

000 001 PROBABILITY SIGNATURE: BRIDGING DATA SEMAN- 002 TICS AND EMBEDDING STRUCTURE IN LANGUAGE 003 MODELS 004 005

006 **Anonymous authors**

007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 The embedding space of language models is widely believed to capture the se-
014 mantic relationships; for instance, embeddings of digits often exhibit an ordered
015 structure that corresponds to their natural sequence. However, the mechanisms
016 driving the formation of such structures remain poorly understood. In this work,
017 we interpret the embedding structures via the token relationships. We propose
018 a set of probability signatures that reflect the semantic relationships among to-
019 kens. Through experiments on the composite addition tasks using the linear model
020 and feedforward network, combined with theoretical analysis of gradient flow dy-
021 namics, we reveal that these probability signatures significantly influence the em-
022 bedding structures. We further generalize our analysis to large language models
023 (LLMs). Our results show that the probability signatures are faithfully aligned
024 with the embedding structures, particularly in capturing strong pairwise simila-
025 rities among embeddings. Our work offers a universal analytical framework that
026 investigates how token relationships direct embedding geometries, empowering
027 researchers to trace how gradient flow propagates token relationships onto em-
028 bedding structures of their models.
029
030

1 INTRODUCTION

031 In recent years, deep neural network-based large language models (LLMs) have demonstrated re-
032 markable performance (Comanici et al., 2025; OpenAI et al., 2024; DeepSeek-AI et al., 2025). The
033 development of these models has largely followed what Richard Sutton termed “the bitter lesson”—
034 that the most effective approach to improving AI performance has historically been to leverage
035 greater computational resources, larger models, and more data, rather than incorporating human
036 knowledge or specialized architectures (Sutton, 2019). This trend has been formalized through scal-
037 ing laws (Kaplan et al., 2020). While these scaling laws provide valuable quantitative predictions for
038 model performance, they also reveal a concerning limitation: achieving further significant improve-
039 ments may require prohibitively large increases in model and data size, making continued scaling
040 increasingly impractical and resource-intensive.

041 A more sustainable path forward lies in developing a mechanistic understanding of deep learning’s success. Recent research has uncovered key properties such as the edge-of-stability phe-
042 nomenon (Wu et al., 2018; Cohen et al., 2021), frequency principle (Xu et al., 2020; 2025a), at-
043 tention patterns (Elhage et al., 2021; Olsson et al., 2022; Bhojanapalli et al., 2020), and parameter
044 distribution characteristics (Kovaleva et al., 2021; Dar et al., 2023). Among these, the structure of
045 the embedding space is fundamental: it serves as the gateway through which tokens are encoded,
046 forming the basis of all subsequent learning. Indeed, embeddings often capture intuitive seman-
047 tics—for instance, embeddings of digits 1,2,...,9 form an ordered structure reflecting their numer-
048 ical sequence (Mikolov et al., 2013b; Ethayarajh et al., 2019; Zhang et al., 2024; Yao et al., 2025).
049 Yet, what drives this alignment between embedding geometry and semantic structure remains an
050 open question: the precise mechanisms linking data distribution to embedding organization are still
051 poorly characterized.
052

053 In this work, we establish a mechanistic link between embedding geometry and token relationship
through the lens of gradient flow dynamics. For each token, we propose a set of probability signa-

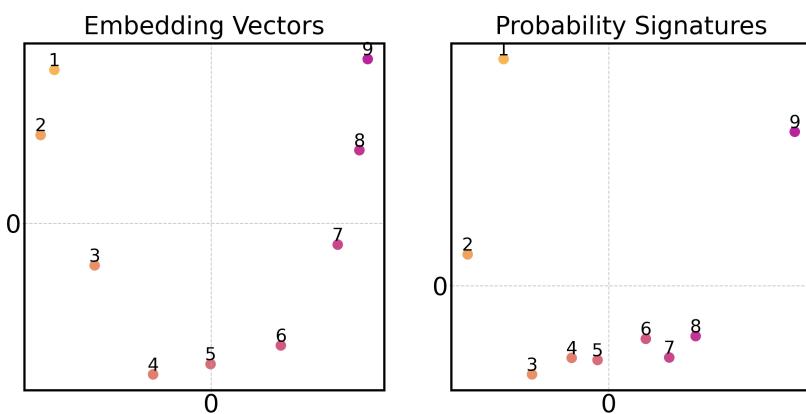


Figure 1: Left: The PCA projection of embedding vectors of the digits 1, 2, 3, ⋯, 9 in Qwen2.5 3B-base. Right: The PCA projection of the probability signatures of the digits 1, 2, 3, ⋯, 9 estimated by subsets of Pile(detailed formulation see (4)).

tures based on its statistical relationships with the other tokens (e.g., label distribution, co-occurrence patterns). Such probability signatures systematically capture inherent token-level relationships and reflect semantic structures. Our gradient flow analysis reveals that these signatures actively govern the evolution of embedding vectors, forging a deterministic connection between probability signature and embedding structure. This is illustrated in Figure 1: both the embeddings of digits 1,2,⋯,9 in Qwen2.5 3B-base (Team, 2024) and their probability signatures estimated from the Pile corpus (Gao et al., 2020; Biderman et al., 2022) exhibit an ordered arrangement aligned with their natural sequence, suggesting that probability signatures are the prime driver of embedding organization. We instantiate this framework by deriving the exact signature sets for linear models and feedforward networks, showing how architecture determines which token relationships are encoded. Through carefully controlled synthetic tasks, we verify that manipulating probability signatures predictably reshapes the embedding space. Finally, we extrapolate our framework to LLMs, demonstrating that even in realistic training regimes, next-token and previous-token distributions dominate the dynamics of embedding and unembedding vectors in Qwen2.5 and Llama-2 architectures.

The primary contribution of this work is a universal analytical framework that investigates how token relationships direct embedding geometries. Through exact gradient flow analysis, we demonstrate that any embedding-based architecture encodes a specific, predictable subset of data distribution statistics into its token representations. This framework not only explains observed embedding structures as a deterministic consequence of probability signatures, but also predicts which probability signatures dominate in a given model, transforming representation learning from a black-box phenomenon into a transparent, distribution-driven process.

2 RELATED WORK

Parameter analysis in LLMs Investigating the underlying parameter properties in LLMs is crucial for understanding the foundation of models. Some works focus on the specific modules in models. Elhage et al. (2021); Olsson et al. (2022) uncover mechanisms such as induction heads from the attention module. Bhojanapalli et al. (2020) reveals the rank-collapse phenomenon of the attention matrix. Geva et al. (2021; 2022); Dai et al. (2022) investigates the characteristics and functions of the FFN in LLMs. Additionally, analysis of a single neuron has been widely employed in mechanism interpretation, particularly in circuits analysis Hanna et al. (2023); Wang et al. (2023); Hanna et al. (2024); Wang et al. (2025), sparse autoencoders (SAE) Huben et al. (2024); Bricken et al. (2023), transcoders Dunefsky et al. (2024), and cross-layer transcoders (CLT) Ameisen et al. (2025). There are also some studies investigating the global properties of all parameters. Dar et al. (2023); Katz et al. (2024) introduce a framework for interpreting all parameters of Transformer models by projecting them into the embedding space. Kovaleva et al. (2021); Yu et al. (2025) provide an analysis of the parameter distribution, demonstrating the significance of these outliers. In this work, we will focus on the embedding space, explaining the formation of its structure from both experimental and theoretical perspectives.

108 **Embedding structure and representation learning** Since the introduction of static word em-
 109 beddings by Mikolov et al. (2013a); Pennington et al. (2014) and the adoption of contextualized
 110 embeddings (Devlin et al., 2019; Peters et al., 2018), significant attention has been devoted to
 111 analyzing embedding properties. Gao et al. (2019); Ethayarajh (2019); Timkey & van Schijndel
 112 (2021) explore the anisotropy of embedding space, while Cai et al. (2021) show that embeddings
 113 exhibit isotropy within clusters. Liu et al. (2022) offers insights into grokking by emphasizing the
 114 role of well-organized embedding structures. Zhang et al. (2024) establishes a connection between
 115 embedding structure and model generalization, and Yao et al. (2025) provides an analysis of this
 116 relationship. Crucially, these studies characterize embedding geometry post hoc, treating it as an
 117 empirical phenomenon to be observed rather than a deterministic outcome to be explained. In con-
 118 trast, we mechanistically interpret how embedding structures arise from token relationships. Our
 119 gradient-flow-driven framework reveals that token-wise probability signatures dictate the evolution
 120 of embedding vectors, offering not merely a new perspective, but a predictive, architecture-agnostic
 121 protocol for understanding representation formation.

122 3 PRELIMINARY

124 3.1 EMBEDDING-BASED MODEL

126 We denote the models functioning on the trainable embedding of the input sequence as embedding-
 127 based models. We provide the following formulation:

128 **Definition 1.** *Given a vocabulary $\mathcal{V} \subset \mathbb{N}^+$ with size d_{vob} , we denote $\mathbf{e}_x \in \mathbb{R}^{d_{\text{vob}}}$ as the one-
 129 hot vector of x for any $x \in \mathcal{V}$. The trainable embedding matrix and unembedding matrix are
 130 $\mathbf{W}^E \in \mathbb{R}^{d \times d_{\text{vob}}}$ and $\mathbf{W}^U \in \mathbb{R}^{d_{\text{vob}} \times d}$, respectively. For a sequence $\mathbf{X} := [x_1, x_2, \dots, x_L] \in \mathcal{V}^L$
 131 with length L . The trainable embedding of \mathbf{X} and an embedding-based model F taking \mathbf{X} as input
 132 could be formulated as*

$$133 \quad \mathbf{W}_{\mathbf{X}}^E = \mathbf{W}^E \mathbf{e}_{\mathbf{X}} := [\mathbf{W}_{x_1}^E, \mathbf{W}_{x_2}^E, \dots, \mathbf{W}_{x_L}^E], \\ 134 \quad F(\mathbf{X}) = \mathbf{W}^U G(\mathbf{W}_{\mathbf{X}}^E),$$

136 where G means the mapping in the hidden space, $\mathbf{W}_{x_i}^E = \mathbf{W}^E \mathbf{e}_{x_i}$ represents the embedding vector
 137 of elements $x_i \in \mathcal{V}$.

139 Embedding-based models have been widely applied in various domains, particularly in NLP. In this
 140 work, our objective is to investigate how the token relationships impact the characteristics of the
 141 embedding space. We will begin with the following simplified models, facilitating our analysis.

- 142 • Linear model. $F_{\text{lin}}(\mathbf{X}) = \mathbf{W}^U \sum_{x \in \mathbf{X}} \mathbf{W}_x^E$.
- 143 • Feedforward network. $F_{\text{ffn}}(\mathbf{X}) = \mathbf{W}^U \sigma(\sum_{x \in \mathbf{X}} \mathbf{W}_x^E)$, where σ denotes the element-
 144 wise nonlinear activation.

146 Furthermore, we will provide an elementary analysis of the Transformer architecture in language
 147 tasks and verify our results by the Qwen2.5 architecture and the Llama 2 architecture (Touvron
 148 et al., 2023).

150 3.2 TOKEN RELATIONSHIPS & PROBABILITY SIGNATURES

152 In natural language, a token’s meaning is fully constituted by its statistical context: how it pre-
 153 dictates downstream labels, what tokens it co-occurs with, and how these relationships jointly evolve.
 154 Formally, these semantic regularities manifest as conditional probability distributions over the vo-
 155 cabulary. Denote the label of a sequence \mathbf{X} by y and assume $(\mathbf{X}, y) \sim \pi$. For a token x in input \mathbf{X} ,
 156 we consider four representative families of such distributions:

- 157 • **Label relationship:** $\mathbb{P}_{\pi}(y = \nu \mid x \in \mathbf{X})$ encodes what x signals about the output—e.g., “ex-
 158 cellent” in a review robustly predicts a positive label ν , while “frustrated” skews toward negative.
- 159 • **Co-occurrence relationship:** $\mathbb{P}_{\pi}(x' \in \mathbf{X} \mid x \in \mathbf{X})$ captures syntactic-semantic neighbor-
 160 hoods—“stock” frequently co-occurs with “market” but rarely with “apple” (in the financial
 161 sense). Higher-order terms like $\mathbb{P}_{\pi}(x', x'' \in \mathbf{X} \mid x \in \mathbf{X})$ encode compositional contexts.

162 • **Joint relationship:** The joint $\mathbb{P}_\pi(x' \in \mathbf{X}, y = \nu \mid x \in \mathbf{X})$ reveals context-dependent labeling—“apple” co-occurring with “pie” predicts a food label, while with “store” predicts a tech label.

165 • **Inverse relationship:** $\mathbb{P}_\pi(x \in \mathbf{X} \mid y = x)$ describes what precedes a token as its cause—the tokens that predict x itself (e.g., what contexts make “surprised” likely to appear).

168 These token-wise relationships are semantic primitives: they are computable from data, independent of any model, but depend on the contexts and tokenizers, yet fully determine the token’s functional role in the corpus. Critically, a sequence of length L yields exponentially many such relationships—our four families merely scratch the surface. **Rather than exhaustively enumerating them, we propose a systematic principle: the gradient flow dynamics of any embedding-based model will automatically select a specific subset of these relationships to encode.** To showcase this principle, we distill each family into a compact **probability signature**—a vector/matrix that aggregates the relevant conditional probabilities (Definition 2). This choice is deliberate: we aim not to prescribe a fixed signature set, but to demonstrate that any such set derived from gradient flow analysis will faithfully sculpt the embedding space.

177 **Definition 2** (Probability Signatures). *For token $x \in \mathcal{V}$, we define four probability signatures that 178 capture distinct token relationships:*

$$\begin{aligned} \phi_x^y &= \sum_{\nu \in \mathcal{V}} \mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X}) \mathbf{e}_\nu, & \phi_x^{\mathbf{X}} &= \sum_{x' \in \mathcal{V}} \mathbb{P}_\pi(x' \in \mathbf{X} \mid x \in \mathbf{X}) \mathbf{e}_{x'}, \\ \phi_x^{\mathbf{X}|y} &= \sum_{\nu, x'} \mathbb{P}_\pi(x' \in \mathbf{X}, y = \nu \mid x \in \mathbf{X}) \mathbf{e}_\nu \times \mathbf{e}_{x'}^\top, & \varphi_x^{\mathbf{X}} &= \sum_{x' \in \mathcal{V}} \mathbb{P}_\pi(x' \in \mathbf{X} \mid y = x) \mathbf{e}_{x'}. \end{aligned}$$

184 We have $\phi_x^y, \phi_x^{\mathbf{X}}, \varphi_x^{\mathbf{X}} \in \mathbb{R}^{d_{\text{vob}}}$, $\phi_x^{\mathbf{X}|y} \in \mathbb{R}^{d_{\text{vob}} \times d_{\text{vob}}}$.

186 Each probability signature is a data-derived feature vector/matrix for x . For example, the ν -th 187 element of ϕ_x^y is $\mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X})$. The signatures above are exemplars; our framework 188 empowers researchers to derive more probability signatures for their models of interest by tracing 189 how gradient flow propagates token relationships onto embedding structures.

4 GRADIENT FLOW OF EMBEDDING VECTOR

193 To understand why embeddings organize as they do, we examine the continuous dynamics of training 194 via gradient flow, the limit of gradient descent as the learning rate vanishes. This tool acts as 195 a microscope, revealing the “force field” that sculpts each embedding vector. Formally, Given a 196 dataset $\{(\mathbf{X}^i, y^i)\}_{i=1}^N$ with loss function $\ell^i = \ell(F(\mathbf{X}^i; \theta), y^i)$, the gradient descent implies that 197 $\theta^{k+1} - \theta^k = -\eta \frac{1}{N} \sum_{i=1}^N \frac{\partial \ell^i}{\partial \theta} \mid_{\theta=\theta^k}$. Then the gradient flow of θ is defined as:

$$\frac{d\theta}{dt} := \lim_{\eta \rightarrow 0} \frac{\theta^{k+1} - \theta^k}{\eta} = -\frac{1}{N} \sum_{i=1}^N \frac{\partial \ell^i}{\partial \theta}.$$

201 Our goal is to trace how this dynamics acts on the embedding vector \mathbf{W}_x^E for any token $x \in \mathcal{V}$. 202 Using the standard cross-entropy loss:

$$\ell^i = -\log \text{Softmax}(F(\mathbf{X}^i))_{y^i} = -\log \frac{\exp F(\mathbf{X}^i)_{y^i}}{\sum_{j=1}^{d_{\text{vob}}} \exp F(\mathbf{X}^i)_j},$$

206 we derive the exact evolution equation:

207 **Proposition 1.** *Let \odot represent the Hadamard product and T mean the matrix transpose. Given an 208 embedding-based model F with an embedding matrix \mathbf{W}^E . For any token $x \in \mathcal{V}$, the gradient flow 209 of \mathbf{W}_x^E (the embedding vector of x) can be formulated as follow when $N \rightarrow \infty$:*

$$\begin{aligned} \frac{d\mathbf{W}_x^E}{dt} &= r_x^{\text{in}} \left(\sum_{\nu \in \mathcal{V}} \mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X}) (\mathbf{W}^{U,T} \mathbf{e}_\nu) \odot \mathbb{E}_\pi \left[G^{(1)}(\mathbf{W}_x^E) \mid x \in \mathbf{X}, y = \nu \right] \right. \\ &\quad \left. - \mathbb{E}_\pi \left[(\mathbf{W}^{U,T} \mathbf{p}) \odot G^{(1)}(\mathbf{W}_x^E) \mid x \in \mathbf{X} \right] \right) \\ &:= r_x^{\text{in}} \left(\mathbf{U} \phi_x^y - \mathbb{E}_\pi \left[(\mathbf{W}^{U,T} \mathbf{p}) \odot G^{(1)}(\mathbf{W}_x^E) \mid x \in \mathbf{X} \right] \right), \end{aligned}$$

216 where $\mathbf{U} \in \mathbb{R}^{d \times d_{\text{vob}}}$ and the ν -th column of \mathbf{U} equals $(\mathbf{W}^{U,T} \mathbf{e}_\nu) \odot$
 217 $\mathbb{E}_\pi [G^{(1)}(\mathbf{W}_x^E) \mid x \in \mathbf{X}, y = \nu]$. r_x^{in} denotes the ratio of input sequences containing x in
 218 the training set, $G^{(1)}$ represents the derivative of G with respect to \mathbf{W}_x^E and $\mathbf{p} = \text{softmax}(F(\mathbf{X}))$.
 219

220 This equation reveals that ϕ_x^y drives \mathbf{W}_x^E toward a direction determined by the token-label semantics.
 221 This means: if two tokens share similar label distributions, their embeddings will be forced
 222 to evolve in similar directions from the very start of training. The emergence of other probability
 223 signatures $(\phi_x^X, \phi_x^{X|y})$ is dependent on the formulation of G , as we will show next.
 224

225 To make this analysis concrete, we dissect linear model and feedforward networks, deriving their
 226 exact probability signature sets from Proposition 1. This demonstrates how our framework system-
 227 atically extracts the relevant probability signatures for any given G .
 228

229 4.1 LINEAR MODEL

230 For linear models F_{lin} , the hidden mapping G is simply the sum of embeddings. Substituting this
 231 into Proposition 1 yields a simplified dynamics where the gradient flow depends on only two prob-
 232 ability signatures:
 233

234 **Corollary 1** (Embedding of Linear Model). *Let $N \rightarrow \infty$, π denotes the data distribution over the
 235 training set. The gradient flow of \mathbf{W}_x^E in F_{lin} can be approximated by*

$$236 \frac{d\mathbf{W}_x^E}{dt} = r_x^{\text{in}} \mathbf{W}^{U,T} \left(\phi_x^y - \frac{1}{d_{\text{vob}}} \mathbf{W}^U \mathbf{W}^E \phi_x^X + \eta \right), \quad (1)$$

237 where η denotes the data-independent and higher-order terms.
 238

239 The Corollary 1 indicates that the term ϕ_x^y acts as the primary steering force. Early in training, when
 240 $\|\mathbf{W}^U \mathbf{W}^E\|$ is small, ϕ_x^y alone dictates the update direction. The term ϕ_x^X modulates the embedding
 241 update based on contextual co-occurrence statistics, but its influence is scaled by $\frac{1}{d_{\text{vob}}} \mathbf{W}^U \mathbf{W}^E$ and
 242 thus emerges later in training.
 243

244 **Experimental Validation: Controllable Addition Tasks** If two tokens α, α' satisfy $\phi_\alpha^y \approx \phi_{\alpha'}^y$
 245 and $\phi_\alpha^X \approx \phi_{\alpha'}^X$, Corollary 1 forces their embeddings to align: $\cos(\mathbf{W}_\alpha^E, \mathbf{W}_{\alpha'}^E) = \frac{\mathbf{W}_\alpha^{E,T} \mathbf{W}_{\alpha'}^E}{\|\mathbf{W}_\alpha^E\|_2 \|\mathbf{W}_{\alpha'}^E\|_2} \rightarrow$
 246 1. We design three **variable-controlled addition tasks** to isolate and verify each probability
 247 signature's influence. In each task, ϕ_α^y or ϕ_α^X or both of them will be identical across α . Assuming
 248 all tokens belong to positive integers, and we denote an anchor set by \mathcal{A} , whose elements repre-
 249 sent different addition operations, i.e., anchor α_1 means addition with α_1 . Given a input sequence
 250 $\mathbf{X} = [z, \alpha_1, \alpha_2]$, we define the following tasks:
 251

- 252 • **Addition task** (Varying ϕ_α^y). $y = f_{\text{add}}(\mathbf{X}) = z + \alpha_1 + \alpha_2$, $\alpha_1, \alpha_2 \in \mathcal{A}$. For each anchor pair
 253 (α_1, α_2) , z is sampled from the same set \mathcal{Z} with $\mathcal{Z} \cap \mathcal{A} = \emptyset$. In this task, ϕ_α^X are identical across
 254 anchors while ϕ_α^y are distinct with varying anchors α .
 255
- 256 • **Addition task with the same value domain** (Varying ϕ_α^X). $y = \tilde{f}_{\text{add}}(\mathbf{X}) = z + \alpha_1 +$
 257 α_2 , $\alpha_1, \alpha_2 \in \mathcal{A}$. For anchor pair (α_1, α_2) , $z \in \mathcal{Z}_{(\alpha_1, \alpha_2)} = \mathcal{Y} - \alpha_1 - \alpha_2$ where \mathcal{Y} denotes
 258 the label set, which is identical for all anchor pairs. In \tilde{f}_{add} , ϕ_α^X are distinct across anchors α
 259 while ϕ_α^y are identical for all $\alpha \in \mathcal{A}$.
 260
- 261 • **Module addition** (Both signatures identical). $y = f_{\text{mod}}(\mathbf{X}) = \min \mathcal{Z} +$
 262 $(z + \alpha_1 + \alpha_2 \bmod |\mathcal{Z}|)$, $\alpha_1, \alpha_2 \in \mathcal{A}$ and $z \in \mathcal{Z}$. Both ϕ_α^X and ϕ_α^y are identical with
 263 different anchors.
 264

265 In this work, we set $\mathcal{A} = \{11, 12, \dots, 20\}$ and $\mathcal{Y} = \mathcal{Z} = \{101, 102, \dots, 140\}$. Figure 2A visual-
 266 izes the probability signature similarities for each task, confirming our manipulations. The detailed
 267 mathematical formulations of these signatures in each task are provided in Appendix B.1.
 268

269 **Results: Theory Predicts Embedding Structure** We train F_{lin} for each task with $d = 200$. Tasks
 270 f_{add} and \tilde{f}_{add} are well learned, while f_{mod} fails to be fitted. The details are provided in Appendix A.
 271 Figure 2 B represents the value of $\cos(\mathbf{W}_\alpha^E, \mathbf{W}_{\alpha'}^E)$ in the three tasks.
 272

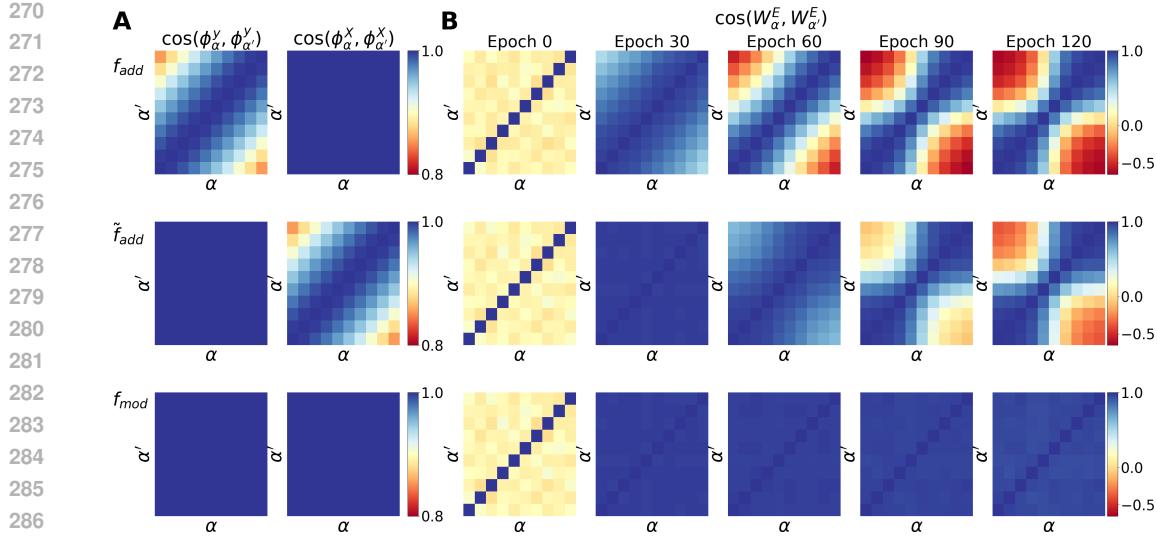


Figure 2: A: The heatmap of $\cos(\phi_\alpha^y, \phi_{\alpha'}^y)$ and $\cos(\phi_\alpha^X, \phi_{\alpha'}^X)$ in three addition tasks. B: The heatmap of $\cos(W_\alpha^E, W_{\alpha'}^E)$ in F_{lin} across different tasks.

- **Task f_{add} :** different anchor embeddings quickly form an ordered structure, where the cosine similarity gets smaller as the anchor distance gets larger. The distribution of $\cos(W_\alpha^E, W_{\alpha'}^E)$ is consistent with the $\cos(\phi_\alpha^y, \phi_{\alpha'}^y)$ (Figure 2 A), implying the impact of ϕ_α^y in directing W_α^E .
- **Task \tilde{f}_{add} :** The anchor embeddings also develop a similar hierarchical structure, aligned with the structure of ϕ_α^X in f_{add} . But its convergence is slower, validating that ϕ_α^y dominates early dynamics.
- **Task f_{mod} :** Although the task is unsolvable by a linear model, all anchor embeddings collapse to the same direction, exactly as Corollary 1 predicts when both signatures are identical.

4.2 FFN UNLOCKS JOINT RELATIONSHIPS: SOLVING THE MODULAR ADDITION PUZZLE

Recall that in Section 4.1, the linear model failed to learn f_{mod} , whose embeddings collapsed to a single direction. It's not because the task lacked structure, but the linear model cannot encode the probability signature $\phi_x^{X|y}$. We find that the nonlinear activation could resolve this problem and provide the following results.

Corollary 2 (Embedding of FFN). *Let $N \rightarrow \infty$, π denotes the data distribution over the training set. The gradient flow of W_x^E in F_{ffn} could be approximated by*

$$\frac{dW_x^E}{dt} = r_x^{\text{in}} \left(W^{U,T} \left(\phi_x^y - \frac{1}{d_{\text{vob}}} W^U W^E \phi_x^X \right) + \mathbb{T} \cdot \phi_x^{X|y} + \epsilon \right), \quad (2)$$

where $\mathbb{T} \in \mathbb{R}^{d \times d_{\text{vob}} \times d_{\text{vob}}}$, $\mathbb{T}_{:,x',\nu} = W_\nu^U \odot W_{x'}^E$ for $\nu, x' \in \mathcal{V}$ and 0 otherwise. ϵ represents the higher-order term.

This is a qualitative leap beyond F_{lin} : The new term $\mathbb{T} \cdot \phi_x^{X|y}$ directly encodes how the presence of x influences the co-occurrence distribution conditioned on future labels. For f_{mod} , $\phi_x^{X|y}$ varies systematically with α (shown in Figure 3 A), thereby providing the necessary signal that the linear model could not access. We train the f_{mod} with F_{ffn} to test whether $\phi_x^{X|y}$ enables structure formation. Figure 3 B depicts the cosine similarity among anchor embeddings, demonstrating that the embedding structure in f_{mod} is ordered, which validates our analysis. **This contract validates that the specific probability signatures encoded are architecture-dependent, but the governing principle—gradient flow transforms signatures into structure—is universal.**

Geometric Proof: PCA Visualization of Signature-Embedding Alignment Proposition 1 and Corollaries 1-2 make algebraic predictions; we now render them as visible geometry. Figure 4

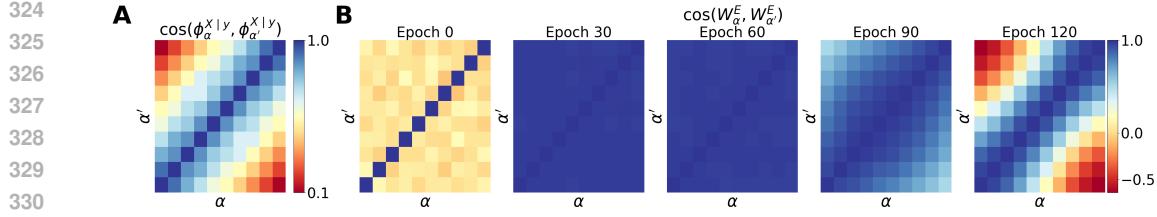


Figure 3: A: The heatmap of $\cos(\phi_\alpha^{X|y}, \phi_{\alpha'}^{X|y})$ in f_{mod} . B: $\cos(W_\alpha^E, W_{\alpha'}^E)$ in F_{ffn} learning f_{mod} .

projects all probability signatures (left 3 columns) and learned embeddings (right 2 columns) into 2D space via PCA. This result reveals that in F_{lin} , the embedding structure is primarily influenced by ϕ_α^y and ϕ_α^X . Specifically, when both ϕ_α^y and ϕ_α^X are controlled in f_{mod} , the embedding structure is chaotic. Besides, the embedding space in F_{ffn} is impacted by another probability signature $\phi_\alpha^{X|y}$. These phenomena are consistent with our theoretical analysis, illustrating that analyzing the embedding space via the gradient flow and linking to the token relationships is viable.

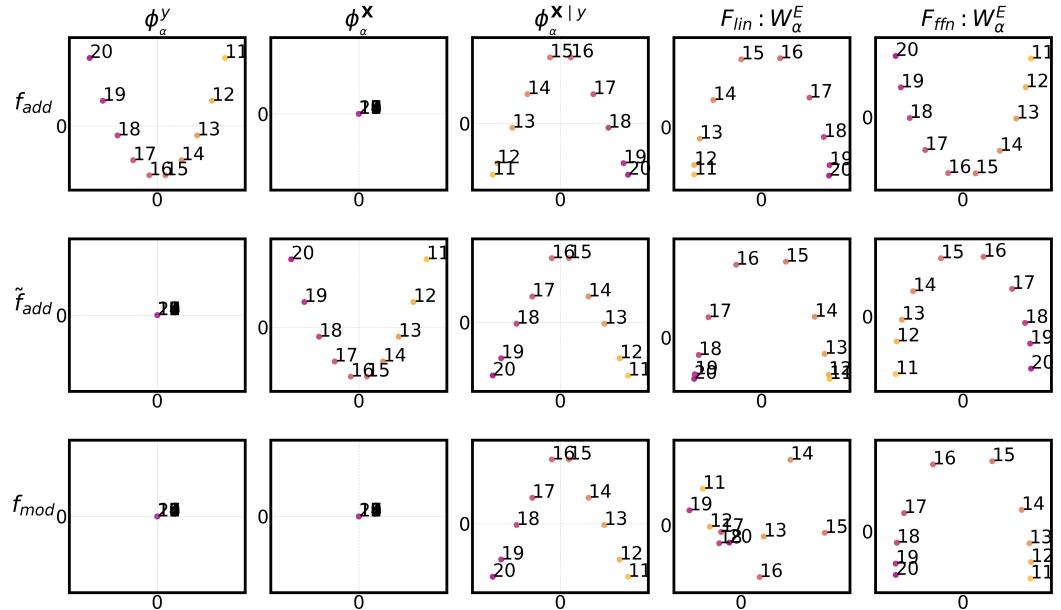


Figure 4: PCA projection of the three types of probability signatures and the embedding vectors in F_{lin} and F_{ffn} (epoch 120).

5 GRADIENT FLOW OF UNEMBEDDING VECTOR

Our analysis thus far has focused on the encoding side—how tokens are embedded into hidden space. A complete theory must also explain the decoding side: how the unembedding matrix \mathbf{W}^U learns to map hidden representations back to token probabilities. Remarkably, gradient flow reveals a perfect symmetry: just as embeddings evolve under token-level probability signatures, unembeddings evolve under inverse signatures that capture how tokens are predicted from contexts.

Proposition 2. *Given an embedding-based model F with an unembedding matrix \mathbf{W}^U . For any token $\nu \in \mathcal{V}$, the gradient flow of \mathbf{W}_ν^U (the ν -th row of \mathbf{W}^U) can be written as*

$$\frac{d\mathbf{W}_\nu^U}{dt} = r_\nu^{\text{out}} \mathbb{E}_\pi \left[G(\mathbf{W}_X^E)^T \mid y = \nu \right] - \mathbb{E}_\pi \left[\mathbf{p}_\nu G(\mathbf{W}_X^E)^T \right],$$

where r_ν^{out} denotes the ratio of sequences whose label is ν and \mathbf{p}_ν means the ν -th element of \mathbf{p} .

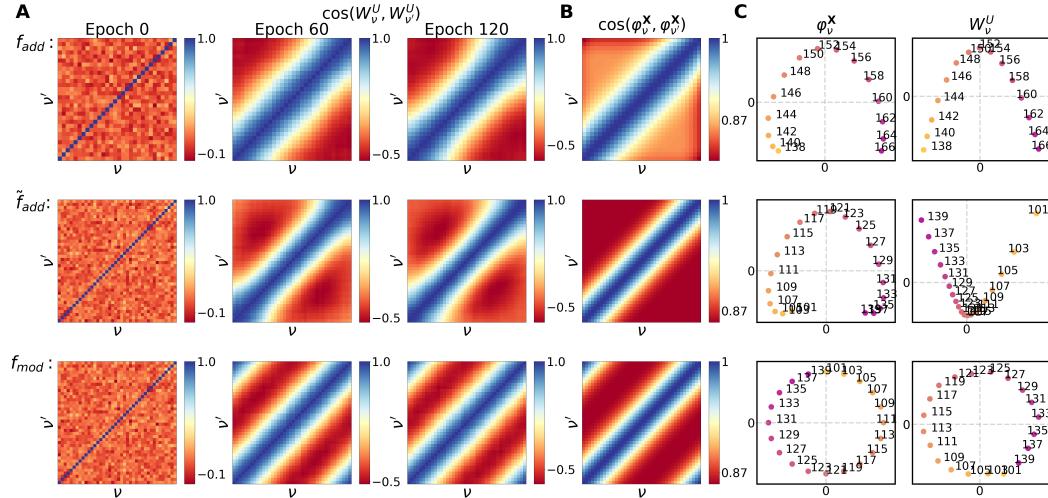
Specifically, we have the following formulation for the linear model:

378 **Corollary 3** (Unembedding of Linear Model). *Let $N \rightarrow \infty$, π denotes the data distribution over*
 379 *the training set. The gradient flow of \mathbf{W}_ν^U in F_{lin} could be approximated by*
 380

$$381 \quad \frac{d\mathbf{W}_\nu^U}{dt} = Lr_\nu^{\text{out}} (\mathbf{W}^E \varphi_\nu^X)^T + \eta, \quad (3)$$

383 where η denotes the output term.

384 Corollary 3 demonstrates that φ_ν^X directs the dynamics of the unembedding vector. We extract
 385 the unembedding matrix from the addition tasks and compare its geometry to φ_ν^X . Figure 5 re-
 386 veals the same striking alignment observed for embeddings. Figure 5 B depicts the distribution of
 387 $\cos(\varphi_\nu^X, \varphi_{\nu'}^X)$, which is aligned with the distribution of the $\cos(\mathbf{W}_\nu^U, \mathbf{W}_{\nu'}^U)$. Furthermore, Figure
 388 5 C compares the PCA projection of φ_ν^X and \mathbf{W}_ν^U in all tasks, revealing a high consistency and
 389 validating our analysis. This symmetric validation completes our framework: Gradient flow does
 390 not arbitrarily shape parameters—it encodes data statistics into model weights with mathematical
 391 precision, whether on the input or output side.



409 Figure 5: A: The heatmap of the $\cos(\mathbf{W}_\nu^U, \mathbf{W}_{\nu'}^U)$ in F_{lin} during the training process. B: The
 410 heatmap of $\cos(\varphi_\nu^X, \varphi_{\nu'}^X)$ across different tasks. C: PCA projection of φ_ν^X and \mathbf{W}_ν^U (epoch 120).

412 6 LANGUAGE MODEL

414 Our analysis of synthetic tasks demonstrates that gradient flow dynamics encode probability signa-
 415 tures into embedding structures. We now ask: Does this principle scale to language models trained
 416 on real-world corpora? A full analysis of all terms in Proposition 1 for Transformers would be
 417 intractable and, more importantly, unnecessary for validating our core contribution. We therefore
 418 adopt a minimalist validation strategy: analyze the dominant probability signature predicted by
 419 gradient flow and test whether it alone can predict embedding structure. If this simplified analysis
 420 succeeds, it proves that our framework captures the essential mechanism and researchers can then
 421 extend it to additional modules as needed.

422 For decoder-only Transformers with next-token prediction, the gradient flow of embeddings is dom-
 423 inated by the next-token distribution since the model could be formulated as follows.

$$425 \quad F_{\text{lan}}(\mathbf{X}) = \mathbf{W}^U \left(\mathbf{W}_X^E + \tilde{F}(\mathbf{X}) \right).$$

426 Formally, given the training corpus $\{\mathbf{X}^i\}_{i=1}^N$, we define the following probability signatures for any
 427 $s \in \mathcal{V}$:

$$429 \quad \phi_s^{\text{next}} = \sum_{s' \in \mathcal{V}} \mathbb{P}_\pi \left(\bigcup_{t=1}^{L-1} \{X_{t+1} = s' \mid X_t = s\} \right) \mathbf{e}_{s'}, \quad (4)$$

$$431 \quad \varphi_s^{\text{pre}} = \sum_{s' \in \mathcal{V}} \mathbb{P}_\pi \left(\bigcup_{t=1}^{L-1} \{X_t = s' \mid X_{t+1} = s\} \right) \mathbf{e}_{s'},$$

432 We derive the following result:

433
434 **Corollary 4.** Let $N \rightarrow \infty$, π denotes the token distribution in the training dataset. The gradient
435 flow of the embedding vector \mathbf{W}_s^E of token s could be formulated as

436
437

$$\frac{d\mathbf{W}_s^E}{dt} = r_s^{\text{in}} \mathbf{W}^{U,T} \phi_s^{\text{next}} + \eta^E.$$

438 Furthermore, the gradient flow of the unembedding vector \mathbf{W}_s^U could be approximated as

439
440
441

$$\frac{d\mathbf{W}_s^U}{dt} = r_s^{\text{out}} (\mathbf{W}^E \phi_s^{\text{pre}})^T + \eta^U.$$

442 The η^E and η^U denote the output probability and the higher-order term.

443
444 **Probability signatures impact the embedding space in language models** Corollary 4 suggests
445 that given any token s , the distributions of its next token and previous token significantly impact
446 its embedding. To verify this result, we trained a group of Qwen2.5 models on different subsets of
447 the Pile. Figure 6 A shows these similarity matrices for the dataset Pile-dm-mathematics, where the
448 tokens displayed are those that occur most frequently in the corpus. We define the following corre-
449 lation coefficient $R_{\text{cos}}(\mathbf{W}^E, \phi^{\text{next}}) := \text{Corr}(\cos(\mathbf{W}_s^E, \mathbf{W}_{s'}^E), \cos(\phi_s^{\text{next}}, \phi_{s'}^{\text{next}}))$, and similarly
450 $R_{\text{cos}}(\mathbf{W}^U, \phi^{\text{pre}})$. Figure 6 B tracks the $R_{\text{cos}}(\mathbf{W}^E, \phi^{\text{next}})$ and $R_{\text{cos}}(\mathbf{W}^U, \phi^{\text{pre}})$ across all sub-
451 sets during training (20 epochs). Correlations increase during the first epoch, indicating that gradient
452 flow rapidly encodes next-token and previous-token statistics into embeddings and unembeddings.
453 After reaching peak alignment, correlations plateau and dip slightly, showing that the embedding
454 structure is still largely impacted by ϕ_s^{next} and ϕ_s^{pre} . The fact that a single simplified probability
455 signature maintains predictive power throughout training, proves that our gradient flow analysis cap-
456 tures the essential mechanism of embedding structure. Researchers can now systematically uncover
457 additional probability signatures (e.g., from attention patterns or higher-order terms) to account for
458 residual variance. Furthermore, we find that the probability signatures reflect the strong connections
459 of embeddings more faithfully, and we provide a detailed analysis in the Appendix C.3. Addition-
460 ally, we provide another set of experiments using the Llama2 architecture in Appendix C.4.

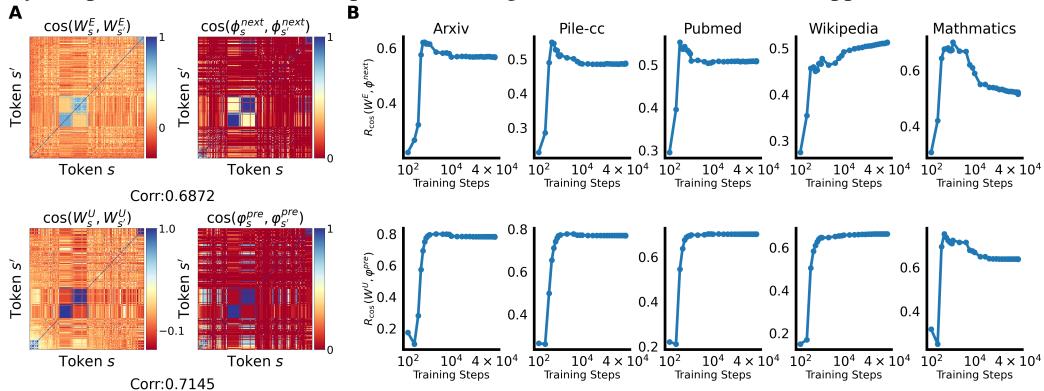
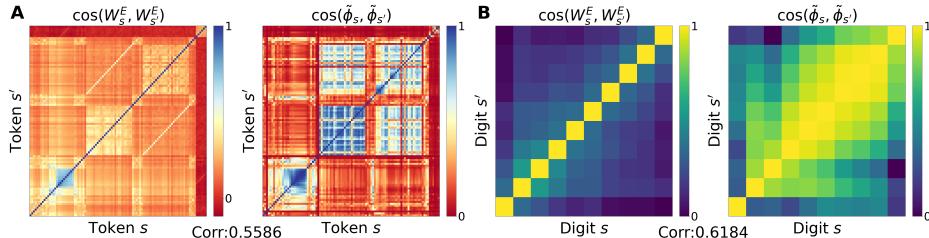


Figure 6: A: Heatmap of $\cos(\mathbf{W}_s^E, \mathbf{W}_{s'}^E)$ (left up), $\cos(\phi_s^{\text{next}}, \phi_{s'}^{\text{next}})$ (right up), $\cos(\mathbf{W}_s^U, \mathbf{W}_{s'}^U)$ (left down) and $\cos(\phi_s^{\text{pre}}, \phi_{s'}^{\text{pre}})$ (right up) in the experiment on dataset Pile-dm-mathematics (1 epoch). B: The dynamics of $R_{\text{cos}}(\mathbf{W}^E, \phi^{\text{next}})$ (top) and $R_{\text{cos}}(\mathbf{W}^U, \phi^{\text{pre}})$ (bottom) during training (20 epochs) across different datasets.

474
475 **Validating with the open-source model** Since general-purpose pretrained base models are trained
476 on broad corpora, we attempt to directly estimate their embedding structure by the probability
477 signature. We employ Qwen2.5-3B-base for comparison and define $\tilde{\phi}_s = \phi_s^{\text{next}} + \phi_s^{\text{pre}}$, since
478 $\mathbf{W}^E = \mathbf{W}^{U,T}$ in Qwen2.5-3B-base (the detail is provided in Appendix C.2). We compute $\tilde{\phi}_s$ from
479 the subsets of Pile. As shown in Figure 7 A, the structure of $\tilde{\phi}_s$ could capture the main properties of
480 the embedding structure, particularly the presence of sub-blocks with high similarity. Furthermore,
481 we examine the instance for the digits ranging from 1 to 9. Figure 1 exhibits the PCA projections
482 of \mathbf{W}_s^E and $\tilde{\phi}_s$, while Figure 7B illustrates their respective cosine similarities $\cos(\mathbf{W}_s^E, \mathbf{W}_{s'}^E)$ and

486 $\cos(\tilde{\phi}_s, \tilde{\phi}_{s'})$, with both figures revealing an ordered organization aligned with the numerical sequence. However, this estimation does not always hold. On the one hand, Zhang et al. (2024) finds
 487 that initialization scale significantly affects the emergence of such embedding structures, demon-
 488 strating that in the NTK regime, the embedding structure may fail to capture token relationships. On
 489 the other hand, since probability signatures are computed from the training dataset, obtaining the
 490 correct data distribution becomes difficult when the corpus is carefully curated.
 491



501 Figure 7: $\cos(W_s^E, W_{s'}^E)$ of the Qwen2.5-3B-base and $\cos(\tilde{\phi}_s, \tilde{\phi}_{s'})$, respectively, with the
 502 frequently-appearing tokens (A) and the digits from 0 to 9 (B).
 503

505 7 DISCUSSION & CONCLUSION

506 We have shown that the geometry of embedding spaces is not a mysterious emergent phenomenon,
 507 but a deterministic encoding of probability signatures sculpted by gradient flow dynamics. More
 508 importantly, we have demonstrated that this encoding can be reverse-engineered: given any
 509 embedding-based architecture, our framework systematically extracts the exact set of statistical
 510 relationships that drive embedding evolution. This transforms representation learning from a black
 511 box into a transparent, distribution-driven process.
 512

513 **Guidance for Model Architectures and Training Methods** We illustrate that each architecture
 514 implicitly selects which probability signatures it can encode. Our gradient-flow analysis makes this
 515 selection explicit and quantifiable: Corollary 1 proves that linear models cannot encode joint token-
 516 label relationships ($\phi_x^{X|y}$). Any task requiring this relationship will fail, regardless of scale. Adding
 517 a nonlinear activation unlocks $\phi_x^{X|y}$ (Corollary 2), enabling models to learn such semantics. This
 518 suggests a principled architecture search: introduce modules whose Jacobians $G^{(1)}$ encode desired
 519 probability signatures. On the other hand, our results have shown that the loss function is not merely
 520 a performance metric but also a gradient flow sculptor that determines which probability signatures
 521 dominate. Corollary 4 shows that next-token prediction makes ϕ_s^{next} the dominant signature, embed-
 522 ding tokens based on immediate neighbors. This explains why standard autoregressive models
 523 excel at local coherence but struggle with long-range dependencies. If the loss predicts k future
 524 tokens, gradient flow will encode the k -gram relationship distribution. This provides a theoretical
 525 explanation for why multi-token prediction could easily capture the global relationships (Gloekle
 526 et al., 2024).
 527

528 **Future Work** We deliberately analyzed only four signature families and a simplified LLM gra-
 529 dient flow. This was not due to theoretical incompleteness, but to demonstrate the framework’s
 530 modular extensibility. Just as we derived $\phi_x^{X|y}$ for feedforward networks and ϕ_s^{next} for Trans-
 531 formers, researchers can now systematically mine custom signatures for their architectures of interest.
 532 The framework is designed to be extended. As a future direction, we will focus on analyzing the
 533 probability signatures in the self-attention module and the completed Transformer layer. This is not
 534 a correction to our theory, but its natural evolution.
 535

536 REFERENCES

537 Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
 538 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
 539 Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,

540 Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
 541 Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
 542 computational graphs in language models. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/methods.html>.
 543

544 Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Low-
 545 rank bottleneck in multi-head attention models. In Hal Daumé III and Aarti Singh (eds.), *Pro-
 546 ceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceed-
 547 ings of Machine Learning Research*, pp. 864–873. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/bhojanapalli20a.html>.
 548

549 Stella Biderman, Kieran Bicheno, and Leo Gao. Datasheet for the pile. *arXiv preprint
 550 arXiv:2201.07311*, 2022.

551 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
 552 erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
 553 Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
 554 Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
 555 Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
 556 models with dictionary learning. *Transformer Circuits Thread*, 2023. [https://transformer-
 558 circuits.pub/2023/monosemantic-features/index.html](https://transformer-

 557 circuits.pub/2023/monosemantic-features/index.html).
 559

560 Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth Church. Isotropy in the contextual embedding
 561 space: Clusters and manifolds. In *International Conference on Learning Representations*, 2021.
 562 URL <https://openreview.net/forum?id=xYGN0860WDH>.
 563

564 Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent
 565 on neural networks typically occurs at the edge of stability. *arXiv preprint arXiv:2103.00065*,
 566 2021.

567 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, and Inder-
 568 jit Dhillon et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
 569 context, and next generation agentic capabilities, 2025.

570 Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
 571 in pretrained transformers. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
 572 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
 573 1: Long Papers)*, pp. 8493–8502, Dublin, Ireland, May 2022. Association for Computational
 574 Linguistics. doi: 10.18653/v1/2022.acl-long.581. URL <https://aclanthology.org/2022.acl-long.581/>.
 575

576 Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. Analyzing transformers in embedding
 577 space. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguis-
 578 tics (Volume 1: Long Papers)*, 2023.

579 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, and Runxin Xu
 580 et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
 581 URL <https://arxiv.org/abs/2501.12948>.
 582

583 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 584 bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.
 585

586 Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable
 587 llm feature circuits. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
 588 quet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Process-
 589 ing Systems*, volume 37, pp. 24375–24410. Curran Associates, Inc., 2024. URL
 590 https://proceedings.neurips.cc/paper_files/paper/2024/file/2b8f4db0464cc5b6e9d5e6bea4b9f308-Paper-Conference.pdf.
 591

592 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
 593 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep

594 Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
 595 Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
 596 Chris Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*,
 597 2021. <https://transformer-circuits.pub/2021/framework/index.html>.

598
 599 Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geom-
 600 etry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiao-
 601 jun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language*
 602 *Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
 IJCNLP)*, pp. 55–65, Hong Kong, China, November 2019. Association for Computational Lin-
 603 guistics. doi: 10.18653/v1/D19-1006. URL <https://aclanthology.org/D19-1006/>.

604
 605 Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. Towards understanding linear word analogies.
 606 In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*,
 607 2019.

608 Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. Representation degeneration
 609 problem in training natural language generation models. In *International Conference on Learning*
 610 *Representations*, 2019. URL <https://openreview.net/forum?id=SKEYojRqtm>.

611
 612 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 613 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
 614 for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

615 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
 616 are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
 617 Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural*
 618 *Language Processing*, Online and Punta Cana, Dominican Republic, November 2021. Associa-
 619 tion for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL [https://aclanthology.org/2021.emnlp-main.446/](https://aclanthology.org/2021.emnlp-main.446).

620
 621 Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers
 622 build predictions by promoting concepts in the vocabulary space. In Yoav Goldberg, Zornitsa
 623 Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods*
 624 *in Natural Language Processing*, pp. 30–45, Abu Dhabi, United Arab Emirates, December
 625 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.3. URL
 626 <https://aclanthology.org/2022.emnlp-main.3/>.

627
 628 Fabian Gloclekle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve.
 629 Better & faster large language models via multi-token prediction. In Ruslan Salakhutdinov, Zico
 630 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 631 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 632 *Proceedings of Machine Learning Research*, pp. 15706–15734. PMLR, 21–27 Jul 2024. URL
 633 <https://proceedings.mlr.press/v235/gloclekle24a.html>.

634
 635 Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-than?:
 636 Interpreting mathematical abilities in a pre-trained language model. In *Thirty-seventh Confer-
 637 ence on Neural Information Processing Systems*, 2023. URL [https://openreview.net/forum?id=TZ0CCGDcuT](https://openreview.net/

 forum?id=p4PckNQR8k.</p>
<p>638

 639 Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going beyond

 640 circuit overlap when finding model mechanisms. In <i>First Conference on Language Modeling</i>,

 641 2024. URL <a href=).

642
 643 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 644 autoencoders find highly interpretable features in language models. In *The Twelfth International*
 645 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?>
 id=F76bwRSLeK.

646
 647 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 648 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 649 models. *arXiv preprint arXiv:2001.08361*, 2020.

648 Shahar Katz, Yonatan Belinkov, Mor Geva, and Lior Wolf. Backward lens: Projecting lan-
 649 guage model gradients into the vocabulary space. In Yaser Al-Onaizan, Mohit Bansal, and
 650 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Nat-*
 651 *ural Language Processing*, pp. 2390–2422, Miami, Florida, USA, November 2024. Associa-
 652 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.142. URL <https://aclanthology.org/2024.emnlp-main.142/>.

653

654 Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. BERT busters: Out-
 655 lier dimensions that disrupt transformers. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
 656 Navigli (eds.), *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*,
 657 pp. 3392–3405, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
 658 v1/2021.findings-acl.300. URL [https://aclanthology.org/2021.findings-acl.](https://aclanthology.org/2021.findings-acl.300/)
 659 300/.

660

661 Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-
 662 wards understanding grokking: An effective theory of representation learning. In *Advances in*
 663 *Neural Information Processing Systems*, 2022.

664

665 Tao Luo, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang. Phase diagram for two-layer relu neural
 666 networks at infinite-width limit. *Journal of Machine Learning Research*, 22(71):1–47, 2021.

667

668 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
 669 tations in vector space, 2013a. URL <https://arxiv.org/abs/1301.3781>.

670

671 Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
 672 word representations. In *Proceedings of the 2013 Conference of the North American Chapter of*
 673 *the Association for Computational Linguistics: Human Language Technologies*, 2013b.

674

675 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 676 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 677 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 678 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 679 and Chris Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
 680 <https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html>.

681

682 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, and Florencia
 683 Leoni Aleman et al. Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

684

685 Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word
 686 representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), *Proceedings*
 687 *of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp.
 688 1532–1543, Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.
 689 3115/v1/D14-1162. URL <https://aclanthology.org/D14-1162/>.

690

691 Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
 692 and Luke Zettlemoyer. Deep contextualized word representations. In Marilyn Walker, Heng Ji,
 693 and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of*
 694 *the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long*
 695 *Papers)*, pp. 2227–2237, New Orleans, Louisiana, June 2018. Association for Computational Lin-
 696 *guistics*. doi: 10.18653/v1/N18-1202. URL <https://aclanthology.org/N18-1202/>.

697

698 Richard Sutton. The bitter lesson. *Incomplete Ideas (blog)*, 13(1):38, 2019.

699

700 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

701

702 William Timkey and Marten van Schijndel. All bark and no bite: Rogue dimensions in transformer
 703 language models obscure representational quality. In Marie-Francine Moens, Xuanjing Huang,
 704 Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical*
 705 *Methods in Natural Language Processing*, pp. 4527–4546, Online and Punta Cana, Dominican
 706 Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
 707 emnlp-main.372. URL <https://aclanthology.org/2021.emnlp-main.372/>.

702 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 703 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 704 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 705 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 706 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 707 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 708 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 709 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 710 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 711 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 712 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 713 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 714 2023. URL <https://arxiv.org/abs/2307.09288>.

715 Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
 716 Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
 717 *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=NpsVSN6o4ul>.

719 Xu Wang, Yan Hu, Wenyu Du, Reynold Cheng, Benyou Wang, and Difan Zou. Towards under-
 720 standing fine-tuning mechanisms of LLMs via circuit analysis. In *Forty-second International*
 721 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=45ETiFd6Oa>.

723 Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
 724 dynamical stability perspective. *Advances in Neural Information Processing Systems*, 31, 2018.

726 Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
 727 Fourier analysis sheds light on deep neural networks. *Communications in Computational Physics*,
 728 28(5):1746–1767, 2020.

729 Zhi-Qin John Xu, Yaoyu Zhang, and Tao Luo. Overview frequency principle/spectral bias in deep
 730 learning. *Communications on Applied Mathematics and Computation*, 7(3):827–864, 2025a.

732 Zhi-Qin John Xu, Yaoyu Zhang, and Zhangchen Zhou. An overview of condensation phenomenon
 733 in deep learning. *arXiv preprint arXiv:2504.09484*, 2025b.

734 Junjie Yao, Zhongwang Zhang, and Zhi-Qin John Xu. An analysis for reasoning bias of language
 735 models with small initialization. In *Forty-second International Conference on Machine Learning*,
 736 2025.

738 Mengxia Yu, De Wang, Qi Shan, Colorado Reed, and Alvin Wan. The super weight in large language
 739 models, 2025. URL <https://arxiv.org/abs/2411.07191>.

740 Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu. Initializa-
 741 tion is critical to whether transformers fit composite functions by reasoning or memorizing. In
 742 *Advances in Neural Information Processing Systems*, 2024.

744

745

746

747

748

749

750

751

752

753

754

755

756 LLMs USAGE
757758 In this work, the LLMs are employed to correct grammatical errors and inappropriate words.
759760
761 A EXPERIMENTAL SETUPS
762763
764 **Addition tasks** For each type of addition task, we trained a linear model F_{lin} and a Feedforward
765 network F_{ffn} . The hidden size $d = 200$, and we employed the ReLU as the activation function. Each
766 dataset contains 50000 data pairs. The training is conducted for 1000 epochs with a batch size of
767 100. The AdamW optimizer is employed with an initial learning rate of 10^{-5} . Inspired by the work
768 of Luo et al. (2021); Xu et al. (2025b), we initialize the model parameters by $\mathbf{W}_{i,j} \sim \mathcal{N}(0, d^{-0.8})$,
769 indicating a small initialization scale.
770771
772 **Language models** In the analysis of the LLMs, we employ the Qwen2.5 architecture with 12
773 layers and 12 attention heads in each layer. We set up that the hidden size is 512, and the intermediate
774 size in FFN is 1024. The dimension of the key vectors and value vectors in each head is 64. Similarly,
775 we initialize the parameter by $\mathbf{W}_{i,j} \sim \mathcal{N}(0, d_{\text{in}}^{-1})$ where d_{in} means the input dimension of \mathbf{W} . We
776 select five subsets of Pile, including Pile-archiv, Pile-dm-mathematics, Pile-cc, Pile-pubmed-central,
777 and Pile-wikipedia-en. The length of each sequence is 2048. The training is conducted for 1 epoch
778 in each experiment, with the AdamW optimizer and a cosine learning rate schedule utilized. The
779 initial learning rate is 10^{-4} .
780781 B ADDITION TASK
782783 B.1 PROBABILITY SIGNATURES IN ADDITION TASKS
784785 We provide a formulation of the following probability in the three addition tasks. We denote $U(\mathcal{A})$
786 and $U(\mathcal{Z})$ as the discrete uniform distribution over \mathcal{A} and \mathcal{Z} , respectively. A and Z are the random
787 variables following $U(\mathcal{A})$ and $U(\mathcal{Z})$. For the task f_{add} , we have that
788

789
$$\mathbb{P}_{\pi}(y = \nu \mid \alpha \in \mathbf{X}) = \mathbb{P}_{\pi}(A + Z = \nu - \alpha), \quad \mathbb{P}_{\pi}(z \in \mathcal{X} \mid \alpha \in \mathbf{X}) = \frac{1}{|\mathcal{Z}|},$$

790
791
$$\mathbb{P}_{\pi}(z \in \mathbf{X} \mid \alpha \in \mathbf{X}, y = \nu) = \mathbb{P}_{\pi}(A = \nu - \alpha - z) = \frac{1}{|\mathcal{A}|} \delta_{\nu - \alpha - z \in \mathcal{A}},$$

792
793
$$\mathbb{P}_{\pi}(\alpha' \in \mathbf{X} \mid \alpha \in \mathbf{X}, y = \nu) = \mathbb{P}_{\pi}(Z = \nu - \alpha - \alpha') = \frac{1}{|\mathcal{Z}|} \delta_{\nu - \alpha - \alpha' \in \mathcal{Z}},$$

794
795
$$\mathbb{P}_{\pi}(z \in \mathbf{X} \mid y = \nu) = \mathbb{P}_{\pi}(A + A = \nu - z), \quad \mathbb{P}_{\pi}(\alpha \in \mathbf{X} \mid y = \nu) = \mathbb{P}_{\pi}(A + Z = \nu - \alpha),$$

796

797 where $\alpha, \alpha' \in \mathcal{A}, z \in \mathcal{Z}$. It's noted that besides the co-occurrence probability $\mathbb{P}_{\pi}(z \in \mathcal{X} \mid \alpha \in \mathbf{X})$,
798 the value of other ones is dependent on α or ν . Figure 8 (left) displays the distribution of these
799 probabilities, which intuitively reveals the cause of the hierarchy structure in the similarity matrix.
800 Similarly, for \tilde{f}_{add} , denote $Y \sim U(\mathcal{Y})$ and we have
801

802
$$\mathbb{P}_{\pi}(y = \nu \mid \alpha \in \mathbf{X}) = \frac{1}{|\mathcal{Y}|}, \quad \mathbb{P}_{\pi}(z \in \mathcal{X} \mid \alpha \in \mathbf{X}) = \mathbb{P}_{\pi}(Y - A = z + \alpha),$$

803
804
$$\mathbb{P}_{\pi}(z \in \mathbf{X} \mid \alpha \in \mathbf{X}, y = \nu) = \mathbb{P}_{\pi}(A = \nu - \alpha - z) = \frac{1}{|\mathcal{A}|} \delta_{\nu - \alpha - z \in \mathcal{A}},$$

805
806
$$\mathbb{P}_{\pi}(\alpha' \in \mathbf{X} \mid \alpha \in \mathbf{X}, y = \nu) = \frac{1}{|\mathcal{Z}|},$$

807
808
$$\mathbb{P}_{\pi}(z \in \mathbf{X} \mid y = \nu) = \mathbb{P}_{\pi}(A + A = \nu - z), \quad \mathbb{P}_{\pi}(\alpha \in \mathbf{X} \mid y = \nu) = \mathbb{P}_{\pi}(A + Z = \nu - \alpha).$$

809

810 For f_{mod} , we have
 811

$$\begin{aligned}
 812 \quad \mathbb{P}_\pi(y = \nu \mid \alpha \in \mathbf{X}) &= \frac{1}{|\mathcal{Z}|}, \quad \mathbb{P}_\pi(z \in \mathcal{X} \mid \alpha \in \mathbf{X}) = \frac{1}{|\mathcal{Z}|}, \\
 813 \\
 814 \quad \mathbb{P}_\pi(z \in \mathbf{X} \mid \alpha \in \mathbf{X}, y = \nu) &= \frac{1}{|\mathcal{A}|} \delta_{\nu - \min \mathcal{Z} - (\alpha - z \bmod |\mathcal{Z}|) \in (A \bmod |\mathcal{Z}|)}, \\
 815 \\
 816 \quad \mathbb{P}_\pi(\alpha' \in \mathbf{X} \mid \alpha \in \mathbf{X}, y = \nu) &= \frac{1}{|\mathcal{Z}|}, \\
 817 \\
 818 \quad \mathbb{P}_\pi(z \in \mathbf{X} \mid y = \nu) &= \mathbb{P}_\pi((A + A \bmod |\mathcal{Z}|) = \nu - \min \mathcal{Z} - (z \bmod |\mathcal{Z}|)), \\
 819 \\
 820 \quad \mathbb{P}_\pi(\alpha \in \mathbf{X} \mid y = \nu) &= \mathbb{P}_\pi((A + Z \bmod |\mathcal{Z}|) = \nu - \min \mathcal{Z} - (\alpha \bmod |\mathcal{Z}|)).
 \end{aligned}$$

821 Figure 8 depicts all these probability distributions.
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

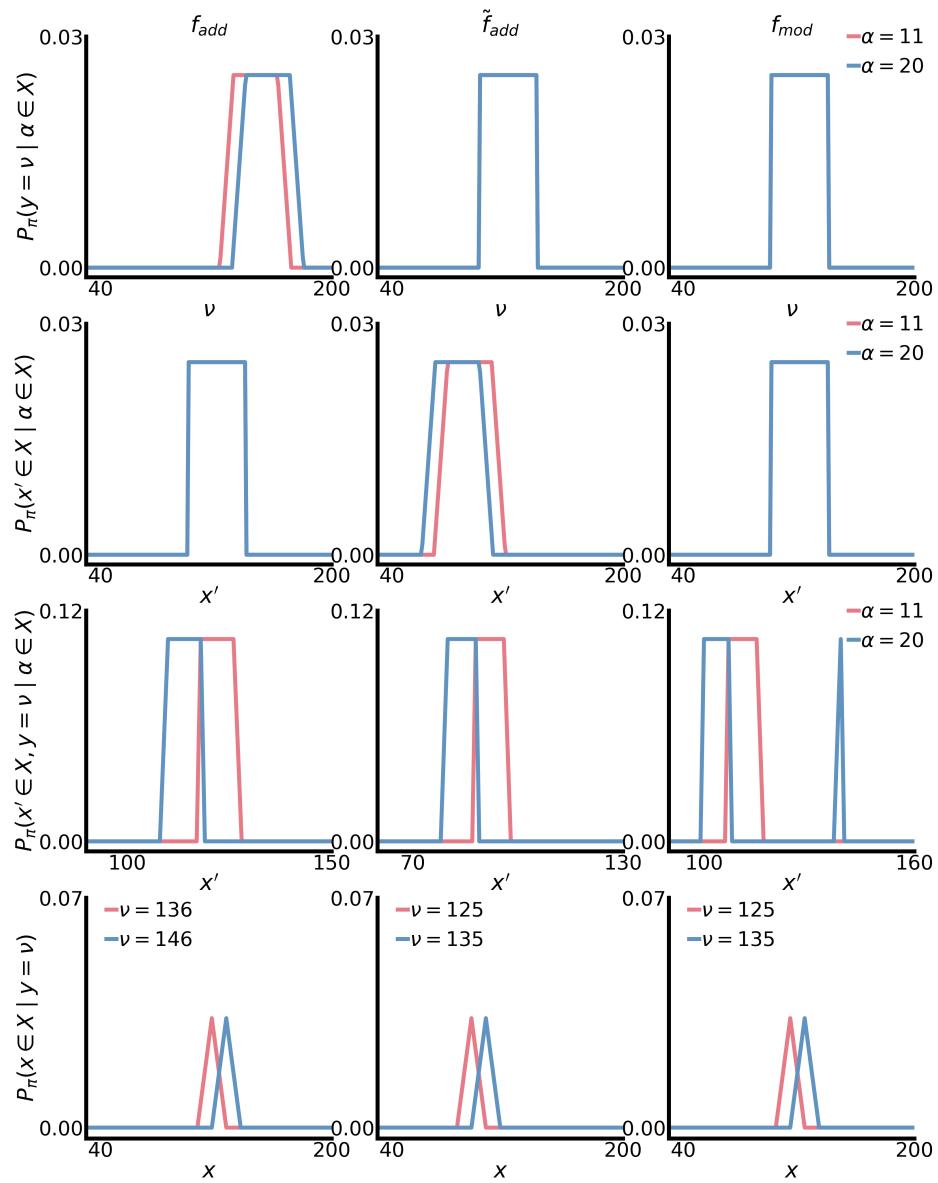
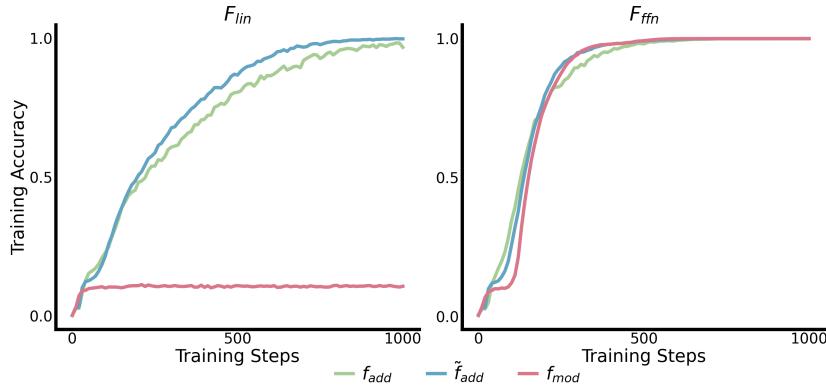


Figure 8: Probability signatures in each task under distinct α and ν . In the distribution of $\mathbb{P}_\pi(x' \in \mathbf{X}, y = \nu \mid \alpha \in \mathbf{X})$, $\nu = 150$ is displayed in f_{add} and $\nu = 120$ in \tilde{f}_{add} and f_{mod} , since 150 and 120 are the average label value in each task.

918 B.2 TRAINING RESULT
919

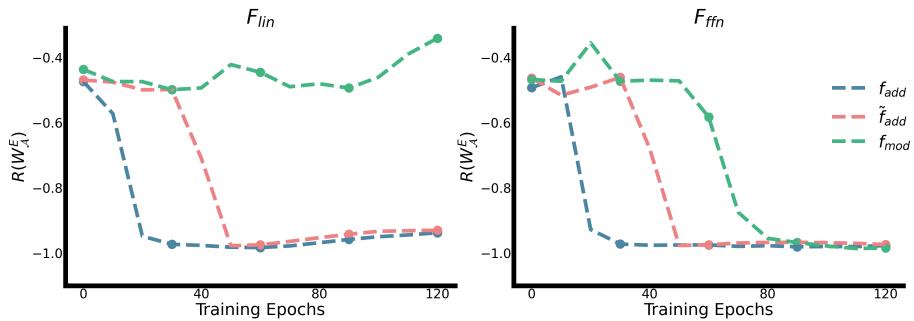
920 Figure 9 shows the training accuracy of F_{lin} and F_{ffn} on the three addition tasks. The results reveal
921 that both f_{add} and \tilde{f}_{add} are learned well by the linear model, whereas f_{mod} requires the nonlinear
922 model to achieve an effective fit.

938 Figure 9: Training accuracy of the F_{lin} (left) and F_{ffn} (right) on the three addition tasks.
939940 B.3 QUANTIFY THE HIERARCHY EMBEDDING STRUCTURE
941

942 In the addition tasks, the anchors exhibit a strict ordering due to the numerical sequence. This
943 provides an ideal setting for the embedding space to develop a corresponding ordered relationship.
944 To formally quantify the formation of the ordered structure, we define the following metric:

$$R_{\text{order}}(\mathbf{W}_{\mathcal{A}}^E) = \text{Corr}(\cos(\mathbf{W}_{\alpha}^E, \mathbf{W}_{\alpha'}^E), |\alpha - \alpha'|).$$

945 $R_{\text{order}}(\mathbf{W}_{\mathcal{A}}^E)$ reflects the relationship between embedding similarity and anchor difference. A
946 strong negative $R_{\text{order}}(\mathbf{W}_{\mathcal{A}}^E)$ (approximately -1) indicates that the similarity decreases system-
947 atically with increasing anchor difference, confirming the presence of a hierarchical organization in
948 the anchor embeddings. Figure 10 depicts the corresponding evolution of $R_{\text{order}}(\mathbf{W}_{\mathcal{A}}^E)$ in F_{lin} and
949 F_{ffn} , which is consistent with our analysis.

944 Figure 10: Dynamics of $R_{\text{order}}(\mathbf{W}_{\mathcal{A}}^E)$ in F_{lin} (left) and F_{ffn} (right). Line colors represent task
945 types.946 B.4 UMEMBEDDING MATRIX IN FEEDFORWARD NETWORK
947

948 Figure 11 displays the structure of the unembedding matrix in F_{ffn} with the three types of addition
949 tasks. The distribution of $\cos(\mathbf{W}_{\nu}^U)$ (A) and the PCA projection (B) jointly reveal that the unem-
950 bedding vectors of those label tokens establish a hierarchy structure, which is consistent with their
951 natural sequence.

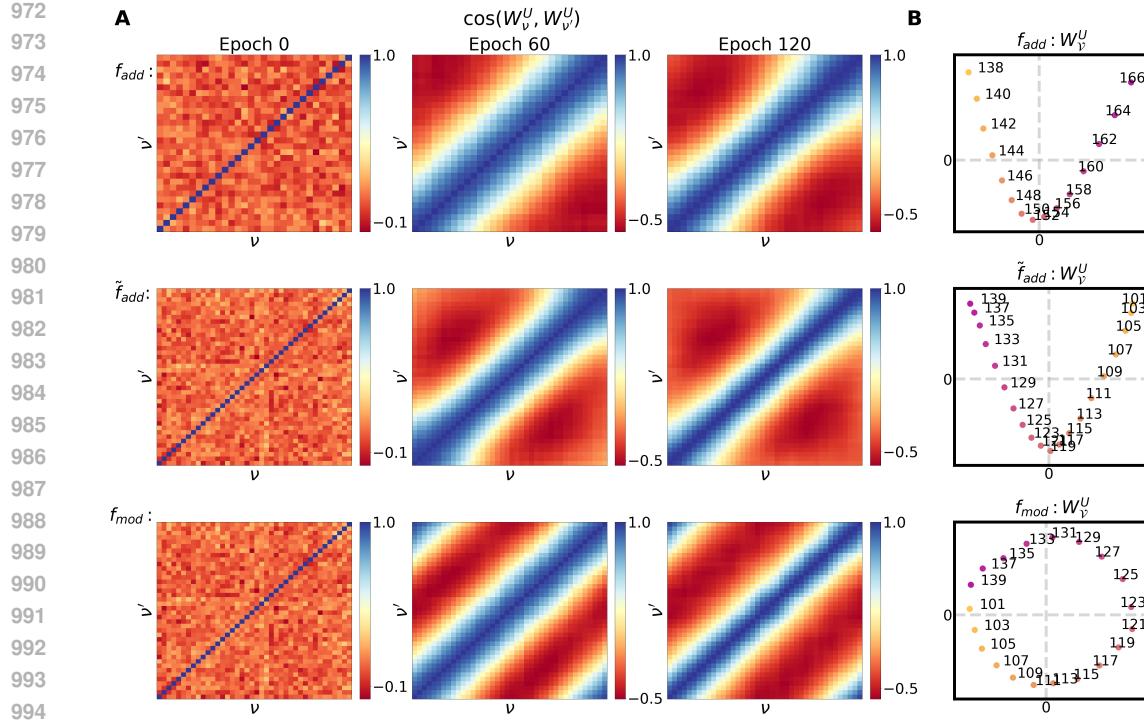


Figure 11: A: The heatmap of the $\cos(W_v^U)$ with label index in F_{ffn} during the training process. B: PCA projection of W_v^U in F_{ffn} (epoch 120).

C LANGUAGE MODELS

C.1 COMPLETE RESULTS

Figure 12 represents the cosine similarity distribution of \mathbf{W}^E , ϕ^{next} , \mathbf{W}^U and φ^{pre} at epoch 1 in the other 4 subsets of Pile we selected, exhibiting an analogous phenomenon with the observation in Figure 6. The distribution representations ϕ^{next} and φ^{pre} could effectively capture the high similarity among embedding vectors and unembedding vectors, respectively. Figure 13 depicts the comparison at epoch 20.

C.2 TIED EMBEDDING

In the Qwen2.5-3B-base model, $\mathbf{W}^E = \mathbf{W}^{U,T}$, which aims for computational source saving. Under this condition, we have that

$$\begin{aligned} \frac{d\mathbf{W}_s^E}{dt} &= r_s^{\text{in}} \mathbf{W}^{U,T} \phi_s^{\text{next}} + r_s^{\text{out}} \mathbf{W}^E \varphi_s^{\text{pre}} + \boldsymbol{\eta} \\ &= \mathbf{W}^E (r_s^{\text{in}} \phi_s^{\text{next}} + r_s^{\text{out}} \varphi_s^{\text{pre}}) + \boldsymbol{\eta}. \end{aligned}$$

Since the next-token-prediction, each token will be an input and an output, except the last token in a sequence, resulting in $r_s^{\text{in}} \approx r_s^{\text{out}}$. Denote $r_s = r_s^{\text{in}}$ and $\tilde{\phi}_s = \phi_s^{\text{next}} + \varphi_s^{\text{pre}}$, then we have

$$\frac{d\mathbf{W}_s^E}{dt} = r_s \mathbf{W}^E \tilde{\phi}_s + \boldsymbol{\eta}.$$

C.3 PROBABILITY SIGNATURE CAPTURE STRONG EMBEDDING SIMILARITIES

We find that the probability signatures reflect the strong connections of embeddings more faithfully. As shown in Figure 14 A, the correlation between $\text{Corr}(\cos(\mathbf{W}_s^E, \mathbf{W}^E), \cos(\phi_s^{\text{next}}, \phi^{\text{next}}))$ and

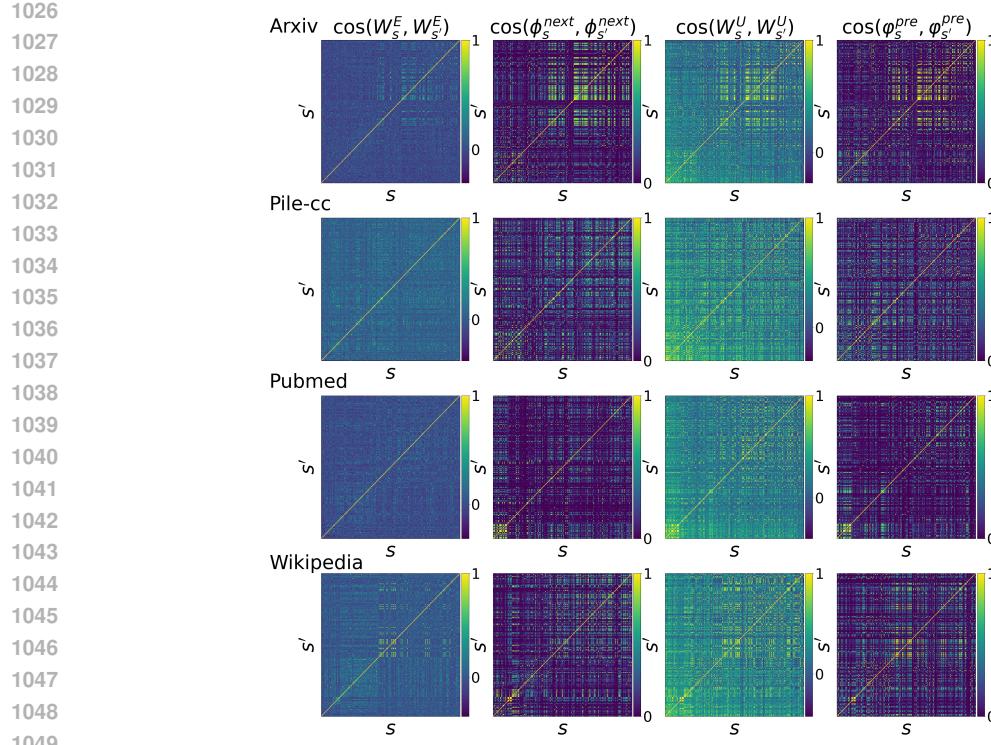


Figure 12: Heatmap of $\cos(\mathbf{W}_s^E, \mathbf{W}_{s'}^E)$ (left up), $\cos(\phi_s^{next}, \phi_{s'}^{next})$ (right up), $\cos(\mathbf{W}_s^U, \mathbf{W}_{s'}^U)$ (left down) and $\cos(\phi_s^{pre}, \phi_{s'}^{pre})$ (right up) (epoch 1) in each experiment with distinct dataset. The tokens displayed are those with the most appearances in the dataset.

$\cos(\mathbf{W}_s^E, \mathbf{W}^E)$ is plotted against for all tokens s , demonstrating stronger consistency in high-similarity regions. We define $p_{\cos(\mathbf{W}^E)}$ and $p_{\cos(\phi^{next})}$ as the percentile matrix of each elements in $\cos(\mathbf{W}^E)$ and $\cos(\phi^{next})$, respectively. Figure 14 B displays the distribution of $p_{\cos(\phi^{next})}$, conditioned on different intervals of the $p_{\cos(\mathbf{W}^E)}$, and Figure 14 C shows the average value of $p_{\cos(\phi^{next})}$ within each interval of $p_{\cos(\mathbf{W}^E)}$. It can be observed that the alignment is significantly stronger in the regions with large embedding similarity.

Remark about Figure 14 A In each subset $D_i, i = 1, 2, \dots, M$, we define the set $\mathcal{S}_i = \{s_j^i\}_{j=1}^{C_i}$ as the set of the C_i tokens which appear most frequently in D_i . Based on the dataset D_i , and denote \mathbf{W}^{E_i} as the embedding matrix of the model corresponding to dataset D_i , we compute that

$$\cos_{D_i}(\mathbf{W}_{s_j^i}^E, \mathbf{W}^E) = \left[\cos(\mathbf{W}_{s_j^i}^{E_i}, \mathbf{W}_{s'}^{E_i}) \right]_{s' \in \mathcal{S}_i} \in \mathbb{R}^{C_i},$$

and

$$\cos_{D_i}(\phi_{s_j^i}^{next}, \phi^{next}) = \left[\cos(\phi_{s_j^i}^{next}, \phi_{s'}^{next}) \right]_{s' \in \mathcal{S}_i} \in \mathbb{R}^{C_i}.$$

for any token $s_j^i \in \mathcal{S}_i$. Then we define the correlation coefficient

$$R_{D_i}(s_j^i) = \text{Corr} \left(\cos_{D_i}(\mathbf{W}_{s_j^i}^E, \mathbf{W}^E), \cos_{D_i}(\phi_{s_j^i}^{next}, \phi^{next}) \right)$$

and the average embedding similarity as

$$\text{Mean}_{\mathbf{W}^E, D_i}(s_j^i) = \frac{1}{C_i} \cos_{D_i}(\mathbf{W}_{s_j^i}^E, \mathbf{W}^E) \cdot \mathbf{1}.$$

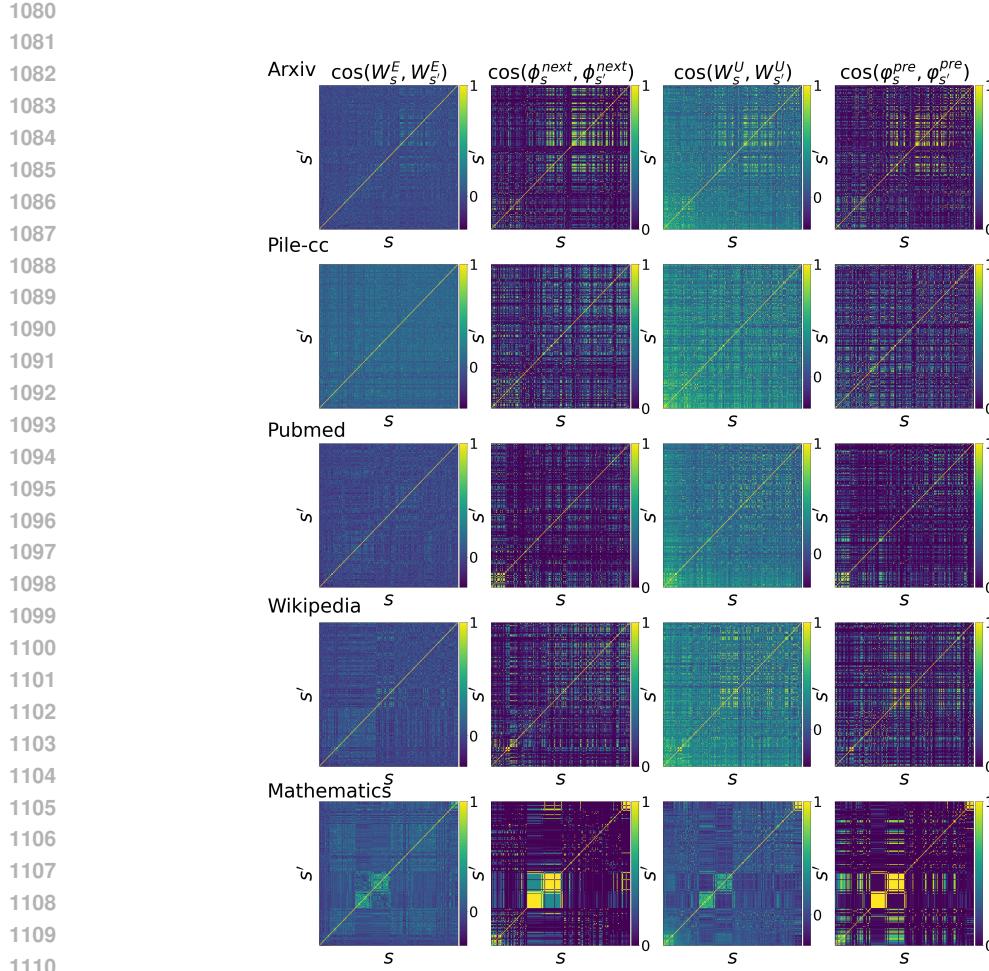


Figure 13: Heatmap of $\cos(\mathbf{W}_s^E, \mathbf{W}_{s'}^E)$ (left up), $\cos(\phi_s^{\text{next}}, \phi_{s'}^{\text{next}})$ (right up), $\cos(\mathbf{W}_s^U, \mathbf{W}_{s'}^U)$ (left down) and $\cos(\varphi_s^{\text{pre}}, \varphi_{s'}^{\text{pre}})$ (right up) (epoch 20) in each experiment with distinct dataset. The tokens displayed are those with the most appearances in the dataset.

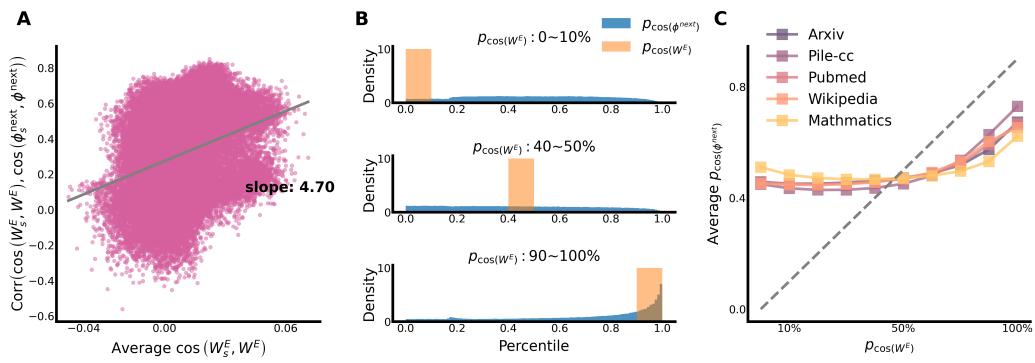


Figure 14: A: Relation between $\text{Corr}(\cos(\mathbf{W}_s^E, \mathbf{W}_{s'}^E), \cos(\phi_s^{\text{next}}, \phi_{s'}^{\text{next}}))$ and the average value of $\cos(\mathbf{W}_s^E, \mathbf{W}_{s'}^E)$. Each point denotes a token s . B: Distribution of $p_{\cos(\phi^{\text{next}})}$, conditioned on intervals $0 \sim 10\%$, $40 \sim 50\%$ and $90 \sim 100\%$ of the $p_{\cos(\mathbf{W}^E)}$. C: Average value of $p_{\cos(\phi^{\text{next}})}$ within each interval of $p_{\cos(\mathbf{W}^E)}$.

1134 Then we concatenate the metrics with all token $s_j^i \in \mathcal{S}_i, j = 1, 2, \dots, C_i$ and all datasets $\mathcal{S}_i, i = 1, 2, \dots, M$, i.e.

$$1137 \text{Corr}(\cos(\mathbf{W}_s^E, \mathbf{W}^E), \cos(\phi_s^{\text{next}}, \phi^{\text{next}})) = [R_{D_i}(s_j^i)]_{j=1,2,\dots,C_i}^{i=1,2,\dots,M} \in \mathbb{R}^{\sum_{i=1}^M C_i},$$

$$1138 \text{Mean}(\cos(\mathbf{W}_s^E, \mathbf{W}^E)) = [\text{Mean}_{\mathbf{W}^E, D_i}(s_j^i)]_{j=1,2,\dots,C_i}^{i=1,2,\dots,M} \in \mathbb{R}^{\sum_{i=1}^M C_i}.$$

1140 Figure 6 displays the relation between $\text{Corr}(\cos(\mathbf{W}_s^E, \mathbf{W}^E), \cos(\phi_s^{\text{next}}, \phi^{\text{next}}))$ and
1141 $\text{Mean}(\cos(\mathbf{W}_s^E, \mathbf{W}^E))$, revealing a positive correlation. In our work, $M = 5$, and we set
1142 up $C_i = 10000$ for each dataset.

1144 **Remark about Figure 14 B & C** In each subset $D_i, i = 1, 2, \dots, M$, we define the set $\mathcal{S}_i =$
1145 $\{s_j^i\}_{j=1}^{C_i}$ as the set of the C_i tokens which appear most frequently in D_i . We compute that

$$1148 \cos_{D_i}(\mathbf{W}^E) = [\cos(\mathbf{W}_s^{E_i}, \mathbf{W}_{s'}^{E_i})]_{s,s' \in \mathcal{S}_i} \in \mathbb{R}^{C_i \times C_i}$$

1149 and

$$1151 \cos_{D_i}(\phi^{\text{next}}) = [\cos(\phi_s^{\text{next}}, \phi_{s'}^{\text{next}})]_{s,s' \in \mathcal{S}_i} \in \mathbb{R}^{C_i \times C_i}.$$

1153 Then translate the similarity matrix into a percentile formulation, i.e.

$$1154 p_{\cos_{D_i}(\mathbf{W}^E)} = \text{Percentile}(\cos_{D_i}(\mathbf{W}^E)), \quad p_{\cos_{D_i}(\phi^{\text{next}})} = \text{Percentile}(\cos_{D_i}(\phi^{\text{next}}))$$

1156 and $p_{\cos(\mathbf{W}^E)} = [p_{\cos_{D_i}(\mathbf{W}^E)}]_{i=1,2,\dots,M}$, $p_{\cos(\phi^{\text{next}})} = [p_{\cos_{D_i}(\phi^{\text{next}})}]_{i=1,2,\dots,M}$. Figure 6 D
1157 and E reveal the distribution and average value of $p_{\cos(\phi^{\text{next}})}$, where $k \times 10\% \leq p_{\cos(\phi^{\text{next}})} <$
1158 $(k+1) \times 10\%, k = 0, 1, 2, \dots, 9$.

1161 **Case Analysis** We provide a detailed case to explain the group of tokens exhibiting high embed-
1162 ding similarities. In experiments on the Pile-dm-mathematics dataset, tokens such as “/a”, “/b”,
1163 “/c”, and “/d” often serve as denominators in mathematical expressions. Figure 15 shows the co-
1164 sine similarities of both their embedding vectors and distribution representations, which are notably
1165 high for all tokens except “/e”, which does not appear in the dataset. These tokens share highly sim-
1166 ilar semantics and also exhibit very similar next-token distributions, most frequently followed by
1167 “*” or “)”. This similarity in next-token distribution leads to strong similarities in their embedding
1168 vectors. This example vividly illustrates how data distribution shapes semantic structure within the
1169 embedding space, particularly in the case of tokens with high semantic affinity.

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

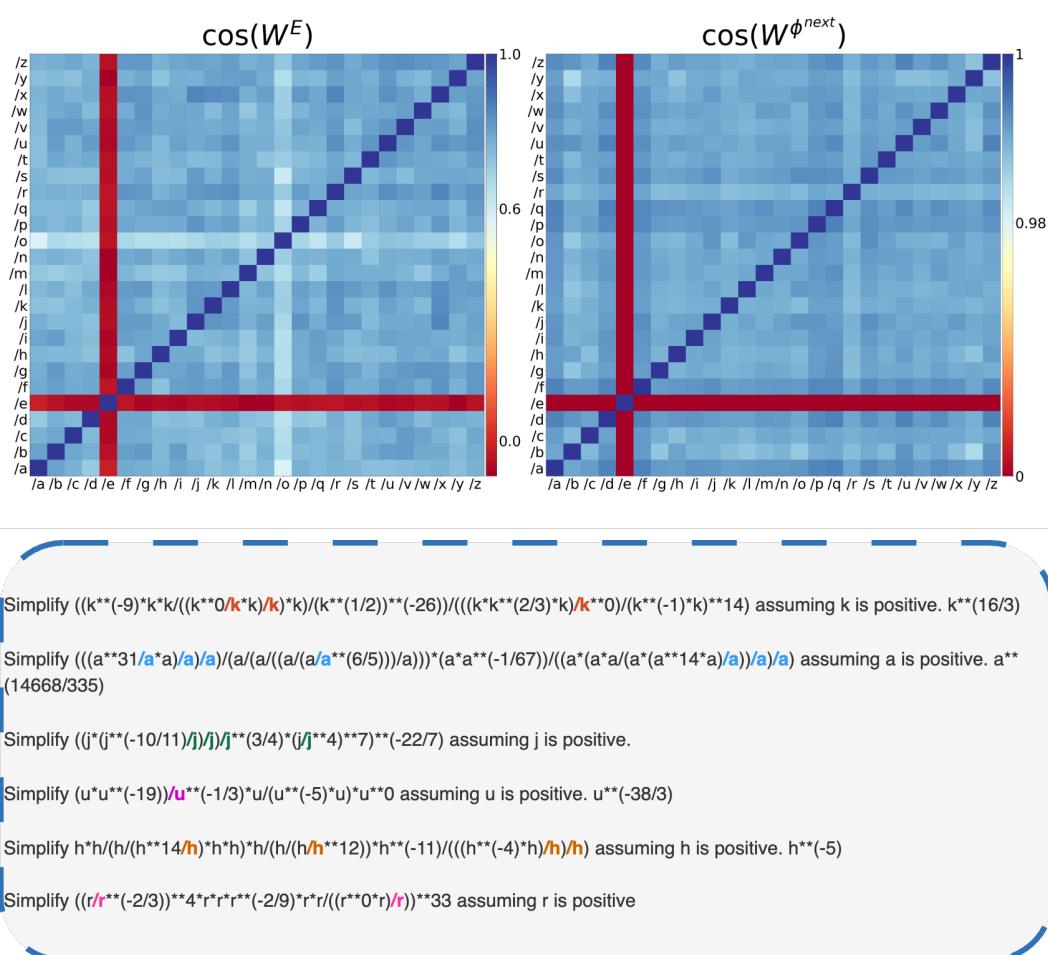
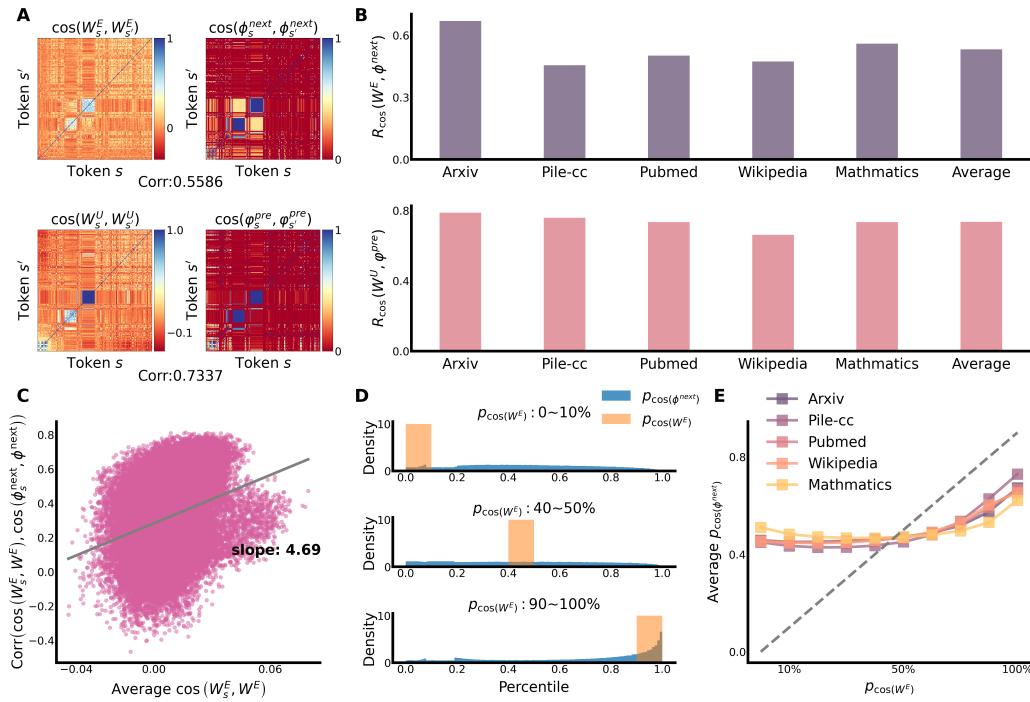


Figure 15: A case analysis of the token group “/a”, “/b”, “/c”, etc. The first row depicts the cosine similarity of their embeddings (left) and distribution representations (right). The second row exhibits the contexts containing these tokens, which are highlighted by different colors.

1242 C.4 RESULTS OF LLAMA 2
1243

1244 To assess the generalizability of our analysis in Section 6 across different model architectures and
1245 tokenizers, we replicate the experiment using the Llama 2 architecture. We employ the same dataset
1246 from Pile, and the training configurations are the same as the experiments of Qwen2.5. As shown
1247 in Figure 16, the probability signatures effectively capture structural relationships in the embedding
1248 space, especially in regions exhibiting high embedding similarity. These results align closely with
1249 those in Figure 6, indicating that our analytical approach is robust to variations in model architecture.



1274 Figure 16: Results with Llama-2 architecture. A: Heatmap of the cosine similarity of
1275 $\mathbf{W}^E, \mathbf{W}^U, \phi^{\text{next}}$ and φ^{pre} . B: $R_{\cos}(\mathbf{W}^E, \phi^{\text{next}})$ (top) and $R_{\cos}(\mathbf{W}^U, \varphi^{\text{pre}})$ (bottom) with
1276 different datasets. C: Relation between $\text{Corr}(\cos(\mathbf{W}_s^E, \mathbf{W}^E), \cos(\phi_s^{\text{next}}, \phi_s^{\text{next}}))$ and the average
1277 value of $\cos(\mathbf{W}_s^E, \mathbf{W}^E)$. Each point denotes a token s . D: Distribution of $p_{\cos(\phi^{\text{next}})}$, conditioned
1278 on intervals $0 \sim 10\%$, $40 \sim 50\%$ and $90 \sim 100\%$ of the $p_{\cos(\mathbf{W}^E)}$. E: Average value of $p_{\cos(\phi^{\text{next}})}$
1279 within each interval of $p_{\cos(\mathbf{W}^E)}$.
1280

1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 **D THEORETICAL DETAILS**
12971298 **D.1 PROOF OF PROPOSITION 1**
12991300 **Lemma 1.** *Given a model F and data pair $(\mathbf{X}, y) \in \mathbb{N}^{+,L} \times \mathbb{N}^+$, $\ell = -\log \text{Softmax}(F(\mathbf{X}))_y$, we
1301 have that*

1302
$$\frac{\partial \ell}{\partial F(\mathbf{X})} = \mathbf{p} - \mathbf{e}_y, \quad (5)$$

1303

1304 where $\mathbf{p} = \text{softmax}(\mathbf{X})$.
13051306 *Proof.* It's noted $\ell = -F(\mathbf{X})_y + \log \sum_{j=1}^{d_{\text{vob}}} \exp F(\mathbf{X})_j$, then we have
1307

1308
$$\frac{\partial \ell}{\partial F(\mathbf{X})_i} = -\delta_{i=y} + \frac{\exp F(\mathbf{X})_i}{\sum_{j=1}^{d_{\text{vob}}} \exp F(\mathbf{X})_j} = \mathbf{p}_i - \delta_{i=y},$$

1309

1310 where $\delta_{i=y} = 1$ if $i = y$ else 0. This indicates that $\frac{\partial \ell}{\partial F(\mathbf{X})} = \mathbf{p} - \mathbf{e}_y$. \square
13111312 With Lemma 1, we could obtain the derivative of ℓ with respect to \mathbf{W}_x^E for any $x \in \mathcal{V}$ as follows:
1313

1314
$$\begin{aligned} \frac{\partial \ell^i}{\partial \mathbf{W}_x^E} &= \frac{\partial F(\mathbf{X}^i)}{\partial \mathbf{W}_x^E} \frac{\partial \ell^i}{\partial F(\mathbf{X}^i)} \\ &= (\mathbf{W}^{U,T}(\mathbf{p}^i - \mathbf{e}_{y^i})) \odot G^{(1)}(\mathbf{W}_{\mathbf{X}^i}^E). \end{aligned}$$

1315

1316 Then the gradient flow of \mathbf{W}_x^E could be obtained by
1317

1318
$$\frac{d\mathbf{W}_x^E}{dt} = -\frac{1}{N} \sum_{i=1}^N \frac{\partial \ell^i}{\partial \mathbf{W}_x^E} = \frac{1}{N} \sum_{i=1}^N (\mathbf{W}^{U,T}(\mathbf{p}^i - \mathbf{e}_{y^i})) \odot G^{(1)}(\mathbf{W}_{\mathbf{X}^i}^E),$$

1319

1320 Since $\text{diag}(G^{(1)}(\mathbf{W}_{\mathbf{X}^i}^E)) = 0$ if $x \notin \mathbf{X}^i$, we have that
1321

1322
$$\begin{aligned} \frac{d\mathbf{W}_x^E}{dt} &= \frac{1}{N} \sum_{i=1}^{N_x^{\text{in}}} (\mathbf{W}^{U,T}(\mathbf{e}_{y_x^i} - \mathbf{p}_x^i)) \odot G^{(1)}(\mathbf{W}_{\mathbf{X}_x^i}^E) \\ &= \frac{r_x^{\text{in}}}{N_x^{\text{in}}} \sum_{i=1}^{N_x^{\text{in}}} (\mathbf{W}^{U,T}(\mathbf{e}_{y_x^i} - \mathbf{p}_x^i)) \odot G^{(1)}(\mathbf{W}_{\mathbf{X}_x^i}^E). \end{aligned}$$

1323

1324 Since that y_x^i takes value $\nu \in \mathcal{V}$, we can rewrite this formation as
1325

1326
$$\begin{aligned} \frac{d\mathbf{W}_x^E}{dt} &= \frac{r_x^{\text{in}}}{N_x^{\text{in}}} \left[\sum_{\nu \in \mathcal{V}} \sum_{i=1}^{N_{x,\nu}} (\mathbf{W}^{U,T} \mathbf{e}_\nu) \odot G^{(1)}(\mathbf{W}_{\mathbf{X}_{x,\nu}^i}^E) - \sum_{i=1}^{N_x^{\text{in}}} (\mathbf{W}^{U,T} \mathbf{p}_x^i) \odot G^{(1)}(\mathbf{W}_{\mathbf{X}_x^i}^E) \right] \\ &= r_x^{\text{in}} \left[\sum_{\nu \in \mathcal{V}} (\mathbf{W}^{U,T} \mathbf{e}_\nu) \odot \frac{N_{x,\nu}}{N_x^{\text{in}}} \sum_{i=1}^{N_{x,\nu}} G^{(1)}(\mathbf{W}_{\mathbf{X}_{x,\nu}^i}^E) - \frac{1}{N_x^{\text{in}}} \sum_{i=1}^{N_x^{\text{in}}} (\mathbf{W}^{U,T} \mathbf{p}_x^i) \odot G^{(1)}(\mathbf{W}_{\mathbf{X}_x^i}^E) \right], \end{aligned}$$

1327

1328 where $N_x^{\text{in}}, N_{x,\nu}$ denotes the count of sequences containing x and the count of sequences containing
1329 x with label ν , $r_x^{\text{in}} = \frac{N_x^{\text{in}}}{N}$, $r_{x,\nu} = \frac{N_{x,\nu}}{N}$. Then let $N \rightarrow \infty$, by the law of large number we have
1330

1331
$$\begin{aligned} \frac{d\mathbf{W}_x^E}{dt} &= r_x^{\text{in}} \left(\sum_{\nu \in \mathcal{V}} \mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X}) (\mathbf{W}^{U,T} \mathbf{e}_\nu) \odot \mathbb{E}_\pi \left[G^{(1)}(\mathbf{W}_{\mathbf{X}}^E) \mid x \in \mathbf{X}, y = \nu \right] \right. \\ &\quad \left. - \mathbb{E}_\pi \left[(\mathbf{W}^{U,T} \mathbf{p}) \odot G^{(1)}(\mathbf{W}_{\mathbf{X}}^E) \mid x \in \mathbf{X} \right] \right). \end{aligned}$$

1332

1350 D.2 PROOF OF PROPOSITION 2
13511352 Similar with the analysis of \mathbf{W}_x^E , we derive the gradient flow of \mathbf{W}_ν^U as follows:
1353
1354

1355
$$\frac{d\mathbf{W}_\nu^U}{dt} = -\frac{1}{N} \sum_{i=1}^N \frac{\partial \ell^i}{\partial \mathbf{W}_\nu^U}$$

1356
1357
$$= \frac{1}{N} \sum_{i=1}^N (\mathbf{e}_{y^{i,\nu}} - \mathbf{p}^{i,\nu}) [G(\mathbf{W}_{\mathbf{X}^i}^E)]^T.$$

1358
1359
1360

1361 Since $\mathbf{e}_{y^{i,\nu}} = 1$ if $y^i = \nu$ else 0, we have that
1362

1363
$$\frac{d\mathbf{W}_\nu^U}{dt} = \frac{r_\nu^{\text{out}}}{N_\nu^{\text{out}}} \sum_{i=1}^{N_\nu^{\text{out}}} [G(\mathbf{W}_{\mathbf{X}_{(\cdot,\nu)}^i}^E)]^T - \frac{1}{N} \sum_{i=1}^N \mathbf{p}^{i,\nu} [G(\mathbf{W}_{\mathbf{X}^i}^E)]^T,$$

1364
1365
1366

1367 where N_ν^{out} denotes the count of sequences with label ν and $r_{\nu_j}^{\text{out}} = \frac{N_{\nu_j}^{\text{out}}}{N}$. Then let $N \rightarrow \infty$, by the
1368 law of large number we have
1369

1370
$$\frac{d\mathbf{W}_\nu^U}{dt} = r_\nu^{\text{out}} \mathbb{E}_\pi [G(\mathbf{W}_{\mathbf{X}}^E)^T \mid y = \nu] - \mathbb{E}_\pi [\mathbf{p}_\nu G(\mathbf{W}_{\mathbf{X}}^E)^T].$$

1371
1372

1373 D.3 PROOF OF COROLLARY 1
13741375 With proposition 1, we have that
1376

1377
$$\frac{d\mathbf{W}_x^E}{dt} = r_x^{\text{in}} \left(\sum_{\nu \in \mathcal{V}} \mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X}) (\mathbf{W}^{U,T} \mathbf{e}_\nu) \odot \mathbb{E}_\pi [G^{(1)}(\mathbf{W}_{\mathbf{X}}^E) \mid x \in \mathbf{X}] \right.$$

1378
1379
$$\left. - \mathbb{E}_\pi [(\mathbf{W}^{U,T} \mathbf{p}) \odot G^{(1)}(\mathbf{W}_{\mathbf{X}}^E) \mid x \in \mathbf{X}] \right).$$

1380
1381

1382 For the linear model, we have that $G^{(1)}(\mathbf{W}_{\mathbf{X}}^E) = \mathbf{1}$ if $x \in \mathbf{X}$. Utilizing that $\text{softmax}(\mathbf{f}) =$
1383 $\frac{1}{d_{\text{vob}}} \mathbf{1} + \frac{1}{d_{\text{vob}}} \mathbf{f} + \mathcal{O}(d_{\text{vob}}^{-2} \mathbf{f})$, we obtain that
1384

1385
$$\begin{aligned} \frac{d\mathbf{W}_x^E}{dt} &= \mathbf{W}^{U,T} r_x^{\text{in}} \left(\sum_{\nu \in \mathcal{V}} \mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X}) \mathbf{e}_\nu - \mathbb{E}_\pi [\mathbf{p} \mid x \in \mathbf{X}] \right) \\ &= \mathbf{W}^{U,T} r_x^{\text{in}} \left(\phi_x^y - \mathbb{E}_\pi \left[\frac{1}{d_{\text{vob}}} \mathbf{1} + \frac{1}{d_{\text{vob}}} \mathbf{W}^U \sum_{x_i \in \mathbf{X}} \mathbf{W}_{x_i}^E + \mathcal{O}(d_{\text{vob}}^{-2} \mathbf{W}^U \mathbf{W}_x^E) \mid x \in \mathbf{X} \right] \right) \\ &= \mathbf{W}^{U,T} r_x^{\text{in}} \left(\phi_x^y - \frac{1}{d_{\text{vob}}} \mathbf{1} - \frac{1}{d_{\text{vob}}} \mathbf{W}^U \mathbb{E}_\pi \left[\sum_{x_i \in \mathbf{X}} \mathbf{W}_{x_i}^E \mid x \in \mathbf{X} \right] + \mathcal{O}(d_{\text{vob}}^{-2} \mathbf{W}^U \mathbf{W}_x^E) \right) \\ &= \mathbf{W}^{U,T} r_x^{\text{in}} \left(\phi_x^y - \frac{1}{d_{\text{vob}}} \mathbf{1} - \frac{1}{d_{\text{vob}}} \mathbf{W}^U \sum_{x' \in \mathcal{V}} \mathbb{P}_\pi(x' \in \mathbf{X} \mid x \in \mathbf{X}) \mathbf{W}_{x'}^E + \mathcal{O}(d_{\text{vob}}^{-2} \mathbf{W}^U \mathbf{W}_x^E) \right) \\ &= \mathbf{W}^{U,T} r_x^{\text{in}} \left(\phi_x^y - \frac{1}{d_{\text{vob}}} \mathbf{W}^U \mathbf{W}^E \phi_x^{\mathbf{X}} - \frac{1}{d_{\text{vob}}} \mathbf{1} + \mathcal{O}(d_{\text{vob}}^{-2} \mathbf{W}^U \mathbf{W}_x^E) \right) \\ &:= \mathbf{W}^{U,T} r_x^{\text{in}} \left(\phi_x^y - \frac{1}{d_{\text{vob}}} \mathbf{W}^U \mathbf{W}^E \phi_x^{\mathbf{X}} + \boldsymbol{\eta} \right), \end{aligned}$$

1397
1398
1399
1400
1401

1402 where $\boldsymbol{\eta} = -\frac{1}{d_{\text{vob}}} \mathbf{1} + \mathcal{O}(d_{\text{vob}}^{-2} \mathbf{W}^U \mathbf{W}_x^E)$ contains the higher-order term and the data independent
1403 term.

1404 D.4 PROOF OF COROLLARY 2
14051406 *Proof.* Since the small initialization, we assume that the activation function can be approximated by
1407 the following form with the Weierstrass approximation theorem.
1408

1409
$$\sigma\left(\sum_{x \in \mathbf{X}} \mathbf{W}_x^E\right) = C_0 + C_1\left(\sum_{x \in \mathbf{X}} \mathbf{W}_x^E\right) + C_2\left(\sum_{x \in \mathbf{X}} \mathbf{W}_x^E\right)^{\odot 2} + \epsilon.$$

1410
1411

1412 With the loss of the generalization, we assume that $C_0 = 0, C_1 = 1, C_2 = \frac{1}{2}$. Then we have
1413

1414
$$\begin{aligned} \frac{d\mathbf{W}_x^E}{dt} &= r_x^{\text{in}} \underbrace{\sum_{\nu \in \mathcal{V}} \mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X}) (\mathbf{W}^{U,T} \mathbf{e}_\nu) \odot \mathbb{E}_\pi \left[1 + \sum_{x' \in \mathbf{X}} \mathbf{W}_{x'}^E \mid x \in \mathbf{X}, y = \nu \right]}_{\mathbf{J}^y} \\ &\quad - r_x^{\text{in}} \underbrace{\mathbb{E}_\pi \left[(\mathbf{W}^{U,T} \mathbf{p}) \odot \left(1 + \sum_{x' \in \mathbf{X}} \mathbf{W}_{x'}^E \right) \mid x \in \mathbf{X} \right]}_{\mathbf{J}^p}. \end{aligned}$$

1415
1416
1417
1418
1419
1420
1421
1422
1423

1424 For the term \mathbf{J}^y we have
1425

1426
$$\begin{aligned} \mathbf{J}^y &= \mathbf{W}^{U,T} \sum_{\nu \in \mathcal{V}} \mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X}) \mathbf{e}_\nu + \sum_{\nu \in \mathcal{V}} \mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X}) (\mathbf{W}^{U,T} \mathbf{e}_\nu) \odot \mathbb{E}_\pi \left[\sum_{x' \in \mathbf{X}} \mathbf{W}_{x'}^E \mid x \in \mathbf{X}, y = \nu \right] \\ &= \mathbf{W}^{U,T} \phi_x^y + \sum_{\nu \in \mathcal{V}} \text{diag}(\mathbf{W}_\nu^U) \sum_{x' \in \mathcal{V}} \mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X}) \mathbb{P}_\pi(x' \in \mathbf{X} \mid x \in \mathbf{X}, y = \nu) \mathbf{W}_{x'}^E. \end{aligned}$$

1427
1428
1429
1430
1431

1432 Since that $\mathbb{P}_\pi(y = \nu \mid x \in \mathbf{X}) \mathbb{P}_\pi(x' \in \mathbf{X} \mid x \in \mathbf{X}, y = \nu) = \mathbb{P}_\pi(x' \in \mathbf{X}, y = \nu \mid x \in \mathbf{X})$, we
1433 have that
1434

1435
$$\begin{aligned} \mathbf{J}^y &= \mathbf{W}^{U,T} \phi_x^y + \sum_{\nu, x' \in \mathcal{V}} \mathbb{P}_\pi(x' \in \mathbf{X}, y = \nu \mid x \in \mathbf{X}) \mathbf{W}_\nu^U \odot \mathbf{W}_{x'}^E \\ &= \mathbf{W}^{U,T} \phi_x^y + \mathbb{T} \odot \phi_x^{\mathbf{X}|y}, \end{aligned}$$

1436
1437
1438
1439

1440 where $\mathbb{T} \in \mathbb{R}^{d \times d_{\text{vob}} \times d_{\text{vob}}}$, $\mathbb{T}_{:, x', \nu} = \mathbf{W}_\nu^U \odot \mathbf{W}_{x'}^E$ for $\nu, x' \in \mathcal{V}$ and 0 otherwise.
14411442 Similarly, for the term \mathbf{J}^p , we have that
1443

1444
$$\begin{aligned} \mathbf{J}^p &= \mathbb{E}_\pi \left[\left(\mathbf{W}^{U,T} \left(\frac{1}{d_{\text{vob}}} \mathbf{1} + \frac{1}{d_{\text{vob}}} \mathbf{W}^U \sum_{x' \in \mathbf{X}} \mathbf{W}_{x'}^E \right) \right) \odot \left(1 + \sum_{x' \in \mathbf{X}} \mathbf{W}_{x'}^E \right) \mid x \in \mathbf{X} \right] \\ &= \frac{1}{d_{\text{vob}}} \mathbf{W}^{U,T} \mathbf{1} + \frac{1}{d_{\text{vob}}} \mathbf{W}^{U,T} \sum_{x' \in \mathcal{V}} \mathbb{P}_\pi(x' \in \mathbf{X} \mid x \in \mathbf{X}) \mathbf{W}_{x'}^E + \epsilon \\ &= \frac{1}{d_{\text{vob}}} \mathbf{W}^{U,T} (\mathbf{1} + \mathbf{W}^E \phi_x^{\mathbf{X}}) + \epsilon, \end{aligned}$$

1445
1446
1447
1448
1449
1450

1451 where $\epsilon = \mathcal{O}\left(\frac{1}{d_{\text{vob}}^2} \mathbf{W}^U \mathbf{W}_\alpha^E\right)$. Then we have that
1452

1453
$$\frac{d\mathbf{W}_\alpha^E}{dt} = r_x^{\text{in}} \left(\mathbf{W}^{U,T} \phi_x^y - \frac{1}{d_{\text{vob}}} \mathbf{W}^{U,T} \mathbf{W}^E \phi_x^{\mathbf{X}} + \mathbb{T} \cdot \phi_x^{\mathbf{X}|y} + \epsilon \right),$$

1454
1455
1456

1457 where $\epsilon = -\frac{1}{d_{\text{vob}}} \mathbf{W}^{U,T} \mathbf{1} + \mathcal{O}\left(\frac{1}{d_{\text{vob}}^2} \mathbf{W}^U \mathbf{W}_\alpha^E\right)$. □
1458

1458 D.5 PROOF OF COROLLARY 3

1459

1460 *Proof.* With Proposition 2, we have that

1461

$$\begin{aligned}
\frac{d\mathbf{W}_\nu^U}{dt} &= \frac{r_\nu^{\text{out}}}{N_\nu^{\text{out}}} r_\nu^{\text{out}} \mathbb{E}_\pi \left[\left(\sum_{x \in \mathbf{X}} \mathbf{W}_x^E \right)^T \mid y = \nu \right] - \mathbb{E}_\pi \left[\mathbf{p}_\nu \left(\sum_{x \in \mathbf{X}} \mathbf{W}_x^E \right)^T \right] \\
&= L r_\nu^{\text{out}} \sum_{x \in \mathcal{V}} \mathbb{P}_\pi(x \in \mathbf{X} \mid y = \nu) \mathbf{W}_x^{E,T} - \frac{1}{d_{\text{vob}}} \mathbf{W}^E \mathbf{1} + \boldsymbol{\eta} \\
&= L r_\nu^{\text{out}} (\mathbf{W}^E \boldsymbol{\varphi}_\nu^X)^T - \boldsymbol{\eta},
\end{aligned}$$

1469

1470 where $\boldsymbol{\eta} = -\frac{1}{d_{\text{vob}}} \mathbf{W}^E \mathbf{1} + \mathcal{O}\left(\frac{1}{d_{\text{vob}}} \mathbf{W}^E \mathbf{W}^E \mathbf{1}\right)$. □

1471

1472 D.6 PROOF OF COROLLARY 4

1473

1474 *Proof.* The next-token-prediction training loss could be formulated as

1475

$$\ell^i = \frac{1}{L} \sum_{t=1}^{L-1} \text{CrossEntropy}\left(F_{\text{lan}}(\mathbf{X}_{:t}) ; \mathbf{e}_{\mathbf{X}_{t+1}}\right).$$

1476

So we have that

1477

$$\frac{\partial \ell^i}{\partial \mathbf{W}_s^E} = \frac{1}{L} \sum_{t=1}^{L-1} \mathbf{W}^{U,T} \left(\mathbf{p}_t^i - \mathbf{e}_{\mathbf{X}_{t+1}^i} \right) \odot \left(\delta_{\mathbf{X}_t^i=s} \mathbf{1} + \tilde{F}^{(1)}(\mathbf{X}_{:t}^i) \right).$$

1478

Furthermore, we have that

1479

$$\begin{aligned}
\frac{d\mathbf{W}_s^E}{dt} &= \frac{1}{NL} \sum_{i=1}^N \sum_{t=1}^{L-1} \mathbf{W}^{U,T} \left(\mathbf{e}_{\mathbf{X}_{t+1}^i} - \mathbf{p}_t^i \right) \odot \left(\delta_{\mathbf{X}_t^i=s} \mathbf{1} + \tilde{F}^{(1)}(\mathbf{X}_{:t}^i) \right) \\
&= \frac{1}{NL} \mathbf{W}^{U,T} \sum_{i=1}^N \sum_{t=1}^{L-1} \delta_{\mathbf{X}_t^i=s} \mathbf{e}_{\mathbf{X}_{t+1}^i} + \frac{1}{NL} \mathbf{W}^{U,T} \sum_{i=1}^N \sum_{t=1}^{L-1} \mathbf{e}_{\mathbf{X}_{t+1}^i} \odot \tilde{F}^{(1)}(\mathbf{X}_{:t}^i) \\
&\quad - \frac{1}{NL} \sum_{i=1}^N \sum_{t=1}^{L-1} \mathbf{W}^{U,T} \mathbf{p}_t^i \odot \left(\delta_{\mathbf{X}_t^i=s} \mathbf{1} + \tilde{F}^{(1)}(\mathbf{X}_{:t}^i) \right).
\end{aligned}$$

1480

1481

1482

Since the small initialization, assuming that $\|\mathbf{W}\|_\infty = \mathcal{O}(d^{-\gamma})$ for any trainable parameter matrix \mathbf{W} , we have that $\|\tilde{F}^{(1)}(\mathbf{X}_{:t}^i)\|_\infty = \mathcal{O}(d^{1-2\gamma})$ in the initial stage. Let $N \rightarrow \infty$, we have that

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

where $\boldsymbol{\eta}^E = \sum_{t=1}^{L-1} \mathbb{E}_\pi[\mathbf{p} \mid \mathbf{X}_t = s] + \mathcal{O}(d^{1-2\gamma} \boldsymbol{\phi}_s^{\text{next}})$. Similarly, we have that

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

$$\frac{d\mathbf{W}_s^U}{dt} = r_s^{\text{out}} \mathbf{W}^{E,T} (\boldsymbol{\phi}_s^{\text{next}} - \boldsymbol{\eta}^U),$$

where $\boldsymbol{\eta}^U = \sum_{t=1}^{L-1} \mathbb{E}_\pi[\mathbf{p} \mid \mathbf{X}_t = s] + \mathcal{O}(d^{1-2\gamma} \boldsymbol{\phi}_s^{\text{next}})$. Similarly, we have that

$$\frac{d\mathbf{W}_s^U}{dt} = \frac{1}{NL} \sum_{i=1}^N \sum_{t=1}^{L-1} \left(\delta_{\mathbf{X}_t^i=s} - \mathbf{p}_{\mathbf{X}_t^i}^{i,s} \right) \left(\mathbf{W}_{\mathbf{X}_t^i}^{E,T} + \tilde{F}(\mathbf{X}_{:t}^i) \right),$$

where $\mathbf{p}_{\mathbf{X}_t^i}^{i,s}$ means the s -th element of the output probability with input sequence $\mathbf{X}_{:t}^i$. Let $N \rightarrow \infty$, we have that

we have

we have