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Abstract
Spectral Graph Neural Networks process graph
signals using the spectral properties of the nor-
malized graph Laplacian matrix. However, the
frequent occurrence of repeated eigenvalues lim-
its the expressiveness of spectral GNNs. To
address this, we propose a higher-dimensional
sheaf Laplacian matrix, which not only encodes
the graph’s topological information but also in-
creases the upper bound on the number of dis-
tinct eigenvalues. The sheaf Laplacian matrix is
derived from carefully designed perturbations of
the block form of the normalized graph Lapla-
cian, yielding a perturbed sheaf Laplacian (PSL)
matrix with more distinct eigenvalues. We pro-
vide a theoretical analysis of the expressiveness
of spectral GNNs equipped with the PSL and es-
tablish perturbation bounds for the eigenvalues.
Extensive experiments on benchmark datasets
for node classification demonstrate that incorpo-
rating the perturbed sheaf Laplacian enhances the
performance of spectral GNNs.

1. Introduction
Both spatial and spectral Graph Neural Networks (GNNs)
have shown outstanding performance in various graph tasks
(Kipf & Welling, 2017; Gilmer et al., 2017; Huang et al.,
2023; Jin et al., 2024). Unlike spatial GNNs, spectral
GNNs conduct frequency-domain convolution on normal-
ized Laplacian matrices of graphs. However, in most graph
datasets, the multiplicity of eigenvalues of the normalized
graph Laplacian matrices is not small. The repeated eigen-
values limit the expressive power of spectral GNNs, result-
ing in a deteriorated performance (Wang & Zhang, 2022;
Lu et al., 2024).
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Figure 1. The perturbed sheaf Laplacian LF can be viewed as a
special perturbation of Lblock (L is the normalized graph Lapla-
cian, ⊗ denotes the Kronecker product, I is the d × d identity
matrix, and all restriction maps are orthogonal). Specifically, for
each (v, z) ∈ E, if Qvz slightly deviates from the identity I while
satisfying the sheaf Laplacian constraints, the resulting matrix is
both a valid normalized sheaf Laplacian and a perturbed version
of Lblock.

Wang and Zhang (Wang & Zhang, 2022) highlight the issue
of repeated eigenvalues and propose an orthogonal Jacobi
basis approach in which each prediction dimension has a
flexible filter design. However, the individual filter design
does not fully resolve the performance degeneracy caused
by different eigenvectors sharing the same eigenvalue. Lu
et al. (Lu et al., 2024) tackle the issue by adding a diagonal
matrix of uniformly sampled eigenvalues to the normalized
Laplacian matrix. The polynomial filters integrated with
the corrected eigenvalues yield improved node classifica-
tion results. Although this method helps mitigate repeated
eigenvalues, it also compromises the original topological
information encoded in the normalized Laplacian matrix by
reducing the operator’s spectral gap, which reflects graph’s
connectivity and information flow (see Appendix F.2).

Besides the above issues, both works focus only on linear
settings, leaving the impact of nonlinear activation function
unexplored.

We focus on the challenge of repeated eigenvalues in a non-
linear context. We propose to utilize a higher dimensional
sheaf Laplacian matrix, which guarantees a higher upper
bound on the number of distinct eigenvalues (Hansen &
Ghrist, 2018; Hansen, 2020). Specifically, we normalize
the sheaf Laplacian matrix by applying perturbation on the
block form of the normalized graph Laplacian matrix. The
designed perturbation of the identity matrix serves as the
restriction map, which increases the diversity of eigenvalue
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while retaining the topological information of the normal-
ized Laplacian matrix (as shown in Figure 1). To summa-
rize, our contributions are as follows:

• We propose a perturbed sheaf Laplacian (PSL) matrix
which has more distinct eigenvalues by carefully de-
signing the perturbation on the basis of perturbation
theory.

• We achieve optimal model performance by applying
the PSL matrix on popular spectral GNNs architec-
tures and optimizing the perturbation process.

• We theoretically analyze the expressiveness of the
PSL-based GNNs, and characterize the impact of the
perturbations by establishing the perturbation bounds
for the eigenvalues.

Experiments on benchmark datasets demonstrate the supe-
riority of PSL-based spectral GNNs. The increased num-
ber of distinct eigenvalues of the learned perturbed sheaf
Laplacian matrices validates the effectiveness of the pro-
posed perturbation method.

2. Preliminaries
This section provides a brief introduction to spectral GNNs
and highlights the key aspects of the theory of cellular
sheaves. All important notations are given in Appendix A.

2.1. Spectral Graph Neural Networks

Spectral GNNs build on spectral graph theory (Chung,
1997), which applies the graph Fourier transform to de-
fine frequency-domain convolutions. For a graph G =
(V,E) with n nodes, the normalized Laplacian is L =

I − D− 1
2AD− 1

2 . Its eigendecomposition is L = UΛUT ,
where Λ is diagonal and U holds the eigenvectors. The
graph Fourier transform of a signal X ∈ Rn·f is X̂ =
UTX , with each row of X̂ representing a distinct fre-
quency component. The output Z of a spectral convolution
can be expressed as:

Z = g ∗G X = U
(
(UTg)⊙ (UTX)

)
= UĜUTX (1)

where g is the spatial kernel, and Ĝ = diag(ĝ1, . . . , ĝn)
denotes the spectral kernel coefficients. For spectral GNNs,
a polynomial function is commonly used to approximate
different kernels, which can be expressed as follows:

Z = φ(Ug(Λ)UTXW )

= φ(U

(
K∑

k=0

αkΛ
k

)
UTXW )

= φ(

K∑
k=0

αkLkXW ),

(2)

where g is the filter function, W is a learnable weight ma-
trix, αk is a trainable coefficient for the k-th order poly-
nomial approximation, and φ is a function like multi-layer
perceptrons (MLPs).

Note that, if φ is a linear function, spectral GNNs are
termed linear spectral GNNs; if φ is a nonlinear function,
they are termed nonlinear spectral GNNs.

2.2. Theory of Cellular Sheaves

The theory of cellular sheaves, rooted in algebraic topol-
ogy, has been incorporated into GNNs to additionally aug-
ment the graph’s topological structure and thereby improve
the performance of GNNs (Bodnar et al., 2022; Duta et al.,
2023a).

Definition 2.1. A cellular sheaf (G,F) over an undirected
graph G = (V,E) consists of:

• A vector space F(v) associated with each node v ∈
V .

• A vector space F(e) associated with each edge e ∈ E.

• A linear map Fv⊴e for each incident node-edge pair
v ⊴ e, mapping vectors from F(v) to F(e).

Here, the vector spaces for nodes and edges are termed
stalks, and the linear maps between them are termed re-
striction maps. We set all the stalks to be Rd and confine
all restriction maps to orthogonal mappings. The restriction
map Fv⊴e : F(v) → F(e) maps vectors from node stalk
to edge stalk and F⊤

v⊴e : F(e) → F(v) maps vectors from
edge stalk to node stalk. It follows that F⊤

u⊴(v,u)Fv⊴(v,u)

maps vectors from F(v) to F(u), where (v, u) ∈ E.

Definition 2.2. The sheaf Laplacian matrix of a sheaf over
an undirected graph G = (V,E) is a block matrix LF .
The diagonal blocks are LF,vv =

∑
v⊴e F⊤

v⊴eFv⊴e, while
the non-diagonal blocks are LF,vu = −F⊤

v⊴eFu⊴e, where
(v, u) ∈ E.

The sheaf Laplacian matrix is positive semidefinite, which
means that the eigenvalues are non-negative (Hansen,
2020; Bodnar et al., 2022). Additionally, when all the re-
striction maps are identity maps, the sheaf Laplacian ma-
trix degenerates into the block form of the graph Laplacian
matrix.

Definition 2.3. The normalized form of the sheaf Lapla-
cian matrix is given by LF = D− 1

2LFD
− 1

2 , where Dv =
LF,vv and the diagonal matrix of the sheaf Laplacian ma-
trix is D = diag(D1, . . . , Dn).

In the following, we will refer to the normalized sheaf
Laplacian matrix simply as the sheaf Laplacian.
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(a) Limited predictive ability. (b) Loss of frequency components.

Figure 2. X is the graph data, and X̂λ its Fourier-transformed matrix. g is the filter function. (a) Because the graph has only two
distinct nonzero eigenvalues, each element in Z is a linear combination of just two types of frequency components, thereby limiting the
expressive power of spectral GNNs. (b) Poorly designed filter functions can lead to the loss of frequency components, thereby limiting
the expressive power of spectral GNNs.

3. Motivation
In this section, we summarize and extend the discussion
of repeated eigenvalue issues as presented by Wang and
Zhang (Wang & Zhang, 2022) and Lu et al. (Lu et al.,
2024), which contribute to the motivation for our work.

3.1. Limited Predictive Ability

The phenomenon of repeated eigenvalues limits the predic-
tive ability of spectral GNNs, thus affecting their expres-
sive power (as shown in Figure 2 (a)). Firstly, we use a
lemma to describe this issue.

Lemma 3.1. When there are only k distinct eigenvalues
of the normalized Laplacian matrix, linear spectral GNNs
can produce at most k different filter coefficients, and thus
can only generate one-dimensional predictions with a max-
imum of k arbitrary elements.

The proof of this lemma can be found in Appendix A.1
of Lu et al. (Lu et al., 2024). This lemma reveals a key
problem: the predictive ability of linear Spectral GNNs is
limited by the number of distinct eigenvalues of the nor-
malized graph Laplacian matrix.

In this paper, we extend the lemma to the case of nonlinear
spectral GNNs which use an activation function (Rosen-
blatt, 1958; Nair & Hinton, 2010; Goodfellow et al., 2016).

Theorem 3.2. When there are only k distinct eigenvalues
of the normalized Laplacian matrix, and the nonlinear real-
valued function σ satisfies σ(x) ̸= 0 for x ̸= 0, nonlinear
spectral GNNs can produce at most k different filter coeffi-
cients, and thus can only generate one-dimensional predic-
tions with a maximum of k arbitrary elements.

Theorem 3.2 shows that, even with real-valued activation
functions such as tanh and sigmoid, the predictive ability
of nonlinear spectral GNNs remains equivalent to that of
linear spectral GNNs, both of which are similarly limited.
This limitation arises from the issue of repeated eigenval-

ues of the normalized graph Laplacian matrix. The proof is
in Appendix B.

3.2. Loss of Frequency Components

Another issue caused by repeated eigenvalues is that if the
filter function g(λ) is poorly designed, setting a specific
eigenvalue to zero can lead to the disappearance of cor-
responding frequency components (As shown in Figure 2
(b)).

Interestingly, for many commonly used graph datasets, the
eigenvalue 1 of the corresponding normalized graph Lapla-
cian matrix has the highest multiplicity (see Appendix F.5
for details). This observation may also provide a new per-
spective on why adding self-loops to the adjacency matrix
leads to better GCN performance on certain datasets (Kipf
& Welling, 2017; Wu et al., 2019). Given that the filter
function of GCN is 1 − λ, it filters out all frequency com-
ponents associated with the eigenvalue 1. By introducing
self-loops, the distribution of eigenvalues is altered, thereby
causing GCN to lose fewer frequency components.

3.3. Restricted Frequency Processing Capability

The phenomenon of repeated eigenvalues also restricts the
frequency processing capability of spectral GNNs. Con-
sider X̂ = UTXW , where g(Λ) represents the filter-
ing function, with Λ being the eigenvalue matrix of the
normalized Laplacian. Evidently, g(Λ)X̂ is equivalent
to g(λi)⊙X̂i, where g(λi) scales each X̂i element-by-
element. Thus, for identical eigenvalues λi = λj , the asso-
ciated frequency components X̂i and X̂j are scaled by the
same factor, which limits the expressiveness of the spectral
GNNs.

3.4. Why Perturbed Sheaf Laplacian

The solution to the above issues is to construct a Laplacian
matrix with more distinct eigenvalues. The sheaf Lapla-
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Figure 3. Model workflow: The convert operation initially reduces feature dimensionality and reshapes the input to X ∈ Rnd×k. The
l-th aggregation step, avg(l), is performed as Combine(LF

(l)
, X(l),W (l)). After final aggregation, and the convert operation means

reshaping the output back to n rows of d× k columns, followed by a linear transformation to yield Z with columns equal to the number
of node classes.

cian is from the theory of cellular sheaves. When applied
to graphs, the sheaf Laplacian naturally provides a larger
set of eigenvalues while maintaining a positive semidefinite
nature and the eigenvalue range in [0, 2] (Hansen, 2020).

We carefully design the restriction map as a slight pertur-
bation of the identity matrix in order to construct a sheaf
Laplacian with more distinct eigenvalues. We call it the
perturbed sheaf Laplacian (PSL). The perturbed sheaf
Laplacian matrix achieves two advantages: (1) By align-
ing with perturbation theory, the PSL matrix increases the
eigenvalue diversity; (2) the PSL matrix is structurally
close to the normalized graph Laplacian matrix, retaining
its topological information.

4. Method
This section introduces the proposed PSL-GNN model
(with its general workflow illustrated in Figure 3). The
complexity of our method is illustrated in Appendix F.1.

4.1. Preprocessing of Graph Data

To make the first dimension of the input matrix X0 ∈
Rn×f1 compatible with the second dimension of the sheaf
Laplacian matrix LF ∈ Rnd×nd, we first apply a linear
projection:

X0W1 ∈ Rn×d f3 , (3)

where W1 ∈ Rf1×f2 with f2 = d × f3. Next, we reshape
the resulting matrix:

X = R
(
X0W1, Rnd×f3

)
, (4)

where R(X0W1,Rnd×f3) represents reshaping X0W1 into
a matrix with nd rows and f3 columns.

4.2. Construction of Perturbed Sheaf Laplacian

When there exists a restriction map that is not an identity
map, LF can be viewed as the result of a special pertur-
bation applied to the block form of the normalized graph
Laplacian matrix Lblock. For each block element Lblock,ij ,
the corresponding perturbation matrix Qij = F⊤

i⊴eFj⊴e is
applied, resulting in LF . According to Section 3.4, when
F⊤

i⊴eFj⊴e slightly deviates from the identity matrix, the
corresponding sheaf Laplacian matrix is regarded as a per-
turbed sheaf Laplacian matrix.

Based on this, Qij can be viewed as a perturbation applied
to Lblock,ij . To ensure that the overall perturbation effect
increases the number of distinct eigenvalues of LF , we pro-
pose the following theorem to guide the perturbations.
Theorem 4.1. Let P = LF − Lblock be the perturbation
matrix applied to Lblock, and let ϕ = mini,j; i ̸=j |λi − λj |,
where λi are the eigenvalues of Lblock. If ∥P∥2 < ϕ

2 , then
the multiplicity of eigenvalues of LF will decrease.

The proof is in Appendix B. According to Theorem 4.1,
to reduce the multiplicity of eigenvalues, the orthogonal
matrices of different blocks should be restricted to slightly
deviate from the identity matrices. Considering that the re-
flection matrix can deviate from the identity matrix to vary-
ing extents by adjusting the reflection vector, we constrain
every restriction map to the reflection matrix. Specifically,

we assign every restriction map to Fi⊴(i,j) = I − 2
uiju

⊤
ij

∥uij∥2 ,
where uij is a vector of dimensions d (d represents the
dimension of the stalks). Here, uij is parameterized and
learnable, allowing Qij to deviate from the identity matrix.
To ensure that the applied perturbations remain minimal,
we constrain each component of uij within [ η

10 , η] for the
reflection matrix, where η is a sufficiently small value.
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4.3. PSL-GNN: Perturbed Sheaf Laplacian-Based
Graph Neural Network

The proposed perturbed sheaf Laplacian matrix can be in-
tegrated with any spectral GNNs. In this section, we apply
it within the GCN (Kipf & Welling, 2017) and GPRGNN
(Chien et al., 2021) respectively as examples.

4.3.1. PSL-GCN

The architecture of GCN is often represented as:

X
(l+1)
0 = σ((I −∆)X

(l)
0 W ), (5)

where ∆ represents the normalized graph Laplacian ma-
trix, l denotes the layer index, and X(l) represents the fea-
ture matrix at layer l. Through integration, we obtain PSL-
GCN, which can be expressed as follows:

X(l+1) = σ((I −∆F )X
(l)W2), (6)

where X(l+1) ∈ Rnd×f4 and X(l) ∈ Rnd×f3 . ∆F ∈
Rnd×nd is the PSL matrix, and W2 ∈ Rf3×f4 is the pa-
rameter matrix used for linear transformations within the
network.

We need to reshape the output of the last layer and perform
a series of transformations such as Wlast ∈ Rdflast×c and
R to obtain the final prediction matrix Z:

Z = R(X(last),Rn×dflast)Wlast. (7)

4.3.2. PSL-GPR

The structure of GPRGNN is represented as follows:

Z =

K∑
k=0

αk(I − L)kX0, (8)

where X0 ∈ Rn×f1 represents the feature matrix, and L
represents the normalized graph Laplacian matrix. Accord-
ing to Equation (4), we have the converted feature matrix
X ∈ Rnd×f3 . Following the architecture of GPRGNN, our
model, namely PSL-GPR, is expressed as:

Y =

K∑
k=0

αk(I − LF )
kX. (9)

In this equation, Y ∈ Rnd×f3 represents the output feature
matrix, I ∈ Rnd×nd is the identity matrix, LF ∈ Rnd×nd

is the PSL matrix, K is the order of the polynomial, and αk

are the trainable coefficients.

We reshape Y into Rn×df3 and apply a linear transforma-
tion with W3 ∈ Rdf3×c to obtain the final prediction matrix
Z ∈ Rn×c, where c represents the number of classes. This
process can be expressed as:

Z = R(Y,Rn×df3)W3. (10)

5. Theoretical Analysis
In this section, we conduct a theoretical analysis of the ex-
pressive power of PSL-GNN and establish the perturbation
bounds of the eigenvalues. All proofs are in Appendix C
and Appendix D.

5.1. Expressiveness of PSL-GNN

We first discuss the expressive power of the block matrix
form Lblock of the normalized graph Laplacian matrix L.

Proposition 5.1. The number of distinct eigenvalues of
Lblock ∈ Rnd×nd is the same as that of L ∈ Rn×n,
where L is the normalized graph Laplacian matrix and
Lblock = L ⊗ I , with I ∈ Rd×d being the identity matrix.
Also, their corresponding GNNs, which share the same ar-
chitecture, are mutually equivalent.

Proposition 5.1 indicates that when the applied orthogonal
matrices are the identity matrices, PSL-GNN is equivalent
to the corresponding GNN.

Corollary 5.2. PSL-GNN has stronger one-dimensional
prediction ability.

For a given normalized graph Laplacian matrix, its PSL
possesses a greater number of distinct eigenvalues, which
underpins its enhanced predictive ability.

Corollary 5.3. PSL-GNN loses fewer frequency compo-
nents.

With fewer repeated eigenvalues than the normalized
Laplacian, PSL-GNN remains robust even if high-
multiplicity frequency components are discarded.

Corollary 5.4. PSL-GNN has a stronger capability in pro-
cessing frequency components.

The PSL possesses a greater number of distinct eigenval-
ues, allowing a more diverse treatment of frequency com-
ponents.

5.2. Perturbation Bounds of Eigenvalues

We establish the perturbation bounds for the eigenvalues
based on perturbation theory (Weyl, 1912; Dailey et al.,
2014).

Theorem 5.5. Let Lblock and LF = Lblock + P be N ×N
symmetric positive semidefinite matrices, with eigenvalues
λ1, . . . , λN and λ̃1, . . . , λ̃N , respectively, where Lblock is
diagonally dominant. Suppose the perturbation matrix P
satisfies |Pij | ≤ ϵ|(Lblock)ij | for all i ̸= j for all i, where
0 < ϵ < 1

2 . Hence, for each i, |λ̃i − λi| ≤ 2ϵ
1−2ϵ λ̃max.

As the size of the perturbation η decreases, the correspond-
ing ϵ also decreases, resulting in a smaller range of eigen-
value perturbations.
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6. Experiment
In this section, we give the results of the performance com-
parison between PSL-GNN and GNN baselines on the node
classification task. Besides, we validate the effectiveness
of the proposed perturbed sheaf Laplacian matrix through
ablation studies. We also perform a statistical analysis of
the independent eigenvalues of the final learned perturbed
sheaf Laplacian matrices. The experimental setup is in Ap-
pendix E. Additional experimental studies can be found in
Appendix F.

6.1. Evaluation on Real-World Datasets

We conduct experiments on 7 benchmark graph datasets
(all information about the datasets is summarized in Ap-
pendix E.2.), and the results are presented in Table 1.
We evaluate the accuracy of the PSL-GNNs by compar-
ing them with their corresponding GNN models. We also
calculate the vertical average gain (VAG) of the perturbed
sheaf Laplacian matrix for all models on each dataset. The
formula for VAG is given as follows:

V AG =
1

|M|
∑

mi∈M
(ACC(mi(F))− ACC(mi(G))) ,

(11)
where M is the set of GNN models, ACC is the short
form of accuracy, G is the original graph, and F is a sheaf
over the graph. We also calculate the horizontal average
gain (HAG) of the perturbed sheaf Laplacian matrix for all
datasets on each model. The formula for HAG is given as
follows:

HAG =
1

|D|
∑
di∈D

(ACC(di(F))− ACC(di(G))) , (12)

where D is the set of used datasets.

By analyzing the results in Table 1, we have the follow-
ing observations: (1) All models are enhanced by the per-
turbed sheaf Laplacian matrices. This improvement can be
attributed to the fact that the perturbed sheaf Laplacian ma-
trices have more distinct eigenvalues. Consequently, the
PSL-GNNs have a stronger capability to handle various fre-
quency components, thereby improving their performance
in the node classification task; (2) For Texas and Cornell,
which are characterized by a relatively small number of
nodes, the performance improvement is particularly sig-
nificant. The observed phenomenon can be attributed to
the inherently lower structural stability of smaller graphs,
which makes them more sensitive to perturbations. This
heightened sensitivity facilitates the splitting of eigenval-
ues into distinct values, thereby significantly increasing the
number of distinct eigenvalues; (3) The GCN shows the
highest average gain compared to other baselines. This can
be explained from the perspective of suppressing the loss

of frequency components: Unlike the variable filter func-
tions in other baselines, the GCN filter function is fixed,
i.e., g(λ) = 1 − λ, where λ represents the eigenvalue of
the normalized graph Laplacian matrix. The multiplicity of
λ = 1 is relatively high (see Figure 5 for details), which
leads to a significant loss of frequency components corre-
sponding to λ = 1, thereby severely affecting the expres-
sive power of spectral GNNs. In contrast, the perturbed
sheaf Laplacian can reduce the multiplicity of λ = 1, re-
sulting in a higher average gain.

6.2. Ablation Study

To further study the effectiveness of the perturbed sheaf
Laplacian matrix, we compare it with both the general
sheaf Laplacian matrix (GSL) (Bodnar et al., 2022) and the
normalized graph Laplacian matrix.

The construction of the GSL involves using d(d−1)
2 param-

eters to generate each restriction map Fv⊴e. Besides, each
parameter is no longer constrained by η. Based on the
above setup, the restriction maps are allowed to fully ex-
plore the orthogonal group. For the construction of normal-
ized graph Laplacian matrix, we set η = 0, which means no
perturbation is applied. Consequently, the perturbed sheaf
Laplacian matrix degenerates into the block matrix form of
the normalized graph Laplacian matrix. We integrate these
three types of Laplacian into vanilla GNN, creating PSL-
GNN, GSL-GNN, GNN (vanilla). Subsequently, we com-
pare their performance on node classification. All mod-
els share the same parameters, except η, which is tuned
for PSL-GPR and PSL-GCN ({1e−1, 1e−2, 1e−3, 1e−4})
and set to 0 for GPR-GNN and GCN. This ensures fair and
reliable comparisons.

We conduct multiple training runs and averaged various
metrics to obtain the reliable results in Table 2. The re-
sults demonstrate that: (1) GSL-GNN outperforms vanilla
GNN, probably because the general sheaf Laplacian gen-
eralizes the graph Laplacian, offering greater learnability
and flexibility for downstream tasks; (2) The performance
of PSL-GNN is comparable to that of GSL-GNN. It indi-
cates that the structure learned by the general sheaf Lapla-
cian might align closely with that learned by the perturbed
sheaf Laplacian.

6.3. The Number of Distinct Eigenvalues

We measure the number of distinct eigenvalues for both the
normalized graph Laplacian matrix and the final learned
perturbed sheaf Laplacian matrix when η ≥ 1e−3, respec-
tively. In Table 3, NG denotes the number of distinct eigen-
values of the normalized graph Laplacian matrix, while the
other entries represent the number of distinct eigenvalues
of the learned perturbed sheaf Laplacian matrix. As the
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Table 1. Experimental results on node classification task: mean accuracy (%) ±95% confidence interval.
Datasets Cora Pubmed Citeseer Photo Cornell Texas Actor HAG

GCN 86.62±1.06 86.51±0.47 75.32±1.91 87.52±0.58 75.32±1.98 78.12±1.87 34.23±1.54
1.93 ↑PSL-GCN 88.09±1.75 88.21±2.43 76.75±2.32 90.12±0.90 77.89±2.45 80.45±2.21 35.67±1.83

APPNP 88.11±1.35 87.39±0.88 76.34±1.71 90.23±0.50 78.56±2.01 80.12±1.83 34.89±1.73
1.05 ↑PSL-APPNP 89.03±1.79 88.23±2.39 76.92±2.36 90.58±0.94 79.89±2.37 82.34±2.19 36.01±2.11

Graph-Heat 86.85±1.29 87.12±1.69 74.75±2.44 89.32±0.74 75.78±1.88 79.45±1.72 34.01±1.62
1.22 ↑PSL-Heat 87.38±1.75 88.74±2.42 76.72±2.52 89.43±0.93 77.34±2.29 80.67±2.14 35.56±1.94

BernNet 88.29±0.63 88.50±1.19 76.78±0.49 94.02±1.26 86.23±2.14 85.67±1.99 36.12±1.49
1.13 ↑PSL-BernNet 89.67±1.79 89.54±2.40 77.46±2.38 94.19±0.94 88.34±2.48 86.89±2.32 37.45±1.91

GPRGNN 87.59±1.31 88.01±1.14 76.83±1.67 92.98±1.09 86.32±2.11 85.17±1.87 36.42±1.65
1.21 ↑PSL-GPR 88.45±1.48 89.11±1.89 77.42±2.02 94.23±1.47 88.67±2.33 86.45±2.04 37.45±1.92

Jacobi 88.83±1.65 88.03±0.75 76.89±1.84 93.72±1.53 87.11±2.07 84.45±1.96 36.56±1.78
1.08 ↑PSL-Jacobi 89.01±1.80 89.02±2.42 77.71±2.50 94.43±0.96 88.98±2.42 86.23±2.15 37.78±2.05

VAG 0.89 ↑ 1.22 ↑ 1.01 ↑ 0.86 ↑ 1.96 ↑ 1.68 ↑ 1.28 ↑

table shows, the number of distinct eigenvalues of the per-
turbed sheaf Laplacian matrix significantly exceeds that of
the normalized graph Laplacian matrix.

7. Related work
In this section, we outline the research developments re-
lated to the issues of interest, along with the background
and tools employed.

7.1. Expressiveness of GNNs

The research on expressive power of GNNs originates from
the Weisfeiler-Lehman (WL) test for graph isomorphism
(Weisfeiler & Leman, 1968). Building on this foundation,
GIN (Xu et al., 2019b) establishes a direct connection be-
tween the expressive power of GNNs and the 1-WL test.
Since then, various works have attempted to analyze GNNs
with the WL test and graph isomorphism testing (Morris
et al., 2019; Maron et al., 2019a; Chen et al., 2019; Zhang
et al., 2021). Besides, some studies measure the expres-
sive power of GNNs by using alternative approaches, such
as expressing universal invariant functions (Maron et al.,
2019b) and counting graph’s substructures (Chen et al.,
2020). Balcilar et al.(Balcilar et al., 2021) first analyze
the expressive power of GNNs from a spectral perspec-
tive. Wang and Zhang (Wang & Zhang, 2022) show that
the number of distinct eigenvalues in the normalized graph
Laplacian matrix impacts the expressive power of linear
spectral GNNs. Besides, they also build a bridge between
the expressive power of spectral GNNs and 1-WL test. Lu
et al. (Lu et al., 2024) further analyze that the presence of
repeated eigenvalues imposes limitations on the predictive
ability of linear spectral GNNs. In this paper, we summa-
rize and extend the work of Wang and Zhang, as well as Lu
et al., to address the limitations posed by repeated eigen-

values of normalized graph Laplacian matrix.

7.2. Sheaf Neural Networks on Graphs

Sheaf Neural Networks (SNNs), introduced by Hansen and
Gebhart (Hansen & Gebhart, 2020), extend graph neural
networks by using the sheaf Laplacian matrix for dealing
with non-constant, heterogeneous, and signed node rela-
tionships. Building on this foundation, Bodnar et al. (Bod-
nar et al., 2022) apply sheaf Laplacian matrix to address
heterophily and oversmoothing problems in graph neural
networks. This is achieved by concatenating node features
as parameters, which are then used to construct restriction
maps. Barbero et al. (Barbero et al., 2022) generate a sheaf
Laplacian matrix through a pre-trained approach, which is
suitable for manifold data and effectively incorporates the
underlying geometric characteristics of the data. Duta et
al. (Duta et al., 2023b) construct the hyper sheaf Laplacian
to capture both linear and non-linear diffusion by selecting
the most discrepant feature pairs within hyperedges. Bat-
tiloro et al. (Battiloro et al., 2024) use VDM (Singer & Wu,
2012) to construct the sheaf Laplacian and design a tangent
bundle filter. This method requires a large amount of spe-
cialized data and involves high complexity. Our method
simplifies the process by perturbing the block form of the
normalized graph Laplacian, which has been proven both
efficient and effective.

7.3. Eigenvalue Perturbation Theory

Early research mainly focuses on eigenvalue perturbation
of general symmetric matrices. Tools such as Weyl’s the-
orem (Weyl, 1912) and Gershgorin’s disk theorem (Ger-
schgorin, 1931) are applied to derive the fundamental ef-
fects of perturbations on eigenvalues. Due to the stability
of semidefinite matrices and diagonally dominant matrices,
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Table 2. Comparison of models based on three Laplacian matrices (GNN vs. GSL-GNN vs. PSL-GNN): mean accuracy (%) ±95 (%)
on seven datasets.
Datasets Cora Pubmed Citeseer Photo Texas Cornell Actor

GCN 86.8±1.1 86.4±0.8 75.4±2.2 87.6±1.5 78.4±1.9 75.2±1.7 34.1±1.5
GSL-GCN 87.6±0.9 86.9±2.0 76.4±2.1 89.4±1.1 80.1±1.3 77.7±1.3 35.3±1.9
PSL-GCN 88.1±0.8 87.9±1.8 77.4±1.8 90.1±1.1 80.2±1.7 77.8±1.4 35.5±2.2

APPNP 88.0±1.5 87.4±0.9 76.2±1.5 90.1±0.6 78.5±2.0 80.1±1.6 34.9±1.5
GSL-APPNP 89.0±1.4 88.1±2.1 77.0±2.6 90.6±0.9 79.9±2.1 82.4±2.5 36.0±2.3
PSL-APPNP 89.0±1.1 88.0±2.6 77.0±2.3 90.3±1.0 79.7±2.1 82.3±1.9 36.0±1.6

Graph-Heat 86.6±1.4 87.1±1.6 74.8±2.5 89.2±1.1 75.8±2.0 79.3±1.6 34.0±1.6
GSL-Heat 87.4±1.8 88.7±2.5 76.6±2.2 89.4±1.3 77.4±1.9 80.7±2.1 35.6±2.1
PSL-Heat 87.2±1.4 88.3±1.8 76.7±2.4 89.1±1.5 76.6±2.9 80.4±1.1 35.3±1.9

BernNet 88.2±0.7 88.4±1.3 76.6±0.7 94.0±1.2 86.3±1.9 85.8±1.4 36.0±1.6
GSL-BernNet 89.7±1.6 89.5±2.4 77.6±2.0 94.1±1.0 88.3±2.4 86.8±1.7 37.3±2.2
PSL-BernNet 89.9±1.3 89.7±1.9 77.3±1.8 94.2±1.0 88.4±2.8 86.9±1.2 37.5±2.3

GPRGNN 87.1±0.9 87.9±1.1 76.7±1.5 92.8±1.2 85.2±1.7 86.2±2.1 36.3±1.5
GSL-GPR 88.1±1.1 88.6±2.2 76.8±1.9 93.6±1.0 86.1±1.8 87.8±2.0 36.7±2.4
PSL-GPR 88.4±1.2 89.3±1.6 77.4±1.8 93.2±1.6 86.7±1.5 88.2±2.4 37.0±2.5

Jacobi 88.7±1.4 88.0±0.7 76.7±1.8 93.6±1.3 87.4±1.8 84.2±2.1 36.5±1.7
GSL-Jacobi 89.0±1.8 89.1±2.2 77.7±2.2 94.4±1.0 89.0±2.3 86.3±2.0 37.7±2.0
PSL-Jacobi 89.0±1.4 89.3±1.9 77.8±2.3 94.2±1.3 88.9±2.4 86.6±1.1 37.8±1.5

Table 3. Distinct eigenvalues statistics of normalized Laplacian on real-world datasets across multiple training runs using PSL-GNN
models (95% confidence interval).
Datasets Cora Pubmed Citeseer Photo Texas Cornell Actor

∥V ∥ 2708 19717 3327 7650 183 183 7600
NG 2262 7647 1969 7511 73 60 4837
NPSL-GCN 2389±33 9031±45 2339±43 7604±19 147±11 142±16 6181±42

NPSL-APPNP 2408±31 8977±60 2300±41 7602±15 145±6 147±10 6234±37

NPSL-Heat 2376±25 8981±54 2301±37 7604±13 145±8 148±9 6225±40

NPSL-BernNet 2434±36 9018±56 2308±35 7609±10 144±13 149±6 6240±46

NPSL-GPR 2436±35 9024±57 2311±34 7603±19 145±12 148±7 6243±45

NPSL-Jacobi 2442±36 9030±58 2316±35 7567±30 147±13 150±8 6249±46

some works focus on establishing perturbation bounds of
these two matrices. Dailey et al. (Dailey et al., 2014) con-
duct in-depth research on the perturbation bounds of sym-
metric positive semidefinite matrices and propose a strong
relative perturbation bounds. For diagonally dominant ma-
trices, a strong relative perturbation bound is proposed by
Bai et al. (Ye, 2009). In this paper, we primarily focus on
symmetric positive semidefinite and also diagonally dom-
inant matrices, aiming to study the changes in their eigen-
values after perturbation.

8. CONCLUSION
In this paper, we propose a novel sheaf Laplacian by per-
turbing the normalized graph Laplacian, which enhances
the spectral GNNs. Our approach addresses the limi-
tations posed by repeated eigenvalues in the normalized

graph Laplacian, thereby improving the expressive power
of GNNs. Extensive experiments on benchmark datasets
demonstrate the effectiveness of our method, showing no-
table improvements in node classification performance. Al-
though our approach has been validated through both the-
oretical analysis and experiments, further exploration is re-
quired to fully reduce the multiplicity of eigenvalues and
refine the matrix construction methods. Additionally, we
have not yet investigated the impact of the perturbed sheaf
Laplacian (PSL) on graph-level tasks, which remains an in-
teresting direction for future research.
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A. IMPORTANT NOTATIONS.

Table 4. IMPORTANT NOTATIONS
Symbol Definition
G,F a graph, vector spaces over the graph

V,E set of nodes, set of edges

A,D adjacency matrix, degree matrix

L,LF normalized graph laplacian, sheaf laplacian

Lblock,LF block form of normalized graph laplacian, perturbed sheaf laplacian

n,N, d the dimension of L , the dimension of LF , the dimension of stalks

λ, λ̃ the eigenvalue of Lblock, the eigenvalue of LF

X, X̂ feature matrix (input matrix), the input matrix after the Fourier transform

Y,Z the output matrix after the Laplace transform, the final predication matrix

P,Q the applied perturbation matrix, the transport matrix (the transpose product of the restriction maps)

g,R the filter function, the reshape operation

u reflection vector

ϕ, φ the minimum eigenvalue gap in Lblock, a function like multi-layer perceptrons

ϵ, η the maximum perturbation ratio for every block, the upper limit of perturbations for all parameters in u

B. Proofs.
B.1. Proof of Theorem 3.2

Theorem B.1. When there are only k distinct eigenvalues of the normalized Laplacian matrix, and the nonlinear real-
valued function σ satisfies σ(x) ̸= 0 for x ̸= 0, nonlinear spectral GNNs can produce at most k different filter coefficients,
and thus can only generate one-dimensional predictions with a maximum of k arbitrary elements.

Proof. Let Z = [z1, . . . , zn]
T be the output, where zi ∈ R and zi ̸= 0 for i = 1, 2, . . . , n. Here, k is the number of

distinct eigenvalues of the normalized graph Laplacian matrix. Assume that the filter function is g(λ), where λ is the
eigenvalue of the normalized graph Laplacian matrix. When λi = λj , g(λi) = g(λj). Therefore, when the number of
distinct eigenvalues of the Laplacian matrix is k, there are only k different filter coefficients.

For the Fourier transform Z = U diag(g(λ))U⊤XW , we assume that all elements of X are non-negative. Let the vector
m = U⊤XW and q = diag(g(λ)) ·m. Then Z = Uq, where Z ∈ Rn×1. If λi = λj , then qi = qj

mi

mj
. Since there are k

independent eigenvalues, there are only k arbitrary elements in the vector q. Therefore, any element in the vector q can be
represented as a linear combination of these k arbitrary elements, that is:

qi = α1qℓ1 + α2qℓ2 + · · ·+ αkqℓk , ∀i ∈ [1, n] (13)

where qℓ1 , . . . , qℓk are the k arbitrary elements in q. Then we can use a matrix U ′ with n rows and k columns, and a vector
q′ with k elements to represent Z, i.e. U ′q′ = Z. To illustrate this process, we group all eigenvectors according to their
corresponding eigenvalues. For each distinct eigenvalue λℓs (where s = 1, 2, . . . , k), define the set: Ss = {j | λj = λℓs}.
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Z could be expressed as follow: 

∑
j∈S1

U1,j
mj

mℓ1
· · ·

∑
j∈Sk

U1,j
mj

mℓk∑
j∈S1

U2,j
mj

mℓ1
· · ·

∑
j∈Sk

U2,j
mj

mℓk

...
...

...∑
j∈S1

Un,j
mj

mℓ1
· · ·

∑
j∈Sk

Un,j
mj

mℓk




qℓ1
qℓ2
...

qℓk

 =


z1
z2
...
zn

 (14)

Since U ′ has rank at most k, it spans a subspace of dimension at most k. Thus, Z = U ′q′ is confined within this subspace.
We can choose up to k linearly independent elements zℓ1 , zℓ2 , . . . , zℓk as a basis. Therefore, any zi can be expressed as a
linear combination:

zi = β1zℓ1 + β2zℓ2 + · · ·+ βkzℓk , for βj ∈ R (15)

Let the activation function σ(x) be a real-valued function, where σ(x) ̸= 0 for x ̸= 0. Since the elements in Z are nonzero,
let Z ′ = σ(Z) and rank(U ′) = k, then z′i = ri · zi, where ri ∈ R. According to Equation (15), we have:

z′i = β1 ·
ri
rℓ1

· z′ℓ1 + . . .+ βk · ri
rℓk

· z′ℓk

= β′
1 · z′ℓ1 + . . .+ β′

k · z′ℓk
(16)

Therefore with the nonlinear activation function, spectral GNNs can still only generate at most k arbitrary elements. □

B.2. Proof of Theorem 4.1

Theorem B.2. Let P = LF −Lblock be the perturbation matrix applied to Lblock, and let ϕ = mini,j; i ̸=j |λi − λj |, where
λi are the eigenvalues of Lblock. If ∥P∥2 < ϕ

2 , then the eigenvalue multiplicity of LF will decrease.

Proof. When the perturbation matrix P is applied to Lblock, the new eigenvalues µi and µj of LF corresponding to
λi and λj will lie within a neighborhood of these eigenvalues. According to Weyl’s inequality, we have: |µi − λi| ≤
∥P∥2 and |µj − λj | ≤ ∥P∥2. This implies that µi lies in the interval: [λi − ∥P∥2, λi + ∥P∥2], and µj lies in the
interval: [λj − ∥P∥2, λj + ∥P∥2].

Now, since ϕ = mini,j; i̸=j |λi − λj | and we assume ∥P∥2 < ϕ
2 , the length of each interval is 2∥P∥2, which is strictly

less than ϕ. The distance between the centers of these intervals is ϕ, which is greater than the sum of the half-lengths of
the intervals, 2∥P∥2. Thus, [λi − ∥P∥2, λi + ∥P∥2] and [λj − ∥P∥2, λj + ∥P∥2] do not overlap. This guarantees that the
perturbed eigenvalues µi and µj remain distinct.

Since λi and λj represent the pair of eigenvalues with the smallest distance ϕ, if their perturbation intervals do not overlap,
then for any other pair of eigenvalues λk and λl (where k ̸= l), their perturbation intervals will also not overlap due to
|λk − λl| ≥ ϕ.

Therefore, no two perturbation intervals overlap, ensuring that the eigenvalue multiplicity of LF will decrease as eigenval-
ues associated with higher multiplicities split into distinct values within their respective intervals. □

C. Expressiveness of PSL-GNN
C.1. Proof of Proposition 5.1

Proposition C.1. The number of distinct eigenvalues of Lblock ∈ Rnd×nd is the same as that of L ∈ Rn×n, where L
is the normalized graph Laplacian matrix and Lblock = L ⊗ I , with I ∈ Rd×d being the identity matrix. Also, their
corresponding GNNs, which share the same architecture, are mutually equivalent.

Proof. We prove the first part of the proposition as follows. Let L have eigenvalues {λ1, λ2, . . . , λn}, and let I ∈ Rd×d

be the identity matrix with eigenvalues {1, 1, . . . , 1}. According to the eigenvalue property of the Kronecker product, the
eigenvalues of Lblock = L ⊗ I are λi · 1 = λi for each i = 1, 2, . . . , n. Since I only introduces eigenvalues of 1, the
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Kronecker product does not add new eigenvalues. Each eigenvalue λi of L is repeated d times, meaning the number of
distinct eigenvalues of Lblock is the same as that of L.

Consider an input matrix X ∈ Rn×f , where f = d× k. Reshape X into X′ ∈ Rnd×k. Let Y = LX and Y′ = LblockX′. We
partition X into n row blocks: X =

[
(X(1))⊤, . . . , (X(n))⊤

]⊤
, where each X(i) ∈ R1×f . Reshape each X(i) into a block

matrix X′(i) ∈ Rd×k. The reshaped matrix X′ ∈ Rnd×k is formed by stacking these blocks.

Now compute Y′ = LblockX′. The Kronecker product Lblock = L ⊗ Id implies that each element Lij of L is multiplied by

the d× d identity matrix Id. Thus, Y′ can be expressed as:Y′ =
[∑n

j=1 L1jX′(j) · · ·
∑n

j=1 LnjX′(j)
]⊤

.

Next, we reshape Y′ back to Y′
reshaped ∈ Rn×f . For each i, s, t, the element Yi,(s−1)d+t in Y corresponds to Y′(i)

s,t in Y′.
Thus, we have: Yi,(s−1)d+t = Y′

reshaped(i, (s− 1)d+ t).

Since this holds for all i, s, t, we conclude that Y = Y′
reshaped. □

C.2. Proof of Corollary 5.2

Corollary C.2. PSL-GNN has stronger one-dimensional prediction ability.

Proof. Consider a block form matrix Lblock and its corresponding perturbed sheaf Laplacian matrix LF . Let the input
matrix be X ∈ Rn×1. Their outputs are given as Z1 = U1g(λ)U

⊤
1 XW1 and Z2 = U2g(λ)U

⊤
2 XW2, respectively. Define

vectors m1 = XW1 and m2 = XW2, and let q1 = g(λ) ·m1 and q2 = g(λ) ·m2.

Suppose the number of distinct eigenvalues of LF and L are k1 and k2, respectively. According to the Proposition 5.1, the
number of distinct eigenvalues of Lblock is equal to that of L, so the number of distinct eigenvalues of Lblock is k2. When
λi = λj , g(λi) = g(λj).

Therefore, the outputs can be expressed as Z1 = U ′
1q

′
1 and Z2 = U ′

2q
′
2, where U ′

1 is an n × k1 matrix, U ′
2 is an n × k2

matrix, and q′
1 and q′

2 are vectors with k1 and k2 elements, respectively.

Since the ranks of U ′
1 and U ′

2 are at most k1 and k2, Z1 and Z2 each have at most k1 and k2 arbitrary elements, respectively.
Given that k1 > k2, the number of arbitrary elements in Z1 is greater than that in Z2. □

C.3. Proof of Corollary 5.3

Corollary C.3. PSL-GNN loses fewer frequency components.

Proof. Consider a block form matrix Lblock and its corresponding perturbed sheaf Laplacian matrix LF . Let the maximum
multiplicity of the eigenvalues of Lblock be m, and the maximum multiplicity of the eigenvalues of LF be m̂. Since
m̂ < m, PSL-GNN is able to lose fewer frequency components even in the worst-case design of the filtering function. □

C.4. Proof of Corollary 5.4

Corollary C.4. PSL-GNN has a stronger capability in processing frequency components.

Proof. Consider a block form matrix Lblock and its corresponding perturbed sheaf Laplacian matrix LF . Let the number of
distinct eigenvalues of Lblock and LF be k1 and k2, respectively. Since k1 < k2, the PSL-GNN filter has more coefficients,
implying that it can handle frequency components in a more diverse manner. □
Remark C.5. We explain Corollary 5.4 more clearly: the eigenvalues of Lblock are divided into k1 groups, while those of
LF are divided into k2 groups, with k2 > k1. Accordingly, the filter coefficients are divided into k1 and k2 groups, with
identical coefficients within each group. This means that the frequency components associated with each eigenvalue in a
group are scaled by the same factor. Since k2 > k1, PSL-GNN can independently scale more frequency components.

D. Perturbation Bounds of Eigenvalues
Theorem D.1. Let Lblock and LF = Lblock + P be N × N symmetric positive semidefinite matrices, with eigenvalues
λ1, . . . , λN and λ̃1, . . . , λ̃N , respectively, where Lblock is diagonally dominant. Suppose the perturbation matrix P satisfies
|Pij | ≤ ϵ|(Lblock)ij | for all i ̸= j for all i, where 0 < ϵ < 1

2 . Hence, for each i, |λ̃i − λi| ≤ 2ϵ
1−2ϵ λ̃max.
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Proof. First, we bound the spectral norm of P . For each row i, we have:

n∑
j=1

|Pij | = |Pii|+
∑
j ̸=i

|Pij | ≤ ϵvi + ϵ
∑
j ̸=i

|(Lblock)ij | = ϵ

vi +
∑
j ̸=i

|(Lblock)ij |

 = ϵ(Lblock)ii. (17)

Therefore:
∥P∥∞ ≤ ϵ max

1≤i≤n
(Lblock)ii. (18)

Since Lblock is diagonally dominant and positive semidefinite:

∥Lblock∥∞ = max
1≤i≤n

n∑
j=1

|(Lblock)ij | ≤ 2 max
1≤i≤n

(Lblock)ii ≤ 2∥Lblock∥2, (19)

where ∥Lblock∥2 denotes the spectral norm of Lblock. Thus:

∥P∥2 ≤ ∥P∥∞ ≤ ϵ∥Lblock∥∞ ≤ 2ϵ∥Lblock∥2. (20)

Next, we apply Weyl’s theorem, which states that for symmetric matrices Lblock and P : |λ̃i−λi| ≤ ∥P∥2. Substituting the
norm bound derived above:

|λ̃i − λi| ≤ ∥P∥2 ≤ 2ϵ∥Lblock∥2. (21)

We now relate ∥Lblock∥2 to λ̃i. Since LF = Lblock + P :

∥Lblock∥2 ≤ ∥LF∥2 + ∥P∥2 ≤ ∥LF∥2 + 2ϵ∥Lblock∥2. (22)

Rearranging gives:

∥Lblock∥2 ≤ ∥LF∥2
1− 2ϵ

. (23)

Given that ∥LF∥2 = λ̃max ≥ λ̃i, it follows that:

|λ̃i − λi| ≤ 2ϵ∥Lblock∥2 ≤ 2ϵ

1− 2ϵ
∥LF∥2 =

2ϵ

1− 2ϵ
λ̃max. (24)

Thus, the bound is proven. □

E. Experimental Setup
E.1. Experimental Details

We construct every reflection matrix Fi⊴(i,j) based on the method in (Obukhov, 2021). For downstream task, we update
the perturbed sheaf Laplacian matrix every 10 epochs. Given its high dimensionality, we employ sparse matrix storage to
reduce computational overhead. Additionally, we apply an early stopping mechanism with a maximum of 1500 epochs and
a patience threshold of 100. For each PSL-GNN and its corresponding GNN, we train them for the same number of times
and take the average of their respective accuracies as the final result for each model. For model training, we use the Adam
optimizer to optimize all models on an NVIDIA GeForce RTX 4090 GPU.

E.2. Datasets

We use seven benchmark datasets, categorized as follows: (1) Citation Networks: Cora (McCallum et al., 2000), Citeseer
(Giles et al., 1998), and Pubmed (Sen et al., 2008) are citation networks with nodes as publications, edges as citation links,
and labels indicating topics or fields; (2) Co-purchase Networks: Photo (Shchur et al., 2018) is a co-purchase network with
nodes as products, edges as co-purchases, and labels categorizing products; (3) Webpage Networks: Texas and Cornell
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(Shchur et al., 2018) are webpage networks with nodes as webpages, edges as hyperlinks, and labels indicating categories;
(4) Actor Co-occurrence Network: Actor (Shchur et al., 2018) is a co-occurrence network with nodes as actors, edges as
co-occurrences, and labels classifying actors.

The information of each dataset is shown in Table 5. Additionally, due to the diagonal dominance of the normalized graph
Laplacian L, its eigenvalue λ = 1 has higher multiplicity. Thus we also compute the proportion Pλ=1 of this multiplicity
for analysis.

Table 5. The statistical information of the datasets.
Datasets Cora Pubmed Citeseer Photo Texas Cornell Actor

Nodes 2708 19717 3327 7650 183 183 7600
Edges 5278 44324 4552 245861 287 278 26705
Features 1433 500 3703 745 1703 1703 932

Classes 7 3 6 8 5 5 5
Pλ=1 0.125 0.639 0.171 0.048 0.362 0.349 0.155

E.3. GNN Baselines

To evaluate the performance of our proposed method, we choose six different spectral GNNs as follows.

GCN (Kipf & Welling, 2016) is a spectral graph neural network that uses a mean aggregator to combine information from
neighboring nodes, bridging the gap between spectral and spatial GNN methods. APPNP (Klicpera et al., 2018) employs
personalized PageRank to propagate node features, addressing the oversmoothing problem in deep networks. Graph-Heat
(Xu et al., 2019a) incorporates the heat kernel for graph signal filtering, providing a natural mechanism to smooth or
diffuse signals over the graph. BernNet (He et al., 2021) improves spectral graph convolutions using Bernstein polyno-
mials, offering better flexibility to handle varying graph structures. GPRGNN (Chien et al., 2021) generalizes PageRank
algorithms to enhance performance on graphs with heterophilic structures. Lastly, JacobiConv (Wang & Zhang, 2022)
leverages orthogonal Jacobi polynomials to enhance expressiveness and optimization in spectral graph neural networks.

For all baseline models, we use either their official implementations or implementations provided by PyTorch Geometric
to ensure fair comparisons.

E.4. Hyper-Parameters

To ensure a fair comparison, we keep all hyper-parameters the same for each PSL-GNN and its corresponding baseline
GNN, except for η and d. Specifically, for all models, we set the learning rate to 0.05, weight decay to 5e − 4, and the
number of hidden units to 64. We set the order of the polynomial filters—BernNet, APPNP, Graph-Heat, and Jacobi—to
10. For all PSL-GNN models, we search η within {1e − 1, 1e − 2, 1e − 3, 1e − 4} and d within {2, 3, 4} to achieve the
best model performance.

F. Additional Experimental Studies
F.1. Complexity Analysis

We first analyze the space and time costs of constructing the perturbed sheaf Laplacian, then the per-epoch cost of PSL-
GCN (with and without PSL reconstruction), and finally report empirical runtimes.

F.1.1. SPACE COMPLEXITY & PARAMETERS.

Each restriction map uses d free parameters, so forming the edge-incidence matrix BF (with two entries per edge) requires
space = O

(
2E · d2 + n · d

)
,

F.1.2. PSL CONSTRUCTION TIME.

We build the signed incidence matrix BF (size nd × nnzB), then compute LF = BF BT
F . Since BF has nnzB nonzeros,

this sparse-sparse product costs O
(
nnz2B

)
.
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F.1.3. PER-EPOCH COST OF PSL-GCN.

Every 10 epochs we rebuild the PSL; thus per-epoch we either include or omit the O(nnz2B) term:

• Including PSL construction: O
(
nnz2B

)
+O

(
n f1 d f3

)
+O

(
2nd f3 (r + f4)

)
+O

(
nd flast c

)
.

• Amortized (excluding PSL construction): O
(
n f1 d f3

)
+O

(
2nd f3 (r + f4)

)
+O

(
nd flast c

)
.

F.1.4. EMPIRICAL RUNTIMES.

Table 6 reports average epoch time (ms) / total runtime per fold (s) for PSL-GCN vs. Neural Sheaf Diffusion (Diag-NSD,
O(d)-NSD, Gen-NSD) (Bodnar et al., 2022):

Table 6. Average epoch time (ms) / total runtime per fold (s).
Dataset Cora Pubmed Citeseer Photo Texas Cornell Actor

Diag-NSD 26.4/5.9 124.3/34.7 25.2/5.8 90.6/17.4 8.3/1.6 8.1/1.5 98.4/21.5
O(d)-NSD 57.0/12.3 204.5/66.3 64.1/13.6 143.5/26.3 26.8/6.7 27.4/7.2 128.2/31.9
Gen-NSD 85.3/17.6 231.1/74.3 92.4/20.6 166.7/34.6 34.3/14.4 31.4/14.2 177.6/45.2

PSL-GCN 16.0/4.6 83.7/17.4 18.3/5.2 65.3/15.8 6.3/1.1 6.4/1.1 72.7/17.3

F.2. Comparison of Spectral Gap

The Laplacian spectrum measures graph connectivity. Cheeger’s inequality 2hG > λ1 >
h2
G

2 shows that a larger spectral
gap λ1 implies better connectivity (Jamadandi et al., 2024). The Cheeger constant hG quantifies the tightest connectivity
bottleneck in a graph. In (Lu et al., 2024), the new operator’s (H) eigenvalues are defined as ui = βλi + (1− β)vi, where
vi = 2i/n− 2. When v1 < λ1, it follows that u1 < λ1 (because u1 − λ1 = (1− β)(v1 − λ1) with β < 1), which reduces
the spectral gap and impairs information flow, especially in large graphs, where v1 = 2/n−2 is very, very small. However,
our approach perturbs the normalized Laplacian in a way that maintains subtle eigenvalue differences regardless of graph
size, thereby preserving the topological information.

Below, we verify our argument above by presenting the spectral gaps’ orders of magnitude for the normalized graph
Laplacian and PSL across various datasets. As shown in the Table 7, for each dataset, v1 < λ1, u1 < λ1 , and λ1 ≤ λ̂1,
which indicates that Lu et al.’s approach (Lu et al., 2024) indeed reduces the spectral gap, thus compromising the original
topological information encoded in the normalized Laplacian matrix.

Table 7. Comparison of spectral gap

Cora Pubmed Citeseer Photo Texas Cornell Actor

n 2708 19717 3327 7650 183 183 7600
v1 7e-4 1e-4 6e-4 2e-4 1e-2 1e-2 2e-4
λ1 4e-3 1e-2 1e-3 1e-3 5e-2 7e-2 3e-2
λ̂1 5e-3 1e-2 2e-3 1e-3 5e-2 7e-2 3e-2

F.3. Node Classification in A Fully-Supervised Split

We train all models in a fully-supervised split (60% / 20% / 20%). For each baseline (including the EC-GNN variants), we
adopt the best hyperparameter settings reported in the original paper. For all PSL-GNN variants, we use the same settings
as their corresponding baselines, with η = 1× 10−3 and d = 2. The results are summarized in Table 8 and Table 9.
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Table 8. Results on real-world datasets in the dense splitting (60% / 20% / 20%).
Datasets Cora Citeseer PubMed Computers Photo

GCN 87.16±1.03 79.84±0.73 86.79±0.32 83.31±1.01 88.24±0.78
EC-GCN 88.73±0.89 80.63±1.01 87.68±0.83 83.94±1.17 90.45±1.20
PSL-GCN 89.09±1.14 81.04±0.63 88.75±1.24 84.12±1.65 91.48±0.81

APPNP 88.23±1.05 80.61±0.94 88.17±0.38 85.35±0.38 90.48±0.57
EC-APPNP 89.54±1.43 81.48±1.23 88.42±1.36 86.10±1.07 90.75±1.06
PSL-APPNP 90.91±1.14 81.92±1.36 88.88±1.42 86.43±0.68 91.82±0.96

Graph-Heat 87.34±1.41 78.82±1.26 87.52±0.89 83.23±1.37 89.97±0.82
EC-Heat 88.13±1.02 79.44±1.12 88.93±0.91 83.86±1.24 90.57±0.86
PSL-Heat 88.51±1.38 80.02±1.31 89.21±1.57 84.64±1.58 90.87±0.91

BernNet 88.48±1.14 80.08±1.07 88.73±1.42 87.68±0.53 94.31±0.86
EC-BernNet 88.64±0.55 80.30±0.98 89.07±1.37 88.34±1.03 94.50±1.01
PSL-BernNet 90.01±0.93 80.86±1.15 90.13±1.44 88.74±0.56 94.79±1.03

GPRGNN 88.54±0.82 80.09±1.03 88.52±0.46 87.01±0.74 93.87±0.34
EC-GPR 89.41±0.69 80.66±1.01 89.64±0.53 89.91±0.68 94.76±1.02
PSL-GPR 90.13±0.92 81.11±0.76 89.82±1.89 89.93±1.70 94.87±0.96

Jacobi 88.96±0.68 80.73±0.88 89.67±0.82 90.42±0.31 95.52±0.33
EC-Jacobi 89.06±0.67 81.28±0.96 89.87±0.42 90.33±0.28 95.54±0.36
PSL-Jacobi 90.73±1.34 81.54±1.12 90.42±1.13 90.83±0.61 95.69±0.52

Table 9. Results on real-world datasets in the dense splitting (60% / 20% / 20%).
Datasets Chameleon Actor Squirrel Texas Cornell

GCN 59.65±2.52 34.63±1.62 46.64±1.28 78.65±2.98 76.42±5.21
EC-GCN 61.81±1.94 36.12±1.44 50.31±0.84 80.72±2.39 77.38±4.37
PSL-GCN 62.04±2.71 36.74±1.43 52.73±1.54 81.45±2.43 78.13±4.32

APPNP 51.78±1.91 39.59±0.83 34.74±0.60 90.89±1.53 91.84±2.12
EC-APPNP 52.93±2.12 40.32±0.94 35.33±0.84 91.32±1.34 91.97±1.64
PSL-APPNP 54.49±1.74 40.67±0.91 35.63±0.58 91.53±1.49 92.07±1.94

Graph-Heat 63.46±0.92 35.74±1.31 44.35±2.14 80.06±0.94 76.87±0.85
EC-Heat 64.86±1.22 36.51±0.94 45.01±1.87 81.25±1.36 77.91±0.63
PSL-Heat 65.60±1.23 36.93±1.45 45.32±1.89 81.49±1.10 80.94±1.05

BernNet 68.25±1.59 41.82±0.99 51.37±0.75 94.14±1.67 92.16±1.77
EC-BernNet 74.20±1.33 41.87±1.02 62.79±0.78 94.37±1.44 93.77±1.26
PSL-BernNet 75.09±1.46 41.93±1.30 63.82±1.33 94.54±1.80 94.01±0.93

GPRGNN 67.14±1.10 39.92±0.65 50.08±1.95 92.97±1.41 91.32±2.02
EC-GPR 74.24±1.06 40.42±0.77 62.48±2.03 92.27±1.92 90.79±2.22
PSL-GPR 74.78±1.34 41.17±0.96 63.65±0.87 94.74±1.65 92.44±1.85

Jacobi 74.23±1.45 41.16±0.70 57.38±1.24 93.45±2.03 92.94±2.38
EC-Jacobi 75.64±1.51 41.01±0.74 59.87±0.91 93.48±1.49 93.29±2.33
PSL-Jacobi 75.87±1.44 41.94±0.75 61.47±0.98 94.20±1.75 93.91±1.96

From the above results, PSL-GNNs consistently outperform the baselines, which validates the effectiveness of the perturbed
sheaf Laplacian (PSL).

F.4. Eigenvalue Perturbation Study

Every restriction map Fv⊴e is generated using d parameters, and is bounded by η, where d represents the dimension of
the stalks. To evaluate the impact of different perturbation scales η on the eigenvalues, we compare the maximum relative
eigenvalue perturbation between the resulting sheaf Laplacian matrix and the normalized graph Laplacian matrix. The
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maximum relative perturbation is defined as:

∆λ = max

∣∣∣∣∣ λ̂i − λi

λi

∣∣∣∣∣ , for i = 1, 2, . . . , N, (25)

where N is the dimension of the matrix, λ̂i denotes the eigenvalues of the sheaf Laplacian matrix, and λi represents the

∆λ : d = 2 ∆λ : d = 3 ∆λ : d = 4

proportion : d = 2 proportion : d = 3 proportion : d = 4

Figure 4. The relative eigenvalue perturbations and the proportion of distinct eigenvalues of the perturbed sheaf Laplacian across different
datasets under varying η and d.

eigenvalues of the normalized graph Laplacian matrix. We also examine how the proportion of distinct eigenvalues, defined
as k/|v| (where k is the number of distinct eigenvalues), varies with different η. The results for each dataset are shown in
the Figure 4.

As shown in Figure 4, when η decreases, ∆λ also decreases, which is consistent with the theoretical analysis for the
perturbation of eigenvalues in Theorem 5.5. At η = 1e−3, the number of distinct eigenvalues peaks but decreases for
η > 1e−3, as larger perturbations may cause eigenvalues to overlap, violating Theorem 4.1. Furthermore, the impact of d
is negligible.

F.5. Visualization of Eigenvalues Distribution

To better illustrate whether the multiplicities of eigenvalues in the perturbed sheaf Laplacian LF are reduced across differ-
ent datasets, we visualize its eigenvalue distribution alongside that of the normalized graph Laplacian L. Figure 5 shows
the eigenvalues distributions under a perturbation scale of η = 1e-3, where the vertical axis (density) represents the pro-
portion of each distinct eigenvalue relative to the total, and the horizontal axis (λ) represents the eigenvalues. Based on the
analysis of these figures, we observe the following:

1. For almost every graph dataset, the perturbed sheaf Laplacian matrix consistently exhibits fewer repeated eigenvalues
compared to the corresponding normalized graph Laplacian matrix.

2. On small graph datasets, the reduction in eigenvalue multiplicity is more pronounced, which aligns with the greater
average performance gains observed in Table 1.

3. For every graph dataset, the eigenvalue 1 always has the highest multiplicity. This explains why GCN performs worse
than other baselines, as its filtering function removes frequency components associated with eigenvalue 1. In contrast,
LF reduces the multiplicity of eigenvalue 1, which explains the highest average improvement for GCN, as it preserves
the frequency components.
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L on Cora L on Pubmed L on Citeseer L on Photo

LF on Cora LF on Pubmed LF on Citeseer LF on Photo

L on Texas L on Cornell L on Actor

LF on Texas LF LF on Actor

Figure 5. Eigenvalues distribution of normalized graph Laplacian matrices and perturbed sheaf Laplacian matrices.

F.6. Hyper-Parameters Study

To demonstrate how hyper-parameters influence the performance of the model, we study the effect of the two main hyper-
parameters of PSL-GPF and PSL-GCN, i.e. perturbation size η and stalk dimension d. For the remaining parameters, we
set the same configuration across Cora, Texas, and Actor.

The results are shown in the Figure 6. From the results, we have the following observations:

1. These models perform best when η = 1e− 3 and η = 1e− 2. This could be explained by Figure 5: when η = 1e− 3,
the proportion of distinct eigenvalues in the fixed perturbed sheaf Laplacian matrix is maximized. Parameters of the
restriction mapping are constrained within the range [1e − 4, 1e − 3], and the parameters might gradually approach
the upper bound of 1e− 3. When η = 1e− 2, the performance is similar, as the parameters are constrained within the
range [1e− 3, 1e− 2], they might gradually approach the lower bound of 1e− 3.

2. When η = 1e− 4, the model’s performance is similar to that when no perturbation is applied (i.e., η = 0). As shown
in Figure 5, the perturbation effect is nearly negligible in this case, and the perturbed sheaf Laplacian matrix becomes
almost identical to the normalized graph Laplacian matrix.

F.7. Comparison between PSL and GSL

In the fully-supervised split, we compared the performance of PSL and GSL. The results are shown below:
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PSL-GPR on Cora PSL-GPR on Texas PSL-GPR on Actor

PSL-GCN on Cora PSL-GCN on Texas PSL-GCN on Actor

PSL-APPNP on Cora PSL-APPNP on Texas PSL-APPNP on Actor

PSL-Heat on Cora PSL-Heat on Texas PSL-Heat on Actor

PSL-BernNet on Cora PSL-BernNet on Texas PSL-BernNet on Actor

PSL-Jacobi on Cora PSL-Jacobi on Texas PSL-Jacobi on Actor

Figure 6. Hyper-Parameters Study.
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Table 10. Comparison of models based on three Laplacian matrices (GNN vs. GSL-GNN vs. PSL-GNN): Mean accuracy (%) ±95 (%)
on seven datasets (in dense splitting: 60% / 20% / 20%).
Datasets Cora Pubmed Citeseer Photo Texas Cornell Actor

GCN 87.16±1.03 86.79±0.32 79.84±0.73 88.24±0.78 78.65±2.98 76.42±5.21 34.63±1.62
GSL-GCN 88.73 ±0.98 87.04 ±0.97 80.89 ±0.51 89.67 ±0.88 80.75 ±2.64 77.93 ±4.37 35.94 ±1.29
PSL-GCN 89.09±1.14 88.75±1.24 81.04±0.63 91.48±0.81 81.45±2.43 78.13±4.32 36.74±1.43

APPNP 88.23±1.05 88.17±0.38 80.61±0.94 90.48±0.57 90.89±1.53 91.84±2.12 39.59±0.83
GSL-APPNP 89.88±0.95 88.46±1.38 81.52±1.16 90.89±0.93 91.19±1.47 91.93±2.23 39.81±0.84
PSL-APPNP 90.91±1.14 88.88±1.42 81.92±1.36 91.82±0.96 91.53±1.49 92.07±1.94 40.67±0.91

Graph-Heat 87.34±1.41 87.52±0.89 78.82±1.26 89.97±0.82 80.06±0.94 76.84±0.85 35.74±1.31
GSL-Heat 87.71±1.22 89.14±0.89 79.23±1.02 90.34±1.31 80.79±1.9 80.87±0.70 36.36±1.87
PSL-Heat 88.51±1.38 89.21±1.57 80.02±1.31 90.87±0.91 81.49±1.10 80.94±1.05 36.93±1.45

BernNet 88.48±1.14 88.73±1.42 80.08±1.07 94.31±0.86 94.14±1.67 92.16±1.77 41.82±0.99
GSL-BernNet 89.96±1.11 89.84±1.50 80.77±0.81 94.67±1.10 94.23±1.76 92.68±1.07 41.88±1.44
PSL-BernNet 90.01±0.93 90.13±1.44 80.86±1.15 94.79±1.03 94.54±1.80 94.01±0.93 41.93±1.30

GPRGNN 88.54±0.82 88.52±0.46 80.09±1.03 93.87±0.34 92.97±1.41 91.32±2.02 39.92±0.65
GSL-GPR 89.82±1.23 89.04±1.01 80.56±0.93 94.12±1.25 93.47±1.38 91.87±1.72 40.64±0.82
PSL-GPR 90.13±0.92 89.82±1.89 81.11±0.76 94.87±0.96 94.74±1.65 92.44±1.85 41.17±0.96

Jacobi 88.96±0.68 89.67±0.82 80.73±0.88 95.52±0.33 93.45±2.03 92.94±2.38 41.16±0.70
GSL-Jacobi 89.43±0.94 89.92±1.33 81.24±1.16 95.55±0.36 93.84±1.97 93.45±1.71 41.21±0.45
PSL-Jacobi 90.73±1.34 90.42±1.13 81.54±1.12 95.69±0.52 94.20±1.75 93.91±1.96 41.94±0.75

It can be observed that PSL outperforms GSL, further validating the effectiveness of the perturbed sheaf Laplacian.

21


