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ABSTRACT

The embedding space of language models is widely believed to capture the se-
mantic relationships; for instance, embeddings of digits often exhibit an ordered
structure that corresponds to their natural sequence. However, the mechanisms
driving the formation of such structures remain poorly understood. In this work,
we interpret the embedding structures via the token relationships. We propose
a set of probability signatures that reflect the semantic relationships among to-
kens. Through experiments on the composite addition tasks using the linear model
and feedforward network, combined with theoretical analysis of gradient flow dy-
namics, we reveal that these probability signatures significantly influence the em-
bedding structures. We further generalize our analysis to large language models
(LLMs). Our results show that the probability signatures are faithfully aligned
with the embedding structures, particularly in capturing strong pairwise similar-
ities among embeddings. Our work offers a universal analytical framework that
investigates how token relationships direct embedding geometries, empowering
researchers to trace how gradient flow propagates token relationships onto em-
bedding structures of their models.

1 INTRODUCTION

In recent years, deep neural network-based large language models (LLMs) have demonstrated re-
markable performance (Comanici et al., 2025; OpenAI et al., 2024; DeepSeek-AI et al., 2025). The
development of these models has largely followed what Richard Sutton termed “the bitter lesson”–
that the most effective approach to improving AI performance has historically been to leverage
greater computational resources, larger models, and more data, rather than incorporating human
knowledge or specialized architectures (Sutton, 2019). This trend has been formalized through scal-
ing laws (Kaplan et al., 2020). While these scaling laws provide valuable quantitative predictions for
model performance, they also reveal a concerning limitation: achieving further significant improve-
ments may require prohibitively large increases in model and data size, making continued scaling
increasingly impractical and resource-intensive.

A more sustainable path forward lies in developing a mechanistic understanding of deep learn-
ing’s success. Recent research has uncovered key properties such as the edge-of-stability phe-
nomenon (Wu et al., 2018; Cohen et al., 2021), frequency principle (Xu et al., 2020; 2025a), at-
tention patterns (Elhage et al., 2021; Olsson et al., 2022; Bhojanapalli et al., 2020), and parameter
distribution characteristics (Kovaleva et al., 2021; Dar et al., 2023). Among these, the structure of
the embedding space is fundamental: it serves as the gateway through which tokens are encoded,
forming the basis of all subsequent learning. Indeed, embeddings often capture intuitive seman-
tics—for instance, embeddings of digits 1,2,. . . ,9 form an ordered structure reflecting their numer-
ical sequence (Mikolov et al., 2013b; Ethayarajh et al., 2019; Zhang et al., 2024; Yao et al., 2025).
Yet, what drives this alignment between embedding geometry and semantic structure remains an
open question: the precise mechanisms linking data distribution to embedding organization are still
poorly characterized.

In this work, we establish a mechanistic link between embedding geometry and token relationship
through the lens of gradient flow dynamics. For each token, we propose a set of probability signa-
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Figure 1: Left: The PCA projection of embedding vectors of the digits 1, 2, 3, · · · , 9 in Qwen2.5 3B-
base. Right: The PCA projection of the probability signatures of the digits 1, 2, 3, · · · , 9 estimated
by subsets of Pile(detailed formulation see (4)).

tures based on its statistical relationships with the other tokens (e.g., label distribution, co-occurrence
patterns). Such probability signatures systematically capture inherent token-level relationships and
reflect semantic structures. Our gradient flow analysis reveals that these signatures actively govern
the evolution of embedding vectors, forging a deterministic connection between probability signa-
ture and embedding structure. This is illustrated in Figure 1: both the embeddings of digits 1,2,. . . ,9
in Qwen2.5 3B-base (Team, 2024) and their probability signatures estimated from the Pile cor-
pus (Gao et al., 2020; Biderman et al., 2022) exhibit an ordered arrangement aligned with their natu-
ral sequence, suggesting that probability signatures are the prime driver of embedding organization.
We instantiate this framework by deriving the exact signature sets for linear models and feedforward
networks, showing how architecture determines which token relationships are encoded. Through
carefully controlled synthetic tasks, we verify that manipulating probability signatures predictably
reshapes the embedding space. Finally, we extrapolate our framework to LLMs, demonstrating that
even in realistic training regimes, next-token and previous-token distributions dominate the dynam-
ics of embedding and unembedding vectors in Qwen2.5 and Llama-2 architectures.

The primary contribution of this work is a universal analytical framework that investigates how token
relationships direct embedding geometries. Through exact gradient flow analysis, we demonstrate
that any embedding-based architecture encodes a specific, predictable subset of data distribution
statistics into its token representations. This framework not only explains observed embedding
structures as a deterministic consequence of probability signatures, but also predicts which proba-
bility signatures dominate in a given model, transforming representation learning from a black-box
phenomenon into a transparent, distribution-driven process.

2 RELATED WORK

Parameter analysis in LLMs Investigating the underlying parameter properties in LLMs is cru-
cial for understanding the foundation of models. Some works focus on the specific modules in
models. Elhage et al. (2021); Olsson et al. (2022) uncover mechanisms such as induction heads
from the attention module. Bhojanapalli et al. (2020) reveals the rank-collapse phenomenon of the
attention matrix. Geva et al. (2021; 2022); Dai et al. (2022) investigates the characteristics and func-
tions of the FFN in LLMs. Additionally, analysis of a single neuron has been widely employed in
mechanism interpretation, particularly in circuits analysis Hanna et al. (2023); Wang et al. (2023);
Hanna et al. (2024); Wang et al. (2025), sparse autoencoders (SAE) Huben et al. (2024); Bricken
et al. (2023), transcoders Dunefsky et al. (2024), and cross-layer transcoders (CLT) Ameisen et al.
(2025). There are also some studies investigating the global properties of all parameters. Dar et al.
(2023); Katz et al. (2024) introduce a framework for interpreting all parameters of Transformer mod-
els by projecting them into the embedding space. Kovaleva et al. (2021); Yu et al. (2025) provide
an analysis of the parameter distribution, demonstrating the significance of these outliers. In this
work, we will focus on the embedding space, explaining the formation of its structure from both
experimental and theoretical perspectives.
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Embedding structure and representation learning Since the introduction of static word em-
beddings by Mikolov et al. (2013a); Pennington et al. (2014) and the adoption of contextualized
embeddings (Devlin et al., 2019; Peters et al., 2018), significant attention has been devoted to
analyzing embedding properties. Gao et al. (2019); Ethayarajh (2019); Timkey & van Schijndel
(2021) explore the anisotropy of embedding space, while Cai et al. (2021) show that embeddings
exhibit isotropy within clusters. Liu et al. (2022) offers insights into grokking by emphasizing the
role of well-organized embedding structures. Zhang et al. (2024) establishes a connection between
embedding structure and model generalization, and Yao et al. (2025) provides an analysis of this
relationship. Crucially, these studies characterize embedding geometry post hoc, treating it as an
empirical phenomenon to be observed rather than a deterministic outcome to be explained. In con-
trast, we mechanistically interpret how embedding structures arise from token relationships. Our
gradient-flow-driven framework reveals that token-wise probability signatures dictate the evolution
of embedding vectors, offering not merely a new perspective, but a predictive, architecture-agnostic
protocol for understanding representation formation.

3 PRELIMINARY

3.1 EMBEDDING-BASED MODEL

We denote the models functioning on the trainable embedding of the input sequence as embedding-
based models. We provide the following formulation:
Definition 1. Given a vocabulary V ⊂ N+ with size dvob, we denote ex ∈ Rdvob as the one-
hot vector of x for any x ∈ V . The trainable embedding matrix and unembedding matrix are
WE ∈ Rd×dvob and WU ∈ Rdvob×d, respectively. For a sequence X := [x1, x2, · · · , xL] ∈ VL

with length L. The trainable embedding of X and an embedding-based model F taking X as input
could be formulated as

WE
X = WEeX :=

[
WE

x1
,WE

x2
, · · · ,WE

xL

]
,

F (X) = WUG
(
WE

X

)
,

where G means the mapping in the hidden space, WE
xi

= WEexi
represents the embedding vector

of elements xi ∈ X .

Embedding-based models have been widely applied in various domains, particularly in NLP. In this
work, our objective is to investigate how the token relationships impact the characteristics of the
embedding space. We will begin with the following simplified models, facilitating our analysis.

• Linear model. Flin (X) = WU
∑

x∈X WE
x .

• Feedforward network. Fffn (X) = WUσ
(∑

x∈X WE
x

)
, where σ denotes the element-

wise nonlinear activation.

Furthermore, we will provide an elementary analysis of the Transformer architecture in language
tasks and verify our results by the Qwen2.5 architecture and the Llama 2 architecture (Touvron
et al., 2023).

3.2 TOKEN RELATIONSHIPS & PROBABILITY SIGNATURES

In natural language, a token’s meaning is fully constituted by its statistical context: how it pre-
dicts downstream labels, what tokens it co-occurs with, and how these relationships jointly evolve.
Formally, these semantic regularities manifest as conditional probability distributions over the vo-
cabulary. Denote the label of a sequence X by y and assume (X, y) ∼ π. For a token x in input X ,
we consider four representative families of such distributions:

• Label relationship: Pπ(y = ν | x ∈ X) encodes what x signals about the output—e.g., “excel-
lent” in a review robustly predicts a positive label ν, while “frustrated” skews toward negative.

• Co-occurrence relationship: Pπ(x
′ ∈ X | x ∈ X) captures syntactic-semantic neighbor-

hoods—“stock” frequently co-occurs with “market” but rarely with “apple” (in the financial
sense). Higher-order terms like Pπ(x

′, x′′ ∈ X | x ∈ X) encode compositional contexts.
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• Joint relationship: The joint Pπ(x
′ ∈ X, y = ν | x ∈ X) reveals context-dependent label-

ing—“apple” co-occurring with “pie” predicts a food label, while with “store” predicts a tech
label.

• Inverse relationship: Pπ(xi ∈ X | y = x) describes what precedes a token as its cause—the
tokens that predict x itself (e.g., what contexts make “surprised” likely to appear).

These token-wise relationships are semantic primitives: they are computable from data, indepen-
dent of any model, but depend on the contexts and tokenizers, yet fully determine the token’s func-
tional role in the corpus. Critically, a sequence of length L yields exponentially many such rela-
tionships—our four families merely scratch the surface. Rather than exhaustively enumerating
them, we propose a systematic principle: the gradient flow dynamics of any embedding-based
model will automatically select a specific subset of these relationships to encode. To showcase
this principle, we distill each family into a compact probability signature—a vector/matrix that
aggregates the relevant conditional probabilities (Definition 2). This choice is deliberate: we aim
not to prescribe a fixed signature set, but to demonstrate that any such set derived from gradient flow
analysis will faithfully sculpt the embedding space.
Definition 2 (Probability Signatures). For token x ∈ V , we define four probability signatures that
capture distinct token relationships:

ϕy
x =

∑
ν∈V

Pπ(y = ν | x ∈ X)eν , ϕX
x =

∑
x′∈V

Pπ(x
′ ∈ X | x ∈ X)ex′ ,

ϕX|y
x =

∑
ν,x′

Pπ(x
′ ∈ X, y = ν | x ∈ X) eν × e⊤x′ , φX

x =
∑
x′∈V

Pπ(x
′ ∈ X | y = x)ex′ .

We have ϕy
x,ϕ

X
x ,φX

x ∈ Rdvob ,ϕ
X|y
x ∈ Rdvob×dvob .

Each probability signature is a data-derived feature vector/matrix for x. For example, the ν-th
element of ϕy

x is Pπ(y = ν | x ∈ X). The signatures above are exemplars; our framework
empowers researchers to derive more probability signatures for their models of interest by tracing
how gradient flow propagates token relationships onto embedding structures.

4 GRADIENT FLOW OF EMBEDDING VECTOR

To understand why embeddings organize as they do, we examine the continuous dynamics of train-
ing via gradient flow, the limit of gradient descent as the learning rate vanishes. This tool acts as
a microscope, revealing the “force field” that sculpts each embedding vector. Formally, Given a
dataset

{(
Xi, yi

)}N
i=1

with loss function ℓi = ℓ
(
F
(
Xi; θ

)
, yi
)
, the gradient descent implies that

θk+1 − θk = −η 1
N

∑N
i=1

∂ℓi

∂θ |θ=θk . Then the gradient flow of θ is defined as:

dθ

dt
:= lim

η→0

θk+1 − θk

η
= − 1

N

N∑
i=1

∂ℓi

∂θ
.

Our goal is to trace how this dynamics acts on the embedding vector WE
x for any token x ∈ V .

Using the standard cross-entropy loss:

ℓi = − log Softmax
(
F
(
Xi
))

yi = − log
expF

(
Xi
)
yi∑dvob

j=1 expF (Xi)j
,

we derive the exact evolution equation:
Proposition 1. Let ⊙ represent the Hadamard product and T mean the matrix transpose. Given an
embedding-based model F with an embedding matrix WE . For any token x ∈ V , the gradient flow
of WE

x (the embedding vector of x) can be formulated as follow when N → ∞:

dWE
x

dt
= rinx

(∑
ν∈V

Pπ (y = ν | x ∈ X)
(
WU,Teν

)
⊙ Eπ

[
G(1)

(
WE

X

)
| x ∈ X, y = ν

]
−Eπ

[(
WU,Tp

)
⊙G(1)

(
WE

X

)
| x ∈ X

])
:= rinx

(
Uϕy

x − Eπ

[(
WU,Tp

)
⊙G(1)

(
WE

X

)
| x ∈ X

])
,

4
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where U ∈ Rd×dvob and the ν-th column of U equals
(
WU,Teν

)
⊙

Eπ

[
G(1)

(
WE

X

)
| x ∈ X, y = ν

]
. rinx denotes the ratio of input sequences containing x in

the training set, G(1) represents the derivative of G with respect to WE
x and p = softmax (F (X)).

This equation reveals that ϕy
x drives WE

x toward a direction determined by the token-label seman-
tics. This means: if two tokens share similar label distributions, their embeddings will be forced
to evolve in similar directions from the very start of training. The emergence of other probability
signatures (ϕX

x , ϕX|y
x ) is dependent on the formulation of G, as we will show next.

To make this analysis concrete, we dissect linear model and feedforward networks, deriving their
exact probability signature sets from Proposition 1. This demonstrates how our framework system-
atically extracts the relevant probability signatures for any given G.

4.1 LINEAR MODEL

For linear models Flin, the hidden mapping G is simply the sum of embeddings. Substituting this
into Proposition 1 yields a simplified dynamics where the gradient flow depends on only two prob-
ability signatures:
Corollary 1 (Embedding of Linear Model). Let N → ∞, π denotes the data distribution over the
training set. The gradient flow of WE

x in Flin can be approximated by

dWE
x

dt
= rinx WU,T

(
ϕy

x − 1

dvob
WUWEϕX

x + η

)
, (1)

where η denotes the data-independent and higher-order terms.

The Corollary 1 indicates that the term ϕy
x acts as the primary steering force. Early in training, when

∥WUWE∥ is small, ϕy
x alone dictates the update direction. The term ϕX

x modulates the embedding
update based on contextual co-occurrence statistics, but its influence is scaled by 1

dvob
WUWE and

thus emerges later in training.

Experimental Validation: Controllable Addition Tasks If two tokens α, α′ satisfy ϕy
α ≈ ϕy

α′

and ϕX
α ≈ ϕX

α′ , Corollary 1 forces their embeddings to align: cos(WE
α ,WE

α′) =
WE,T

α WE
α′

||WE
α ||2||WE

α′ ||2
→

1. We design three variable-controlled addition tasks to isolate and verify each probability sig-
nature’s influence. In each task, ϕy

α or ϕX
α or both of them will be identical across α. Assuming

all tokens belong to positive integers, and we denote an anchor set by A, whose elements repre-
sent different addition operations, i.e., anchor α1 means addition with α1. Given a input sequence
X = [z, α1, α2], we define the following tasks:

• Addition task (Varying ϕy
α). y = fadd (X) = z + α1 + α2, α1, α2 ∈ A. For each anchor pair

(α1, α2), z is sampled from the same set Z with Z ∩A = ∅. In this task, ϕX
α are identical across

anchors while ϕy
α are distinct with varying anchors α.

• Addition task with the same value domain (Varying ϕX
α ). y = f̃add (X) = z + α1 +

α2, α1, α2 ∈ A. For anchor pair (α1, α2), z ∈ Z(α1,α2) = Y − α1 − α2 where Y denotes
the label set, which is identical for all anchor pairs. In f̃add, ϕX

α are distinct across anchors α
while ϕy

α are identical for all α ∈ A.
• Module addition (Both signatures identical). y = fmod (X) = minZ +
(z + α1 + α2 mod | Z |) , α1, α2 ∈ A and z ∈ Z . Both ϕX

α and ϕy
α are identical with

different anchors.

In this work, we set A = {11, 12, · · · , 20} and Y = Z = {101, 102, · · · , 140}. Figure 2A visual-
izes the probability signature similarities for each task, confirming our manipulations. The detailed
mathematical formulations of these signatures in each task are provided in Appendix B.1.

Results: Theory Predicts Embedding Structure We train Flin for each task with d = 200. Tasks
fadd and f̃add are well learned, while fmod fails to be fitted. The details are provided in Appendix A.
Figure 2 B represents the value of cos

(
WE

α ,WE
α′

)
in the three tasks.

5
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Figure 2: A: The heatmap of cos (ϕy
α,ϕ

y
α′) and cos

(
ϕX

α ,ϕX
α′

)
in three addition tasks. B: The

heatmap of cos
(
WE

α ,WE
α′

)
in Flin across different tasks.

• Task fadd: different anchor embeddings quickly form an ordered structure, where the cosine
similarity gets smaller as the anchor distance gets larger. The distribution of cos

(
WE

α ,WE
α′

)
is

consistent with the cos (ϕy
α,ϕ

y
α′) (Figure 2 A), implying the impact of ϕy

α in directing WE
α .

• Task f̃add: The anchor embeddings also develop a similar hierarchical structure, aligned with
the structure of ϕX

α in f̃add. But its convergence is slower, validating that ϕy
α dominates early

dynamics.
• Task fmod: Although the task is unsolvable by a linear model, all anchor embeddings collapse to

the same direction, exactly as Corollary 1 predicts when both signatures are identical.

4.2 FFN UNLOCKS JOINT RELATIONSHIPS: SOLVING THE MODULAR ADDITION PUZZLE

Recall that in Section 4.1, the linear model failed to learn fmod, whose embeddings collapsed to a
single direction. It’s not because the task lacked structure, but the linear model cannot encode the
probability signature ϕ

X|y
x . We find that the nonlinear activation could resolve this problem and

provide the following results.
Corollary 2 (Embedding of FFN). Let N → ∞, π denotes the data distribution over the training
set. The gradient flow of WE

x in Fffn could be approximated by

dWE
x

dt
= rinx

(
WU,T

(
ϕy

x − 1

dvob
WUWEϕX

x

)
+ T · ϕX|y

x + ϵ

)
, (2)

where T ∈ Rd×dvob×dvob , T:,x′,ν = WU
ν ⊙ WE

x′ for ν, x′ ∈ V and 0 otherwise. ϵ represents the
higher-order term.

This is a qualitative leap beyond Flin: The new term T · ϕX|y
x directly encodes how the presence

of x influences the co-occurrence distribution conditioned on future labels. For fmod, ϕX|y
x varies

systematically with α (shown in Figure 3 A), thereby providing the necessary signal that the lin-
ear model could not access. We train the fmod with Fffn to test whether ϕX|y

x enables structure
formation. Figure 3 B depicts the cosine similarity among anchor embeddings, demonstrating that
the embedding structure in fmod is ordered, which validates our analysis. This contract validates
that the specific probability signatures encoded are architecture-dependent, but the governing prin-
ciple—gradient flow transforms signatures into structure—is universal.

Geometric Proof: PCA Visualization of Signature-Embedding Alignment Proposition 1 and
Corollaries 1-2 make algebraic predictions; we now render them as visible geometry. Figure 4

6
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Figure 3: A: The heatmap of cos
(
ϕ

X|y
α ,ϕ

X|y
α′

)
in fmod. B: cos

(
WE

α ,WE
α′

)
in Fffn learning fmod.

projects all probability signatures (left 3 columns) and learned embeddings (right 2 columns) into
2D space via PCA. This result reveals that in Flin, the embedding structure is primarily influenced
by ϕy

α and ϕX
α . Specifically, when both ϕy

α and ϕX
α are controlled in fmod, the embedding struc-

ture is chaotic. Besides, the embedding space in Fffn is impacted by another probability signature
ϕ

X|y
α . These phenomena are consistent with our theoretical analysis, illustrating that analyzing the

embedding space via the gradient flow and linking to the token relationships is viable.

Figure 4: PCA projection of the three types of probability signatures and the embedding vectors in
Flin and Fffn (epoch 120).

5 GRADIENT FLOW OF UNEMBEDDING VECTOR

Our analysis thus far has focused on the encoding side—how tokens are embedded into hidden space.
A complete theory must also explain the decoding side: how the unembedding matrix WU learns
to map hidden representations back to token probabilities. Remarkably, gradient flow reveals a per-
fect symmetry: just as embeddings evolve under token-level probability signatures, unembeddings
evolve under inverse signatures that capture how tokens are predicted from contexts.

Proposition 2. Given an embedding-based model F with an unembedding matrix WU . For any
token ν ∈ V , the gradient flow of WU

ν (the ν-th row of WU ) can be written as

dWU
ν

dt
= routν Eπ

[
G
(
WE

X

)T | y = ν
]
− Eπ

[
pνG

(
WE

X

)T ]
,

where routν denotes the ratio of sequences whose label is ν and pν means the ν-th element of p.

Specifically, we have the following formulation for the linear model:

7
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Corollary 3 (Unembedding of Linear Model). Let N → ∞, π denotes the data distribution over
the training set. The gradient flow of WU

ν in Flin could be approximated by

dWU
ν

dt
= Lroutν

(
WEφX

ν

)T
+ η, (3)

where η denotes the output term.

Corollary 3 demonstrates that ϕX
ν directs the dynamics of the unembedding vector. We extract

the unembedding matrix from the addition tasks and compare its geometry to φX
ν . Figure 5 re-

veals the same striking alignment observed for embeddings. Figure 5 B depicts the distribution of
cos
(
φX

ν ,φX
ν′

)
, which is aligned with the distribution of the cos

(
WU

ν ,WU
ν′

)
. Furthermore, Fig-

ure 5 C compares the PCA projection of φX
ν and WU

ν in all tasks, revealing a high consistency and
validating our analysis. This symmetric validation completes our framework: Gradient flow does
not arbitrarily shape parameters—it encodes data statistics into model weights with mathematical
precision, whether on the input or output side.

Figure 5: A: The heatmap of the cos
(
WU

ν ,WU
ν′

)
in Flin during the training process. B: The

heatmap of cos
(
φX

ν ,φX
ν′

)
across different tasks. C: PCA projection of φX

ν and WU
ν (epoch 120).

6 LANGUAGE MODEL

Our analysis of synthetic tasks demonstrates that gradient flow dynamics encode probability signa-
tures into embedding structures. We now ask: Does this principle scale to language models trained
on real-world corpora? A full analysis of all terms in Proposition 1 for Transformers would be
intractable and, more importantly, unnecessary for validating our core contribution. We therefore
adopt a minimalist validation strategy: analyze the dominant probability signature predicted by gra-
dient flow and test whether it alone can predict embedding structure. If this simplified analysis
succeeds, it proves that our framework captures the essential mechanism and researchers can then
extend it to additional modules as needed.

For decoder-only Transformers with next-token prediction, the gradient flow of embeddings is dom-
inated by the next-token distribution since the model could be formulated as follows.

Flan (X) = WU
(
WE

X + F̃ (X)
)
.

Formally, given the training corpus
{
Xi
}N
i=1

, we define the following probability signatures for any
s ∈ V:

ϕnext
s =

∑
s′∈V

Pπ

(
∪L−1
t=1 {Xt+1 = s′ | Xt = s}

)
es′ ,

φpre
s =

∑
s′∈V

Pπ

(
∪L−1
t=1 {Xt = s′ | Xt+1 = s}

)
es′ ,

(4)
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We derive the following result:
Corollary 4. Let N → ∞, π denotes the token distribution in the training dataset. The gradient
flow of the embedding vector WE

s of token s could be fomulated as

dWE
s

dt
=rins WU,Tϕnext

s + ηE .

Furthermore, the gradient flow of the unembedding vector WU
s could be approximated as

dWU
s

dt
= routs

(
WEφpre

s

)T
+ ηU .

The ηE and ηU denote the output probability and the higher-order term.

Probability signatures impact the embedding space in language models Corollary 4 suggests
that given any token s, the distributions of its next token and previous token significantly impact
its embedding. To verify this result, we trained a group of Qwen2.5 models on different subsets of
the Pile. Figure 6 A shows these similarity matrices for the dataset Pile-dm-mathematics, where the
tokens displayed are those that occur most frequently in the corpus. We define the following corre-
lation coefficient Rcos

(
WE ,ϕnext

)
:= Corr

(
cos
(
WE

s ,WE
s′

)
, cos (ϕnext

s ,ϕnext
s′ )

)
, and similarly

Rcos

(
WU ,φpre

)
. Figure 6 B tracks the Rcos

(
WE ,ϕnext

)
and Rcos

(
WU ,φpre

)
across all sub-

sets during training (20 epochs). Correlations increase during the first epoch, indicating that gradient
flow rapidly encodes next-token and previous-token statistics into embeddings and unembeddings.
After reaching peak alignment, correlations plateau and dip slightly, showing that the embedding
structure is still largely impacted by ϕnext

s and φpre
s . The fact that a single simplified probability

signature maintains predictive power throughout training, proves that our gradient flow analysis cap-
tures the essential mechanism of embedding structure. Researchers can now systematically uncover
additional probability signatures (e.g., from attention patterns or higher-order terms) to account for
residual variance. Furthermore, we find that the probability signatures reflect the strong connections
of embeddings more faithfully, and we provide a detailed analysis in the Appendix C.3. Addition-
ally, we provide another set of experiments using the Llama2 architecture in Appendix C.4.

Figure 6: A: Heatmap of cos
(
WE

s ,WE
s′

)
(left up), cos (ϕnext

s ,ϕnext
s′ ) (right up), cos

(
WU

s ,WU
s′

)
(left down) and cos (φpre

s ,φpre
s′ ) (right up) in the experiment on dataset Pile-dm-mathematics (1

epoch). B: The dynamics of Rcos

(
WE ,ϕnext

)
(top) and Rcos

(
WU ,φpre

)
(bottom) during train-

ing (20 epochs) across different datasets.

Validating with the open-source model Since general-purpose pretrained base models are trained
on broad corpora, we attempt to directly estimate their embedding structure by the probability
signature. We employ Qwen2.5-3B-base for comparison and define ϕ̃s = ϕnext

s + φpre
s , since

WE = WU,T in Qwen2.5-3B-base (the detail is provided in Appendix C.2). We compute ϕ̃s from
the subsets of Pile. As shown in Figure 7 A, the structure of ϕ̃s could capture the main properties of
the embedding structure, particularly the presence of sub-blocks with high similarity. Furthermore,
we examine the instance for the digits ranging from 1 to 9. Figure 1 exhibits the PCA projections
of WE

s and ϕ̃s, while Figure 7B illustrates their respective cosine similarities cos
(
WE

s ,WE
s′

)
and
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cos
(
ϕ̃s, ϕ̃s′

)
, with both figures revealing an ordered organization aligned with the numerical se-

quence. However, this estimation does not always hold. On the one hand, Zhang et al. (2024) finds
that initialization scale significantly affects the emergence of such embedding structures, demon-
strating that in the NTK regime, the embedding structure may fail to capture token relationships. On
the other hand, since probability signatures are computed from the training dataset, obtaining the
correct data distribution becomes difficult when the corpus is carefully curated.

Figure 7: cos
(
WE

s ,WE
s′

)
of the Qwen2.5-3B-base and cos

(
ϕ̃s, ϕ̃s′

)
, respectively, with the

frequently-appearing tokens (A) and the digits from 0 to 9 (B).

7 DISCUSSION & CONCLUSION

We have shown that the geometry of embedding spaces is not a mysterious emergent phenomenon,
but a deterministic encoding of probability signatures sculpted by gradient flow dynamics. More
importantly, we have demonstrated that this encoding can be reverse-engineered: given any
embedding-based architecture, our framework systematically extracts the exact set of statistical re-
lationships that drive embedding evolution. This transforms representation learning from a black
box into a transparent, distribution-driven process.

Guidance for Model Architectures and Training Methods We illustrate that each architecture
implicitly selects which probability signatures it can encode. Our gradient-flow analysis makes this
selection explicit and quantifiable: Corollary 1 proves that linear models cannot encode joint token-
label relationships (ϕX|y

x ). Any task requiring this relationship will fail, regardless of scale. Adding
a nonlinear activation unlocks ϕ

X|y
x (Corollary 2), enabling models to learn such semantics. This

suggests a principled architecture search: introduce modules whose Jacobians G(1) encode desired
probability signatures. On the other hand, our results have shown that the loss function is not merely
a performance metric but also a gradient flow sculptor that determines which probability signatures
dominate. Corollary 4 shows that next-token prediction makes ϕnext

s the dominant signature, em-
bedding tokens based on immediate neighbors. This explains why standard autoregressive models
excel at local coherence but struggle with long-range dependencies. If the loss predicts k future
tokens, gradient flow will encode the k-gram relationship distribution. This provides a theoretical
explanation for why multi-token prediction could easily capture the global relationships (Gloeckle
et al., 2024).

Future Work We deliberately analyzed only four signature families and a simplified LLM gra-
dient flow. This was not due to theoretical incompleteness, but to demonstrate the framework’s
modular extensibility. Just as we derived ϕ

X|y
x for feedforward networks and ϕnext

s for Transform-
ers, researchers can now systematically mine custom signatures for their architectures of interest.
The framework is designed to be extended. As a future direction, we will focus on analyzing the
probability signatures in the self-attention module and the completed Transformer layer. This is not
a correction to our theory, but its natural evolution.
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LLMS USAGE

In this work, the LLMs are employed to correct grammatical errors and inappropriate words.

A EXPERIMENTAL SETUPS

Addition tasks For each type of addition task, we trained a linear model Flin and a Feedforward
network Fffn. The hidden size d = 200, and we employed the ReLU as the activation function. Each
dataset contains 50000 data pairs. The training is conducted for 1000 epochs with a batch size of
100. The AdamW optimizer is employed with an initial learning rate of 10−5. Inspired by the work
of Luo et al. (2021); Xu et al. (2025b), we initialize the model parameters by Wi,j ∼ N

(
0, d−0.8

)
,

indicating a small initialization scale.

Language models In the analysis of the LLMs, we employ the Qwen2.5 architecture with 12
layers and 12 attention heads in each layer. We set up that the hidden size is 512, and the intermediate
size in FFN is 1024. The dimension of the key vectors and value vectors in each head is 64. Similarly,
we initialize the parameter by Wi,j ∼ N

(
0, d−1

in

)
where din means the input dimension of W . We

select five subsets of Pile, including Pile-arxiv, Pile-dm-mathematics, Pile-cc, Pile-pubmed-central,
and Pile-wikipedia-en. The length of each sequence is 2048. The training is conducted for 1 epoch
in each experiment, with the AdamW optimizer and a cosine learning rate schedule utilized. The
initial learning rate is 10−4.

B ADDITION TASK

B.1 PROBABILITY SIGNATURES IN ADDITION TASKS

We provide a formulation of the following probability in the three addition tasks. We denote U (A)
and U (Z) as the discrete uniform distribution over A and Z , respectively. A and Z are the random
variables following U (A) and U (Z). For the task fadd, we have that

Pπ (y = ν | α ∈ X) = Pπ (A+ Z = ν − α) , Pπ (z ∈ X | α ∈ X) =
1

|Z|
,

Pπ (z ∈ X | α ∈ X, y = ν) = Pπ (A = ν − α− z) =
1

|A|
δν−α−z∈A,

Pπ (α
′ ∈ X | α ∈ X, y = ν) = Pπ (Z = ν − α− α′) =

1

|Z|
δν−α−α′∈Z ,

Pπ (z ∈ X | y = ν) = Pπ (A+A = ν − z) , Pπ (α ∈ X | y = ν) = Pπ (A+ Z = ν − α) ,

where α, α′ ∈ A, z ∈ Z .It’s noted that besides the co-occurrence probability Pπ (z ∈ X | α ∈ X),
the value of other ones is dependent on α or ν. Figure 8 (left) displays the distribution of these
probabilities, which intuitively reveals the cause of the hierarchy structure in the similarity matrix.
Similarly, for f̃add, denote Y ∼ U (Y) and we have

Pπ (y = ν | α ∈ X) =
1

|Y|
, Pπ (z ∈ X | α ∈ X) = Pπ (Y −A = z + α) ,

Pπ (z ∈ X | α ∈ X, y = ν) = Pπ (A = ν − α− z) =
1

|A|
δν−α−z∈A,

Pπ (α
′ ∈ X | α ∈ X, y = ν) =

1

|Z|
,

Pπ (z ∈ X | y = ν) = Pπ (A+A = ν − z) , Pπ (α ∈ X | y = ν) = Pπ (A+ Z = ν − α) .
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For fmod, we have

Pπ (y = ν | α ∈ X) =
1

|Z|
, Pπ (z ∈ X | α ∈ X) =

1

|Z|
,

Pπ (z ∈ X | α ∈ X, y = ν) =
1

|A|
δν−minZ−(α−z mod|Z|)∈(A mod|Z|),

Pπ (α
′ ∈ X | α ∈ X, y = ν) =

1

|Z|
,

Pπ (z ∈ X | y = ν) = Pπ ((A+A mod|Z|) = ν −minZ − (z mod|Z|)) ,
Pπ (α ∈ X | y = ν) = Pπ ((A+ Z mod|Z|) = ν −minZ − (α mod|Z|)) .

Figure 8 depicts all these probability distributions.
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Figure 8: Probability signatures in each task under distinct α and ν. In the distribution of
Pπ (x

′ ∈ X, y = ν | α ∈ X), ν = 150 is displayed in fadd and ν = 120 in f̃add and fmod, since
150 and 120 are the average label value in each task.
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B.2 TRAINING RESULT

Figure 9 shows the training accuracy of Flin and Fffn on the three addition tasks. The results reveal
that both fadd and f̃add are learned well by the linear model, whereas fmod requires the nonlinear
model to achieve an effective fit.

Figure 9: Training accuracy of the Flin (left) and Fffn (right) on the three addition tasks.

B.3 QUANTIFY THE HIERARCHY EMBEDDING STRUCTURE

In the addition tasks, the anchors exhibit a strict ordering due to the numerical sequence. This
provides an ideal setting for the embedding space to develop a corresponding ordered relationship.
To formally quantify the formation of the ordered structure, we define the following metric:

Rorder

(
WE

A
)
= Corr

(
cos
(
WE

α ,WE
α′

)
, | α− α′ |

)
.

Rorder

(
WE

A
)

reflects the relationship between embedding similarity and anchor difference. A
strong negative Rorder

(
WE

A
)

(approximately −1) indicates that the similarity decreases system-
atically with increasing anchor difference, confirming the presence of a hierarchical organization in
the anchor embeddings. Figure 10 depicts the corresponding evolution of Rorder

(
WE

A
)

in Flin and
Fffn, which is consistent with our analysis.

Figure 10: Dynamics of Rorder

(
WE

A
)

in Flin (left) and Fffn (right). Line colors represent task
types.

B.4 UMEMBEDDING MATRIX IN FEEDFORWARD NETWORK

Figure 11 displays the structure of the unembedding matrix in Fffn with the three types of addition
tasks. The distribution of cos

(
WU

ν

)
(A) and the PCA projection (B) jointly reveal that the unem-

bedding vectors of those label tokens establish a hierarchy structure, which is consistent with their
natural sequence.
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Figure 11: A: The heatmap of the cos
(
WU

V
)

with label index in Fffn during the training process. B:
PCA projection of WU

V in Fffn (epoch 120).

C LANGUAGE MODELS

C.1 COMPLETE RESULTS

Figure 12 represents the cosine similarity distribution of WE ,ϕnext,WU and φpre at epoch 1 in
the other 4 subsets of Pile we selected, exhibiting an analogous phenomenon with the observation
in Figure 6. The distribution representations ϕnext and φpre could effectively capture the high
similarity among embedding vectors and unembedding vectors, respectively. Figure 13 depicts the
comparison at epoch 20.

C.2 TIED EMBEDDING

In the Qwen2.5-3B-base model, WE = WU,T , which aims for computational source saving. Under
this condition, we have that

dWE
s

dt
= rins WU,Tϕnext

s + routs WEφpre
s + η

= WE
(
rins ϕnext

s + routs φpre
s

)
+ η.

Since the next-token-prediction, each token will be an input and an output, except the last token in a
sequence, resulting in rins ≈ routs . Denote rs = rins and ϕ̃s = ϕnext

s +φpre
s , then we have

dWE
s

dt
= rsW

Eϕ̃s + η.

C.3 PROBABILITY SIGNATURE CAPTURE STRONG EMBEDDING SIMILARITIES

We find that the probability signatures reflect the strong connections of embeddings more faithfully.
As shown in Figure 14 A, the correlation between Corr

(
cos
(
WE

s ,WE
)
, cos (ϕnext

s ,ϕnext)
)

and
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Figure 12: Heatmap of cos
(
WE

s ,WE
s′

)
(left up), cos (ϕnext

s ,ϕnext
s′ ) (right up), cos

(
WU

s ,WU
s′

)
(left down) and cos (φpre

s ,φpre
s′ ) (right up) (epoch 1) in each experiment with distinct dataset. The

tokens displayed are those with the most appearances in the dataset.

cos
(
WE

s ,WE
)

is plotted against for all tokens s, demonstrating stronger consistency in high-
similarity regions. We define pcos(WE) and pcos(ϕnext) as the percentile matrix of each elements
in cos

(
WE

)
and cos (ϕnext), respectively. Figure 14 B displays the distribution of pcos(ϕnext),

conditioned on different intervals of the pcos(WE), and Figure 14 C shows the average value of
pcos(ϕnext) within each interval of pcos(WE). It can be observed that the alignment is significantly
stronger in the regions with large embedding similarity.

Remark about Figure 14 A In each subset Di, i = 1, 2, · · ·M , we define the set Si =
{
sij
}Ci

j=1

as the set of the Ci tokens which appear most frequently in Di. Based on the dataset Di, and denote
WEi as the embedding matrix of the model corresponding to dataset Di, we compute that

cosDi

(
WE

sij
,WE

)
=
[
cos
(
WEi

sij
,WEi

s′

)]
s′∈Si

∈ RCi ,

and

cosDi

(
ϕnext

sij
,ϕnext

)
=
[
cos
(
ϕnext

sij
,ϕnext

s′

)]
s′∈Si

∈ RCi .

for any token sij ∈ Si. Then we define the correlation coefficient

RDi

(
sij
)
= Corr

(
cosDi

(
WE

sij
,WE

)
, cosDi

(
ϕnext

sij
,ϕnext

))
and the average embedding similarity as

MeanWE ,Di

(
sij
)
=

1

Ci
cosDi

(
WE

sij
,WE

)
· 1.
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Figure 13: Heatmap of cos
(
WE

s ,WE
s′

)
(left up), cos (ϕnext

s ,ϕnext
s′ ) (right up), cos

(
WU

s ,WU
s′

)
(left down) and cos (φpre

s ,φpre
s′ ) (right up) (epoch 20) in each experiment with distinct dataset. The

tokens displayed are those with the most appearances in the dataset.

Figure 14: A: Relation between Corr
(
cos
(
WE

s ,WE
)
, cos (ϕnext

s ,ϕnext)
)

and the average value
of cos

(
WE

s ,WE
)
. Each point denotes a token s. B: Distribution of pcos(ϕnext), conditioned on

intervals 0 ∼ 10%, 40 ∼ 50% and 90 ∼ 100% of the pcos(WE). C: Average value of pcos(ϕnext)

within each interval of pcos(WE).
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Then we concatenate the metrics with all token sij ∈ Si, j = 1, 2, · · · , Ci and all datasets Si, i =
1, 2, · · · ,M , i.e.

Corr
(
cos
(
WE

s ,WE
)
, cos

(
ϕnext

s ,ϕnext
))

=
[
RDi

(
sij
)]i=1,2,··· ,M

j=1,2,··· ,Ci
∈ R

∑M
i=1 Ci ,

Mean
(
cos
(
WE

s ,WE
))

=
[
MeanWE ,Di

(
sij
)]i=1,2,··· ,M

j=1,2,··· ,Ci
∈ R

∑M
i=1 Ci .

Figure 6 displays the relation between Corr
(
cos
(
WE

s ,WE
)
, cos (ϕnext

s ,ϕnext)
)

and
Mean

(
cos
(
WE

s ,WE
))

, revealing a positive correlation. In our work, M = 5, and we set
up Ci = 10000 for each dataset.

Remark about Figure 14 B & C In each subset Di, i = 1, 2, · · ·M , we define the set Si ={
sij
}Ci

j=1
as the set of the Ci tokens which appear most frequently in Di. We compute that

cosDi

(
WE

)
=
[
cos
(
WEi

s ,WEi

s′

)]
s,s′∈Si

∈ RCi×Ci

and

cosDi

(
ϕnext

)
=
[
cos
(
ϕnext

s ,ϕnext
s′
)]

s,s′∈Si
∈ RCi×Ci .

Then translate the similarity matrix into a percentile formulation, i.e.

pcosDi
(WE) = Percentile

(
cosDi

(
WE

))
, pcosDi

(ϕnext) = Percentile
(
cosDi

(
ϕnext

))
and pcos(WE) =

[
pcosDi

(WE)

]
i=1,2,··· ,M

, pcos(ϕnext) =
[
pcosDi

(ϕnext)

]
i=1,2,··· ,M

. Figure 6 D

and E reveal the distribution and average value of pcos(ϕnext), where k × 10% ≤ pcos(WE) <
(k + 1)× 10%, k = 0, 1, 2, · · · , 9.

Case Analysis We provide a detailed case to explain the group of tokens exhibiting high embed-
ding similarities. In experiments on the Pile-dm-mathematics dataset, tokens such as “/a”, “/b”,
“/c”, and “/d” often serve as denominators in mathematical expressions. Figure 15 shows the co-
sine similarities of both their embedding vectors and distribution representations, which are notably
high for all tokens except “/e”, which does not appear in the dataset. These tokens share highly sim-
ilar semantics and also exhibit very similar next-token distributions, most frequently followed by
“*” or “)”. This similarity in next-token distribution leads to strong similarities in their embedding
vectors. This example vividly illustrates how data distribution shapes semantic structure within the
embedding space, particularly in the case of tokens with high semantic affinity.
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Figure 15: A case analysis of the token group “/a”, “/b”, “/c”, etc. The first row depicts the cosine
similarity of their embeddings (left) and distribution representations (right). The second row exhibits
the contexts containing these tokens, which are highlighted by different colors.
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C.4 RESULTS OF LLAMA 2

To assess the generalizability of our analysis in Section 6 across different model architectures and
tokenizers, we replicate the experiment using the Llama 2 architecture. We employ the same dataset
from Pile, and the training configurations are the same as the experiments of Qwen2.5. As shown
in Figure 16, the probability signatures effectively capture structural relationships in the embedding
space, especially in regions exhibiting high embedding similarity. These results align closely with
those in Figure 6, indicating that our analytical approach is robust to variations in model architecture.

Figure 16: Results with Llama-2 architecture. A: Heatmap of the cosine similarity of
WE ,WU ,ϕnext and φpre. B: Rcos

(
WE ,ϕnext

)
(top) and Rcos

(
WU ,φpre

)
(bottom) with dif-

ferent datasets. C: Relation between Corr
(
cos
(
WE

s ,WE
)
, cos (ϕnext

s ,ϕnext)
)

and the average
value of cos

(
WE

s ,WE
)
. Each point denotes a token s. D: Distribution of pcos(ϕnext), conditioned

on intervals 0 ∼ 10%, 40 ∼ 50% and 90 ∼ 100% of the pcos(WE). E: Average value of pcos(ϕnext)

within each interval of pcos(WE).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D THEORETICAL DETAILS

D.1 PROOF OF PROPOSITION 1

Lemma 1. Given a model F and data pair (X, y) ∈ N+,L ×N+, ℓ = − log Softmax (F (X))y , we
have that

∂ℓ

∂F (X)
= p− ey, (5)

where p = softmax (X) .

Proof. It’s noted ℓ = −F (X)y + log
∑dvob

j=1 expF (X)j , then we have

∂ℓ

∂F (X)i
= −δi=y +

expF (X)i∑dvob

j=1 expF (X)j
= pi − δi=y,

where δi=y = 1 if i = y else 0. This indicates that ∂ℓ
∂F (X) = p− ey .

With Lemma 1, we could obtain the derivative of ℓ with respect to WE
x for any x ∈ V as follows:

∂ℓi

∂WE
x

=
∂F
(
Xi
)

∂WE
x

∂ℓi

∂F (Xi)

=
(
WU,T

(
pi − eyi

))
⊙G(1)

(
WE

Xi

)
.

Then the gradient flow of WE
x could be obtained by

dWE
x

dt
=− 1

N

N∑
i=1

∂ℓi

∂WE
x

=
1

N

N∑
i=1

(
WU,T

(
pi − eyi

))
⊙G(1)

(
WE

Xi

)
,

Since diag
(
G(1)

(
WE

Xi

))
= 0 if x /∈ Xi, we have that

dWE
x

dt
=

1

N

N in
x∑

i=1

(
WU,T

(
eyi

x
− pi

x

))
⊙G(1)

(
WE

Xi
x

)

=
rinx
N in

x

N in
x∑

i=1

(
WU,T

(
eyi

x
− pi

x

))
⊙G(1)

(
WE

Xi
x

)
.

Since that yix takes value ν ∈ V , we can rewrite this formation as

dWE
x

dt
=

rinx
N in

x

∑
ν∈V

Nx,ν∑
i=1

(
WU,Teν

)
⊙G(1)

(
WE

Xi
x,ν

)
−

N in
x∑

i=1

(
WU,Tpi

x

)
⊙G(1)

(
WE

Xi
x

)
= rinx

∑
ν∈V

(
WU,Teν

)
⊙ Nx,ν

N in
x

1

Nx,ν

Nx,ν∑
i=1

G(1)
(
WE

Xi
x,ν

)
− 1

N in
x

N in
x∑

i=1

(
WU,Tpi

x

)
⊙G(1)

(
WE

Xi
x

) ,

where N in
x , Nx,ν denotes the count of sequences containing x and the count of sequences containing

x with label ν, rinx =
N in

x

N , rx,ν =
Ns,ν

N . Then let N → ∞, by the law of large number we have

dWE
x

dt
= rinx

(∑
ν∈V

Pπ (y = ν | x ∈ X)
(
WU,Teν

)
⊙ Eπ

[
G(1)

(
WE

X

)
| x ∈ X, y = ν

]
−Eπ

[(
WU,Tp

)
⊙G(1)

(
WE

X

)
| x ∈ X

])
.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.2 PROOF OF PROPOSITION 2

Similar with the analysis of WE
x , we derive the gradient flow of WU

ν as follows:

dWU
ν

dt
=− 1

N

N∑
i=1

∂ℓi

∂WU
ν

=
1

N

N∑
i=1

(
eyi,ν − pi,ν

) [
G
(
WE

Xi

)]T
.

Since eyi,ν = 1 if yi = ν else 0, we have that

dWU
ν

dt
=

routν

Nout
ν

Nout
ν∑

i=1

[
G
(
WE

Xi
(·,ν)

)]T
− 1

N

N∑
i=1

pi,ν
[
G
(
WE

Xi

)]T
,

where Nout
ν denotes the count of sequences with label ν and routνj

=
Nout

ν

N . Then let N → ∞, by the
law of large number we have

dWU
ν

dt
= routν Eπ

[
G
(
WE

X

)T | y = ν
]
− Eπ

[
pνG

(
WE

X

)T ]
.

D.3 PROOF OF COROLLARY 1

With proposition 1, we have that

dWE
x

dt
= rinx

(∑
ν∈V

Pπ (y = ν | x ∈ X)
(
WU,Teν

)
⊙ Eπ

[
G(1)

(
WE

X

)
| x ∈ X

]
−Eπ

[(
WU,Tp

)
⊙G(1)

(
WE

X

)
| x ∈ X

])
.

For the linear model, we have that G(1)
(
WE

X

)
= 1 if x ∈ X . Utilizing that softmax (f) =

1
dvob

1+ 1
dvob

f +O
(
d−2
vobf

)
, we obtain that

dWE
x

dt
= WU,T rinx

(∑
ν∈V

Pπ (y = ν | x ∈ X)eν − Eπ [p | x ∈ X]

)

= WU,T rinx

(
ϕy

x − Eπ

[
1

dvob
1+

1

dvob
WU

∑
xi∈X

WE
xi

+O
(
d−2
vobW

UWE
x

)
| x ∈ X

])

= WU,T rinx

(
ϕy

x − 1

dvob
1− 1

dvob
WUEπ

[ ∑
xi∈X

WE
xi

| x ∈ X

]
+O

(
d−2
vobW

UWE
x

))

= WU,T rinx

(
ϕy

x − 1

dvob
1− 1

dvob
WU

∑
x′∈V

Pπ (x
′ ∈ X | x ∈ X)WE

x′ +O
(
d−2
vobW

UWE
x

))

= WU,T rinx

(
ϕy

x − 1

dvob
WUWEϕX

x − 1

dvob
1+O

(
d−2
vobW

UWE
x

))
:= WU,T rinx

(
ϕy

x − 1

dvob
WUWEϕX

x + η

)
,

where η = − 1
dvob

1 + O
(
d−2
vobW

UWE
α

)
contains the higher-order term and the data independent

term.
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D.4 PROOF OF COROLLARY 2

Proof. Since the small initialization, we assume that the activation function can be approximated by
the following form with the Weierstrass approximation theorem.

σ

(∑
x∈X

WE
x

)
= C0 + C1

(∑
x∈X

WE
x

)
+ C2

(∑
x∈X

WE
x

)⊙2

+ ϵ.

With the loss of the generalization, we assume that C0 = 0, C1 = 1, C2 = 1
2 . Then we have

dWE
x

dt
= rinx

∑
ν∈V

Pπ (y = ν | x ∈ X)
(
WU,Teν

)
⊙ Eπ

[
1+

∑
x′∈X

WE
x′ | x ∈ X, y = ν

]
︸ ︷︷ ︸

Jy

− rinx Eπ

[(
WU,Tp

)
⊙

(
1+

∑
x′∈X

WE
x′

)
| x ∈ X

]
︸ ︷︷ ︸

Jp

.

For the term Jy we have

Jy = WU,T
∑
ν∈V

Pπ (y = ν | x ∈ X) eν +
∑
ν∈V

Pπ (y = ν | x ∈ X)
(
WU,Teν

)
⊙ Eπ

[ ∑
x′∈X

WE
x′ | x ∈ X, y = ν

]
= WU,Tϕy

x +
∑
ν∈V

diag
(
WU

ν

) ∑
x′∈V

Pπ (y = ν | x ∈ X)Pπ (x
′ ∈ X | x ∈ X, y = ν)WE

x′ .

Since that Pπ (y = ν | x ∈ X)Pπ (x
′ ∈ X | x ∈ X, y = ν) = Pπ (x

′ ∈ X, y = ν | x ∈ X), we
have that

Jy = WU,Tϕy
x +

∑
ν,x′∈V

Pπ (x
′ ∈ X, y = ν | x ∈ X)WU

ν ⊙WE
x′

= WU,Tϕy
x + T⊙ ϕX|y

x ,

where T ∈ Rd×dvob×dvob , T:,x′,ν = WU
ν ⊙WE

x′ for ν, x′ ∈ V and 0 otherwise.

Similarly, for the term Jp, we have that

Jp = Eπ

[(
WU,T

(
1

dvob
1+

1

dvob
WU

∑
x′∈X

WE
x′

))
⊙

(
1+

∑
x′∈X

WE
x′

)
| x ∈ X

]

=
1

dvob
WU,T1+

1

dvob
WU,T

∑
x′∈V

Pπ (x
′ ∈ X | x ∈ X)WE

x′ + ϵ

=
1

dvob
WU,T

(
1+WEϕX

x

)
+ ϵ,

where ϵ = O
(

1
d2
vob

WUWE
α

)
. Then we have that

dWE
α

dt
= rinx

(
WU,Tϕy

x − 1

dvob
WU,TWEϕX

x + T · ϕX|y
x + ϵ

)
,

where ϵ = − 1
dvob

WU,T1+O
(

1
d2
vob

WUWE
α

)
.
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D.5 PROOF OF COROLLARY 3

Proof. With Proposition 2, we have that

dWU
ν

dt
=

routν

Nout
ν

routν Eπ

(∑
x∈X

WE
x

)T

| y = ν

− Eπ

pν

(∑
x∈X

WE
x

)T


=Lroutν

∑
x∈V

Pπ (x ∈ X | y = ν)WE,T
x − 1

dvob
WE1 + ϵ

=Lroutν

(
WEφX

ν

)T − η,

where η = − 1
dvob

WE1 +O
(

1
dvob

WEWE1
)

.

D.6 PROOF OF COROLLARY 4

Proof. The next-token-prediction training loss could be formulated as

ℓi =
1

L

L−1∑
t=1

CrossEntropy
(
Flan (X:t) ;eXt+1

)
.

So we have that

∂ℓi

∂WE
s

=
1

L

L−1∑
t=1

WU,T
(
pi
t − eXi

t+1

)
⊙
(
δXi

t=s1+ F̃ (1)
(
Xi

:t

))
.

Furthermore, we have that

dWE
s

dt
=

1

NL

N∑
i=1

L−1∑
t=1

WU,T
(
eXi

t+1
− pi

t

)
⊙
(
δXi

t=s1+ F̃ (1)
(
Xi

:t

))
=

1

NL
WU,T

N∑
i=1

L−1∑
t=1

δXi
t=seXi

t+1
+

1

NL
WU,T

N∑
i=1

L−1∑
t=1

eXi
t+1

⊙ F̃ (1)
(
Xi

:t

)
− 1

NL

N∑
i=1

L−1∑
t=1

WU,Tpi
t ⊙
(
δXi

t=s1+ F̃ (1)
(
Xi

:t

))
.

Since the small initialization, assuming that ||W ||∞ = O (d−γ) for any trainable parameter matrix
W , we have that ||F̃ (1)

(
Xi

:t

)
||∞ = O

(
d1−2γ

)
in the initial stage. Let N → ∞, we have that

dWE
s

dt
= rins WU,T

(
ϕnext

s − ηE
)
,

where ηE =
∑L−1

t=1 Eπ [p | Xt = s] +O
(
d1−2γϕnext

s

)
. Similarly, we have that

dWU
s

dt
=

1

NL

N∑
i=1

L−1∑
t=1

(
δXi

t+1=s − pi,s
Xi

:t

)(
WE,T

Xi
t

+ F̃
(
Xi

:t

)T)
,

where pi,s
Xi

:t
means the s-th element of the output probability with input sequence Xi

:t. Let N → ∞,
we have

dWU
s

dt
= routs

(
WEφpre

s

)T
+ ηU ,

where ηU =
∑L−1

t=1 Eπ

[
ps
X:t

WE,T
Xt

]
+O

(
routs d1−2γ

(
WEφpre

s

)T)
.
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