
What Do GNNs Actually Learn? Towards Understanding their
Representations

Giannis Nikolentzos
University of Peloponnese, Greece

nikolentzos@uop.gr

Michail Chatzianastasis
LIX, École Polytecnique, IP Paris, France

mixalisx97@gmail.com

Michalis Vazirgiannis
LIX, École Polytecnique, IP Paris, France
mvazirg@lix.polytechnique.fr

Abstract
In recent years, graph neural networks (GNNs) have achieved great success
in the field of graph representation learning. Although prior work has shed
light on the expressiveness of those models (i. e., whether they can distinguish
pairs of non-isomorphic graphs), it is still not clear what structural information
is encoded into the node representations that are learned by those models. In
this paper, we address this gap by studying the node representations learned
by four standard GNN models. We find that some models produce identical
representations for all nodes, while the representations learned by other models
are linked to some notion of walks of specific length that start from the nodes.
We establish Lipschitz bounds for these models with respect to the number of
(normalized) walks. Additionally, we investigate the influence of node features
on the learned representations. We find that if the initial representations of all
nodes point in the same direction, the representations learned at the k-th layer
of the models are also related to the initial features of nodes that can be reached
in exactly k steps. We also apply our findings to understand the phenomenon of
oversquashing that occurs in GNNs. Our theoretical analysis is validated through
experiments on synthetic and real-world datasets.

1 Introduction

Graphs arise naturally in a wide variety of domains such as in bio- and chemo-informatics [1],
in social network analysis [2] and in information sciences [3]. There is thus a need for machine
learning algorithms that can operate on graph-structured data, i. e., algorithms that can exploit both
the information encoded in the graph structure but also the information contained in the node and
edge features. Recently, graph neural networks (GNNs) emerged as a very promising method for
learning on graphs, and have driven the rapid progress in the field of graph representation learning [4].

Even though different types of GNNs were proposed in the past years, message passing models
undoubtedly seem like a natural approach to the problem. These models, known as message passing
neural networks (MPNNs) [5], employ a message passing (or neighborhood aggregation) procedure
where each node aggregates the representations of its neighbors along with its own representation
to produce new updated representations. For graph-related tasks, MPNNs usually apply some
permutation invariant readout function to the node representations to produce a representation for the
entire graph. The family of MPNNs has been studied a lot in the past few years, and there are now
available dozens of instances of this family of models. A lot of work has focused on investigating
the expressive power of those models. It was recently shown that standard MPNNs are at most as
powerful as the Weisfeiler-Leman algorithm in terms of distinguishing non-isomorphic graphs [6, 7].

G. Nikolentzos et al., What Do GNNs Actually Learn? Towards Understanding their Representations. Proceed-
ings of the Third Learning on Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November 26–29,
2024.

What Do GNNs Actually Learn? Towards Understanding their Representations

The recent success of GNNs put graph kernels, another approach for graph–based machine learning,
into the shade. Unlike GNNs, graph kernels generate representations (implicit or explicit) that
typically capture some substructure of graphs [8]. Such substructures include random walks [9, 10],
shortest paths [11] and subgraphs [12, 13]. Therefore, the properties and the graph representations
produced by most graph kernels are fully-understood. This is not however the case for MPNNs
since, despite the great activity in the field, still little is known about the properties of graphs that are
captured in the representations learned by those models.

In this paper, we fill this gap by studying the node representations learned by MPNNs. We first
investigate what structural properties of graphs are captured in the learned representations of standard
models. To study those representations, we capitalize on Lipschitz continuity, a standard tool for
analyzing representations of neural network models and for assessing their robustness to perturba-
tions [14, 15]. We show that when all nodes are annotated with the same features, both GAT [16] and
DGCNN [17] embed all nodes into the same vector. Furthermore, we show that the representations
that emerge at the k-th layer of GCN [18] and GIN [6] are related to some notion of walks of length
k over the input graph. This suggests that MPNNs suffer from the following limitation: structurally
dissimilar nodes can have similar (or even identical) representations at some layer k where k > 1.
We also study the impact of node features on the learned representations. We show that if the initial
features of all nodes point in the same direction, the node representations at the k-th layer of GCN
and GIN are all related to the initial features of the nodes that can be reached in exactly k steps from
the node. We finally study the problem of oversquashing [19] from the lens of our theoretical findings.
We verify our theoretical analysis in experiments conducted on synthetic and real-world datasets. Our
code is available at https://github.com/giannisnik/gnn-representations.

2 Related Work
While GNNs have been around for decades [20–22], it is only in recent years that the scientific
community became aware of their power and potential. The increased scientific activity in the field led
to the development of a large number of models [23–27]. Those models were categorized into spectral
and spatial approaches depending on which domain the convolutions (neighborhood aggregations)
were performed. Later, it was shown that all these models can be seen as instances of a single
common framework [5]. These models, known as message passing neural networks (MPNNs), use a
message passing scheme where nodes iteratively aggregate feature information from their neighbors.
Then, to compute a representation for the entire graph, MPNNs typically employ some permutation
invariant readout function which aggregates the representations of all the nodes of the graph. In
the past few years, there have been proposed several extensions and improvements to the MPNN
framework. Most studies have focused on the message passing procedure and have proposed more
expressive or permutation sensitive aggregation functions [28–31], schemes that incorporate different
local structures or high-order neighborhoods [32, 33], non-Euclidean geometry approaches [34],
while others have focused on efficiency [35]. Fewer works have focused on the pooling phase and
have proposed more advanced strategies for learning hierarchical graph representations [36, 37]. Note
also that not all GNNs belong to the family of MPNNs [38–40], and that there exist models which
process random walks sampled from the graph [41, 42] and which can mitigate MPNNs’ common
symptoms such as oversmoothing and oversquashing.

A considerable amount of recent work has focused on characterizing the expressive power of GNNs.
Most of these studies compare GNNs against the WL algorithm and its variants [43] to investigate
what classes of non-isomorphic graphs they can distinguish. For instance, it has been shown that
standard GNNs are not more powerful than the 1-WL algorithm [6, 7]. Other studies capitalized on
high-order variants of the WL algorithm to derive new models that are more powerful than standard
MPNNs [7, 44]. Recent research has investigated the expressive power of k-order GNNs in terms
of their ability to distinguish non-isomorphic graphs. In particular, it has been shown that k-order
GNNs are at least as powerful as the k-WL test in this regard [45]. Various approaches have also
been proposed to enhance the expressive power of GNNs beyond that of the WL test. These include
encoding vertex identifiers [46], incorporating all possible node permutations [28, 47], using random
features [48, 49], utilizing node features [50], incorporating spectral information [51], utilizing
simplicial and cellular complexes [52, 53] and directional information [54]. It has also been shown
that extracting and processing subgraphs can further enhance the expressive power of GNNs [55–57].
For instance, it has been suggested that expressive power of GNNs can be increased by aggregating
the representations of subgraphs produced by standard GNNs, which arise from removing one or

2

https://github.com/giannisnik/gnn-representations

What Do GNNs Actually Learn? Towards Understanding their Representations

Table 1: Neighborhood aggregation schemes of the four considered models.
Model Update Equation

GCN h
(k)
v = ReLU

(∑
u∈N(v)∪{v}

W(k)h
(k−1)
u√

(1+d(v))(1+d(u))

)

DGCNN h
(k)
v = f

(∑
u∈N(v)∪{v}

1
d(v)+1

W(k)h
(k−1)
u

)

GAT h
(k)
v = σ

(∑
u∈N(v) αvuW(k)h

(k−1)
u

)

GIN-ϵ h
(k)
v = MLP(k)

((
1 + ϵ(k)

)
h
(k−1)
v +

∑
u∈N(v) h

(k−1)
u

)

more vertices from a given graph [58, 59]. The above studies mainly focus on whether GNNs can
distinguish pairs of non-isomorphic graph. However, it still remains unclear what kind of structural
information is encoded into the node representations learned by GNNs. Some recent works have
proposed models that aim to learn representations that preserve some notion of distance of nodes [60],
however, they do not shed light into the representations generated by standard models. The work
closest to ours is the one proposed by Chuang and Jegelka [61], where the authors propose the
Tree Mover’s Distance, a pseudometric for node-attributed graphs, and study its relation to the
generalization of GNNs. Our work is also related to the work of Xu et al. [62] where the authors
use the concept of walks to define the effective range of nodes that any given node’s representation
draws from. However, while this work studies the range of nodes whose features affect a given
node’s representation, we focus on the exact node representations that are learned by the model.
Finally, Yehudai et al. [63] capitalize on local computation trees and graph patterns similar to the
ones studied in this paper to investigate the GNNs’ ability to generalize to larger graphs.

3 Preliminaries
3.1 Notation

Let N denote the set of natural numbers, i. e., {1, 2, . . .}. Then, [n] = {1, . . . , n} ⊂ N for n ≥ 1. Let
also {{}} denote a multiset, i. e., a generalized concept of a set that allows multiple instances for its
elements. Let G = (V,E) be a (directed) graph, where V is the vertex set and E is the edge set. We
will denote by n the number of vertices and by m the number of edges, i. e., n = |V | and m = |E|.
The adjacency matrix A ∈ Rn×n encodes the edge information in a graph. The element of the ith

row and jth column is equal to 1 if there is an edge between vi and vj , and 0 otherwise. Let N (v)
denote the the neighbourhood of vertex v, i. e., the set {u | (u, v) ∈ E}. The degree of a vertex v
is d(v) = |N (v)|. A walk in graph G is a sequence of vertices v1, v2, . . . , vk+1 where vi ∈ V and
(vi, vi+1) ∈ E for 1 ≤ i ≤ k. We denote by w

(k)
v the number of walks of length k starting from node

v. Finally, let w̃(k)
v denote the sum of normalized walks of length k where each walk (v1, v2, . . . , vk)

is normalized as follows 1/
(
(1+d(v2))...(1+d(vk−1))

√
(1+d(v1))(1+d(vk))

)
.

3.2 Message Passing Neural Networks

As already discussed, most GNNs can be unified under the MPNN framework [5]. These models
follow a neighborhood aggregation scheme, where each node representation is updated based on the
aggregation of its neighbors’ representations. Let h(0)

v denote node v’s initial feature vector. Then,
for a number K of iterations, MPNNs update node representations as follows:

m(k)
v = AGGREGATE(k)

(
{{h(k−1)

u | u ∈ N (v)}}
)

h(k)
v = COMBINE(k)

(
h(k−1)
v ,m(k)

v

)
where AGGREGATE(k) is a permutation invariant function. By defining different AGGREGATE(k)

and COMBINE(k) functions, we obtain different MPNN instances. In this study, we consider
the neighborhood aggregation schemes of four models, namely (1) Graph Convolution Network
(GCN) [18]; (2) Deep Graph Convolutional Neural Network (DGCNN) [17]; (3) Graph Attention
Network (GAT) [16]; and (4) Graph Isomorphism Network (GIN) [6]. The aggregation schemes of
the four models are illustrated in Table 1. Note that for directed graphs, N (v) is a set that contains
the in-neighbors of v.

3

What Do GNNs Actually Learn? Towards Understanding their Representations

For node-level tasks, the final node representations h(K)
v can be directly passed to a fully-connected

layer for prediction. For graph-level tasks, a graph representation is obtained by aggregating the final
representations of its nodes: hG = READOUT

(
{{h(K)

v | v ∈ G}}
)

. The READOUT function is
typically a differentiable permutation invariant function such as the sum or mean operator.

4 What Do MPNNs Actually Learn?
We next investigate what structural properties of nodes these four considered models can capture.
Nodes are usually annotated with features that reveal information about their neighborhoods. Such
features include their degree or even more sophisticated features such as counts of certain substruc-
tures [64] or those extracted from Laplacian eigenvectors [65]. We are interested in identifying
properties that are captured purely by these models. Thus, we assume that no such features are
available, and we annotate all nodes with the same feature vector or scalar.
Theorem 1. Let G = {G1, . . . , GN} be a collection of graphs. Let also V = V1 ∪ . . . ∪ VN

denote the set that contains the nodes of all graphs. All nodes are initially annotated with the same
representation. Without loss of generality, we assume that they are annotated with a single feature
equal to 1, i. e., h(0)

v = 1 ∀v ∈ V . Then, after k neighborhood aggregation layers:

1. DGCNN and GAT both map all nodes to the same representation, i. e., h(k)
v = h

(k)
u ∀v, u ∈ V .

2. GCN maps nodes to representations related to the sum of normalized walks of length k starting
from them: ∣∣∣∣∣∣h(k)

v − h(k)
u

∣∣∣∣∣∣
2
≤

k∏
i=1

L
(i)
f

∣∣∣∣∣∣w̃(k)
v − w̃(k)

u

∣∣∣∣∣∣
2

where L
(i)
f denotes the Lipschitz constant of the fully-connected layer of the i-th neighborhood

aggregation layer.

3. Under mild assumptions (biases of MLPs are ignored), GIN-0 maps nodes to representations
that capture the number of walks of length k starting from them:∣∣∣∣∣∣h(k)

v − h(k)
u

∣∣∣∣∣∣
2
≤

k∏
i=1

L
(i)
f

∣∣∣∣∣∣w(k)
v − w(k)

u

∣∣∣∣∣∣
2

where L(i)
f denotes the Lipschitz constant of the MLP of the i-th neighborhood aggregation layer.

The above result highlights the limitations of the considered models. Specifically, our results imply
that the DGCNN and GAT models encode no structural information of the graph into the learned
node representations. Furthermore, combined with a sum readout function, these representations give
rise to graph representations that can only count the number of nodes of each graph. If the readout
function is the mean operator, then all graphs are embedded into the same vector. With regards to the
GIN-0 and GCN models, we have bounded their Lipschitz constants with respect to the number of
walks and sum of normalized walks starting from the different nodes, respectively.

To experimentally verify the above theoretical results, we trained the GIN-0 and GCN models on the
IMDB-BINARY and ENZYMES graph classification datasets. For all pairs of nodes, we computed
the Euclidean distance of the number of walks (resp. sum of normalized walks) of length 3 starting
from them. We also computed the Euclidean distance of the representations of the nodes that emerge
at the corresponding (i. e., third) layer of GIN-0 (resp. GCN). We finally computed the correlation of
the two collections of Euclidean distances and the results are given in Figure 1. More details about the
experimental protocol are provided in Appendix B. Clearly, the results verify our theoretical results.
The distance of the number of walks is perfectly correlated with the distance of the representations
generated by GIN-0 with no biases, while the distance of the sum of normalized walks is perfectly
correlated with the distance of the representations produced by GCN. We also computed the Euclidean
distance of the representations of the nodes that emerge at the third layer of the standard GIN-0 model
(with biases), and we compared them against the distances of the number of walks. We can see that
on both datasets, the emerging correlations are very high (equal to 0.99). We observed similar values
of correlation on other datasets as well, which indicates that the magnitude of the bias terms of the
MLPs is actually small and that our assumption of ignoring biases is by no means unrealistic.

4

What Do GNNs Actually Learn? Towards Understanding their Representations

0 5000 10000 15000 20000 25000
wu wv

0

500

1000

1500

2000

2500

h u
h v

r = 0.99

IMDB BINARY : GIN

0 5000 10000 15000 20000 25000
wu wv

0

500

1000

1500

2000

2500

3000

h u
h v

r = 1.00

IMDB BINARY : GIN(NoBias)

0.0 0.5 1.0 1.5 2.0 2.5
wu wv

0.0

0.2

0.4

0.6

0.8

1.0

1.2

h u
h v

r = 1.00

IMDB BINARY : GCN

0 100 200 300 400
wu wv

0

10

20

30

40

50

60

h u
h v

r = 0.99

ENZYMES : GIN

0 100 200 300 400
wu wv

0

10

20

30

40

h u
h v

r = 1.00

ENZYMES : GIN(NoBias)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
wu wv

0.0

0.1

0.2

0.3

h u
h v

r = 1.00

ENZYMES : GCN

Figure 1: Euclidean distances of the representations generated at the third layer of the different
models vs. Euclidean distances of the number of walks (or sum of normalized walks) of length 3
starting from the different nodes. Nodes are initially annotated with a single feature equal to 1.

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

Figure 2: The number of walks of length 2 starting from the red nodes of the three graphs is equal to
10. A GIN model that consists of 2 layers embeds these three nodes close to each other (or to the
same representation in case there are no biases) even though they are structurally dissimilar.

4.1 Can Structurally Dissimilar Nodes Obtain Identical Representations?

Based on the above theoretical and empirical findings, it is clear that two nodes can have dissimilar
representations at the k-th layer, but obtain similar representations at the (k + 1)-th layer of some
MPNN model. For instance, for GCN, this can be the case if the two nodes have different sums
of normalized walks of length k, but similar sums of normalized walks of length k + 1. Likewise,
for GIN-0, this can occur if the two nodes have different numbers of walks of length k, but similar
numbers of walks of length k + 1. But can two nodes that have different representations at the k-th
layer of some MPNN model be embedded into the same vector at the (k + 1)-th layer of the model?

Observation 1. Let h(k)
v denote node v’s representation at the k-th layer of the GCN or the GIN-0

model (biases of MLPs are ignored). There exist nodes v and u for which ||h(k)
v − h

(k)
u ||2 > 0, but

||h(k+1)
v − h

(k+1)
u ||2 = 0 no matter what are the values of the trainable parameters of the (k + 1)-th

layer of the model.

Figure 2 illustrates three nodes (the three red nodes) that have structurally dissimilar neighborhoods,
but their representations produced by GIN-0 after two neighborhood aggregation layers are very
similar to each other (or identical in case biases are omitted). Let v, u, z denote the three nodes. For
all three graphs, the number of walks of length 2 starting from the red nodes is equal to 10 (i. e.,
w

(2)
v = w

(2)
u = w

(2)
z = 10). Note also that the three nodes have different values of degree (i. e.,

number of walks of length 1) from each other and thus GIN-0 could learn different representations
for them after a single neighborhood aggregation layer. We also provide in Figure 3 an example of
two nodes (the two red nodes) that could obtain different representations at the first layer of a GCN
model, but would obtain identical representations at the second layer of the model. Let v, u denote
the two nodes. For those two nodes, we have that w̃(1)

v ̸= w̃
(1)
u , but also that w̃(2)

v = w̃
(2)
u ≈ 0.890.

5

What Do GNNs Actually Learn? Towards Understanding their Representations

0

1
2

3

01

2

3

4

5

6

7

8

9

10

69

70

Figure 3: The sum of normalized walks of length 2 starting from the red nodes of the two graphs is
approximately equal to 0.890. A GCN model that consists of 2 layers embeds these two nodes to the
same representation even though they are structurally dissimilar.

10 20 30 40 50 60 70
wu wv

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

h u
h v

r = 0.99

ENZYMES : GIN

10 20 30 40 50 60 70
wu wv

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

h u
h v

r = 1.00

ENZYMES : GIN(NoBias)

0.01 0.02 0.03 0.04 0.05 0.06
wu wv

0.005

0.010

0.015

0.020

0.025

0.030

h u
h v

r = 1.00

ENZYMES : GCN

Figure 4: Euclidean distances of the representations generated at the third layer of the different
models vs. Euclidean distances of the number of walks (or sum of normalized walks) of length 3
starting from the different nodes. Nodes v and u correspond to the same node in the original and the
perturbed graph, respectively. Each perturbed graph has emerged by removing one node from node
v’s neighborhood.

In many settings, the local neighborhood of a node provides more information about its structural
role than its more global neighborhood. Indeed, two nodes that have very different values of degree
from each other are undoubtedly structurally very dissimilar no matter how their k-hop (for k > 1)
neighborhoods look like. The jump connections proposed in [62] allow a model to combine the
representations of the different layers (e. g., by concatenating them), thus capturing both local and
more global information about each node’s neighborhood.

4.2 Are MPNNs Stable under Perturbations?

We next capitalize on Theorem 1 to assess the stability of MPNNs to small perturbations such as
node removal or edge removal. Note that the Lipschitz constant is a common tool to evaluate neural
networks’ stability to small perturbations. Our theoretical result implies that the Euclidean distance
between the representation of a node and the node’s new representation once some perturbation
is applied depends on the decrease (or increase) in the number of walks that start from that node.
We empirically validate our theoretical result on the ENZYMES dataset. We first split the dataset
into training, validation and test sets, and then train the GIN-0 and GCN models on the training
set. Finally, we choose one node v of some graph of the test set and use the model to produce its
represention hv at the third layer of each model. We then create perturbed versions of the graph.
Each perturbed graph emerges from the original graph by just removing one node (and its adjacent
edges) whose shortest path distance from v is at most 2. Let u denote the node of the perturbed
graph that corresponds to v, and hu its represention at the third layer of the two models. Figure 4
illustrates how the Euclidean distance between the two nodes varies as a function of the descrease in
the number of walks. We observe that the Euclidean distance between the initial representation of the
node and its new representation is highly correlated with the decrease in the number of walks due
to the perturbations. Besides nodes, we also experimented with edge removal (we removed edges
whose endpoints are both at distance at most 2 from v), and the results are given in Appendix C.

Note that there exist graphs where the removal of a node or of an edge can significantly degrade
graph robustness. Consider for example the graph that is shown in Figure 5. The removal of
node u (or of one of its adjacent edges) disconnects the graph. This will most likely have a sig-
nificant impact on the representation of node v computed at the k-th layer of GIN where k > 4.

6

What Do GNNs Actually Learn? Towards Understanding their Representations

v u z

Figure 5: Example of a graph where
the removal of a node disconnects the
graph. This leads to a large decrease in
the number of walks of length 6 that start
from node v.

Indeed we observe that the number of walks of length k
that start from node v decreases significantly once node u
(or one of its adjacent edges) is removed. There exist 603
walks of length 6 from node v (with self-loops), but this
number decreases to as few as 64 once node u is removed.
We initialized 10 different GIN-0 models consisting of 6
layers and fed the graph of Figure 5 into the models (the
models were not trained) along with two perturbations of
the graph where either node z is removed or node u is
removed (which results into a disconnected graph). We
computed the norm of the difference between the repre-
sentation of node v in the original graph and its representation in each of the perturbed instances
at the sixth layer of the models. We found that when node z is removed, the average norm of the
difference is equal to 0.0026. When node u is removed, the average norm of the difference is equal to
0.0162. This confirms our theory since by removing node u there is a large decrease in the number of
walks that start from node v. On the other hand, by removing node z, the perturbation in terms of the
number of walks that start from node v is not very strong, thus leading to a smaller value of the norm.

4.3 How Do Initial Node Features Influence Representations?

So far, we have focused on graphs which do not contain node features. For our analysis, we assumed
that all nodes are annotated with the same feature(s) which is common practice in the field of graph
machine learning. However, in many real-world applications (e. g., chemo-informatics), the entities
that correspond to the nodes of the graph are usually associated with features and those features are
not necessarily the same across all entities. Furthermore, to improve the models’ expressive power,
prior work typically annotates nodes with local or global features such as the degrees of the nodes or
features extracted from spectral embeddings. We thus next investigate whether our previous results
can be generalized to the setting where the features of a node are different from those of other nodes.

Our next result generalizes the previous results to graphs that contain node features provided that
those features all point in the same direction. Formally, let G = {G1, . . . , GN} be a collection of
graphs, and let also V = V1∪ . . .∪VN denote the set that contains the nodes of all those graphs. Then,
if for any two nodes v, u ∈ V , we have that h(0)

v is a positive scalar multiple of h(0)
u , then we can still

bound the Lipschitz constant of those models with respect to the weighted sum of (normalized) walks
where the weights correspond to the initial node features. Let w(k)

v denote the sum of weighted walks
of length k that start from node v. The weight of a walk is equal to the feature(s) of the last visited
node. For example, if there are 3 walks of length 1 that start from node v, and the features of the last
visited nodes are [2.2, 1.5], [1.1, 0.75] and [3.3, 2.25], then w

(k)
v = [6.6, 4.5]. Note that the 3 vectors

all point in the same direction. Let also w̃
(k)
v denote the sum of weighted normalized walks of length

k where each walk (v1, v2, . . . , vk) is equal to h(0)
vk/
(
(1+d(v2))...(1+d(vk−1))

√
(1+d(v1))(1+d(vk))

)
.

Theorem 2. Let G = {G1, . . . , GN} be a collection of graphs. Let also V = V1 ∪ . . . ∪ VN denote
the set that contains the nodes of all graphs. All nodes are initially annotated with features that point
in the same direction. Then, after k neighborhood aggregation layers:

1. GCN maps nodes to representations related to the sum of weighted normalized walks of length k
starting from them: ∣∣∣∣∣∣h(k)

v − h(k)
u

∣∣∣∣∣∣
2
≤

k∏
i=1

L
(i)
f

∣∣∣∣∣∣w̃(k)
v − w̃(k)

u

∣∣∣∣∣∣
2

where L
(i)
f denotes the Lipschitz constant of the fully-connected layer of the i-th neighborhood

aggregation layer.

2. Under mild assumptions (biases of MLPs are ignored), GIN-0 maps nodes to representations
that capture the sum of weighted walks of length k starting from them:∣∣∣∣∣∣h(k)

v − h(k)
u

∣∣∣∣∣∣
2
≤

k∏
i=1

L
(i)
f

∣∣∣∣∣∣w(k)
v −w(k)

u

∣∣∣∣∣∣
2

where L(i)
f denotes the Lipschitz constant of the MLP of the i-th neighborhood aggregation layer.

7

What Do GNNs Actually Learn? Towards Understanding their Representations

0.0 0.5 1.0 1.5 2.0
wu wv 1e6

0

50

100

150

200

250

300

h u
h v

r = 0.99

IMDB BINARY : GIN

0.0 0.5 1.0 1.5 2.0
wu wv 1e6

0

10

20

30

40

50

60

70

h u
h v

r = 1.00

IMDB BINARY : GIN(NoBias)

0 10 20 30 40
wu wv

0

2

4

6

8

10

h u
h v

r = 1.00

IMDB BINARY : GCN

Figure 6: Euclidean distances of the representations generated at the third layer of the different
models vs. Euclidean distances of the number of walks (or sum of normalized walks) of length 3
starting from the different nodes. Each node is initially annotated with a single feature equal to its
degree.

To experimentally verify the above theoretical results, we annotated the nodes of all graphs of the
IMDB-BINARY dataset with their degrees. Note that all node features point in the same direction.
We then trained the GIN-0 and GCN models on that dataset. For pairs of nodes from graphs that
belong to the test set, we computed the Euclidean distance of the sum of weighted walks (resp. sum of
weighted normalized walks) of length 3 starting from them. We also computed the Euclidean distance
of the representations of the nodes that emerge at the corresponding (i. e., third) layer of GIN-0 (resp.
GCN). We finally computed the correlation of the two collections of Euclidean distances and the
results are given in Figure 6. We observe that the empirical results verify our theoretical results. The
distance of the sum of weighted walks is perfectly correlated with the distance of the representations
generated by GIN-0 with no biases, while the distance of the sum of weighted normalized walks is
perfectly correlated with the distance of the representations produced by GCN. We also computed the
Euclidean distance of the representations of the nodes that emerge at the third layer of the standard
GIN-0 model (with biases), and we compared them against the distances of the sum of weighted
walks. We found that still there is almost perfect correlation between the two quantities. If the
features of the nodes do not point in the same direction, then our results do not hold anymore and
other techniques need to be employed to derive bounds. Deriving bounds for such kind of features is
left as future work.

5 The Phenomenon of Oversquashing from Another Perspective
Our theoretical results are also related to the phenomenon of oversquashing [19, 66] which occurs in
MPNNs due to large information compression through bottlenecks. Specifically, messages that are
propagated from distant nodes through certain bottlenecks of the graph, turn out to have negligible
impact on the root node’s representation. Our theoretical results suggest that given two nodes v and
u, the smaller the value of w(k)

vu (where w
(k)
vu denotes the number of (weighted) walks of length k

from node v to node u), the less the impact of the message(s) from node u to node v on node v’s
representation. This becomes more severe in case the norm of w(k)

v is large.

To verify our claim, we constructed a graph classification task to investigate whether an MPNN
model can capture the interaction between two nodes. All the generated graphs are instances of
a single family of graphs. Specifically, each graph consists of two components: (1) a complete
graph with n nodes; and (2) a perfectly balanced r-ary tree of height 2. The two components are
connected by an edge, between one of the nodes of the complete graph and the root of the tree.

v1
v2
v3

v4v5

v6

v7

v8
v9

v10

v11

Figure 7: An example of the
CBT(4, 2) graph.

We use CBT(n, r) to denote such a graph with parameters n and
r. Figure 7 illustrates the CBT(4, 2) graph. We create a dataset
that contains CBT(n, r) graphs where n and r take the following
values: n ∈ {4, 6, . . . , 19} and r ∈ {2, 3, . . . , 9}. In fact, for each
combination of n and r, we create two copies of the CBT(n, r)
graph. The one copy belongs to class 0 and the other copy belongs
to class 1. The two graphs differ in the node feature of a single
node. While all nodes of the first graph are annotated with a feature
equal to 1, one of the leaves of the r-ary tree of the second graph is
annotated with a feature equal to c. This gives rise to 256 graphs in

8

What Do GNNs Actually Learn? Towards Understanding their Representations

1 10 20 30 40 50 60 70 80 90
|w(4)

v −w(4)
v0 |

0.2

0.4

0.6

0.8

1.0

Av
g.

 a
cc

ur
ac

y
16 32 64 128 256 512

hidden dimension size

0.2

0.4

0.6

0.8

1.0

Av
g.

 a
cc

ur
ac

y

Figure 8: Left: Average accuracy on the test set of the synthetic dataset as a function of the
difference of the sum of weighted walks emanating from nodes v and v′. The two nodes correspond
to structurally identical nodes of the two instances of the CBT(n, r) graph. Right: Average accuracy
on the test set of the synthetic dataset as a function of the hidden dimension size of the GIN model.

total. We split the dataset into a training, a validation and a test set with a ratio of 80% : 10% : 10%,
and then train the GIN-0 model (with biases) on the first set. We set the number of neighborhood
aggregation layers to 4 (i. e., shortest path distance between nodes that interact with each other). To
update the node features, we use in each neighborhood aggregation layer a multi-layer perceptron that
consists of 2 fully connected layers. Each fully connected layer is followed by the ReLU activation
function, while batch normalization is applied to the node representations that are produced by the
first fully connected layer. To make a prediction, we feed the representation of one of the nodes of
the complete graph whose degree is equal to n− 1 to a two-layer MLP. We set the hidden dimension
size to 64. We train the model for 500 epochs and use the model that achieved the lowest loss on
the validation set to make predictions for the test samples. We repeat each experiment 10 times and
we report the average accuracies on the test sets. Note that we set the feature c of a single leaf node
to different values (e. g., 2, 11, etc.) and provide different results for each one of these values. For
given n and r, let v denote one node of the complete graph (where d(v) = n− 1) in the first copy of
the CBT(n, r) graph, and v′ denote the corresponding node in the second copy. Then, we have that
|w(4)

v′ −w
(4)
v | = c. Theorem 2 implies that the representations of nodes v and v′ of the two copies

(that belong to different classes) will be close to each other in case c is small.

The results are provided in Figure 8 (Left). We observe that when |w(4)
v′ −w

(4)
v | is small, the model

achieves very low levels of performance. This is not surprising since for each combination of n and r,
there are two nodes (v and v′) that belong to different classes, but their representations at the fourth
layer of the model are very similar to each other. It is very hard then for the MLP that produces the
output to distinguish between samples of class 0 and samples of class 1. The model’s performance
increases as |w(4)

v′ −w
(4)
v | increases. For |w(4)

v′ −w
(4)
v | ≥ 80, the model correctly classifies all test

samples. Our results provide a different perspective for the phenomenon of oversquashing. They
indicate that it predominantly arises when the number of walks from one node to some other node is
disproportionally small compared to the total walks originating from the former. We also investigate
what is the impact of the model’s hidden dimension size on its ability to capture the dependence
between the two nodes. We set c = 41 (i. e., |w(4)

v′ − w
(4)
v | = 40), and we compute the model’s

average accuracy on the test sets as a function of the hidden dimension size. The results are shown in
Figure 8 (Right). While for small values, it appears that the increase in the hidden dimension size also
improves the model’s performance, there is no further increase in performance for hidden dimension
sizes beyond 64. Our results thus indicate that this limitation of MPNNs cannot be addressed just by
increasing the hidden dimension size and that other approaches need to be employed.

6 Conclusion
In this paper, we focused on four well-established MPNN models and investigated what properties of
graphs these models can capture. First, we considered the case where no node features are available.
We found that two models capture no structural properties of graphs, while the rest of the models
learn node representations that capture the sum of (normalized) walks emanating from the different
nodes. We established Lipschitz bounds for these models with respect to the sum of (normalized)
walks. We generalized the above results in case of node features that point in the same direction.
Finally, we provided a different perspective for the phenomenon of oversquashing.

9

What Do GNNs Actually Learn? Towards Understanding their Representations

References
[1] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M

Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020. 1

[2] David Easley and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a highly
connected world. Cambridge University Press, 2010. 1

[3] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio
Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier,
Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen,
Juan Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. ACM Computing
Surveys, 54(4):1–37, 2021. 1

[4] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 32(1):4–24, 2020. 1

[5] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference
on Machine Learning, pages 1263–1272, 2017. 1, 2, 3

[6] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In 7th International Conference on Learning Representations, 2019. 1, 2, 3, 17

[7] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-order Graph
Neural Networks. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, pages
4602–4609, 2019. 1, 2

[8] Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey.
Journal of Artificial Intelligence Research, 72:943–1027, 2021. 2

[9] Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized Kernels Between Labeled
Graphs. In Proceedings of the 20th International Conference on Machine Learning, pages
321–328, 2003. 2

[10] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On Graph Kernels: Hardness Results and
Efficient Alternatives. In Learning Theory and Kernel Machines, pages 129–143. Springer,
2003. 2

[11] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Proceedings
of the 5th IEEE International Conference on Data Mining, pages 74–81, 2005. 2

[12] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Proceedings of the 12th International
Conference on Artificial Intelligence and Statistics, pages 488–495, 2009. 2

[13] Nils Kriege and Petra Mutzel. Subgraph Matching Kernels for Attributed Graphs. In Proceedings
of the 29th International Coference on International Conference on Machine Learning, pages
291–298, 2012. 2

[14] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural
networks by enforcing lipschitz continuity. Machine Learning, 110(2):393–416, 2021. 2

[15] Yujia Huang, Huan Zhang, Yuanyuan Shi, J Zico Kolter, and Anima Anandkumar. Training
certifiably robust neural networks with efficient local lipschitz bounds. In Advances in Neural
Information Processing Systems, pages 22745–22757, 2021. 2

[16] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph Attention Networks. In 6th International Conference on Learning
Representations, 2018. 2, 3, 14

[17] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An End-to-End Deep Learning
Architecture for Graph Classification. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, pages 4438–4445, 2018. 2, 3, 13

[18] Thomas N Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In 5th International Conference on Learning Representations, 2017. 2, 3, 14

10

What Do GNNs Actually Learn? Towards Understanding their Representations

[19] Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical
Implications. In 9th International Conference on Learning Representations, 2021. 2, 8

[20] Alessandro Sperduti and Antonina Starita. Supervised Neural Networks for the Classification
of Structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997. 2

[21] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80,
2009.

[22] Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approachs. IEEE
Transactions on Neural Networks, 20(3):498–511, 2009. 2

[23] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and Locally
connected networks on Graphs. In 2nd International Conference on Learning Representations,
2014. 2

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

[25] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P Adams. Convolutional Networks on Graphs for Learning
Molecular Fingerprints. In Advances in Neural Information Processing Systems, volume 28,
2015.

[26] James Atwood and Don Towsley. Diffusion-Convolutional Neural Networks . In Advances in
Neural Information Processing Systems, volume 29, pages 1993–2001, 2016.

[27] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks
on Graphs with Fast Localized Spectral Filtering. In Advances in Neural Information Processing
Systems, pages 3844–3852, 2016. 2

[28] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
Pooling for Graph Representations. In Proceedings of the 36th International Conference on
Machine Learning, pages 4663–4673, 2019. 2

[29] Younjoo Seo, Andreas Loukas, and Nathanaël Perraudin. Discriminative structural graph
classification. arXiv preprint arXiv:1905.13422, 2019.

[30] David Buterez, Jon Paul Janet, Steven J Kiddle, Dino Oglic, and Pietro Liò. Graph neural
networks with adaptive readouts. arXiv preprint arXiv:2211.04952, 2022.

[31] Michail Chatzianastasis, Johannes Lutzeyer, George Dasoulas, and Michalis Vazirgiannis.
Graph ordering attention networks. In Proceedings of the 37the AAAI Conference on Artificial
Intelligence, pages 7006–7014, 2023. 2

[32] Yilun Jin, Guojie Song, and Chuan Shi. GraLSP: Graph Neural Networks with Local Structural
Patterns. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, pages 4361–
4368, 2020. 2

[33] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-Order Graph Convolutional
Architectures via Sparsified Neighborhood Mixing. In Proceedings of the 36th International
Conference on Machine Learning, pages 21–29, 2019. 2

[34] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic Graph Convolutional
Neural Networks. In Advances in Neural Information Processing Systems, volume 33, pages
4868–4879, 2019. 2

[35] Claudio Gallicchio and Alessio Micheli. Fast and Deep Graph Neural Networks. In Proceedings
of the 34th AAAI Conference on Artificial Intelligence, pages 3898–3905, 2020. 2

[36] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical Graph Representation Learning with Differentiable Pooling. In Advances in Neural
Information Processing Systems, volume 32, pages 4800–4810, 2018. 2

[37] Hongyang Gao and Shuiwang Ji. Graph U-Nets. In Proceedings of the 36th International
Conference on Machine Learning, pages 2083–2092, 2019. 2

[38] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning Convolutional Neural
Networks for Graphs. In Proceedings of the 33rd International Conference on Machine Learning,
pages 2014–2023, 2016. 2

11

What Do GNNs Actually Learn? Towards Understanding their Representations

[39] Giannis Nikolentzos and Michalis Vazirgiannis. Random Walk Graph Neural Networks. In
Advances in Neural Information Processing Systems, pages 16211–16222, 2020.

[40] Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. Permute Me Softly: Learning
Soft Permutations for Graph Representations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):5087–5098, 2023. 2

[41] Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler
leman hierarchy: Graph learning beyond message passing. Transactions on Machine Learning
Research, 2023. 2

[42] Yuanqing Wang and Kyunghyun Cho. Non-convolutional graph neural networks. In Advances
in Neural Information Processing Systems, 2024. 2

[43] Sandra Kiefer. The Weisfeiler-Leman Algorithm: An Exploration of its Power. ACM SIGLOG
News, 7(3):5–27, 2020. 2

[44] Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman go sparse: Towards
scalable higher-order graph embeddings. In Advances in Neural Information Processing Systems,
volume 34, 2020. 2

[45] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and Equivariant
Graph Networks. In 7th International Conference on Learning Representations, 2019. 2

[46] Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. Advances in Neural Information Processing
Systems, 33:14143–14155, 2020. 2

[47] George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring Graph
Neural Networks for Node Disambiguation. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence, pages 2126–2132, 2020. 2

[48] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random Features Strengthen Graph
Neural Networks. In Proceedings of the 2021 SIAM International Conference on Data Mining,
pages 333–341, 2021. 2

[49] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The sur-
prising power of graph neural networks with random node initialization. arXiv preprint
arXiv:2010.01179, 2020. 2

[50] Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, pages
10737–10745, 2021. 2

[51] Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and
Paul Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning, pages 599–608. PMLR, 2021. 2

[52] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio,
and Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial
networks. In International Conference on Machine Learning, pages 1026–1037. PMLR, 2021.
2

[53] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
and Michael Bronstein. Weisfeiler and Lehman Go Cellular: CW Networks. In Advances in
Neural Information Processing Systems, pages 2625–2640, 2021. 2

[54] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and
Pietro Liò. Directional graph networks. In International Conference on Machine Learning,
pages 748–758. PMLR, 2021. 2

[55] Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 130:195–205, 2020. 2

[56] Muhan Zhang and Pan Li. Nested Graph Neural Networks. In Advances in Neural Information
Processing Systems, pages 15734–15747, 2021.

[57] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. arXiv preprint arXiv:2110.02910, 2021. 2

12

What Do GNNs Actually Learn? Towards Understanding their Representations

[58] Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph
representations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021. 3

[59] Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: random
dropouts increase the expressiveness of graph neural networks. Advances in Neural Information
Processing Systems, 34:21997–22009, 2021. 3

[60] Giannis Nikolentzos, Michail Chatzianastasis, and Michalis Vazirgiannis. Weisfeiler and Leman
go Hyperbolic: Learning Distance Preserving Node Representations. In Proceedings of the 26th
International Conference on Artificial Intelligence and Statistics, pages 1037–1054, 2023. 3

[61] Ching-Yao Chuang and Stefanie Jegelka. Tree Mover’s Distance: Bridging Graph Metrics and
Stability of Graph Neural Networks. In Advances in Neural Information Processing Systems,
2022. 3

[62] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation Learning on Graphs with Jumping Knowledge Networks. In
Proceedings of the 35th International Conference on Machine Learning, pages 5453–5462,
2018. 3, 6

[63] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From Local
Structures to Size Generalization in Graph Neural Networks. In Proceedings of the 38th
International Conference on Machine Learning, pages 11975–11986, 2021. 3

[64] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving
Graph Neural Network Expressivity via Subgraph Isomorphism Counting. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(1):657–668, 2022. 4

[65] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking Graph Neural Networks. arXiv preprint arXiv:2003.00982, 2020. 4

[66] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In 9th International Conference on Learning Representations, 2021. 8

A Proof of Theorem 1
We assume that all the nodes of the graph are initially annotated with a single feature equal to 1.

A.1 DGCNN

The DGCNN model updates node representations as follows [17]:

h(k)
v = f

(∑
u∈N (v)∪{v}

1

d(v) + 1
W(k)h(k−1)

u

)

We will show by induction that the model maps all nodes to the same vector representation. We
first assume that h(k−1)

v = h
(k−1)
u = h(k−1) for all v, u ∈ V . This is actually true for k = 1 since

h
(0)
v = 1 for all v ∈ V . Then, we have that W(k)h

(k−1)
v = W(k)h

(k−1)
u = W(k)h(k−1) for all

v, u ∈ V . We also have that: ∑
u∈N (v)∪{v}

1

d(v) + 1
= 1

Thus, we finally have that:

h(k)
v = f

(∑
u∈N (v)∪{v}

1

d(v) + 1
W(k)h(k−1)

u

)
= f

(
W(k)h(k−1)

)

for all v ∈ V . We have shown that this variant of the GCN model produces the same representation for
all nodes of all graphs and thus, it cannot capture any structural information about the neighborhood
of each node.

13

What Do GNNs Actually Learn? Towards Understanding their Representations

A.2 GAT

The GAT model updates node representations as follows [16]:

h(k)
v = σ

(∑
u∈N (v)

αvuW
(k)h(k−1)

u

)

where αvu is an attention coefficient that indicates the importance of node u’s features to node v.
Once again, we assume that all the nodes of the graph are initially annotated with a single feature
equal to 1. We will show by induction that the model maps all nodes to the same vector representation.
We first assume that h(k−1)

v = h
(k−1)
u = h(k−1) for all v, u ∈ V . This is actually true for k = 1

since h
(0)
v = 1 for all v ∈ V . Then, we have that W(k)h

(k−1)
v = W(k)h

(k−1)
u = W(k)h(k−1) for

all v, u ∈ V . Since the attention coefficients are normalized, we have:∑
u∈N (v)

αvu = 1

Thus, we finally have that:

h(k)
v = σ

(∑
u∈N (v)

αvuW
(k)h(k−1)

u

)
= σ

(
W(k)h(k−1)

)

for all v ∈ V . We have shown that the GAT model produces the same representation for all nodes of
all graphs and thus, it cannot capture any structural information about the neighborhood of each node.

A.3 GCN

The GCN model updates node representations as follows [18]:

h(k)
v = ReLU

(∑
u∈N (v)∪{v}

W(k)h
(k−1)
u√

(1 + d(v))(1 + d(u))

)

Note that the GCN model (as decribed in the original paper [18]) does not perform an affine
transformation of the node features, but instead a linear transformation. In other words, no biases are
present. Thus, the following holds:

h(k)
v = ReLU

(∑
u∈N (v)∪{v}

W(k)h
(k−1)
u√

(1 + d(v))(1 + d(u))

)

= ReLU

(
W(k)

∑
u∈N (v)∪{v}

h
(k−1)
u√

(1 + d(v))(1 + d(u))

)

We next prove the following Lemma which will be useful in our analysis.
Lemma 1. Let W denote a matrix. Let also X = {x1, . . . ,xM} denote a set of vectors such that
given any two vectors from the set, one is a positive scalar multiple of the other, i. e., if xi,xj ∈ X ,
then xi = axj where a > 0. Let also ci > 0 for all i ∈ {1, . . . ,M}. Then, the following holds:

M∑
i=1

ciReLU(Wxi) = ReLU
(
W

M∑
i=1

cixi

)

Proof. For any scalar a, we have that W(ax) = aWx. Furthermore, for a > 0, we have that
ReLU(W(ax)) = ReLU(aWx) = aReLU(Wx). Suppose that x2 = a2x1, x3 = a3x1, . . .,

14

What Do GNNs Actually Learn? Towards Understanding their Representations

xM = aMx1. Then, we have that:
M∑
i=1

ciReLU(Wxi) = c1ReLU(Wx1) +

M∑
i=2

ciReLU(W aix1)

= c1ReLU(Wx1) +

M∑
i=2

ciaiReLU(Wx1)

= (c1 + a2c2 + . . .+ aMcM)ReLU(Wx1)

= ReLU
(
(c1 + a2c2 + . . .+ aMcM)Wx1

)
= ReLU

(
W(c1 + a2c2 + . . .+ aMcM)x1

)
= ReLU

(
W

M∑
i=1

cixi

)
which concludes the proof.

We also prove the following Lemma.

Lemma 2. Let V denote the set of nodes of all graphs and let X (k−1) = {{h(k−1)
1 , . . . ,h

(k−1)
|V| }}

be the multiset of node representations that emerged at the (k − 1)-th layer of the GCN model.
Suppose that given any two vectors from this multiset, one is a scalar multiple of the other, i. e.,
if h(k−1)

i ,h
(k−1)
j ∈ X (k−1), then h

(k−1)
i = ah

(k−1)
j where a > 0. Then, the same holds for

the node representations that emerge at the k-th layer of the model, i. e., for any two vectors
h
(k)
i ,h

(k)
j ∈ X (k) = {{h(k)

1 , . . . ,h
(k)
|V|}}, we have that h(k)

i = ah
(k)
j where a > 0.

Proof. For a > 0, we have that W(ax) = aWx. Furthermore, we also have that ReLU(ax) =
aReLU(x). We have assumed that given an arbitrary node w ∈ V , then for any node u ∈ V , we have
that h(k−1)

u = auh
(k−1)
w . Then, given any node v ∈ V , its representation is updated as follows:

h(k)
v = ReLU

(∑
u∈N (v)∪{v}

W(k)h
(k−1)
u√

(1 + d(v))(1 + d(u))

)
= ReLU

(∑
u∈N (v)∪{v}

W(k)auh
(k−1)
w√

(1 + d(v))(1 + d(u))

)

=
∑

u∈N (v)∪{v}

auReLU

(
W(k)h

(k−1)
w√

(1 + d(v))(1 + d(u))

)

= ReLU

(
W(k)h

(k−1)
w√

(1 + d(v))(1 + d(u))

)
where c =

∑
u∈N (v)∪{v} au > 0. Since node v is an arbitrary node, we observe that the representa-

tions of all nodes point in the same direction.

Thus, the above Lemma suggests that the node representations produced by GCN are either scalar
multiples of each other and they point in the same direction or are all equal to the all-zeros vector.

Let L(k)
f denote the Lipschitz constant associated with the fully connected layer of the k-th neighbor-

hood aggregation layer of GCN. In what follows, we also denote N (v)∪{v} as N+(v) and d(v) + 1
as d+v . Then, we have:

||h(1)
v − h(1)

u ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
w∈N+(v)

W(1)h
(0)
w√

d+v d
+
w

)
− ReLU

(∑
w∈N+(u)

W(1)h
(0)
w√

d+u d
+
w

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(1)

∑
w∈N+(v)

h
(0)
w√
d+v d

+
w

)
− ReLU

(
W(1)

∑
w∈N+(u)

h
(0)
w√
d+u d

+
w

)∣∣∣∣∣
∣∣∣∣∣
2

15

What Do GNNs Actually Learn? Towards Understanding their Representations

≤ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

1√
d+v d

+
w

−
∑

w∈N+(u)

1√
d+u d

+
w

∣∣∣∣∣
∣∣∣∣∣
2

||h(2)
v − h(2)

u ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
w∈N+(v)

W(2)h
(1)
w√

d+v d
+
w

)
− ReLU

(∑
w∈N+(u)

W(2)h
(1)
w√

d+u d
+
w

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(2)

∑
w∈N+(v)

h
(1)
w√
d+v d

+
w

)
− ReLU

(
W(2)

∑
w∈N+(u)

h
(1)
w√
d+u d

+
w

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

1√
d+v d

+
w

ReLU

(∑
x∈N+(w)

W(1)h
(0)
w√

d+wd
+
x

)
−

∑
w∈N+(u)

1√
d+u d

+
w

ReLU

(∑
x∈N+(w)

W(1)h
(0)
w√

d+wd
+
x

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(1)

∑
w∈N+(v)

∑
x∈N+(w)

h
(0)
w√

d+v d
+
w

√
d+wd

+
x

)
− ReLU

(
W(1)

∑
w∈N+(u)

∑
x∈N+(w)

h
(0)
w√

d+u d
+
w

√
d+wd

+
x

)∣∣∣∣∣
∣∣∣∣∣
2

(due to Lemmas 1, 2)

≤ L
(2)
f L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

∑
x∈N+(w)

1√
d+v d

+
w

√
d+wd

+
x

−
∑

w∈N+(u)

∑
x∈N+(w)

1√
d+u d

+
w

√
d+wd

+
x

∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

∑
x∈N+(w)

1

d+w
√
d+v d

+
x

−
∑

w∈N+(u)

∑
x∈N+(w)

1

d+w
√
d+u d

+
x

∣∣∣∣∣
∣∣∣∣∣
2

...

||h(K)
v − h(K)

u ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
w∈N+(v)

W(K)h
(K−1)
w√

d+v d
+
w

)
− ReLU

(∑
w∈N+(u)

W(K)h
(K−1)
w√

d+u d
+
w

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(K)

∑
w∈N+(v)

h
(K−1)
w√
d+v d

+
w

)
− ReLU

(
W(K)

∑
w∈N+(u)

h
(K−1)
w√
d+u d

+
w

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

1√
d+v d

+
w

ReLU

(∑
x∈N+(w)

W(K−1)h
(K−2)
w√

d+wd
+
x

)

−
∑

w∈N+(u)

1√
d+u d

+
w

ReLU

(∑
x∈N+(w)

W(K−1)h
(K−2)
w√

d+wd
+
x

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(K−1)

∑
w∈N+(v)

∑
x∈N+(w)

h
(K−2)
w√

d+v d
+
w

√
d+wd

+
x

)

− ReLU

(
W(K−1)

∑
w∈N+(u)

∑
x∈N+(w)

h
(K−2)
w√

d+u d
+
w

√
d+wd

+
x

)∣∣∣∣∣
∣∣∣∣∣
2

(due to Lemmas 1, 2)

≤ L
(K)
f L

(K−1)
f . . . L

(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

. . .
∑

x∈N+(y)

1√
d+v d

+
w . . .

√
d+x d

+
y

ReLU

(∑
z∈N+(x)

W(1)h
(0)
z√

d+x d
+
z

)

16

What Do GNNs Actually Learn? Towards Understanding their Representations

−
∑

w∈N+(u)

. . .
∑

x∈N+(y)

1√
d+u d

+
w . . .

√
d+y d

+
x

ReLU

(∑
z∈N+(x)

W(1)h
(0)
z√

d+x d
+
z

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f L

(K−1)
f . . . L

(2)
f

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(1)

∑
w∈N+(v)

. . .
∑

x∈N+(y)

∑
z∈N+(x)

h
(0)
z√

d+v d
+
w . . .

√
d+x d

+
y

√
d+x d

+
z

)

− ReLU

(
W(1)

∑
w∈N+(u)

∑
x∈N+(y)

∑
z∈N+(x)

h
(0)
z√

d+u d
+
w . . .

√
d+y d

+
x

√
d+x d

+
z

)∣∣∣∣∣
∣∣∣∣∣
2

(due to Lemmas 1, 2)

≤ L
(K)
f L

(K−1)
f . . . L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

. . .
∑

x∈N+(y)

∑
z∈N+(x)

1√
d+v d

+
w . . .

√
d+y d

+
x

√
d+x d

+
z

−
∑

w∈N+(u)

. . .
∑

x∈N+(y)

∑
z∈N+(x)

1√
d+u d

+
w . . .

√
d+y d

+
x

√
d+x d

+
z

∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f L

(K−1)
f . . . L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

. . .
∑

x∈N+(y)

∑
z∈N+(x)

1

d+w . . . d+y d
+
x

√
d+v d

+
z

−
∑

w∈N+(u)

. . .
∑

x∈N+(y)

∑
z∈N+(x)

1

d+w . . . d+y d
+
x

√
d+u d

+
z

∣∣∣∣∣
∣∣∣∣∣
2

It turns out that the node representations learned at the k-th layer of a GCN model are related to the
sum of normalized walks of length k starting from each node. Given a walk of length k consisting of
the following nodes (v1, v2, . . . , vk), the walk is normalized by the product of the degrees of nodes
v2, . . . , vk−1 each increased by 1 and of the square roots of the degrees of nodes v1 and vk also
increased by 1. Thus, the contribution of each walk is inversely proportional to the degrees of the
nodes of which the walk is composed.

A.4 GIN-0

The GIN-0 model updates node representations as follows [6]:

h(k)
v = MLP(k)

((
1 + ϵ(k)

)
h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

)
= MLP(k)

(∑
u∈N (v)∪{v}

h(k−1)
u

)
(1)

We make the following assumption.
Assumption 1. We assume that the biases of the fully-connected layers of all MLPs are equal to zero
vectors.

Our results are also valid when given fully-connected layers of the form fc(x) = Wx + b, the
following holds ||b|| ≪ ||Wx||. Note that the activation function of the MLPs of the GIN-0 model
is the ReLU function [6]. Without loss of generality, we assume that the MLPs consist of two
fully-connected layers. Given the above, the update function of the GIN-0 model takes the following
form:

MLP(k)(x) = ReLU

(
W

(k)
2 ReLU

(
W

(k)
1 x

))
(2)

We next prove the following Lemma which will be useful in our analysis.
Lemma 3. Let MLP denote the model defined in Equation (2) above. Let also X = {x1, . . . ,xM}
denote a set of vectors such that given any two vectors from the set, one is a scalar multiple of the
other, i. e., if xi,xj ∈ X , then xi = axj where a > 0. Then, the following holds:

M∑
i=1

MLP(xi) = MLP
(M∑

i=1

xi

)

17

What Do GNNs Actually Learn? Towards Understanding their Representations

Proof. For a > 0, we have that W(ax) = aWx. Furthermore, we also have that ReLU(ax) =
aReLU(x). Then, we have:

MLP(ax) = ReLU

(
W2 ReLU

(
W1(ax)

))
= aReLU

(
W2 ReLU

(
W1(x)

))
= aMLP(x)

Suppose that x2 = a2x1, x3 = a3x1, . . ., xM = aMx1. Then, we have that:
M∑
i=1

MLP(xi) = MLP(x1) +

M∑
i=2

MLP(aix1)

= MLP(x1) +

M∑
i=2

aiMLP(x1)

= (1 + a2 + . . .+ aM)MLP(x1)

= MLP
(
(1 + a2 + . . .+ aM)x1

)
= MLP

(M∑
i=1

xi

)

It is trivial to generalize the above Lemma to MLPs that contain more than two layers. We also prove
the following Lemma.
Lemma 4. Let the MLPs of the GIN-0 model be instances of the MLP of Equation (2) above. Let
V denote the set of nodes of all graphs and let X (k−1) = {{h(k−1)

1 , . . . ,h
(k−1)
|V| }} be the multiset of

node representations that emerged at the (k − 1)-th layer of the model. Suppose that given any two
vectors from this multiset, one is a scalar multiple of the other, i. e., if h(k−1)

i ,h
(k−1)
j ∈ X (k−1), then

h
(k−1)
i = ah

(k−1)
j where a > 0. Then, the same holds for the node representations that emerge at

the k-th layer of the model, i. e., for any two vectors h(k)
i ,h

(k)
j ∈ X (k) = {{h(k)

1 , . . . ,h
(k)
|V|}}, we have

that h(k)
i = ah

(k)
j where a > 0.

Proof. For a > 0, we have that W(ax) = aWx. Furthermore, we also have that ReLU(ax) =
aReLU(x). Then, we have:

MLP(ax) = ReLU

(
W2 ReLU

(
W1(ax)

))
= aReLU

(
W2 ReLU

(
W1(x)

))
= aMLP(x)

We have assumed that given an arbitrary node w ∈ V , then for any node u ∈ V , we have that
h
(k−1)
u = auh

(k−1)
w . Then, given any node v ∈ V , its representation is updated as follows:

h(k)
v = MLP(k)

(∑
u∈N (v)∪{v}

h(k−1)
u

)
= MLP(k)

(∑
u∈N (v)∪{v}

auh
(k−1)
w

)

=
∑

u∈N (v)∪{v}

auMLP(k)

(
h(k−1)
w

)

= cMLP(k)

(
h(k−1)
w

)
where c =

∑
u∈N (v)∪{v} au > 0. Since node v is an arbitrary node, we can conclude that all nodes

obtain representations that are scalar multiples of each other and they point in the same direction.

Thus, the above Lemma suggests that for MLPs of the form of Equation (2), the node representations
produced by GIN-0 are either scalar multiples of each other and they point in the same direction or
are all equal to the all-zeros vector.

18

What Do GNNs Actually Learn? Towards Understanding their Representations

Let L(k)
f denote the Lipschitz constant associated with the MLP of the k-th neighborhood aggregation

layer of GIN-0. We assume that all the nodes of the graph are initially annotated with a single feature
equal to 1. Then, we have:

||h(1)
v − h(1)

u ||2 =

∣∣∣∣∣
∣∣∣∣∣MLP(1)

(∑
w∈N+(v)

h(0)
w

)
− MLP(1)

(∑
w∈N+(u)

h(0)
w

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

1 −
∑

w∈N+(u)

1

∣∣∣∣∣
∣∣∣∣∣
2

= L
(1)
f

∣∣∣∣∣∣d(v)− d(u)
∣∣∣∣∣∣
2

||h(2)
v − h(2)

u ||2 =

∣∣∣∣∣
∣∣∣∣∣MLP(2)

(∑
w∈N+(v)

h(1)
w

)
− MLP(2)

(∑
w∈N+(u)

h(1)
w

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

MLP(1)

(∑
x∈N+(w)

h(0)
x

)
−

∑
w∈N+(u)

MLP(1)

(∑
x∈N+(w)

h(0)
x

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f

∣∣∣∣∣
∣∣∣∣∣MLP(1)

(∑
w∈N+(v)

∑
x∈N+(w)

h(0)
x

)
− MLP(1)

(∑
w∈N+(u)

∑
x∈N+(w)

h(0)
x

)∣∣∣∣∣
∣∣∣∣∣
2

(due to Lemmas 3, 4)

≤ L
(2)
f L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

∑
x∈N+(w)

h(0)
x −

∑
w∈N+(u)

∑
x∈N+(w)

h(0)
x

∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

∑
x∈N+(w)

1 −
∑

w∈N+(u)

∑
x∈N+(w)

1

∣∣∣∣∣
∣∣∣∣∣
2

...

||h(K)
v − h(K)

u ||2 =

∣∣∣∣∣
∣∣∣∣∣MLP(K)

(∑
w∈N+(v)

h(K−1)
w

)
− MLP(K)

(∑
w∈N+(u)

h(K−1)
w

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

MLP(K−1)

(∑
x∈N+(w)

h(K−2)
x

)
−

∑
w∈N+(u)

MLP(K−1)

(∑
x∈N+(w)

h(K−2)
x

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f

∣∣∣∣∣
∣∣∣∣∣MLP(K−1)

(∑
w∈N+(v)

∑
x∈N+(w)

h(K−2)
x

)
− MLP(K−1)

(∑
w∈N+(u)

∑
x∈N+(w)

h(K−2)
x

)∣∣∣∣∣
∣∣∣∣∣
2

(due to Lemmas 3, 4)

≤ L
(K)
f L

(K−1)
f . . . L

(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

∑
x∈N+(w)

. . . MLP(1)

(∑
z∈N+(y)

h(0)
z

)

−
∑

w∈N (u)∪{u}

∑
x∈N+(w)

. . . MLP(1)

(∑
z∈N+(y)

h(0)
z

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f L

(K−1)
f . . . L

(2)
f

∣∣∣∣∣
∣∣∣∣∣MLP(1)

(∑
w∈N+(v)

∑
x∈N+(w)

. . .
∑

z∈N+(y)

h(0)
z

)

− MLP(1)

(∑
w∈N (u)∪{u}

∑
x∈N+(w)

. . .
∑

z∈N+(y)

h(0)
z

)∣∣∣∣∣
∣∣∣∣∣
2

(due to Lemmas 3, 4)

19

What Do GNNs Actually Learn? Towards Understanding their Representations

≤ L
(K)
f L

(K−1)
f . . . L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

∑
x∈N+(w)

. . .
∑

z∈N+(y)

h(0)
z

−
∑

w∈N+(u)

∑
x∈N+(w)

. . .
∑

z∈N+(y)

h(0)
z

∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f L

(K−1)
f . . . L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈N+(v)

∑
x∈N+(w)

. . .
∑

z∈N+(y)

1 −
∑

w∈N+(u)

∑
x∈N+(w)

. . .
∑

z∈N+(y)

1

∣∣∣∣∣
∣∣∣∣∣
2

We observe that for k = 1, d(v) and d(u) are equal to the number of walks
of length 1 starting from nodes v and u, respectively. Likewise, for k = 2,∑

w∈N (v)∪{v}
∑

x∈N (w)∪{w} 1 and
∑

w∈N (u)∪{u}
∑

x∈N (w)∪{w} 1 are equal to the
number of walks of length 2 starting from nodes v and u, respectively. And
more generally, for k = K,

∑
w∈N (v)∪{v}

∑
x∈N (w)∪{w} . . .

∑
z∈N (y)∪{y} 1 and∑

w∈N (u)∪{u}
∑

x∈N (w)∪{w} . . .
∑

z∈N (y)∪{y} 1 are equal to the number of walks of length
K starting from nodes v and u, respectively. Thus, the representations learned by GIN-0 are related
to the number of walks emanating from each node.

B Experimental Setup
In all the experiments performed on the ENZYMES, IMDB-BINARY and IMDB-MULTI, Cora
and Citeseer datasets, the different GNN models were trained in the original learning tasks (graph
classification for ENZYMES, IMDB-BINARY and IMDB-MULTI and node classification for Cora
and Citeseer). For datasets where nodes are annotated with some initial features (e. g., ENZYMES,
Cora, Citeseer), those features were not taken into account. Each dataset is randomly split into
training, validation, and test sets with an 80 : 10 : 10 split ratio, respectively. All models consist of a
series of neighborhood aggregation layers. For node-level tasks, the final neighborhood aggregation
layer is followed by a 2-layers MLP which produces class probabilities. For graph-level tasks, the
final neighborhood aggregation layer is followed by a readout function which computes the sum of
the representations of the nodes. The output of the readout function is passed on to a 2-layers MLP
which produces class probabilities. For all experiments, the batch size is set equal to 64. Each model
is trained for 300 epochs by minimizing the cross-entropy loss. We use the Adam optimizer for model
training. We store in the disk the parameters of the model that achieved the lowest validation loss
and those parameters are retrieved once training has finished. Then, 100 nodes from the graphs that
belong to the test set are randomly sampled and the representations of those nodes are extracted from
the final neighborhood aggregation layer. Then, pairwise distances of those nodes are computed and
compared against the corresponding distances that emerge from the (normalized) walks.

C Additional Visualizations
We provide further experimental results in Figures 9, 10 and 11. The three Figures compare the
Euclidean distance of the representations of the nodes that emerge at the third layer of GIN-0 (resp.
GCN) against the Euclidean distance of the number of walks (resp. sum of normalized walks) of
length 3 starting from those nodes on the IMDB-MULTI, Cora and Citeseer datasets, respectively.

Figure 12 illustrates how the Euclidean distance between the representations of two nodes at the
third layer of GIN-0 and GCN varies as a function of the descrease in the number of walks due to
the removal of edges from the node’s local neighborhood. Each perturbed graph emerges from the
original graph by just removing one edge which connects two nodes whose shortest path distance
from v is at most 2. We denote by u the node of the perturbed graph that corresponds to node v of the
original graph.

20

What Do GNNs Actually Learn? Towards Understanding their Representations

0 10000 20000 30000 40000 50000 60000
wu wv

0

2500

5000

7500

10000

12500

15000

h u
h v

r = 0.99

IMDB MULTI : GIN

0 10000 20000 30000 40000 50000 60000
wu wv

0

2000

4000

6000

8000

10000

12000

h u
h v

r = 1.00

IMDB MULTI : GIN(NoBias)

0.0 0.5 1.0 1.5 2.0
wu wv

0.0

0.5

1.0

1.5

2.0

h u
h v

r = 1.00

IMDB MULTI : GCN

Figure 9: Euclidean distances of the representations generated at the third layer of the different
models vs. Euclidean distances of the number of walks (or normalized walks) of length 3 starting
from the different nodes on the IMDB-MULTI dataset. Nodes are annotated with a single feature
equal to 1.

0 500 1000 1500 2000 2500 3000
wu wv

0

20

40

60

80

100

120

h u
h v

r = 0.99

Cora : GIN

0 1000 2000 3000 4000
wu wv

0

25

50

75

100

125

150

175
h u

h v

r = 1.00

Cora : GIN(NoBias)

0.0 0.2 0.4 0.6 0.8 1.0
wu wv

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

h u
h v

r = 1.00

Cora : GCN

Figure 10: Euclidean distances of the representations generated at the third layer of the different
models vs. Euclidean distances of the number of walks (or normalized walks) of length 3 starting
from the different nodes on the Cora dataset. Nodes are annotated with a single feature equal to 1.

0 1000 2000 3000 4000 5000 6000
wu wv

0

50

100

150

200

250

300

350

h u
h v

r = 1.00

Citeseer : GIN

0 500 1000 1500 2000 2500 3000 3500
wu wv

0

20

40

60

80

100

120

140

160

h u
h v

r = 1.00

Citeseer : GIN(NoBias)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
wu wv

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

h u
h v

r = 1.00

Citeseer : GCN

Figure 11: Euclidean distances of the representations generated at the third layer of the different
models vs. Euclidean distances of the number of walks (or normalized walks) of length 3 starting
from the different nodes on the Citeseer dataset. Nodes are annotated with a single feature equal to 1.

10 20 30 40 50
wu wv

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

h u
h v

r = 0.99

ENZYMES : GIN

10 20 30 40 50
wu wv

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

h u
h v

r = 1.00

ENZYMES : GIN(NoBias)

0.01 0.02 0.03 0.04 0.05 0.06 0.07
wu wv

0.01

0.02

0.03

0.04

h u
h v

r = 1.00

ENZYMES : GCN

Figure 12: Euclidean distances of the representations generated at the third layer of the different
models vs. Euclidean distances of the number of walks (or sum of normalized walks) of length 3
starting from the different nodes. Nodes v and u correspond to the same node in the original and the
perturbed graph, respectively. Each perturbed graph has emerged by removing one edge from node
v’s neighborhood.

21

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Message Passing Neural Networks

	4 What Do MPNNs Actually Learn?
	4.1 Can Structurally Dissimilar Nodes Obtain Identical Representations?
	4.2 Are MPNNs Stable under Perturbations?
	4.3 How Do Initial Node Features Influence Representations?

	5 The Phenomenon of Oversquashing from Another Perspective
	6 Conclusion
	A Proof of Theorem 1
	A.1 DGCNN
	A.2 GAT
	A.3 GCN
	A.4 GIN-0

	B Experimental Setup
	C Additional Visualizations

