m/nfolplq/r/s [t /ulv/w/x]y [z

r——————————

ISimpIify ((k*™*(-9)"*k*k/((K**0/k*k)/K)*k)/(k**(1/2))**(-26))/(((K*K**(2/3) *k)/k**0)/(k**(-1)*k)**14) assuming k is positive. k**(16/3) \

Simplify (((a**31/a*a)/a)/a)/(a/(a/((a/(a/a**(6/5)))/a)))*(a*a**(-1/67))/((a*(a*a/(a*(a**14*a)/a))/a)/a) assuming a is positive. a**
(14668/335) I

Simplify ((*(**(-10/11)/4)/)/j**(3/4)*(i/j**4)**7)**(-22/7) assuming j is positive.
ISimpIify (u*u**(-19))/u**(-1/3)*u/(u**(-5)*u)*u**0 assuming u is positive. u**(-38/3) I
Simplify h*h/(h/(h**14/h)*h*h)*h/(h/(h/h**12))*h**(-11)/(((h**(-4)*h)/h)/h) assuming h is positive. h**(-5) |
ISimpIify ((r/r**(-2/3))**4*r*r*r**(-2/9) *r*r/((r**0*r)/r))**33 assuming r is positive

/

Figure 15: A case analysis of the token group “/a”, “/b”, “/¢”, etc. The first row depicts the cosine
similarity of their embeddings (left) and distribution representations (right). The second row exhibits
the contexts containing these tokens, which are highlighted by different colors.
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C.4 RESULTS OF LLAMA 2

To assess the generalizability of our analysis in Section [f] across different model architectures and
tokenizers, we replicate the experiment using the Llama 2 architecture. We employ the same dataset
from Pile, and the training configurations are the same as the experiments of Qwen2.5. As shown
in Figure[T6] the probability signatures effectively capture structural relationships in the embedding
space, especially in regions exhibiting high embedding similarity. These results align closely with
those in Figure[f] indicating that our analytical approach is robust to variations in model architecture.
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Figure 16: Results with Llama-2 architecture. =~ A: Heatmap of the cosine similarity of
WE WU, ¢ and @P™. B: Reos (WF, ") (top) and Reos (WY, ™) (bottom) with dif-
ferent datasets. C: Relation between Corr (cos (WE, WE) | cos (¢, ¢"**")) and the average
value of cos (WSE ,WE ) Each point denotes a token s. D: Distribution of pcog(gnext), conditioned
on intervals 0 ~ 10%, 40 ~ 50% and 90 ~ 100% of the pcos(w =). E: Average value of peog(gnext)
within each interval of pos(w =).
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D THEORETICAL DETAILS

D.1 PROOF OF PROPOSITION[I]

Lemma 1. Given a model F and data pair (X ,y) € Nt x N*, ¢ = —log Softmax (F (X)), we

have that
ov

OF (X

—pe, ®

where p = softmax (X)) .

Proof. It’s noted £ = —F (X)), + log Z *y exp F' (X)), then we have

or exp F'(X),
= iy + =Pi — i—y,
(X T Eienr(x),
where 0;—, = 1if i = y else 0. This indicates that 8F(X) =p—ey. O

With Lemma we could obtain the derivative of ¢ with respect to W for any = € V as follows:
o OF (X4 o
OWE — OWE OF (X'
= (WO (' —e,)) 0 GO (WE,).

Then the gradient flow of W.F could be obtained by

AWE AR VU g ;
= X w2 VT~ e) 0 G (WE),
=1 z 1=1

Since diag (G (WE.)) = 0if 2 ¢ X, we have that

dWIE 1 N : i (1)
= VT (e ) 06 (W)
Tin N;n
_ s WU’T e _p; @G(l) WE1 .
Nin ;( (ey; —P%)) ( Xw)

Since that y’ takes value v € V, we can rewrite this formation as

E in Ni'n
| S e o6 (W, ) - 3w 60 (W)
dt vey i=1 o i=1 :
Ny, 1 & M
= | e o s 260 (WRL) -y X (V) 060 (WR) |

where NI, N, ,, denotes the count of sequences containing x and the count of sequences containing

x with label v, r“‘ = J\]I\? oy = N;;". Then let N — oo, by the law of large number we have

d‘;‘; <ZP (y=v|zeX)WYe )@EW[G(I)(W)?)\meX,y:V}
vey

~E. [(W'Tp) 0 GO (WE) |z e X]).
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D.2 PROOF OF PROPOSITION[Z]

Similar with the analysis of W.Z, we derive the gradient flow of WY as follows:

quUiili ot
it~ N~ owy

Since e, = 1if y* = v else 0, we have that

out

WS a(wg )] RS e

i=1 i=1

where N2 denotes the count of sequences with label v and rl‘i;‘t = %ﬂt Then let N — oo, by the
law of large number we have
dwV
dt

— pOuE, [G (W)%)T |y = y} —Ex {puG (W)]?)T} .

D.3 PROOF OF COROLLARY [I]

With proposition |1} we have that

de i U, T (1) E
i = ZPﬂ(y:y\xeX)(eru)QEﬂ{G (WX)|$€X:|
vey

B, [(WUTp) 0G0 (WE) |z e X)),

For the linear model, we have that G(!) (W) = 1if 2 € X. Utilizing that softmax (f) =
L1+ dvlo f+0 (d;fbf), we obtain that

dyob b

E
dtm :WU’TT;H< ]P’,r(y:VmEX)e,,—IEW[pM:GX])
vey

. 1 1
=WOTr (@Y —Er | —1+ —WY 3" W+ O W/WF) |z e X
dvob dvob 2.€X ’ v

ZW£|I€X
x, €X

vob

. 1 1
=WVl ¢y — —1 - ——WVE,
dvob dvob

+0(d2 WUW5)>

. 1 1
= wUTyin <¢g -y bWU Y Pr(@eX|zeX)WI+O (dV‘OQbWUWf)>
vo Vo eV
1

1
y WUWEeX — —1+4 0 (d; WUwf))
vob

dvob vob

= WU Tyin <¢g - dl WUWEX 4 n) :
vob
where n = —71-14+ O (d;3 WUWE) contains the higher-order term and the data independent
term.
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D.4 PROOF OF COROLLARY 2]

Proof. Since the small initialization, we assume that the activation function can be approximated by
the following form with the Weierstrass approximation theorem.

o (Z Wf) =Co+C (Z Wf) +Cy (Z Wf>®2+e‘

rzeX zeX zeX

With the loss of the generalization, we assume that Cy = 0,C; = 1,C5 = % Then we have

E
d‘g? :T;nzpﬂ(yzlj|IGX)(WU’TEV)Q]EW 1+ Z W£|x€X,y—V]
vey z'eX
Jv
— "R, l(WUT <1+ > ow >|x€X].
z'eX
Jr

For the term JY we have

J?/:WUﬂTZ]ID,r(y:V\xeX)eU+ZIP’W(y:1/|xGX) (WYTe,) ®E,
vey vey
=WUTr + > diag(W)) Y Pr(y=v|zeX)Pr(a' € X |z e X,y=v)W).
vey @' eV

Z WhlzeX,y=v

z'eX

Since that P, (y=v |z € X)P, (' e X |z e X, y=v) =P, (¢’ e X,y=v |z e X), we
have that

JV=WUTgy+ N P (@ eX,y=v]ze X)W oW/}
v,x’' eV
=WUT¢Y + To ¢X W,

where T € R@*dvobXdvon T. o = wY o Wf for v, 2’ € V and 0 otherwise.

Similarly, for the term JP?, we have that

u, T U E
<W <dmb VobW > ow )) ® <1+ > Wz/> |x€X]
r'eX z'eX

1
= —wUT1 4+ WUTZIP reX|ze X)WE + €

JP =E,

dvob dvob ey
1
= —WUT (1+ W pJ) +e,
dvob
where € = O ( wWUwWE ) Then we have that
vob
awr . 1
@ (WU%z — o WUTWEYX + T ¢ + ) :
vob
where € = — 1}WUT1+(9( WUWf> O
ob vob

27



Under review as a conference paper at ICLR 2026

D.5 PROOF OF COROLLARY 3]

Proof. With Proposition [2] we have that

T T
AWy ot
e | (S wE) o) e | (S W)

zeX zeX

1
=LY Pr(ze X |y=v)WH" - d—WEl + €
vob
eV

—Lr" (WEeX)" =,

( WEWEl) 0

where ) =

D.6 PROOF OF COROLLARY [4]

Proof. The next-token-prediction training loss could be formulated as

L-1
Z CrossEntropy (Flan (X:t);€x,,,) -

t=1

So we have that

ot _ILX_:lWU,T(i_ v ) Svi 14+ FO (X
OWE ~ L & Pt —ex;, Q(XZ:S + ( :t)).

Furthermore, we have that

N L-1
LSS W (exy i) (4 O ()
7’1thL1 N L-1
WSS ey, WYY e 0 PO (X)
i=1 t=1 i=1 t=1

;| NoI-
_ﬁ;

Since the small initialization, assuming that ||W||. = O (d~7) for any trainable parameter matrix
W, we have that || ') (X?%) ||c = O (d'~27) in the initial stage. Let N — oo, we have that

1
WU Tpi o <6X§231 + B (Xft)) .
1

t=

dWE ;
dts _ r;nWU,T (d)next _ nE) ;

Ex[p| X: = s]+ O (d'727¢2*"). Similarly, we have that

L 1
where n¥ =

L—1
dW'Mz (5 me - 0,) (WET P (x)T).

=1 t=1

where prS means the s-th element of the output probability with input sequence X7,. Let N — oo,
it

we have
dwl Jou .
G =t (Wl ) Y,
where n¥ = f:—ll E. [pfxtw)lgtT} +0 (Tgutdl—Q'y (WEcpgre)T)' -
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