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ABSTRACT

Distributed optimization has become the default training paradigm in modern
machine learning due to the growing scale of models and datasets. To mitigate
communication overhead, local updates are often applied before global aggre-
gation, resulting in a nested optimization approach with inner and outer steps.
However, heavy-tailed stochastic gradient noise remains a significant challenge,
particularly in attention-based models, hindering effective training. In this work,
we propose TailOPT, an efficient framework designed to address heavy-tailed
noise by leveraging adaptive optimization or clipping techniques. We establish
convergence guarantees for the TailOPT framework under heavy-tailed noise with
potentially unbounded gradient variance and local updates. Among its variants,
we highlight a memory and communication efficient instantiation which we call
Bi2Clip, which performs coordinate-wise clipping at both the inner and outer
optimizers, achieving adaptive-like performance (e.g., Adam) without the cost of
maintaining or transmitting additional gradient statistics. Empirically, TailOPT,
including Bi2Clip, demonstrates superior performance on several language tasks
and models, outperforming state-of-the-art methods.

1 INTRODUCTION

The training of deep learning models including large language models (LLMs) has become increas-
ingly resource-intensive, driven by expansive datasets and models with billions of parameters (Rosa
et al., 2022; Liu et al., 2024b; Sriram et al., 2022; Dehghani et al., 2023). As the computational
demands escalate, distributed learning has emerged as the default approach, enabling the parallel
activation of training processes across multiple compute nodes such as GPUs or datacenters. However,
this paradigm introduces a new bottleneck of communication overhead, especially as the progress in
compute power has outpaced that of network infrastructure (Wu et al., 2023; DeepSeek-AI, 2024).

To mitigate these communication challenges, one promising strategy is the utilization of local updates.
By allowing each compute node to perform multiple gradient updates locally before aggregation, the
frequency and volume of intra-node communication can be significantly reduced (Smith et al., 2018;
Stich, 2018; McMahan et al., 2017; Lee et al., 2024; Liu et al., 2024a; Jaghouar et al., 2024). For
instance, the state-of-the-art DiLoCo algorithm for training LLMs in datacenter environments can ap-
ply around 500 local gradient updates prior to aggregation to relieve communication costs (Douillard
et al., 2024). This approach naturally formulates a nested optimization problem, where inner opti-
mization occurs within each compute node, and outer optimization is orchestrated by the coordinating
node(s).

However, training attention-based models such as LLMs introduce an additional challenge due to the
properties of their stochastic gradient distributions. Empirical and theoretical investigations have con-
sistently demonstrated that the gradient noise in these models follows a heavy-tailed distribution (Ahn
et al., 2024; Nguyen et al., 2019; Simsekli et al., 2019; 2020; Kunstner et al., 2024; Gorbunov et al.,
2020). This heavy-tailed behavior, characterized by high or infinite variance and potentially very
large deviations, poses significant challenges to the stability and convergence of existing optimization
algorithms (Zhang et al., 2020b; Lee et al., 2024). Addressing these challenges necessitates the
development of novel optimization strategies and a more principled understanding of their theoretical
underpinnings.
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In this work, we propose TailOPT, an efficient and theoretically principled nested training framework,
designed to address the challenges posed by heavy-tailed gradient noise in distributed training with
local updates. TailOPT introduces several key strategies, including clipping mechanisms (such as
coordinate-wise or L2-clipping) and adaptivity, applied at both inner and outer optimizers, to mitigate
the adverse effects of heavy-tailed noise. We analyze the convergence of TailOPT while incorporating
said adaptive methods, while allowing for heavy-tailed noise with unbounded variance. Our empirical
and theoretical results demonstrate that TailOPT is strongly effective in mollifying heavy-tailed noise,
enhancing the stability and convergence of the training dynamics across several language benchmarks
as well as synthetic data. We include an extensive and detailed literature review in Appendix A.

Our contributions may be summarized as follows.

• We introduce TailOPT, a general distributed training framework for large-scale models under
communication-efficient local updates and heavy-tailed gradient distributions. Among its instan-
tiations, we highlight Bi2Clip, which deploys adaptive approximations or mimicry to enhance
performance while avoiding the utilization of gradient preconditioners.

• We provide convergence guarantees for a class of TailOPT algorithms that leverage adaptive
optimizers and various clipping strategies, effectively addressing heavy-tailed noise with poten-
tially infinite variance. This is achieved using a nested optimization framework, where the inner
optimizer employs clipping operations to mitigate heavy-tailed gradient noise, while the outer
optimizer utilizes either fully adaptive or efficient approximations of adaptive updates to guide the
optimization process.

• We validate the practicality and effectiveness of TailOPT through extensive experiments on synthetic
and real-world datasets in large-scale settings. Our experiments demonstrate that TailOPT produces
several algorithmic instantiations that consistently outperform state-of-the-art baselines despite
being more efficient.

2 PROBLEM FORMULATION

In distributed optimization, the global objective is constructed by taking a weighted average over the
local node objectives Fi(x) for model parameters x ∈ Rd and node i. In scenarios where data sizes
at each node are unbalanced or sampling probabilities vary, the objective becomes:

F (x) =

N−1∑
i=0

piFi(x), (1)

where pi is proportional to the local data size of node i. Here, Fi(x) is defined as Eξ∼Di
[Fi(x, ξ)],

where Fi(x, ξ) = Fi(x) + ⟨ξ, x⟩ represents the stochastic local objective, and Di is the noise
distribution of node i. This term comes from integrating the gradient noise model ∇Fi(x

t
i, ξ

t
i) =

∇F (xti) + ξti , where xti, ξ
t
i are the parameter weights and gradient noise of node i at timestep t. In

our formulation and theoretical analysis (Section 3), we allow for both independent and identically
distributed (IID) data across N nodes, as commonly observed in datacenter environments, as well as
more challenging non-IID data distributions. We now present the assumptions used in the analysis.

Assumption 1 (L-smoothness). For all x, y ∈ X and i ∈ [N ], the local objectives Fi(x) satisfy
Fi(x) ≤ Fi(y) + ⟨x− y,∇Fi(y)⟩+ Li∥x− y∥2/2.

Assumption 2 (Bounded α-moment). For all nodes i ∈ [N ] with noise distribution Di, there exists
αi ∈ (1, 2), Bi > 0 such that E[∥ξi∥αi ] < Bαi

i .

Assumption 2 expresses that the noise distribution can be heavy-tailed. In particular, we note that the
variance of the noise can be infinite (αi = 2), a setting in which distributed SGD was shown to fail
to converge, both empirically and theoretically (Yang et al., 2022; Lee et al., 2024) This condition
on the αi is ‘optimally weakest’, in that sending αi → 1+ recovers the integrability condition
of the noise, the minimal assumption necessary to form expectations. Furthermore, we note that
E∥ξ∥α <∞ =⇒ E∥ξ∥β <∞ for ∀β < α, α ∈ R. Therefore, we let α := mini∈[N ] αi ∈ (1, 2) in
the proceeding analysis for notational convenience.

We also note that some works in the literature also define heavy-tailed distributions with bounded
variance when establishing algorithm convergence bounds (e.g., Gorbunov et al. (2020); Parletta
et al. (2024); Li & Liu (2022); Das et al. (2024)), which differs from our definition. We carry out
our convergence proofs which subsumes the more general infinite variance setting, which naturally
implies convergence under bounded stochastic gradients or variance.
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3 TAILOPT: AN EFFICIENT HEAVY-TAILED OPTIMIZATION FRAMEWORK

In this section, we motivate the Heavy-Tailed Optimization Framework (TailOPT), a scalable training
setup for heavy-tailed learning. SGD is a strong candidate given its simplicity and efficiency, but
has been shown to diverge under heavy-tailed noise in both centralized (Zhang et al., 2020b) and
distributed settings (Lee et al., 2024). Gradient clipping is a widely adopted technique to modulate
model updates by mitigating the impact of large gradients (Menon et al., 2020; Zhang et al., 2020a;
Chen et al., 2020; Koloskova et al., 2023; Yang et al., 2022). However, prior works on L2 clipping of
gradients or model updates (e.g., Yang et al. (2022)) generally do not adapt to gradient geometry, due
to proportionally and uniformly downscaling each gradient coordinate. Therefore, smaller signals
can become even more difficult to detect and propagate.

Interpolating Adaptivity: BiClip. Adaptive optimizers have consistently demonstrated superior
performance for training modern architectures (Zhang et al., 2020b; Reddi et al., 2021; Lee et al.,
2024). Key among adaptive methods such as Adam (Kingma & Ba, 2015) and Adagrad (Duchi et al.,
2011; Streeter & McMahan, 2010) is the use of preconditioning, where preconditioners synthesized
from historical gradient statistics help to procure a per-coordinate learning rate. This process
dynamically modulates model updates: rare gradient coordinates are amplified, while uninformative
gradients are scaled down, speeding up convergence. The trade-off, however, lies in the increased
systems requirements to maintain preconditioners. For instance, deploying Adam can instantly triple
the memory demand to host model parameters during minibatch backpropagation compared to vanilla
SGD, due to the inclusion of first/second moment exponentially decaying moving averages of the
gradient.

To take advantage of adaptivity without incurring additional memory or communication overhead, we
propose a new clipping mechanism, BiClip, that performs coordinate-wise clipping from both above
and below. BiClip is motivated by an interpolation between clipped-SGD and adaptive methods,
employing a stabilizing absolute-value clipping mechanism that modulates model updates while
eliminating the overhead of preconditioner maintenance. Formally, we define BiClip(·) as follows1 :

BiClip(u, d, x)j := sign(xj) [d χ (|xj | ≤ d)]
+ sign(xj) [u χ (|xj | ≥ u) + |xj |χ (d < |xj | < u)] ,

(2)

where χ is the indicator function, x ∈ Rm, j ∈ [m], and 0 ≤ d ≤ u are the lower and upper clipping
thresholds. BiClip draws on the intuition of adaptive methods by selectively amplifying smaller
gradient values while tempering larger gradients. When combined with an outer (potentially adaptive)
optimizer, this approach leverages sensitive, amplified gradient updates from the participating compute
nodes, thus emulating the advantages of adaptive optimization without preconditioner maintenance.
This serves as the main building blocks of Algorithm 1.

Algorithm 1 Heavy-Tailed Optimization (TailOPT)

Require: Initial model x1, learning rate schedule ηt
Clipping schedules ut ≥ dt ≥ 0,
Synchronization timestep z ∈ Z>0

1: for t = 1, . . . , T do
2: for each node i ∈ [N ] in parallel do
3: xti,0 ← xt
4: for each local step k ∈ [z] do
5: Draw gradient gti,k = ∇Fk(x

t
i,k, ξ

t
i,k)

6: xt+1
i,k ← xti,k − ηt · TailClip(ut, dt, gti,k)

7: end for
8: end for
9: ∆t =

1
N

∑
i∈[N ]

(
xti,z − xt−1

)
10: xt = Outer Optimizer (xt−1,∆t)
11: end for

TailOPT. In the TailOPT framework (Algorithm 1), the inner optimization strategy, TailClip, refers
to either BiClip or L2Clip. In Line 10, the outer optimization can be adaptive or non-adaptive,
applying clipping, adaptivity, or momentum to the aggregate pseudogradients (∆t). Notably,Bi2Clip,

1For clarity in notation, we define 0/0 := 0.
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which applies BiClip in both inner and outer optimization, achieves strong empirical performance
(Algorithm 4, Appendix D.3). While our focus is on the distributed setting, which aligns with
practical applications, we note that BiClip can also be effectively applied in centralized settings.
Throughout the paper, we list the outer optimizer followed by the inner optimizer when referencing
algorithms. For example, ‘Adam-BiClip’ instantiates Adam as the outer optimizer and BiClip as
the inner optimizer.

3.1 CONVERGENCE OF THE TAILOPT FRAMEWORK

In Appendix C, we provide a summary of the convergence results attained in TailOPT under various al-
gorithmic instantations. In particular, several variants (Adagrad/RMSProp-TailClip, Algorithms 5, 6)
achieve the state-of-the-art convergence rate of O(1/

√
T ) (Li et al., 2024; Arjevani et al., 2023;

Pillutla et al., 2024) even under the presence of infinite variance, heavy-tailed noise with local updates.
In addition, to leverage the benefits of adaptivity while strictly enforcing almost identical memory
and compute resources as vanilla SGD, we instantiate all optimizer strategies as BiClip across all
nodes, resulting in Bi2Clip (Algorithm 4). Theorem 2 shows convergence under heavy-tailed noise.
We present convergence results for only a subset of TailOPT algorithms in the main text. For a
comprehensive analysis, Appendices D.1, D.2 provide detailed convergence bounds for Avg-L2Clip,
and Appendices D.3, D include additional convergence analyses and precise pseudocodes for various
(adaptive) instantiations of the TailOPT framework incorporating Adagrad, RMSProp, or Adam.
Convergence results for certain instantiations are also extended to allow for node drop or failures at
each round (Appendix D.2).

4 EXPERIMENTS

We assess the performance of various TailOPT instantiations across a range of empirical tasks,
benchmarking against state-of-the-art algorithms from the literature. Extended details of the exper-
imental setup, dataset descriptions, and extensive hyperparameter tuning procedures are provided
in Appendix E. Our experiments include synthetic tests with carefully controlled heavy-tailed noise
injection, as well as evaluations of real-world benchmarks on generative models.

4.1 CONVEX MODELS

We designed our convex, synthetic setup to explicitly control and inject heavy-tailed noise, enabling
a focused study of its effects. In language tasks, the frequencies of words or tokens typically follows
a heavy-tailed distribution, where a small subset of tokens occurs with high frequency, while the
majority appear infrequently yet carry significant contextual information. To mirror this phenomenon,
emulating a similar setup in Li et al. (2022), we partitioned the input feature space into common and
rare features. Specifically, we set the first p = 10% features (or tokens) from data X as common
features, with each feature activated according to a Bernoulli distribution Bern(0.9). The remaining
90% of the features are configured as rare, each sampled from Bern(0.1). The weight vector w∗ is
drawn from a standard multivariate normal distribution, w∗ ∼ N (0, Im), and the labels are generated
as ŷ = Xw∗ + ξnoise. A neural network with model weight ŵ is then trained to learn the ground
truth w∗. A comprehensive explanation of the dataset construction and experimental setup is provided
in Appendix E.1. We inject noise ξnoise sampled from a heavy-tailed distribution, which induces
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Figure 1: The impact of heavy-tailed noise. When injected gradient noise is absent, Avg - SGD achieves
the best performance (c.f., (a)). However, as the noise tails grow heavier, the performance of Avg - SGD
deteriorates considerably. By contrast, both clipping mechanisms and adaptive updates demonstrate considerable
performance in locating the ground truth w∗, and effectively mitigates the adverse effects of heavy-tailed noise
(d). Light tailed noise (b-c) may not significantly destabilize the dynamics of non-adaptive Avg - SGD. The scale
parameter in (c) represents the multiplier applied to ξnoise, sampled from Gaussian and heavy-tailed distributions.
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heavy-tailed stochastic gradients under MSE loss. In Figure 1, we sample from the Gaussian and
Student t distributions for the non-heavy-tailed and heavy-tailed ξnoise. By default, we multiply the
noise by scale 1 unless otherwise specified (Figure 1 (c)).

We observe that while SGD demonstrates strong performance in non-noisy settings, its effectiveness
diminishes as noise tails become heavier—a scenario where adaptive methods and BiClip excel.
Similarly, L2Clip shows some ability to mitigate heavy-tailed noise but exhibits a comparable decline
in performance under heavy-tailed conditions.

4.2 TRANSFORMER ENCODERS

Table 1: Evaluation results on GLUE Benchmark datasets during test time. Metric descriptions are given in
Appendix E.3, and the full table is given as Table 10. Entries marked with 0.0 indicate failure to learn, where
the performance metrics are averaged across the granularity of each datapoint. Top first, second, and third
best-performing algorithms are highlighted. For Adam2, preconditioners are transmitted between the inner and
outer optimizers, whereas DiLoCo requires maintaining preconditioners on the inner optimizers, both of which
incur significant communication or memory overhead. Our experiments show that Bi2Clip achieves the best
aggregate performance with the minimal overhead.

Algorithm MNLI QNLI QQP (Acc/F1) RTE SST-2 MRPC (Acc/F1) CoLA STS-B (S/P) Average
Avg-SGD (McMahan et al., 2017) 81.13 83.21 78.71/78.69 57.40 90.94 67.30/80.52 0.0 26.76/28.20 61.17
Avg-L2Clip (Yang et al., 2022) 81.82 85.68 80.00/79.82 54.51 91.97 68.38/81.22 0.0 41.27/40.96 64.15
Avg-Adagrad 84.70 88.79 87.09/83.34 64.26 93.34 71.56/82.63 27.72 81.93/81.26 76.97
Avg-Adam 84.97 89.47 87.66/84.09 64.62 93.80 81.86/87.74 41.41 86.21/86.55 80.76
Avg-BiClip 85.08 89.45 87.83/84.12 66.06 94.03 71.32/82.45 41.40 84.08/84.48 79.12

Adagrad-SGD (Reddi et al., 2021) 82.40 86.61 82.51/77.68 71.48 92.08 85.53/89.52 47.80 40.37/42.24 72.69
Adagrad-BiClip 85.54 90.02 88.60/85.05 73.36 93.23 85.78/89.86 48.87 84.03/85.90 82.75
RMSProp-SGD (Reddi et al., 2021) 84.20 88.46 87.12/83.30 72.56 91.85 85.50/89.17 52.39 45.72/41.80 74.73
RMSProp-BiClip 85.56 89.82 88.50/84.44 70.75 93.69 84.80/88.92 50.99 87.65/87.79 82.99
Adam-SGD (Reddi et al., 2021) 82.93 86.98 85.99/80.87 66.78 90.71 87.01/90.09 49.93 44.48/41.26 73.37
Adam-L2Clip 82.54 86.69 85.88/80.72 59.92 89.67 85.29/89.90 48.54 69.19/67.16 76.86
Adam-BiClip 84.26 89.20 88.64/84.74 69.67 92.43 86.52/90.09 56.12 82.83/79.71 82.20
Adam2 (Wang et al., 2021b) 85.11 88.87 89.04/85.51 71.48 92.66 87.50/91.03 52.70 84.47/83.82 82.93
DiLoCo (Douillard et al., 2024) 85.68 89.87 88.78/85.19 67.87 91.89 87.99/91.20 54.77 85.93/84.76 83.08
Bi2Clip 85.06 89.73 84.93/83.97 76.53 93.80 89.21/92.44 60.08 87.07/86.89 84.52

To evaluate the effectiveness of our approach, we fine-tuned RoBERTa (Liu et al., 2019) on the
General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019), a widely-used
suite of natural language understanding tasks. Detailed discussions for each task are provided in
Appendix E.3. Table 1 presents the performance of the various state-of-the-art algorithms and TailOPT
instantiations on the GLUE benchmark. Our results indicate that L2Clip enhances performance on
real-world data, but adaptive methods further improve upon these results, consistently outperforming
L2Clip (e.g., convergence curves in Figure 2). Notably, the clipping mechanism in TailOPT, BiClip,
demonstrates superior performance compared to L2Clip and even surpasses Adam in aggregate
during test time (c.f., Bi2Clip and Adam2), highlighting its potential as an efficient and effective
optimizer in real-world applications. Additionally, algorithmic instantiations achieving ≥ 80%
average accuracy generally employ adaptive or adaptive-approximating optimizers across all nodes.
In particular, adaptivity on the inner optimizer appears crucial for performance, as SGD-based
methods perform considerably worse (≤ 75%). By contrast, both BiClip or Adam reach ∼ 80%
even when combined with a simple averaging outer optimizer strategy.

4.3 GENERATIVE MODELS

We also evaluate TailOPT on machine translation tasks utilizing the WMT datasets, a widely used
benchmark for translation research (Foundation, 2019). Specifically, we fine-tune the T5 (Raffel et al.,
2020) generative model on the TED Talks and News Commentary parallel training datasets. The TED
Talks dataset, originally sourced from IWSLT 2017 (Cettolo et al., 2017), comprises multilingual
translations of TED Talk transcripts, while the News Commentary dataset includes parallel text from
news articles across various languages. We report both Bleu and Meteor scores across several variants
of source and target language translations in Table 2.

Discussion. For language reasoning benchmarks (i.e., GLUE datasets), the performance differences
across algorithmic instantiations are particularly pronounced. While L2 clipping is a common stabi-
lization strategy, it exhibits limited effectiveness. In contrast, coordinate-wise BiClip demonstrates
significantly better stability and performance. Moreover, frameworks aiming to utilize or mimic
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Figure 2: Convergence curves on the QNLI dataset. In (a), we see that L2Clip (one option of TailClip) can
help to improve performance under different outer optimizers. (b) demonstrates that adaptivity further helps to
mitigate the negative effects of heavy-tailed noise. In all (a-c), L2Clip performs worse than adaptive methods,
but the coordinate-wise BiClip optimizer performs comparably or even better than adaptive optimization
frameworks, manifesting Adam-like performance. We note that the Adam2 baseline, which applies Adam both
in inner and outer optimization, requires transmitting preconditioners of the same size as the model weights to
inner optimizers, resulting in substantial communication and memory overhead to deploy. By contrast, Bi2Clip
removes the necessity of preconditioner maintenance, sidestepping this bottleneck entirely.

Table 2: Evaluation results on machine translation benchmarks. Metrics reported are BLEU and METEOR
scores for various language pairs across the TED Talks and News Commentary datasets. The final column
represents the average score across all metrics for each algorithm.

Algorithm TED Talks (en-de) TED Talks (en-fr) News Commentary (en-fr) Average
BLEU METEOR BLEU METEOR BLEU METEOR

Avg + SGD 28.02 58.52 27.48 54.67 30.07 54.13 42.15
Avg + L2Clip 28.99 58.94 29.66 57.40 31.02 56.73 43.79
Bi2Clip 29.41 59.18 30.70 58.13 31.79 57.69 44.48
Adam2 28.06 58.05 30.94 57.48 30.97 55.85 43.56

adaptivity in both the inner and outer optimizers generally achieve superior results, surpassing 80%
average performance across all benchmarks. Notably, performance is highly sensitive to the choice
of inner optimizers, with SGD and L2 clipping yielding the lowest results. For machine translation
fine-tuning tasks however, the performance variance across different optimizer strategies is rela-
tively small when optimal hyperparameters are selected. An expanded table with a more extensive
evaluation is provided in Appendix F as Table 10.

In resource-constrained settings, BiClip emerges as a strong candidate, where Bi2Clip outperforms
even Adam2 and DiLoCo. While its design aims to emulate adaptivity under heavy-tailed noise,
BiClip exhibits characteristics that can interpolate between non-adaptive and adaptive methods,
capturing benefits from both without necessarily fully belonging to either paradigm (Figure 4,
Appendix F). Bi2Clip retains the same memory requirements as standard vanilla SGD, which
cements a highly resource-efficient adaptive approximation while strictly adhering to resource
constraints.

5 CONCLUSION

In this work, we introduce TailOPT, a framework for scalable and efficient heavy-tailed optimization.
We also propose theBiClip optimizer, which utilizes nearly identical memory and compute resources
to vanilla SGD yet manifests Adam-like performance. We establish convergence guarantees for our
framework and provide a thorough empirical evaluation with synthetic as well as real-world datasets.
Our experiments indicate that coordinate-wise BiClip which clips from above and below, rather than
standard L2Clip, stabilizes training under heavy-tailed noise and achieves the benefits of efficient
adaptive optimization, exceeding the state-of-the-art performance. Future work could explore the
autonomous selection of ut and dt based on initial statistics or bespoke estimators, which could
provide practical solutions. Alternatively, allowing the clipping thresholds to vary depending on
coordinate partition subsets (e.g., across tensor slices), similar to compressed preconditioners such as
SM3 (Anil et al., 2019), may further enhance performance. An extended conclusion with possible
future directions is included in Appendix B.
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A general framework for communication-efficient distributed optimization. Journal of Machine
Learning Research, 18(230):1–49, 2018.

Anuroop Sriram, Abhishek Das, Brandon M. Wood, Siddharth Goyal, and Lawrence Zitnick. Towards
training billion parameter graph neural networks for atomic simulations. International Conference
on Learning Representations, 2022.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767,
2018.

Matthew Streeter and Brendan McMahan. Less regret via online conditioning. ArXiv, 2010.

Chao Sun and Bo Chen. Distributed stochastic strongly convex optimization under heavy-tailed
noises. 2024 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and
IEEE International Conference on Robotics, Automation and Mechatronics (RAM), 2024.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. International
Conference for Learning Representations, 2019.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in Neural Information
Processing Systems, 2020.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated
optimization. arXiv preprint arXiv:2107.06917, 2021a.

Jianyu Wang, Zheng Xu, Zachary Garrett, Zachary Charles, Luyang Liu, and Gauri Joshi. Local
adaptivity in federated learning: Convergence and consistency. arXiv preprint arXiv:2106.02305,
2021b.

Weilong Wang, Yingjie Wang, Yan Huang, Chunxiao Mu, Zice Sun, Xiangrong Tong, and Zhipeng
Cai. Privacy protection federated learning system based on blockchain and edge computing in
mobile crowdsourcing. Computer Networks, 215, 2022a.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning.
International Conference on Machine Learning, 2022b.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. International Conference on Machine Learning, 2022.

Chan Wu, Hanxiao Zhang, Lin Ju, Jinjing Huang, Youshao Xiao, Zhaoxin Huan, Siyuan Li,
Fanzhuang Meng, Lei Liang, Xiaolu Zhang, et al. Rethinking memory and communication
cost for efficient large language model training. arXiv preprint arXiv:2310.06003, 2023.

Cong Xie, Oluwasanmi Koyejo, Indranil Gupta, and Haibin Lin. Local adaalter: Communication-
efficient stochastic gradient descent with adaptive learning rates. OPT2020: 12th Annual Workshop
on Optimization for Machine Learning, 2020.

Haibo Yang, Peiwen Qiu, and Jia Liu. Taming fat-tailed (heavier-tailed with potentially infinite
variance) noise in federated learning. Advances in Neural Information Processing Systems, 2022.

Shuhua Yu, Dusan Jakovetic, and Soummya Kar. Smoothed gradient clipping and error feedback for
decentralized optimization under symmetric heavy-tailed noise. Arxiv, 2024.

Angela Zhang, Lei Xing, James Zou, and Joseph C. Wu. Shifting machine learning for healthcare
from development to deployment and from models to data. Nature Biomedical Engineering, 6:
1330–1345, 2022.

11



Published as a workshop paper at MCDC - ICLR 2025

Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping algorithms for
non-convex optimization. Advances in Neural Information Processing Systems, 2020a.

Jingzhao Zhang, Sai Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and
Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural Information
Processing Systems, 2020b.

Jiujia Zhang and Ashok Cutkosky. Parameter-free regret in high probability with heavy tails. Advances
in Neural Information Processing Systems, 2022.

Xinwei Zhang, Zhiqi Bu, Zhiwei Steven Wu, , and Mingyi Hong. Differentially private sgd without
clipping bias: An error-feedback approach. International Conference on Learning Representations,
2024.

A ADDITIONAL RELATED WORKS

A.1 CHALLENGES OF TRAINING TRANSFORMERS & LLMS

Training transformers and LLMs is complicated by heavy-tailed stochastic gradient distributions with
very large variance, often theoretically and empirically modeled as Lévy α-stable processes (Ahn
et al., 2024; Nguyen et al., 2019; Simsekli et al., 2019; 2020; Gorbunov et al., 2020; Kunstner et al.,
2024; Chezhegov et al., 2024). In such settings, non-adaptive optimization methods have been
shown to destabilize during training due to the heavy-tailed nature of stochastic gradients inherent in
large-scale models (Gorbunov et al., 2020; Zhang et al., 2020b). Similarly, such gradient behaviors
also provably destabilize traditional averaging methods in distributed settings (Lee et al., 2024),
highlighting the need for novel optimization algorithms tailored to these environments.

Recent advancements have explored centralized adaptive optimization techniques and robust gra-
dient aggregation methods to mitigate the adverse effects of heavy-tailed noise, including gradient
clipping (Simsekli et al., 2019; Juditsky et al., 2019a; Gorbunov et al., 2024a; Sadiev et al., 2023;
Cutkosky & Mehta, 2021; Nguyen et al., 2023a) or adaptive clipping strategies (Chezhegov et al.,
2024). However, the complexities of handling heavy-tailed noise in distributed optimization set-
tings often prevent these algorithms and their convergence bounds from extending to scenarios with
multiple nodes training in parallel, which are essential for scalable training beyond the capacity of
individual nodes. Consequently, there remains a critical need for distributed optimization algorithms
that are both computationally efficient and inherently robust to heavy-tailed stochastic gradients,
particularly for training large-scale neural architectures. To our knowledge, developing an adaptive
distributed algorithm with local updates (i.e., allowing multiple inner optimizer updates prior to
outer optimizer synchronization) that converges under heavy-tailed stochastic gradient noise with
theoretical in-expectation convergence guarantees has remained an open challenge.

A.2 CLIPPING APPROACHES FOR STABILIZING TRAINING DYNAMICS

Due to its success in stabilizing model updates, gradient clipping has been extensively studied
empirically (Gehring et al., 2017; Merity et al., 2018; Peters et al., 2018; Mikolov, 2012) and theoret-
ically (Chezhegov et al., 2024; Zhang et al., 2020b; Menon et al., 2020; Zhang et al., 2020a; Chen
et al., 2020; Koloskova et al., 2023; Gorbunov et al., 2020; Cutkosky & Mehta, 2021). The majority
of results study the centralized setting (e.g., Liu et al. (2023b); Zhang & Cutkosky (2022); Parletta
et al. (2024); Li & Liu (2022); Puchkin et al. (2024); Nguyen et al. (2023b); Gorbunov et al. (2024a)),
as moving to the distributed setting provides significant challenges such as multiple inner optimizer
updates prior to outer optimizer synchronization. Additionally, it was shown that using a constant
clip threshold can induce gradient bias, preventing the algorithm from ever converging (Koloskova
et al., 2023; Chen et al., 2020). Therefore, some works have attempted to circumvent this issue by
debiasing via error feedback (Khirirat et al., 2023; Zhang et al., 2024). Other works in distributed
optimization have imposed strong distributional stochastic gradient structures in the analysis. For
instance, Qian et al. (2021) assume a well-behaved angular dependence between the stochastic and
deterministic gradients throughout training, and Liu et al. (2022) assumes symmetric gradient noise,
almost surely bounded stochastic gradients, as well as homogeneous data. By contrast, in the analysis
of TailOPT, we do not impose any conditions on the noise nor data distributions except for finite
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noise α-moment for some α ∈ (1, 2). This also sharpens the sensitivity of our bounds to gradient
distributions, as α may be selected as the minimal (or close to infimum) α-moment value such that
the moment is bounded. Moreover, our proposed clipping mechanism, realized as an instantiation of
TailOPT (i.e., BiClip), fundamentally differs from prior approaches by integrating per-coordinate
clipping in a nested setting. The inner optimization steps employ clipping operations to adapt to the
gradient geometry, complemented by the outer optimizers which enhance rarified signals through
adaptivity or adaptive approximations. Additionally, our algorithm and analysis accommodate local
updates and allow for potentially unbounded stochastic gradient variance.

Very recently, some results studying the dynamics of heavy-tailed clipped-SGD in the distributed
setting have been provided in the literature. The works Sun & Chen (2024); Gorbunov et al. (2024b);
Yu et al. (2024) study distributed optimization with no local updates, where global synchronization is
done after every update which has connections with batched centralized training. In particular, Sun &
Chen (2024) studies the convergence of distributed clipped-sgd in the absence global synchronization,
where smaller nodes communicate with their neighbors according to a strongly connected graph.
Under clipping of the stochastic gradients given an L2-norm constraint, projection, and averaging
weights from nearby nodes, convergence is shown for strongly convex objectives. By contrast, Yu
et al. (2024) proposes ‘smooth-clipping’ the difference between a local gradient estimator and the
local stochastic gradient (using a custom smoothed L2 clipping function), which is shown to converge
under only the integrability condition (finite first moment) for strongly convex objectives when
assuming symmetric noise distributions.

Finally, the work by Yang et al. (2022) studies the case with local updates, and is the closest in
comparison to our algorithm. There, a so-called ‘FAT-Clipping’ algorithmic framework is proven
to attain convergence under L2 clipping for heavy-tailed stochastic gradients. Two variants are
studied, clipping per every local iteration as well as clipping once prior to global synchronization.
It is shown that per-iteration clipping achieves faster speedup and better performance (evaluated in
our paper as the ‘Avg + L2Clip’ baseline in Table 1). Our proposed clipping mechanism, BiClip,
differs from these approaches by incorporating clipping in conjunction with adaptivity in a nested
setting. The clipping operations on the inner optimizers in TailOPT temper large gradient updates
while amplifying smaller ones, complemented by the outer optimizer which enhances rare covariates
through adaptive mimicry or adaptivity. An added advantage of TailOPT is significant communication
efficiency, as we do not transmit preconditioners from the inner and outer optimizers under iterative
local updates.

A.3 FEDERATED LEARNING

Federated learning (FL) is a distributed learning paradigm designed to train machine learning models
across multiple clients without requiring the transmission of raw data (McMahan et al., 2017; Li et al.,
2020a; Wang et al., 2021a). This decentralized approach is particularly relevant in privacy-sensitive
domains, such as healthcare and finance (Wang et al., 2022a; Liu et al., 2023a; Huang et al., 2019),
where data-sharing restrictions make centralized data aggregation impractical. In its basic form, FL
involves a central server that coordinates the training process by distributing a global model to a
subset of clients, which can range from a dozen in cross-silo settings (e.g., hospitals (Silva et al.,
2019), research institutions (Ramaswamy et al., 2019; Jiang et al., 2022), or datacenters (Douillard
et al., 2024; Liu et al., 2024a; Jaghouar et al., 2024)) to millions in cross-device scenarios (e.g.,
mobile phones (Li et al., 2020a)). Each client performs local updates using stochastic gradient
descent (SGD) on its own data and, after several local training steps, sends the aggregated models
back to the server. The server then averages these updates to refine the global model. This training
paradigm, commonly referred to as FedAvg, has become the foundation for many federated learning
algorithms (McMahan et al., 2017; Reddi et al., 2021; Wang et al., 2020). Despite its effectiveness,
FedAvg faces significant challenges, especially in heterogeneous environments where client data is
non-IID (Wang et al., 2021a). Cross-device settings, for example, often exhibit highly diverse data
distributions and stochastic gradients, as each client has access to only a small, biased subset of the
overall data. These issues have motivated a rich body of research aimed at analyzing the behavior
of learning algorithms under federated settings (e.g., Reddi et al. (2021)) to determine whether they
can handle the complexities of real-world federated training, particularly in the presence of data
heterogeneity and heavy-tails (Sun & Chen, 2024; Gorbunov et al., 2024b; Yu et al., 2024; Yang et al.,
2022).
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A.4 CONVERGENCE BOUNDS

In general, there are two primary types of convergence bounds: in-probability bounds (Juditsky et al.,
2019b; Davis et al., 2021; Gorbunov et al., 2022; 2020; Sadiev et al., 2023; Cutkosky & Mehta, 2021;
Gorbunov et al., 2024a;b) and in-expectation bounds (Wang et al., 2022b; Li et al., 2020b; Reddi et al.,
2021; Xie et al., 2020; Wang et al., 2020; Karimireddy et al., 2021; Li et al., 2023; 2022). Each type
has distinct characteristics that complement the other. In-probability bounds provide an upper limit
on the number of timesteps required to achieve model parameters x such that P{M(x) ≤ ε} ≥ 1− δ
for a given evaluation metric M(x) (e.g., mint∈1,...,T |∇F (xt)|). Here, δ represents the failure
probability, or confidence level, of the bound. As δ → 0+, the required communication complexity
or number of timesteps diverges, as expected. The key challenge is to mitigate this divergence as
effectively as possible through novel algorithm designs or refined mathematical analysis, such as by
deriving a polylogarithmic dependence on δ rather than a more severe inverse power-law dependence.

By contrast, in-expectation bounds complement in-probability bounds by ensuring that convergence
to an optimal point is guaranteed under expectations, without a confidence level that determines the
success or failure of the algorithm. However, the majority of such analyses assume a bounded noise
variance, typically denoted by an upper bound G or σ, which appears as constants in the upper bound
of the communication complexity required for convergence (Gorbunov et al., 2020; Parletta et al.,
2024; Li & Liu, 2022). Relaxing this assumption is particularly challenging because unbounded
noise adds significant uncertainty to controlling model updates, as stochastic gradients with infinite
variance interfere with taking expectations. Due to this dependence, some works (e.g., those studying
high-probability results (Davis et al., 2021; Gorbunov et al., 2020; 2024a)) argue that in-expectation
bounds are insensitive to the underlying distributional structures of the stochastic gradients, due to
being compressed or approximated away by G. Furthermore, works such as (Lee et al., 2024) have
demonstrated that under stochastic gradient descent, unbounded noise is instantaneously transmitted
to the model parameters in both centralized and distributed settings, leading to severe instability
and ensuring divergence in expectation. Such results elucidate the additional difficulties induced by
efforts to remove the bounded gradient condition.

A recent work by Sadiev et al. (2023) provides the first high-probability results under unbounded
variance for clipped-SGD applied to star-convex or quasi-convex objectives in a distributed setting
without local updates. Their analysis reveals an inverse logarithmic dependence on the confidence
level, prompting the question of what happens as δ approaches zero: will the method stabilize or
diverge? This naturally motivates a broader inquiry—can we derive in-expectation results without
the bounded variance assumption, with local updates, providing a complementary counterpart to
the high-probability bounds? In this paper, we affirmatively answer this question by studying the
dynamics of TailOPT under heavy-tailed stochastic gradient distributions. Specifically, we provide
the in-expectation convergence guarantees under infinite variance and delayed synchronization,
offering novel bounds that are more sensitive to distributional structures of mini-batch noise. Unlike
traditional in-expectation bounds, which rely on the bounded noise variance G, our bounds are based
on α-moment conditions for α ∈ (1, 2). Our analysis is carried out in the distributed setting with
local updates, ensuring communication efficiency.

B FUTURE DIRECTIONS AND POSSIBLE EXTENSIONS

Efficient estimation of the clipping thresholds dt and ut in BiClip remains an open avenue for
research. One potential approach is to segment the thresholds into coordinate subsets (e.g., row-wise
or column-wise), similar to the memory-efficient partitioning strategies employed in approximate
optimizers such as SM3 (Anil et al., 2019). Alternatively, autonomous selection of ut and dt based
on initial statistics or bespoke estimators could provide practical solutions. Our experiments indicate
that coordinate-wise BiClip, rather than standard L2 clipping, achieves the benefits of adaptive
optimization without incurring any additional memory overhead compared to SGD. Notably, methods
like Adam at least double memory usage, whereas BiClip maintains parity with non-adaptive
methods. This suggests that uniformly amplifying small updates can contribute to optimization
efficiency. Furthermore, layer-wise BiClip can be readily generalized, with proofs extending
straightforwardly.

The challenges posed by heavy-tailed noise are further exacerbated in settings with non-IID data
shards and diverse tokenization strategies, which introduce additional variability in gradient distribu-
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tions. These challenges have catalyzed a growing body of research aimed at developing algorithms
that provably converge under heavy-tailed conditions. Establishing a robust theoretical framework
for such algorithms is critical for aligning with the optimization dynamics observed in modern archi-
tectures, such as transformers, where heavy-tailedness is a prominent characteristic. Our framework
is also closely related to, and has applications in, federated learning. We provide a self-contained
literature review in Appendix A.

Another interesting direction for future work is incorporating Adam on top of BiClip instead of L2

clipping to enhance stability. Notably, when each inner optimizer synthesizes a single data point, this
approach effectively reduces to centralized batched Adam-BiClip. Thus, another potential extension
is to apply BiClip before passing updates to the adaptive optimizer, both at the inner optimizer,
which could improve stability while potentially reducing reliance on the adaptivity parameter.

C CONVERGENCE OF THE TAILOPT FRAMEWORK

For the convenience of any interested readers, we provide a quick summary and overview of a
selection of upcoming convergence results provided in the appendix. We carry out our analysis where
the model weights xt ∈ X are contained within a sufficiently large, compact set X ⊂ Rd. In such
settings, finding the global minimum is known to be NP-Hard, and the standard convergence metric is
the stabilization of the minimum gradient (Liu et al., 2022). We then obtain the following theorems,
where the pseudocode for each optimizer instantiation is detailed in Appendix D. Up to O(d), the
presented convergence bounds hold for both gradient-wise L2 clipping as well as coordinate-wise
clipping. Generalization to layer-wise clipping with varying thresholds specific to each layer or model
weight tensor slice is straightforward.

Theorem 1. Let assumptions 1-2 hold. Instantiate the outer optimizer in Algorithm 1 with RMSProp,
giving Algorithm 6 (RMSProp-TailClip). Let the clipping and learning rate thresholds satisfy
ηt = Θ(tω), ηtℓ = Θ(tν), dt = Θ(tγ), and ut = Θ(tζ) for the conditions

ν < min

{
−1

6
− 4

3
ζ,−1

4
− 3

2
ζ − 1

2
ω,−1

2
+ (α− 2)ζ

}
,

0 < ζ < min

{
1

4
, ω +

1

2

}
, −1

2
< ω ≤ 0,

γ < min

{
0,−ν − ζ − 1

2

}
.

Then, we have that
min
t∈[T ]

E ∥∇F (xt)∥2 ≤
6∑

i=1

Ψi,

where the Ψi are upper bounded by

Ψ1 ≤ O(T−ω+ζ− 1
2 ), Ψ2 ≤ O(Tω+2ν+3ζ+ 1

2 ),

Ψ3 ≤ O(T 4ζ+3ν+ 1
2 ),Ψ4 ≤ O(T 2ν+2ζ+ 1

2 ),

Ψ5 ≤ O(T ν+γ+ζ+ 1
2 ), Ψ6 ≤ O(T ν+(2−α)ζ+ 1

2 ),

which guarantees convergence via an inversely proportional power law decay with respect to T . Here,
the exponential moving average parameter of the second pseudogradient moment is fixed within the
range β̃2 ∈ [0, 1).

In particular, the proof of this result immediately implies the following summarizing corollary.

Corollary 1. Algorithm 6 (RMSProp-TailClip) convergences under heavy-tailed stochastic gradient
noise. The maximal convergence rate can be attained in the limit ζ → 0+ for an asymptotically
near-constant upper clip threshold ut = Θ(tζ) as O(1/

√
T ).

The full proofs of all results in this section are given in Appendix D, which holds for both convex
and non-convex functions. This achieves the state-of-the-art convergence rate of O(1/

√
T ) (Li et al.,

2024; Arjevani et al., 2023; Pillutla et al., 2024) even in the presence of heavy-tailed noise with
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local updates. We also obtain a O(1/
√
T ) rate for an alternate instantiation (Adagrad-TailClip) and

provide the exact algorithm in Algorithm 5 and convergence result in Theorem 6 of the appendix.

When deploying distributed optimization, adaptive optimizers such as Adam can considerably increase
the memory requirements on each compute node due to preconditioner storage, which matches the
model parameter tensor size. For instance, Adam2 (Wang et al., 2021b), which applies Adam across
all compute nodes, increases overhead by transmitting preconditioners from outer to inner optimizers
to maximize performance, posing significant communication and memory challenges. Algorithm 6
(RMSProp-TailClip) eliminates this bottleneck by removing both preconditioner transmission and
maintenance on all inner optimizers, while imitating adaptivity throughBiClip. This naturally intuits
the question of whether TailOPT can incorporate further efficient adaptive approximations on the
outer optimizer, while ensuring convergence under heavy-tailed noise. This motivates Bi2Clip,
which leverages BiClip at both inner and outer optimizers, retaining the benefits of adaptivity with
minimal overhead. Convergence results are given below.

Theorem 2. Let the learning rate and clipping schedules satisfy ηt = Θ(tω), ηtℓ = Θ(tν), dt =

Θ(tγ), ut = Θ(tζ), d̃t = Θ(tγ̃), and ut = Θ(tζ̃). For Bi2Clip (Algorithm 4), we have that the
minimum gradient satisfies

min
t∈[T ]

E[∥∇F (xt−1)∥2] ≲
7∑

i=1

Ψi,

where the Ψi are given

Ψ1 = O
(
T−ω−ν−1

)
, Ψ2 = O

(
Tω+2ζ̃−ν

)
, Ψ3 = O (T γ) ,

Ψ4 = O
(
T γ̃−ν

)
, Ψ5 = O

(
T (α−1)ν+(1−α)ζ̃

)
,

Ψ6 = O
(
T (1−α)ζ

)
, Ψ7 = O

(
T ν+ζ

)
.

To attain convergence, we impose ζ, ζ̃ > 0 > γ, γ̃, for ω, ν ≤ 0, as well as the following conditions

−1 < ω + ν, ν + ζ < 0, max{ω + 2ζ̃, γ̃} < ν.

Then, Bi2Clip converges with maximal rate at least O(T−r), where for ε̃ ∈ (0, 1/8) and α > 1,

r := min

{
(α− 1)α

4
, ε̃,

α− 1

4
− (1− α)(1

8
− ε̃)

}
.

This gives the following corollary.

Corollary 2. Algorithm 4 (Bi2Clip) converges with respect to heavy-tailed stochastic gradient noise
(α > 1). For instance, if the moment is further constrained by α > 1.5, the algorithm converges with
a maximal rate of at least O(T−r) for r = 1/8.

Similar to RMSProp-TailClip, the results hold for both convex and non-convex functions as long as
the assumptions are satisfied. The convergence rate given in Corollary 2 represents a lower bound
on the maximal achievable rate, obtained by a fixed selection of hyperparameters. Interestingly, our
empirical results demonstrate that Bi2Clip outperforms other methods, suggesting that the current
convergence bounds could be further refined.

Discussion. To ensure convergence and mitigate bias in the derived bound, it is necessary for the
upper clipping threshold ut →∞ and the lower clipping threshold dt → 0 as t→∞, consistent with
established counterexamples that occur due to unmitigated clipping bias (Koloskova et al., 2023; Chen
et al., 2020). In cases where stochastic gradients are sampled from large-variance distributions, this
necessitates a continual warm-up phase that is continuously relaxed, akin to learning rate warm-up
schemes that conclude after a finite period (Kosson et al., 2024). This may help to explain why
learning rate warm-ups are observed to significantly improve training (Kalra & Barkeshli, 2024;
Ma & Yarats, 2021) in the presence of heavy-tailed stochastic gradients. Finally, as the maximal
bounded moment condition α approaches the integrability threshold (α = 1), or as γ nears 0−, the
convergence bound is mollified. Despite this, in our experiments, we set ν = ζ = γ = 0, which
yielded strong empirical performance. Intuitively, this setup corresponds to a continual amplification
of informative coordinates and attenuation of uninformative covariates.
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Other Instantiations and Extensions. For a brief overview, we have presented convergence re-
sults for only a subset of TailOPT algorithms in Appendix C. For a more comprehensive analysis,
Appendices D.1, D.2 provide detailed convergence bounds for Avg-L2Clip, and Appendices D.3-D.6
include additional convergence analyses and precise pseudocodes for various (adaptive) instantiations
of the TailOPT framework incorporating Adagrad, RMSProp, or Adam. Convergence results for cer-
tain instantiations are also extended to allow for node drop or failures at each round (Appendix D.2).

D CONVERGENCE OF TAILOPT

In this section, we rigorously analyze the convergence of TailOPT under heavy-tailed noise, beginning
with the simpler case of Avg-L2Clip to enhance readability before progressively advancing to more
sophisticated TailOPT variants incorporating BiClip and other adaptive outer optimizers. We first
establish the foundational convergence proof for Avg-L2Clip in Appendix D.1, which serves as the
basis for subsequent analyses. The proof for Avg-L2Clip studies a virtual history of model weights
synthesized by inner optimizers, which is inaccessible in real-world settings except when the model
updates are communicated to the outer optimizer. However, by analyzing the virtual history, we
are able to attain convergence of a moving average of accessible model weights to the optimum,
which can be materialized in practice. In Appendix D.2, we extend this proof to settings with partial
participation and failing compute nodes, examining the resulting dynamics under heavy-tailed noise.

In Appendix D.3, we further generalize the analysis to the Bi2Clip instantiation, where BiClip is
applied to both the inner and outer optimizers. Notably, Bi2Clip encompasses Avg-BiClip as a
special case under specific hyperparameter choices, which in turn subsumes Avg-L2Clip. Finally, in
Appendices D.4, D.5, and D.6, we investigate the convergence properties of TailOPT when the outer
optimizer is instantiated with Adagrad, RMSProp, and Adam, respectively.

D.1 CONVERGENCE OF AVG-L2Clip

We aim to model contemporary, large-scale neural network training across multiple powerful compute
nodes (datacenters or GPU clusters), in which data is typically preprocessed IID to optimize for
training. However, for fullest generality, we conduct our theoretical analysis in the more challenging,
non-IID setting. Our setup is identical to Section 2, with some added notation. We denote x∗ to
represent the global optimum of F (x) with a minimum value F ∗ = F (x∗), and additionally, we let
x∗i be the global optimum of Fi(x) = Eξ[Fi(x, ξ)], with a minimum value F ∗

i = F (x∗i ).

For model weight or stochastic gradient averages, we use the following notation

xt =

N∑
i=1

pix
t
i,0, gt =

N∑
i=1

pi · Clip(ct,∇Fi

(
xti,0, ξ

t
i,0

)
), Clip(c, y) := min

{
1,

c

∥y∥

}
y.

The use of the notation xti,0 instead of xti carefully reflects the flow of the proof, which studies a
‘virtual synchronization’ of the model weights synthesized by the inner optimizer at each time t ∈ [T ]
(see Algorithm 2). In other words, we first analyze the virtual average xt which is not materially
realized except at outer optimizer synchronization steps, before modifying the proof to procure a
moving average of weights which is solely dependent on those communicated to the outer optimizer,
which can now be obtained.

We now present some assumptions used in the convergence analysis for this section. We take the
model weight projection domain to be X = B(0, B) ⊂ Rd, where B(0, B) is the closed ball centered
at the origin with radius B. Clearly, B > 0 needs to be large enough to contain x∗, x∗i ∈ X for
convergence. However, we note that the convergence analysis holds for X any large enough compact,
convex set.

Assumption 3 (µ-strong convexity). For all x, y ∈ X and i ∈ [N ], Fi(x) satisfies Fi(x) ≥
Fi(y) + ⟨x− y,∇Fi(y)⟩+ µi∥x− y∥2/2.

One motivation behind Assumption 3 is that while the optimization of DNNs is a non-convex
problem Choromanska et al. (2015), Goodfellow et al. (2015) observe that loss surfaces are often
approximately convex in practice, over a single optimization trajectory. Additionally, modern training
paradigms, such as the fine-tuning of foundation models, have been empirically reported to belong to
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a shared convex loss basin Wortsman et al. (2022); Izmailov et al. (2018). We note that Proposition 1
shows that gradient perturbations do not affect dominance of nor over second order approximations,
which preserves the values of L, µ.

Gradient clipping is a widely adopted technique to stabilize model updates by mitigating the impact
of large gradients Menon et al. (2020); Zhang et al. (2020a); Chen et al. (2020); Koloskova et al.
(2023). The Clip(·) operator rescales the gradient uniformly to ensure it remains below a predefined
threshold. This procedure is mathematically equivalent to applying a dynamically adjusted, lower
learning rate when large stochastic gradients are encountered. Another related technique is projection,
which operates in the model weight space rather than the gradient space, effectively stabilizing
the model parameters themselves instead of acting on the updates. These observations motivate
Algorithm 2, which may be interpreted as dynamically modulating the learning rates as well as
backtracking toward the model origin 0 when heavy-tailed stochastic gradient updates are realized.

Algorithm 2 Avg-L2Clip

Require: Initial model x1, learning rate schedule ηt, clipping schedule ct
Synchronization timestep z ∈ Z>0, projection domain X

1: for t = 1, . . . , T do
2: for each node i ∈ [N ] do
3: Draw minibatch gradient gti,0 = ∇Fi(x

t
i,0, ξ

t
i,0)

4: xt+1
i,0 ← xti,0 − ηt · Clip(ct, gti,0)

5: end for
6: if t− 1 ∈ z · Z≥0 :

7: xt+1
i,0 ← ProjX

(∑
i∈[N ] pix

t+1
i,0

)
, for ∀i ∈ [N ]

8: end for

Theorem 3 demonstrates that distributed Avg-L2Clip converges in expectation under heavy-tailed
noise, despite potential clipping-induced bias. We also offer the first proof demonstrating convergence
under an extension of these results to accommodate failing nodes (e.g., partial datacenter participation)
for additional utility in Appendix D.2. To proceed with the analysis, we first provide a simple
proposition:

Proposition 1. If Fi(x) is µ-strongly convex (or L-smooth), then so is Fi(x, ξ) for the identical µ
(or L).

Proof. The proof is simple. By µ-strong convexity or L-smoothness, we have

Fi(x) ≥ Fi(y) + ⟨x− y,∇Fi(y)⟩+
µ

2
∥x− y∥2,

Fi(x) ≤ Fi(y) + ⟨x− y,∇Fi(y)⟩+
L

2
∥x− y∥2.

Then, note the following equations for ⟨ξ, x⟩:
⟨ξ, x⟩ ≥ ⟨ξ, y⟩+ ⟨x− y, ξ⟩,
⟨ξ, x⟩ ≤ ⟨ξ, y⟩+ ⟨x− y, ξ⟩.

Collecting these inequalities give the result.

While clipping offers the benefit of stabilization, it introduces complexities that significantly com-
plicate the convergence analysis. In particular, clipping induces a non-zero bias on the stochastic
gradients, rendering them to be no longer unbiased estimators of the true gradient. Prior work,
such as Chen et al. (2020), presents illustrative examples where using a fixed clipping threshold can
bias the gradient dynamics to the extent that the optimum is no longer a steady state, preventing
SGD from ever converging. Furthermore, unlike in previous analyses, our work also considers
scenarios involving distributions with infinite variance, where the clipping bias is exacerbated by the
presence of heavy tails. Despite these challenges, Theorem 3 demonstrates that with appropriately
chosen (increasing) clipping and (decreasing) learning rate schedules, convergence of Algorithm 2 is
nevertheless attainable in expectation.
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Theorem 3. Let Assumptions 1-3 hold, and the clipping threshold in Avg-L2Clip (Algorithm 2)
satisfy ct = cηγt for c > 0 and 1/2 > γ > 0. Decay the learning rate with schedule ηt =
r/(t + 1) for r > 2/µ, where µ = mink∈[N ] µk and L = maxk∈[N ] Lk. Then, we have for
x̃T :=

∑T
t=1 tE[xt]/T (T + 1) that

F (x̃T )− F (x∗) ≤ Ψ1 +Ψ2 +Ψ3 +Ψ4,

where

Ψ1 =
rc2T 2γ+1

(4γ + 2)T (T + 1)
,

Ψ2 =
(Mα +Bα)2c2−2α(T (2−2α)γ+1 + 1)

2(µ− 2/r)((2− 2α)γ + 1)T (T + 1)
,

Ψ3 =
c2−αrzu(Mα +Bα)LT (2−α)γ+1

(µ− 2/r)((2− α)γ + 1)T (T + 1)
,

Ψ4 =
r2c2z2u2L2(T 2γ + 1)

4γ(µ− 2/r)T (T + 1)
.

Here, we have used the notation

M =

√
max

k∈[N ],x∈X̃

2L2

µ
(Fi(x)− Fi(x∗i )), α = min

k∈[N ]
αk, B = max

k∈[N ]
Bk, u =

z + 1

2
,

where X̃ is a compact domain constructed by a uniformly closed extension of X with L2 distance∑z
t=1 rct

γ−1.

Proof. Let us bound the distance between the averaged model weights xt and the global optimum x∗.
Assume that t ∈ z · Z. We consider the following function

f(t) = ∥x∗ − ProjX (xt − ηtgt) + t(−xt + ηtgt + ProjX (xt − ηtgt))∥2,
for which

f ′(0) = 2⟨x∗ − ProjX (xt − ηtgt),−xt + ηtgt + ProjX(xt − ηtgt)⟩.
Now, consider the function

g(t) = ∥(1− t) ProjX (xt − ηtgt) + tProjX (x∗)− xt + ηtgt∥
By the projective property,

g(t) ≥ ∥ProjX(xt − ηtgt)− (xt − ηtgt)∥.
holds for t ∈ [0, 1] via convexity of X . Additionally, g(t)2 meets its minimum at t = 0. Therefore,
we have that dg(t)2/dtt=0 ≥ 0 due to g(t)2 being quadratic with respect to t. Noting that f ′(0) =
dg(t)2/dt|t=0, we have that f(t) is monotonically increasing for t ≥ 0, again due to properties of a
quadratic. Then, f(1) ≥ f(0) gives that

∥ProjX (xt − ηtgt)− x∗∥2 ≤ ∥xt − ηtgt − x∗∥2 .
Therefore, we may conclude

∥xt+1 − x∗∥2 =

∥∥∥∥∥
N∑
i=1

pi ProjX (xt − ηtgt)− x∗
∥∥∥∥∥
2

= ∥ProjX (xt − ηtgt)− x∗∥2

≤ ∥xt − ηtgt − x∗∥2 = ∥xt − x∗∥2 − 2ηt ⟨xt − x∗, gt⟩+ η2t ∥gt∥2

= ∥xt − x∗∥2−2ηt ⟨xt − x∗, gt −∇F (xt)⟩︸ ︷︷ ︸
A1

−2ηt ⟨xt − x∗,∇F (xt)⟩︸ ︷︷ ︸
A2

+ η2t ∥gt∥2︸ ︷︷ ︸
A3

.

Note that the final inequality LHS ≤ RHS also holds for t /∈ z · Z. In bounding A2, we aim to derive
a term that decays ∥xt − x∗∥2 by inducing a coefficient (1− c̃ηt) ∥xt − x∗∥2 for some c̃ > 0 to be
determined. By µ-strong convexity of F (x),

F (x∗) ≥ F (xt)− ⟨xt − x∗,∇Fi(xt)⟩+
µ

2
∥x∗ − xt∥2

=⇒ − (F (xt)− F (x∗))−
µ

2
∥xt − x∗∥2 ≥ −⟨xt − x∗,∇F (xt)⟩.
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To bound A1, we consider conditional expectations

−2ηt ⟨xt − x∗,Et[gt]−∇F (xt)⟩ ≤ 2ηt∥xt − x∗∥∥Et[gt]−∇F (xt)∥,
where Et[·] conditions on all realizations up to time t. Unraveling definitions gives

∥Et[gt]−∇F (xt)∥ = ∥
∑
i∈[N ]

pi(Et[Clip(ct,∇Fi(x
t
i,0, ξ

t
i,0))]−∇Fi(x

t
i,0) +∇Fi(x

t
i,0)−∇Fi(xt))∥

≤
∑
i∈[N ]

pi∥Et[Clip(ct,∇Fi(x
t
i,0, ξ

t
i,0))−∇Fi(x

t
i,0, ξ

t
i,0))]∥+

∑
i∈[N ]

pi∥∇Fi(x
t
i,0)−∇Fi(xt)∥

≤
∑
i∈[N ]

pi Et[∥Clip(ct,∇Fi(x
t
i,0, ξ

t
i,0))−∇Fi(x

t
i,0, ξ

t
i,0))∥]︸ ︷︷ ︸

A4

+
∑
i∈[N ]

piL∥xti,0 − xt∥,

(3)
where the second line used Jensen and triangle inequality, and the third line used L-smoothness as
well as Jensen. Now, we note that clipping biases the expectation in A4, and we seek to ease out a
measure of the clipping bias. For this purpose, we quantify the α-moment of the stochastic gradient:

2αEt

∥∥∥∥∇Fi(x) + ξti,0
2

∥∥∥∥α ≤ 2α−1
(
Et ∥∇Fi(x)∥α + Et

∥∥ξti,0∥∥α) ≤ 2α−1 (∥∇Fi(x)∥α +Bα
i ) .

Here, we have used the notation Bi <∞ for readability, but strictly speaking this is not identical to
the Bi given in Assumption 2 as α := mini∈[N ] αi. Finally, the projection in each outer optimizer
synchronization step ensures that the xti,0 remain in a compact set X̃ . Therefore, to bound gradients,
we use L-smoothness and µ-strong convexity of Fi(x) as follows:

∥∇Fi(x)∥2 ≤ L2 ∥x− x∗i ∥2 ,
where x∗i is the optimum of Fi(x). Then, convexity gives that

Fi(x) ≥ Fi(x
∗
i ) +

µ

2
∥x− x∗i ∥2,

from which we conclude

∥∇Fi(x)∥2 ≤
2L2

µ
(Fi(x)− Fi(x

∗
i )) ≤M2 := max

k∈[N ],x∈X̃

2L2

µ
(Fi(x)− Fi(x

∗
i )). (4)

Piecewise continuity of Fi(x) is clear due to the existence of∇Fi(x). Therefore,

Et

∥∥∇Fi(x
t
i,0) + ξti,0

∥∥α ≤ (Mα +Bα)

2
.

Now, note that if ∥∇Fi(x
t
i,0, ξ

t
i,0)∥ ≤ ct, clipping has no effect in A4. Thus, we focus on the case

∥∇Fi(x
t
i,0, ξ

t
i,0)∥ > ct. Additionally, clipping only downscales each stochastic gradient by a scalar,

which preserves direction. Therefore,

A4 = Et

[
∥Clip(ct,∇Fi(x

t
i,0, ξ

t
i,0))−∇Fi(x

t
i,0, ξ

t
i,0))∥ · χ

(
∥∇Fi(x

t
i,0, ξ

t
i,0)∥ > ct

)]
≤ Et

[
∥∇Fi(x

t
i,0, ξ

t
i,0)∥ · χ

(
∥∇Fi(x

t
i,0, ξ

t
i,0)∥ > ct

)]
≤ Et

[
∥∇Fi(x

t
i,0, ξ

t
i,0)∥α · ∥∇Fi(x

t
i,0, ξ

t
i,0))∥1−α · χ

(
∥∇Fi(x

t
i,0, ξ

t
i,0)∥ > ct

)]
≤ (Mα +Bα)c1−α

t .
(5)

Putting these inequalities together, we obtain as an intermediary step for a > 0:

A1 ≤ 2ηt∥xt − x∗∥((Mα +Bα)c1−α
t +

∑
i∈[N ]

piL∥xti,0 − xt∥)

≤ µaηt∥xt − x∗∥2 +
ηt
µa

((Mα +Bα)c1−α
t + L

∑
i∈[N ]

pi∥xti,0 − xt∥)2.

Thus, our next step is to ease out ∥xti,0 − xt∥ = O(ηt). For this purpose, our intuition is that the drift
in model weights from local updates are bounded by the update size, as well as by taking a maximum
of z local steps after global synchronization. Therefore, we naturally consider the timestep ts(t) of
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the latest synchronization round up to t, and observe that if the random variable X := xti,0 − xts ,
then Ek[X] = xt − xts . Noting that the variance of X is no greater than its second moment, we
proceed as follows via telescoping:

Ek[∥xti,0 − xt∥2] =
N∑
i=1

pi∥xti,0 − xt∥2 = Ek[∥X − Ek[X]∥2]

≤ Ek[∥X∥2] =
N∑
i=1

pi∥xti,0 − xts∥2

=

N∑
i=1

pi

∥∥∥∥∥∥xti,0 +
t−1∑

t̃=ts+1

(−xkt̃ + xkt̃ )− xts

∥∥∥∥∥∥
2

≤
N∑
i=1

pi(t− ts − 1)2 max
t′∈[ts,t]

η2t′∥Clip(c′t,∇Fi(x
t
i,0, ξ

t
i,0))∥2

≤
N∑
i=1

piz
2η2tsc

2
t = z2η2tsc

2
t ≤ z2u2η2t c2t .

(6)

The final inequality was obtained by noting that ηt → 0+ monotonically from above and that
ct ≥ ct−1. The above holds for all t ∈ Z≥0, as if t is a synchronization step, Ek∥xti,0 − xt∥2 = 0.
The final inequality used that the monotonic near-harmonic decay of ηt allows ηts ≤ uηt for
u = (z + 1)/2. Finally, by Cauchy-Schwartz,(

N∑
i=1

pi∥xt − xti,0∥
)2

≤
(

N∑
i=1

pi

)(
N∑
i=1

pi∥xt − xti,0∥2
)
,

from which we conclude

A1 ≤ µaηt∥xt − x∗∥2 +
ηt
µa

((Mα +Bα)c1−α
t + ηtctzuL)

2 (7)

It now remains to bound A3, which can be done straightforwardly via Jensen:

A3 = η2t ∥gt∥2 ≤ η2t
N∑
i=1

pi
∥∥Clip(ct,∇Fi

(
xti,0, ξ

t
i,0

)
)
∥∥2 ≤ η2t c2t .

Collecting all inequalities gathered thus far gives the simple form

Et[∥xt+1 − x∗∥2] ≤ (1−(1−a)µηt) ∥xt − x∗∥2−2ηt (F (xt)− F (x∗))+η2t c2t+
ηt
µa

((Mα+Bα)c1−α
t +ηtctzuL)

2,

which under tower law of expectations is amenable to telescoping. Intuitively, we want to control the
learning rate and form a quadratically decaying average on the LHS, which by Jensen and convexity
will give a desired near-optimal point. The rest is a matter of carefully easing out a rate schedule that
enables averaging, which also converges. Rearranging gives

E[F (xt)]− F (x∗) ≤
(η−1

t − (1− a)µ)
2

E[∥xt − x∗∥2]−
1

2ηt
E[∥xt+1 − x∗∥2] +

ηtc
2
t

2

+
1

2µa
((Mα +Bα)2c2−2α

t + 2(Mα +Bα)c2−α
t ηtzuL+ η2t c

2
t z

2u2L2).

(8)

Letting ηt = r/(t+ 1), a = 1− 2/(rµ) for r > 2/µ, we have

tE[F (xt)]− tF (x∗) ≤
t(t− 1)

2
E[∥xt − x∗∥2]−

(t+ 1)t

2
E[∥xt+1 − x∗∥2] +

tηtc
2
t

2

+
t

2µa
((Mα +Bα)2c2−2α

t + 2(Mα +Bα)c2−α
t ηtzuL+ η2t c

2
t z

2u2L2)
(9)
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Setting ct = ctγ for 1/2 > γ > 0, c > 0 gives after telescoping∑T
t=1 tE[F (xt)]
T (T + 1)

− F (x∗) ≤ rc2
∑T

t=1 t
2γ

2T (T + 1)
+

(Mα +Bα)2c2−2α
∑T

t=1 t
(2−2α)γ

2(µ− 2/r)T (T + 1)

+
c2−αrzu(Mα +Bα)L

∑T
t=1 t

(2−α)γ

(µ− 2/r)T (T + 1)
+
r2c2z2u2L2

∑T
t=1 t

2γ−1

2(µ− 2/r)T (T + 1)
.

Standard integral bounds give∑T
t=1 tE[F (xt)]
T (T + 1)

− F (x∗) ≤ rc2T 2γ+1

(4γ + 2)T (T + 1)
+

(Mα +Bα)2c2−2α(T (2−2α)γ+1 + 1)

2(µ− 2/r)((2− 2α)γ + 1)T (T + 1)

+
c2−αrzu(Mα +Bα)LT (2−α)γ+1

(µ− 2/r)((2− α)γ + 1)T (T + 1)
+
r2c2z2u2L2(T 2γ + 1)

4γ(µ− 2/r)T (T + 1)
.

Finally, note that by Jensen and convexity, the left hand side is lower bounded by

0 ≤ F (x̃T )− F (x∗) ≤
∑T

t=1 tE[F (xt)]
T (T + 1)

− F (x∗)

where x̃T :=
∑T

t=1 tE[xt]/T (T + 1) is a quadratically decaying average. This concludes the proof.
It is straightforward to extend to the case in which the learning rate is scheduled to decay in each
outer optimizer synchronization step instead of at each local step, by letting ηt = r/(⌈t/z⌉+ 1) in
equation equation 8.

The value of the tail-index parameter α has a significant impact on the convergence behavior. When
α is close to 1, the convergence becomes substantially slower due to the heavy-tailed nature of
the induced stochastic gradients and the increased variance they introduce. Conversely, when α
approaches 2, the variance is more controlled, leading to faster convergence rates. Importantly, our
results demonstrate that even in the presence of infinite variance (i.e., α < 2), convergence can still be
achieved, showcasing the robustness of the clipping approach under extreme heavy-tailed conditions.

The averages xt are virtual constructs used for theoretical analysis of Algorithm 2, which are not
accumulated during the execution phase. That is, these quantities are only available at the outer
optimizer synchronization steps, t ∈ z ·Z≥0, and are not collected otherwise (as models are not saved
for every local timestep prior to synchronization). As a result, the application of Avg-L2Clip creates
a virtual history on the compute node models, where the aggregation of ephemeral model weights
can theoretically induce convergence. However, in practice, this conflicts with the use of local epochs
for communication efficiency, necessitating adjustments to the convergence theorem. This leads to
the development of Corollary 3.
Corollary 3. Let the conditions of Theorem 3 hold. Then, we have that

E
[
F

(∑
t∈Z(t− 1)xt∑
t∈Z(t− 1)

)]
− F (x∗) ≤ (T + 1)z

(T − z) (ψ1 + ψ2 + ψ3 + ψ4) ,

where the ψi are defined as in the statement of Theorem 3 and Z is the set of all outer optimizer
synchronization steps.

Proof. We may start with equation equation 9, where we use the same notation as the proof of
Theorem 3. Recall that 0 ≤ F (x) − F (x∗) for all x. Therefore, we have for Z = {1, z +
1, . . . , z⌊T/z⌋+ 1} for T /∈ z · Z and Z = {1, z + 1, . . . , z(⌊T/z⌋ − 1) + 1} otherwise,∑

t∈Z

t (E[F (xt)]− F (x∗)) ≤
∑
t∈[T ]

(
t(t− 1)

2
E[∥xt − x∗∥2]−

(t+ 1)t

2
E[∥xt+1 − x∗∥2]

)

+
∑
t∈[T ]

tηtc
2
t

2
+
∑
t∈[T ]

t

2µa

(
(Mα +Bα)2c2−2α

t + 2(Mα +Bα)c2−α
t ηtzuL+ η2t c

2
t z

2u2L2
)
.

Noting that ∑
t∈Z

(t− 1) (E[F (xt)]− F (x∗)) ≤
∑
t∈Z

t (E[F (xt)]− F (x∗)) ,
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(T − z)T
2z

≤ z(⌈T/z⌉ − 1)⌈T/z⌉
2

≤ z(⌊T/z⌋+ 1)⌊T/z⌋
2

,

we obtain

E
[
F

(∑
t∈Z(t− 1)xt∑
t∈Z(t− 1)

)]
− F (x∗) ≤ (T + 1)z

(T − z) (ψ1 + ψ2 + ψ3 + ψ4) .

As before, extension to the case where the learning rate decays at each outer optimizer synchronization
step is straightforward. Therefore, the asymptotic convergence rate is identical that give in Theorem 3.

In particular, we immediately deduce the following corollary.
Corollary 4. Let the conditions of Theorem 3 hold. Then, Avg-L2Clip converges under heavy-tailed
noise with rate O(T−1/2). That is, the algorithm recovers a point x̃T which is materialized during
training such that

E[F (x̃T )]− F (x∗) ≲ O(T−1/2).

Proof. The maximal rate of convergence is immediately attained in the limit γ → 0+, where the
dominating terms are Ψi for i = 1, 2, 3.

D.2 DYNAMICS OF AVG-L2Clip UNDER FAILING COMPUTE NODES

Distributed optimization operates in two primary modes: full participation or partial participation
(known in some fields such as federated learning as cross-silo or cross-device). Full participation
distributed optimization is relevant for scenarios such as training language models in datacenters or
healthcare models across hospitals Liu et al. (2024a); Douillard et al. (2024); Huang et al. (2019); Silva
et al. (2019), where bypassing legislative geolocation restrictions enables access to larger datasets and
promotes fairer, balanced model training Zhang et al. (2022). In contrast, partial participation involves
training small-scale, personalized models on restricted compute nodes such as mobile devices Li
et al. (2020a). In such settings, local data shards are often highly heterogeneous and non-IID, leading
to diverse gradient distributions induced by the distributed outer global model weights synthesized
by the outer optimizer. Consequently, it is crucial to conduct a theoretical performance analysis of
Avg-L2Clip within environments to accommodate the presence of failing compute nodes or partial
participation.

In this setting, line 2 of Avg-L2Clip is modified to sample a subset of participating nodes, S ⊂
[N ], rather than selecting S = [N ]. Additionally, normalized averaging is performed across only
the participating compute nodes in line 7. Typically, extending the analysis from full to partial
participation introduces additional complexities due to the randomness of node subsampling and the
fact that most compute nodes remain idle. However, we can leverage elements of our previous analysis
by considering a highly resource-inefficient algorithm that mimics full participation Avg-L2Clip, in
which all compute nodes remain active. We refer to this algorithm as SludgeClip to emphasize its
impracticality, despite being functionally equivalent to Avg-L2Clip. By analyzing SludgeClip, we
are able to establish convergence of Avg-L2Clip in when several datacenters or compute nodes fail
to partake in training.
Theorem 4. Let the clipping threshold in SludgeClip (Algorithm 3) satisfy ct = cηγt for c > 0 and
1/2 > γ > 0. Decay the learning rate with schedule ηt = r/(t+ 1) for r > 2/µ. If the sampling
scheme preserves the global objective2, that is,

ES

∑
i∈[S]

piFi(x)

 =
∑
i∈[N ]

piFi(x) = F (x),

then we have for Z the set of synchronization steps up to T that

E [F (x̃′T )]− F (x∗) := E
[
F

(∑
t∈Z(t− 1)xt∑
t∈Z(t− 1)

)]
− F (x∗) ≤ z · O

(
t−ω
)
,

2For example, pi = 1/N satisfies this condition. That is, given any selection of pi and Fi(x), we may
rescale the local objectives Fi(x) such that pi = 1/N by controlling the influence of each local gradient update.
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Algorithm 3 SludgeClip
Require: Initial model x1, learning rate schedule ηt, clipping schedule ct

Synchronization timestep z ∈ Z>0, projection domain X
1: for t = 1, . . . , T do
2: Sample participating compute nodes S ⊂ [N ] according to pi
3: for each node i ∈ [N ] do
4: Draw minibatch gradient gti,0 = ∇Fi(x

t
i,0, ξ

t
i,0)

5: xkt+1 ← xkt − ηt · L2Clip(ct, g
t
i,0)

6: end for
7: if t− 1 ∈ z · Z≥0 :

8: xkt+1 ← ProjX

(
(
∑

i′∈S pi′)
−1
∑

i′∈S pi′x
i′

t+1

)
, for ∀k ∈ [N ]

9: end for

where now ω satisfies

ω = min{1− 2γ, 1− (2− 2α)γ, 1− (2− α)γ, 2− 2γ, 2γ(α− 1)}.
If the subsampling scheme fails to preserve the global objective (e.g., by sampling only a strict subset
of avaliable nodes repeatedly), then Algorithm 3 asymptotes toward biased minimizer points within
an increasing region determined by the clipping threshold E [F (x̃′T )]− F (x∗) ≲ O(t2γ).

We note that convergence is not clearly guaranteed when subsampling procedures violate the global
objective in expectation. Specifically, we evaluate the algorithm’s output relative to x∗, the global
optimum of the true objective F (x). However, when subsampling alters the objective, the algorithm
no longer optimizes for F (x), thereby clearly undermining convergence toward x∗. We then measure
the propensity of the algorithm output to x∗, the global optimum of the true objective F (x) which is
no longer the objective of the subsampled algorithm.

Proof. We first analyze the case in which the subsampling strategy preserves the correct global
objective, which allows for convergence to x∗. Recall that SludgeClip-SGD was constructed to
allow the analysis for non-synchronization steps to be analogous to full-participation Avg-L2Clip.
Therefore, we focus on outer optimizer synchronization steps while incorporating the elements of
the previous analysis for Theorem 3. We now use the following notation for subsampled averages of
participating compute node devices:

x̃t =

∑
i∈S pix

t
i,0∑

i∈S pi
, g̃t =

∑
i∈S pi · Clip(ct,∇Fi

(
xti,0, ξ

t
i,0

)
)∑

i∈S pi
.

For added clarity, we denote gt as gt to indicate that normalized averages are taken over all inner
compute nodes, and not solely participating nodes as in g̃t. Then for t+ 1 a synchronization step, we
have that

∥x̃t+1 − x∗∥2 ≤ ∥x̃t − x∗ − ηtg̃t∥2 = ∥xt + (x̃t − xt)− x∗ − ηtg̃t + (ηtgt − ηtgt)∥2

= ∥xt − x∗∥2 + 2⟨xt − x∗, x̃t − xt − ηtg̃t + (ηtgt − ηtgt)︸ ︷︷ ︸
B1

⟩+B2
1

≤ ∥xt − x∗∥2−2ηt ⟨xt − x∗, gt −∇F (xt)⟩︸ ︷︷ ︸
A1

−2ηt ⟨xt − x∗,∇F (xt)⟩︸ ︷︷ ︸
A2

+2⟨xt − x∗, x̃t − xt⟩︸ ︷︷ ︸
B2

+2ηt⟨xt − x∗, gt − g̃t⟩︸ ︷︷ ︸
B3

+ ∥x̃t − xt − ηtg̃t∥2︸ ︷︷ ︸
B4

.

In this form, the Ai terms are therefore shared with the previous analysis, and A2 may be bounded by
µ-strong convexity as before. This gives that

A2 ≤ −µηt∥xt − x∗∥2 − 2ηt (F (xt)− F (x∗)) .
A1 is once again bounded under conditional expectations Et[·] by equation equation 7, though with a
different value of a′ > 0 than in the previous proof,

A1 ≤ µa′ηt∥xt − x∗∥2 +
ηt
µa′

((Mα +Bα)c1−α
t + ηtctzuL)

2. (7)
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Now, as B2 is eliminated under expectations under subsampling, we focus on the remaining terms. It
is clear that we must bound and ∥gt − g̃t∥ to proceed. Intuitively, this is controlled by normalized
averages and model drift across participating nodes. Therefore, we consider the nearest or most
recent synchronization timestep ts(t) as before and rearrange to incorporate elements of our previous
analysis. Assuming interchangeability between the integrals ES (integrating over the randomness of
node subsampling) and Et (integrating over randomness of ξti,0),

∥Et [ES [g̃t]− gt] ∥ =
∥∥∥∥∥Et

[
ES

[∑
i∈S

pi∑
i′∈S pi′

(Clip(ct,∇Fi

(
xti,0, ξ

t
i,0

)
)−∇Fi(xt))

]
− (gt −∇F (xt))

]∥∥∥∥∥
=

∥∥∥∥∥ES

[
Et

[∑
i∈S

pi∑
i′∈S pi′

(Clip(ct,∇Fi

(
xti,0, ξ

t
i,0

)
)−∇Fi(xt, ξ

t
i,0))

]]
− Et [gt −∇F (xt)]

∥∥∥∥∥
≤ ES

[∑
i∈S

pi∑
i′∈S pi′

Et[
∥∥Clip(ct,∇Fi

(
xti,0, ξ

t
i,0

)
)−∇Fi(xt, ξ

t
i,0)
∥∥]]+ Et[∥gt −∇F (xt)∥] ≤ 2(Mα +Bα)c1−α

t

where to obtain the final line we used Jensen and an analogous reasoning as in equation equation 5.

Therefore, we have for b > 0 that

B3 ≤ bηt∥xt − x∗∥2 + 4ηt(M
α +Bα)2c

2(1−α)
t .

It now remains to bound B4, which can be done straightforwardly:

B4 ≤ 2 ∥x̃t − xt∥2 + 2η2t ∥g̃t∥2 ≤ 4z2u2η2t c
2
t + 2η2t c

2
t .

Collecting all inequalities gathered under the tower law of expectation, we have

E[∥x̃t+1 − x∗∥2] ≤ (1− ((1− a)µ+ b)ηt)E[∥xt − x∗∥2]− 2ηtE [F (xt)− F (x∗)]
+
ηt
µa

((Mα +Bα)c1−α
t + ηtctzuL)

2 + 4z2u2η2t c
2
t + 2η2t c

2
t + 4ηt(M

α +Bα)2c
2(1−α)
t .

Recall the learning rate schedule ηt = r/(t+ 1), while setting a′, b such that r((1− a′)µ+ b) = 2.
Then, we have for Z the set of all synchronization steps,∑
t+1∈Z

t(E[F (xt)]− F (x∗)) ≤
∑

t+1∈Z

[
t(t− 1)

2
E[∥xt − x∗∥2]−

(t+ 1)t

2
E[∥x̃t+1 − x∗∥2]

]
+
∑

t+1∈Z

2(Mα +Bα)2tc
2(1−α)
t︸ ︷︷ ︸

B5

+
∑

t+1∈Z

1

2µa
((Mα +Bα)c1−α

t + ηtctzuL)
2

︸ ︷︷ ︸
∼Ψ2+Ψ3+Ψ4

+
∑

t+1∈Z

tηtc
2
t (2z

2u2 + 1)︸ ︷︷ ︸
∼Ψ1

.

For t + 1 /∈ Z, we use the standard telescoping sum in equation equation 9 while noting that
x̃t+1 = xt+1 due to the synchronization step. We do not repeat mechanical calculation steps here to
not obscure the intuitions behind the proof, and instead indicate asympototically equivalent terms
to Ψi under 1/(T 2 + T ) averaging on the right hand side. It remains to bound the residual term B5

under the averaging step, which gives

B5

T (T + 1)
≲ O(t2γ(1−α)),

which concludes the proof for the first case.

In the setting in which the subsampling procedure fails to preserve the global objective, we bound
∥x̃t − xt∥ as follows:

∥x̃t − xt∥ =

∥∥∥∥∥∥
∑
i∈[S]

(∑
k̃ /∈[S] pk̃∑
i′∈[S] pi′

)
pix

t
i,0 −

∑
i/∈[S]

pix
t
i,0

∥∥∥∥∥∥
≤
∑
i∈[S]

(∑
k̃ /∈[S] pk̃∑
i′∈[S] pi′

)
pi∥xti,0 − xts∥+

∑
i/∈[S]

pi∥xti,0 − xts∥ ≤ 2zuηtct,
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due to triangle inequality and Jensen. That is, by the synchronization step, we have xkts = xts ,
∀k ∈ [N ] via to full available node activation in SludgeClip. This gives

∥xti,0 − xts∥ =
∥∥∥∥∥xti,0 +

t−1∑
t′=ts+1

(−xkt′ + xkt′)− xts

∥∥∥∥∥ ≤
t−1∑

t′=ts+1

∥xkt′ − xkt′−1∥ ≤ zuηtct

as in equation equation 6. Similarly, we have by Jensen and convexity of the norm that
∥g̃t − gt∥ ≤ 2ct.

Therefore, we obtain for b1, b2 > 0

B2 ≤ b1ηt∥xt − x∗∥2 +
1

b1ηt
∥x̃t − xt∥2 ≤ b1ηt∥xt − x∗∥2 +

2z2u2c2tηt
b1

,

B3 ≤ b2ηt∥xt − x∗∥2 + 4ηtc
2
t .

Following analogous calculations as in the case where the subsampling does not violate the global
objective, we arrive at a new residual term

B6

T (T + 1)
≲ O(t2γ),

which controls the expansion of the bias due to the incorrect sampling strategy.

D.3 CONVERGENCE OF Bi2Clip

In this section, we analyze the convergence of Bi2Clip under heavy-tailed noise. By employing
BiClip at both the inner and outer optimizers, Bi2Clip can represent a highly competitive algorithm
realized by TailOPT that utilizes adaptive mimicry, aiming to adjust to gradient distributional statistics
while strictly maintaining resource efficiency. Unlike Adam2, which applies Adam at both the inner
and outer optimizers, Bi2Clip achieves comparable empirical performance while requiring no
additional memory or computational overhead beyond standard SGD (Table 1). This highlights
its efficiency and practicality, particularly in resource-constrained settings. We begin with the
pseudocode for Bi2Clip, Algorithm 4.

Algorithm 4 Bi2Clip

Require: Initial model x1, learning rate schedule ηt, clipping schedules ut, dt, ũt, d̃t
Synchronization timestep z ∈ Z>0

1: for t = 1, . . . , T do
2: for each node i ∈ [N ] in parallel do
3: xti,0 ← xt
4: for each local step k ∈ [z] do
5: Draw minibatch gradient gti,k = ∇Fi(x

t
i,k, ξ

t
i,k)

6: xt+1
i,k ← xti,k − ηt ·BiClip(ut, dt, gti,k)

7: end for
8: end for
9: ∆t =

1
N

∑
i∈[N ]

(
xti,z − xt−1

)
, m̃t ← ∆t

10: xt = xt−1 + ηBiClip(ũt, d̃t, m̃t)
11: end for

Bounded domain. We carry out the analysis over a sufficiently large, compact domain X . Let
∇F (x) be the deterministic gradient, obtained by integrating over∇F (x, ξ), the stochastic gradient
with a heavy-tailed distribution. The existence of ∇F (x) implies F (x) is continuous, which gives
boundedness via the extremal value theorem. Therefore, from now onward, we formally assume
∇F (x) is coordinatewise bounded by G in absolute value. We have the following theorem.
Theorem 5. Let assumptions 1-2 hold, and the learning rate and clipping schedules satisfy ηt =
Θ(tω), ηtℓ = Θ(tν), dt = Θ(tγ), ut = Θ(tζ), d̃t = Θ(tγ̃), and ut = Θ(tζ̃). Imposing ζ, ζ̃ > 0 >
γ, γ̃, for ω, ν ≤ 0, as well as the following conditions

−1 < ω + ν, ν + ζ < 0, max{ω + 2ζ̃, γ̃} < ν,
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for Bi2Clip (Algorithm 4), we have that

min
t∈[T ]

E[∥∇F (xt−1)∥2] ≲ Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5 +Ψ6 +Ψ7,

where the Ψi are given

Ψ1 = O
(
T−ω−ν−1

)
, Ψ2 = O

(
Tω+2ζ̃−ν

)
, Ψ3 = O

(
T γ̃−ν

)
, Ψ4 = O (T γ) ,

Ψ5 = O
(
T (α−1)ν+(1−α)ζ̃

)
, Ψ6 = O

(
T (1−α)ζ

)
, Ψ7 = O

(
T ν+ζ

)
.

Proof. We provide the proof for L2-wise BiClip(·) for illustrative purposes and notational conve-
nience. The extension to coordinate-wise BiClip(·) is straightforward as described in the comments
following the proof of Theorem 6, Remark 2. For completeness and readability, we formally provide
the definition of L2-wise BiClip(·) as

BiClip(ut, dt, x) = x · dt∥x∥ χ (∥x∥ ≤ dt)

+ x · ut∥x∥ χ (∥x∥ ≥ ut) + x · χ (dt < ∥x∥ < ut) .

Here, χ is the indicator function, and ut ≥ dt ≥ 0 are the clipping thresholds. By default, we take
a/0 := 0 for ∀a ∈ R. Now, we begin by noting that due to L-smoothness, we have where Et[ · ]
takes expectation up to xt−1 that

Et[F (xt)]− F (xt−1) ≤ ⟨∇F (xt−1),Et[xt − xt−1]⟩+
L

2
Et[∥xt − xt−1∥2]

≤ ηt
〈
∇F (xt−1),−Et[BiClip(ũt, d̃t,−∆t)]

〉
︸ ︷︷ ︸

A1

+
Lη2t
2

Et

[∥∥∥BiClip(ũt, d̃t,∆t)
∥∥∥2] .

Now, we expand to obtain the following form

A1 = −
〈
∇F (xt−1),Et[BiClip(ũt, d̃t,−∆t)±∆t]∓ ηtℓ

∑
i∈[N ]

∑
ν∈[K]−1

piEt[∇Fi(x
t
i,ν)]∓Kηtℓ∇F (xt−1)

〉

= −
〈
∇F (xt−1),Et[BiClip(ũt, d̃t,−∆t) + ∆t]

〉
︸ ︷︷ ︸

B1

−
〈
∇F (xt−1),−ηtℓ

∑
i∈[N ]

∑
ν∈[K]−1

piEt[∇Fi(x
t
i,ν)]− Et[∆t]

〉
︸ ︷︷ ︸

B2

−
〈
∇F (xt−1), η

t
ℓ

∑
i∈[N ]

∑
ν∈[K]−1

piEt[∇Fi(x
t
i,ν)]−Kηtℓ∇F (xt−1)

〉
︸ ︷︷ ︸

B3

−Kηtℓ∥∇F (xt−1)∥2.

Using the convexity of compositions (via α ≥ 1) and Jensen, we deduce

Et[∥∆t∥α] = Et[∥ηtℓ
∑
i∈[N ]

∑
ν∈[K]−1

pi ·BiClip(ut, dt,∇Fi(x
t
i,ν , ξ

t
i,ν))∥α]

≤ (ηtℓ)
αKαEt

∥∥∥∥∥∥ 1

K
·
∑
i∈[N ]

∑
ν∈[K]−1

pi ·BiClip(ut, dt,∇Fi(x
t
i,ν , ξ

t
i,ν))

∥∥∥∥∥∥
α

≤ (ηtℓ)
αKα−1

∑
i∈[N ]

∑
ν∈[K]−1

piEt[∥BiClip(ut, dt,∇Fi(x
t
i,ν , ξ

t
i,ν))∥α]

≤ (ηtℓ)
αKα−1

∑
i∈[N ]

∑
ν∈[K]−1

pi(d
α
t + Et[∥∇Fi(x

t
i,ν , ξ

t
i,ν)∥α])

≤ (ηtℓ)
αKα−1

∑
i∈[N ]

∑
ν∈[K]−1

pid
α
t + (ηtℓ)

αKα−1
∑
i∈[N ]

∑
ν∈[K]−1

piEt[∥∇Fi(x
t
i,ν , ξ

t
i,ν)∥α]︸ ︷︷ ︸

C

.
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Note that the term C can be bounded as

C ≤ (ηtℓ)
αKα−1

∑
i∈[N ]

∑
ν∈[K]−1

pi2
αEt

[∥∥∇Fi(x
t
i,v)
∥∥α

2
+

∥∥ξti,v∥∥α
2

]

≤ (ηtℓ)
αKα−1

∑
i∈[N ]

∑
ν∈[K]−1

pi2
α−1(Mα +Bα) = (ηtℓ)

αKα−1
∑

ν∈[K]−1

2α−1(Mα +Bα),

where M := maxx∈X ,i∈[N ] ∥∇Fi(x)∥ and Bα := maxi∈[N ], ν∈[K]−1 Et[∥ξti,v∥α] ≤
supi∈[N ](Bi)

αi . We note that this results holds also under distribution shift for the stochastic noise
ξti , where t ∈ [T ] and i ∈ [N ], as long as the α-moment remains universally bounded. Therefore, we
conclude

Et[∥∆t∥α] ≤ (ηtℓ)
αKα−1

∑
ν∈[K]−1

dαt + (ηtℓ)
αKα−12α−1

∑
ν∈[K]−1

(Mα +Bα) =: (ηtℓ)
αM̃.

This gives by the Cauchy-Schwartz inequality that

B1 ≤ ∥∇F (xt−1)∥∥Et[BiClip(ũt, d̃t,−∆t)] + ∆t∥
≤ G · Et[χ(∥∆t∥ ≤ d̃t) d̃t + χ (ũt ≤ ∥∆t∥) ∥∆t∥α∥∆t∥1−α]

≤ G
[
P(∥∆t∥ ≤ d̃t) d̃t + P (ũt ≤ ∥∆t∥) (ηtℓ)αũ1−α

t M̃
]
.

Now, B2 may be bounded as follows:

B2 ≤ G

∥∥∥∥∥∥ηtℓ
∑
i∈[N ]

∑
ν∈[K]−1

piEt[∇Fi(x
t
i,ν)] + Et[∆t]

∥∥∥∥∥∥
= G

∥∥∥∥∥∥Et[η
t
ℓ

∑
i∈[N ]

∑
ν∈[K]−1

pi∇Fi(x
t
i,ν , ξ

t
i,ν) + ∆t]

∥∥∥∥∥∥
≤ GEt

∥∥∥∥∥∥ηtℓ
∑
i∈[N ]

∑
ν∈[K]−1

pi∇Fi(x
t
i,ν , ξ

t
i,ν) + ∆t

∥∥∥∥∥∥
 ,

where we used convexity, Jensen, and that the stochastic gradient noise is unbiased. Unraveling the
definition of the pseudogradient ∆t gives

B2 ≤ GηtℓEt

∥∥∥∥∥∥
∑
i∈[N ]

∑
ν∈[K]−1

pi∇Fi(x
t
i,ν , ξ

t
i,ν)−

∑
i∈[N ]

∑
ν∈[K]−1

piBiClip(ut, dt,∇Fi(x
t
i,ν , ξ

t
i,ν))

∥∥∥∥∥∥


≤ Gηtℓ
∑
i∈[N ]

∑
ν∈[K]−1

piEt

[∥∥∇Fi(x
t
i,ν , ξ

t
i,ν)−BiClip(ut, dt,∇Fi(x

t
i,ν , ξ

t
i,ν))

∥∥]
≤ Gηtℓ

∑
i∈[N ]

∑
ν∈[K]−1

pi
[
dtP(∥∇Fi(x

t
i,ν , ξ

t
i,ν)∥ ≤ dt) + P(∥∇Fi(x

t
i,ν , ξ

t
i,ν)∥ ≥ ut)u1−α

t 2α−1(Mα +Bα)
]

≤ Gηtℓ
∑

ν∈[K]−1

[
dt + u1−α

t 2α−1(Mα +Bα)
]
.
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Additionally, B3 may be bounded via L-smoothness and telescoping:

B3 ≤ ηtℓG

∥∥∥∥∥∥
∑
i∈[N ]

∑
ν∈[K]−1

pi∇Fi(x
t
i,ν)−K∇F (xt−1)

∥∥∥∥∥∥
≤ ηtℓG

∥∥∥∥∥∥
∑
i∈[N ]

∑
ν∈[K]−1

pi∇Fi(x
t
i,ν)−

∑
i∈[N ]

∑
ν∈[K]−1

pi∇Fi(x
t
i,0)

∥∥∥∥∥∥
≤ ηtℓG

∑
i∈[N ]

∑
ν∈[K]−1

piL∥xti,ν − xti,0∥

≤ ηtℓG
∑
i∈[N ]

∑
ν∈[K]−1

piL

∥∥∥∥∥xti,ν +

v−1∑
r=1

(xti,r − xti,r)− xti,0

∥∥∥∥∥
≤ ηtℓGL

∑
i∈[N ]

pi ·

 ∑
ν∈[K]−1

v−1∑
r=1

∥xti,r − xti,r−1∥

 ≤ (ηtℓ)
2GLK2ut

2
.

Collecting all inequalities gathered thus far, we have

Et[F (xt)]− F (xt−1) ≤
Lη2t ũ

2
t

2
−Kηtℓηt∥∇F (xt−1)∥2 +Gηtd̃t +Gηt(η

t
ℓ)

αũ1−α
t M̃

+Gηtℓηt
∑

ν∈[K]−1

[
dt + u1−α

t 2α−1(Mα +Bα)
]
+
ηt(η

t
ℓ)

2GLK2ut
2

.

Telescoping under the law of iterated expectations gives∑
t∈[T ]

KηtℓηtE[∥∇F (xt−1)∥2] ≤ F (x0)− E[F (xT )] +
∑
t∈[T ]

(
Lη2t ũ

2
t

2
+Gηtd̃t +Gηt(η

t
ℓ)

αũ1−α
t M̃

)

+G
∑
t∈[T ]

ηtℓηt
∑

ν∈[K]−1

[
dt + u1−α

t 2α−1(Mα +Bα)
]
+
∑
t∈[T ]

ηt(η
t
ℓ)

2GLK2ut
2

.

Now, we move to the asymptotic regime. Let ηt = Θ(tω), ηtℓ = Θ(tν), dt = Θ(tγ), ut = Θ(tζ),
d̃t = Θ(tγ̃), and ut = Θ(tζ̃). This gives after routine calculations that

min
t∈[T ]

E[∥∇F (xt−1)∥2] ≲ O
(
T−ω−ν−1 + Tω+2ζ̃−ν + T γ̃−ν + T (α−1)ν+(1−α)ζ̃ + T γ + T (1−α)ζ + T ν+ζ

)
.

To attain convergence of the RHS, it is clear that we must impose ζ, ζ̃ > 0 > γ, γ̃, for ω, ν ≤ 0.
Additionally, we have further constrained

−1 < ω + ν, ν + ζ < 0, max{ω + 2ζ̃, γ̃} < ν,

which ensures that the LHS diverges at a scale faster than logarithmic, validating the asymptotic
regime and concluding the proof. To obtain the rate of convergence, we may let for ε̃ ∈ (0, 1/8),

ω = −1

2
, ν = −1

4
, ζ̃ =

1

8
− ε̃, γ̃ = −1

8
− ε̃, ζ =

α(1− α)
4

.

This gives that Bi2Clip converges with maximal rate at least O(T−r), where for ε̃ ∈ (0, 1/8) and
α > 1,

r := min

{
(α− 1)α

4
, ε̃,

α− 1

4
− (1− α)(1

8
− ε̃)

}
.

Remark 1. We note that setting d̃t = 0, ũt = ∞, and ηt = 1 recovers the simple averaging
operation that can be done at the outer optimizer as a special case of Bi2Clip, procuring Avg-
BiClip. Therefore, one perspective of viewing Bi2Clip may be the addition of computation and
memory efficient adaptive mimicry into traditional SGD-Averaging distributed training frameworks,
that aims to dynamically adjust to the gradient distributional geometry. Similarly, for specific
hyperparameter choices, Bi2Clip collapses into BiClip-SGD, with upper and lower thresholding
applied by the outer optimizers only to accumulated model updates from the inner compute nodes.
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Now, in the following subsections, we further analyze the convergence behavior of TailOPT under
additional varying adaptive optimizer instantiations. The Adagrad instantiation (Algorithm 5) col-
lects pseudogradients and sums their squares, effectively implementing a form of implicit clipping.
However, it aggressively decays coordinate-wise learning rates, which can limit performance. To
address this, we introduce RMSProp-TailClip (Algorithm 6), which relaxes the preconditioning by
employing an exponentially decaying moving average of the second moment. In both cases, we prove
that the minimum expected gradient converges to 0. Additionally, by incorporating a moving average
of the first pseudogradient moment as a form of momentum, we derive Algorithm 7. For this variant,
we show that the expected minimal gradient does not diverge even under restarting of the algorithm,
which in practice translates to the update of any singular step not diverging in expectation. As in the
main paper, TailClip refers to either BiClip or L2Clip, and we provide our proofs for BiClip for
added generality over L2Clip.

D.4 CONVERGENCE OF ADAGRAD-TailClip

We begin by providing the pseudocode of Adagrad-TailClip (Algorithm 5). Then, we have the
following result.

Algorithm 5 Adagrad-TailClip

Require: Initial model x1, learning rate schedule ηt, clipping schedules ut, dt
Synchronization timestep z ∈ Z>0, adaptivity parameter τ > 0

1: for t = 1, . . . , T do
2: for each node i ∈ [N ] in parallel do
3: xti,0 ← xt
4: for each local step k ∈ [z] do
5: Draw minibatch gradient gti,k = ∇Fi(x

t
i,k, ξ

t
i,k)

6: xt+1
i,k ← xti,k − ηt · TailClip(ut, dt, gti,k)

7: end for
8: end for
9: ∆t =

1
N

∑
i∈[N ]

(
xti,z − xt−1

)
, m̃t ← ∆t

10: ṽt = ṽt−1 +∆2
t

11: xt = xt−1 + η m̃t√
ṽt+τ

12: end for

Theorem 6. Let the clipping and learning rate thresholds satisfy ηt = Θ(tω), ηtℓ = Θ(tν),
dt = Θ(tγ), and ut = Θ(tζ) for the conditions

0 < ζ < min

{
1

4
, ω +

1

2

}
, −1

2
< ω ≤ 0, γ < min

{
0,−ν − ζ − 1

2

}
,

ν < min

{
−1

6
− 4

3
ζ,−1

4
− 3

2
ζ − 1

2
ω,−1

2
+ (α− 2)ζ

}
.

Then, we have that

min
t∈[T ]

E ∥∇F (xt)∥2 ≤ Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5 +Ψ6,

where the Ψi are upper bounded by

Ψ1 ≤ O(T−ω+ζ− 1
2 ), Ψ2 ≤ O(Tω+2ν+3ζ+ 1

2 ), Ψ3 ≤ O(T 4ζ+3ν+ 1
2 ),

Ψ4 ≤ O(T 2ν+2ζ+ 1
2 ), Ψ5 ≤ O(T ν+γ+ζ+ 1

2 ), Ψ6 ≤ O(T ν+(2−α)ζ+ 1
2 ),

which guarantees convergence via an inversely proportional power law decay with respect to T . The
maximal convergence rate is given by O(1/

√
T ).
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Proof. We analyze the convergence of the global objective, where model weights are updated in a
distributed fashion via local BiClip under heavy-tailed noise. By L-smoothness, we have

F (xt) ≤ F (xt−1) + ⟨∇F (xt−1), xt − xt−1⟩+
L

2
∥xt − xt−1∥2

= F (xt−1) + ηt

〈
∇F (xt−1),

∆t√
ṽt + τ

〉
︸ ︷︷ ︸

A1

+
η2tL

2

∥∥∥∥ ∆t√
ṽt + τ

∥∥∥∥2 ,
which we further decompose via noting that

A1 = ηt

〈
∇F (xt−1),

∆t(
√
ṽt−1 −

√
ṽt)

(
√
ṽt + τ)(

√
ṽt−1 + τ)

〉
+ ηt

〈
∇F (xt−1),

∆t√
ṽt−1 + τ

〉

= ηt

〈
∇F (xt−1),

−∆3
t

(
√
ṽt + τ)(

√
ṽt−1 + τ)(

√
ṽt−1 +

√
ṽt)

〉
+ ηt

〈
∇F (xt−1),

∆t√
ṽt−1 + τ

〉

≤ ηt
〈
|∇F (xt−1)| ,

|∆t|3
(
√
ṽt + τ)(

√
ṽt−1 + τ)(

√
ṽt−1 +

√
ṽt)

〉
+ ηt

〈
∇F (xt−1),

∆t√
ṽt−1 + τ

〉
︸ ︷︷ ︸

B1

.

To bound B1, we extract a negative gradient norm

B1 = ηt

〈
∇F (xt−1),

∆t√
ṽt−1 + τ

+
Kηtℓ∇F (xt−1)√

ṽt−1 + τ

〉
︸ ︷︷ ︸

B2

−Kηtηtℓ

∥∥∥∥∥∥ ∇F (xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

,

where B2 decomposes further into

B2 = ηt

〈
∇F (xt−1),

∆t√
ṽt−1 + τ

+

∑
i∈[N ]

∑
v∈[K]−1 piη

t
ℓ(∇Fi(x

t
i,v)−∇Fi(x

t
i,v))√

ṽt−1 + τ
+
Kηtℓ∇F (xt−1)√

ṽt−1 + τ

〉
Here, we use the convention [K]− 1 = {0, . . . ,K − 1}, and that summation over null indices are
zero (e.g.

∑K−1
j=K [ · ] = 0). Now, recall

∆t :=
∑
i∈[N ]

pi∆
t
i =

∑
i∈[N ]

pi(x
t
i,K − xti,0) = −

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓ · ĝti,v

= −
∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓ ·BiClip(ut, dt,∇Fi(x

t
i,v) + ξti,v),

which implies B2 = C1 + C2 for

C1 = ηt

〈
∇F (xt−1),

∑
i∈[N ]

∑
v∈[K]−1 piη

t
ℓ(∇Fi(x

t
i,v)−BiClip(ut, dt,∇Fi(x

t
i,v) + ξti,v))√

ṽt−1 + τ

〉

C2 = ηt

〈
∇F (xt−1),

∑
i∈[N ]

∑
v∈[K]−1 piη

t
ℓ(∇Fi(x

t
i,0)−∇Fi(x

t
i,v))√

ṽt−1 + τ

〉
.

Letting Et[ · ] condition over all stochasticity up to global step t, we have that Et[C1] is equal to

ηt

〈
∇F (xt−1),

∑
i∈[N ]

∑
v∈[K]−1 piη

t
ℓ(Et[∇Fi(x

t
i,v) + ξti,v −BiClip(ut, dt,∇Fi(x

t
i,v) + ξti,v)])√

ṽt−1 + τ

〉
.

For D1 := Et[∇Fi(x
t
i,v) + ξti,v − BiClip(ut, dt,∇Fi(x

t
i,v) + ξti,v)], we have by convexity and

Jensen that
∥D1∥ ≤ Et[∥∇Fi(x

t
i,v) + ξti,v −BiClip(ut, dt,∇Fi(x

t
i,v) + ξti,v)∥]

≤ dtP(∥∇Fi(x
t
i,v) + ξti,v)∥ ≤ dt)

+ Et[∥∇Fi(x
t
i,v) + ξti,v −BiClip(ut, dt,∇Fi(x

t
i,v) + ξti,v)∥χ

(
∥∇Fi(x

t
i,v) + ξti,v∥ ≥ ut

)
]︸ ︷︷ ︸

D2

.
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Piecewise continuity of Fi(x) is clear via the existence of∇Fi(x). This gives that
Et[∥∇Fi(x

t
i,v) + ξti,v∥αχ

(
∥∇Fi(x

t
i,v) + ξti,v))∥ ≥ ut

)
] ≤ Et[∥∇Fi(x

t
i,v) + ξti,v∥α]

≤ 2αEt

[∥∥∥∥∇Fi(x
t
i,v) + ξti,v
2

∥∥∥∥α
]
≤ 2αEt

[∥∥∇Fi(x
t
i,v)
∥∥α

2
+

∥∥ξti,v∥∥α
2

]
= 2α−1(Mα +Bα),

where now,M := maxx∈X ,i∈[N ] ∥∇Fi(x)∥. Thus, we may boundD2 via reduction to the α-moment:

D2 ≤ 2α−1(Mα +Bα)Et[∥∇Fi(x
t
i,v) + ξti,v∥1−αχ

(
∥∇Fi(x

t
i,v) + ξti,v))∥ ≥ ut

)
]

≤ 2α−1(Mα +Bα)u1−α
t P

(
∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≥ ut

)
.

Collecting inequalities gives
∥D1∥ ≤ dtP(∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≤ dt) + 2α−1(Mα +Bα)u1−α

t P
(
∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≥ ut

)
.

Therefore,

Et[C1] ≤
ηtGd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓdtP(∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≤ dt)

+
2α−1 ηtGd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓ(M

α +Bα)u1−α
t P

(
∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≥ ut

)
.

To bound C2, we note that via L-smoothness, we have

C2 ≤
ηtGLd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓ∥xti,0 − xti,v∥

≤ ηtGLd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓ∥xti,0 +

v−1∑
r=1

(xti,r − xti,r)− xti,v∥

≤ ηtGLd

τ

∑
i∈[N ]

∑
v∈[K]−1

∑
r∈[v]

piη
t
ℓ∥xti,r − xti,r−1∥

≤ ηtGLK
2d

2τ
(ηtℓ)

2ut.

Noting that ∥∆t∥ ≤ ηtℓutK, we thus obtain

Et[F (xt)] ≤ F (xt−1) +
η2t (η

t
ℓ)

2u2tK
2L

2τ2
+
ηtGdK

3u3t (η
t
ℓ)

3

τ3
−Kηtηtℓ

∥∥∥∥∥∥ ∇F (xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηtGLK

2d

2τ
(ηtℓ)

2ut +
ηtGd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓdtP(∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≤ dt)

+
2α−1 ηtGd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓ(M

α +Bα)u1−α
t P

(
∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≥ ut

)
.

Taking expectations on both sides and telescoping gives via the tower law of expectation,

∑
t∈[T ]

Kηtη
t
ℓE


∥∥∥∥∥∥ ∇F (xt−1)√√

ṽt−1 + τ

∥∥∥∥∥∥
2


︸ ︷︷ ︸
E1

≤ E[F (xT )− F (x0)]︸ ︷︷ ︸
E2

+
∑
t∈[T ]

η2t (η
t
ℓ)

2u2tK
2L

2τ2︸ ︷︷ ︸
E3

+
∑
t∈[T ]

ηtGdK
3u3t (η

t
ℓ)

3

τ3︸ ︷︷ ︸
E4

+
∑
t∈[T ]

ηtGLK
2d

2τ
(ηtℓ)

2ut︸ ︷︷ ︸
E5

+
∑
t∈[T ]

ηtGd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓdtP(∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≤ dt)︸ ︷︷ ︸

E6

+
∑
t∈[T ]

2α−1 ηtGd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓ(M

α +Bα)u1−α
t P

(
∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≥ ut

)
︸ ︷︷ ︸

E7

,
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where we have enumerated each term from E1 to E7 for clarity. To simplify notation, we now move
to the asymptotic regime. Letting ηt = Θ(tω), ηtℓ = Θ(tν), dt = Θ(tγ), and ut = Θ(tζ), we have
via standard integral bounds that

E1 ≥ Ω

(
Tω+ν+1 · T−ζ−ν− 1

2 · min
t∈[T ]

E[∥∇F (xt)∥2]
)

= Ω

(
Tω−ζ+ 1

2 · min
t∈[T ]

E[∥∇F (xt)∥]
)
,

E2 ≤ max
x∈X

F (x)−min
y∈X

F (y) = O(1), E3 ≤ O(T 2ω+2ν+2ζ+1), E4 ≤ O(Tω+3ζ+3ν+1),

E5 ≤ O(Tω+2ν+ζ+1), E6 ≤ O(Tω+ν+γ+1), E7 ≤ O(Tω+ν+(1−α)ζ+1)

where any Ei residues of O(1) for i ≥ 2 have been incorporated into the upper bound for E2. We
note that the bound may be sharpened as the probabilistic terms must necessarily decay if dt → 0,
ut →∞, which further diminishes E6, E7. Now, to attain convergence of the minimal gradient, we
impose the conditions

Λ1 : ζ > 0 and γ < 0, Λ2 : ω − ζ + 1

2
> 0, Λ3 : ω + 2ν + 3ζ +

1

2
< 0,

Λ4 : 4ζ + 3ν +
1

2
< 0, Λ5 : 2ν + 2ζ +

1

2
< 0, Λ6 : ν + γ + ζ +

1

2
< 0,

Λ7 : ν + (2− α)ζ + 1

2
< 0.

We note that each condition Λi≥2 comes from Ei/E1 → 0, T → ∞, as any residual terms are
subsumed by O(1), which decays via Λ2. Setting 0 < ζ < 1/4, we have

ν < min{−1

6
− 4

3
ζ,−1

4
− 3

2
ζ − 1

2
ω,−1

2
+ (α− 2)ζ}

γ < −ν − ζ − 1

2
, ω +

1

2
> ζ, −1

2
< ω ≤ 0.

Therefore, any such selection stabilizes the minimum gradient, which guarantees convergence. It is
straightforward to see that Λ2 is the dominating condition, for which ω ≤ 0 and ζ ∈ (0, 1/4) gives
the convergence rate O(1/

√
T ) as ω = 0 and ζ → 0+.

Remark 2. In the case of coordinate-wise clipping, all major adjustments up to a scaling factor of√
d are made in the terms bounding E[C1]. In this case, the proof proceeds as follows.

Defining | · | to act coordinatewise, Et[C1] is now less than or equal to

ηt

〈
|∇F (xt−1)| ,

∑
i∈[N ]

∑
v∈[K]−1 piη

t
ℓ|Et[∇Fi(x

t
i,v) + ξti,v −BiClip(ut, dt,∇Fi(x

t
i,v) + ξti,v)]|√

ṽt−1 + τ

〉
.

Therefore by Jensen,

Et[C1] ≤
ηtη

t
ℓG

τ

∑
i∈[N ]

∑
v∈[K]−1

∑
j∈[d]

piEt[|∇Fi(x
t
i,v) + ξti,v −BiClip(ut, dt,∇Fi(x

t
i,v) + ξti,v)|j︸ ︷︷ ︸

D1,j

].

We note that Et[D1,j ] can be upper bounded by D2,j +D3,j where

D2,j = Et

[
D1,j · χ

(
|∇Fi(x

t
i,v; ξ

t
i,v)|j ≤ dt)

)]
≤ dtP

(
|∇Fi(x

t
i,v; ξ

t
i,v)|j ≤ dt)

)
D3,j = Et

[
|∇Fi(x

t
i,v; ξ

t
i,v)|jχ

(
|∇Fi(x

t
i,v; ξ

t
i,v)|j ≥ ut)

)]
.

It follows that

D3,j ≤ Et

[
|∇Fi(x

t
i,v; ξ

t
i,v)|αj |∇Fi(x

t
i,v; ξ

t
i,v)|1−α

j χ
(
|∇Fi(x

t
i,v; ξ

t
i,v)|j ≥ ut

)]
≤ 2α−1(Mα +Bα)u1−α

t P
(
|∇Fi(x

t
i,v; ξ

t
i,v)|j ≥ ut

)
.

Note that we used coordinate-wise bounded alpha moments for some α ∈ (1, 2), E[|ξi|αj ] ≤ Bα
i,j .

We therefore define the M and B to be

M := max
x∈X ,i∈[N ],j∈[d]

|∇Fi(x)|j and B = max
i∈[N ],j∈[d]

Bi,j .

Comparing terms gives the identical asymptotic order of convergence to L2 clipping in Theorem 6.
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Algorithm 6 RMS-TailClip

Require: Initial model x1, learning rate schedule ηt, clipping schedules ut, dt
Synchronization timestep z ∈ Z>0, adaptivity/EMA parameters τ > 0, β̃2 ∈ [0, 1)

1: for t = 1, . . . , T do
2: for each node i ∈ [N ] in parallel do
3: xti,0 ← xt
4: for each local step k ∈ [z] do
5: Draw minibatch gradient gti,k = ∇Fi(x

t
i,k, ξ

t
i,k)

6: xt+1
i,k ← xti,k − ηt · TailClip(ut, dt, gti,k)

7: end for
8: end for
9: ∆t =

1
N

∑
i∈[N ]

(
xti,z − xt−1

)
, m̃t ← ∆t

10: ṽt = β̃2ṽt−1 + (1− β̃2)∆2
t

11: xt = xt−1 + η m̃t√
ṽt+τ

12: end for

D.5 CONVERGENCE OF RMSPROP-TailClip

For Algorithm 6, we have the following convergence bound.
Theorem 7. For clipping and learning rate thresholds satisfying ηt = Θ(tω), ηtℓ = Θ(tν), dt =
Θ(tγ), and ut = Θ(tζ), let the conditions listed in Theorem 6 hold. Then, local BiClip with
outer optimizer RMSProp stabilizes the expected minimum gradient mint∈[T ] E[∥∇F (xt)∥2]→ 0+

with maximal rate O(1/
√
T ). Here, the exponential moving average parameter of the second

pseudogradient moment is fixed within the range β̃2 ∈ [0, 1).

Proof. The proof for outer optimizer RMSProp builds on the prior proof for BiClip with outer
optimizer Adagrad. We skip repeated details for clarity of exposition, and concisely present only the
main steps and ideas central to the proof for readability. L-smoothness gives as before

F (xt) ≤ F (xt−1) + ⟨∇F (xt−1), xt − xt−1⟩+
L

2
∥xt − xt−1∥2

= F (xt−1) + ηt

〈
∇F (xt−1),

∆t√
ṽt + τ

〉
+
η2tL

2

∥∥∥∥ ∆t√
ṽt + τ

∥∥∥∥2 . (10)

We note the decomposition〈
∇F (xt−1),

∆t√
ṽt + τ

〉
=

〈
∇F (xt−1),

∆t√
ṽt + τ

− ∆t√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

B1

+

〈
∇F (xt−1),

∆t√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

B2

.

To form an upper bound, we use that

B2 =

〈
∇F (xt−1),

∆t√
β̃2ṽt−1 + τ

+
Kηtℓ∇F (xt−1)√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

C0

−Kηtℓ

∥∥∥∥∥∥∥∥
∇F (xt−1)√√
β̃2ṽt−1 + τ

∥∥∥∥∥∥∥∥
2

where C0 = C1 + C2 for

C1 =

〈
∇F (xt−1),

∑
i∈[N ]

∑
v∈[K]−1 piη

t
ℓ(∇Fi(x

t
i,v)−BiClip(ut, dt,∇Fi(x

t
i,v) + ξti,v))√

β̃2ṽt−1 + τ

〉

C2 =

〈
∇F (xt−1),

∑
i∈[N ]

∑
v∈[K]−1 piη

t
ℓ(∇Fi(x

t
i,0)−∇Fi(x

t
i,v))√

β̃2ṽt−1 + τ

〉
.
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By the tower law and conditioning on stochastic realizations up to t− 1, we have as before

E[C0] ≤
Gd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓdtP(∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≤ dt) +

GLK2d

2τ
(ηtℓ)

2ut

+
2α−1Gd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
t
ℓ(M

α +Bα)u1−α
t P

(
∥∇Fi(x

t
i,v; ξ

t
i,v))∥ ≥ ut

)
≤ Gd

τ
Kηtℓdt +

GLK2d

2τ
(ηtℓ)

2ut +
2α−1Gd

τ
Kηtℓ(M

α +Bα)u1−α
t .

To bound B1, we have

B1 =

〈
∇F (xt−1),

∆t√
ṽt + τ

− ∆t√
β̃2ṽt−1 + τ

〉

=

〈
∇F (xt−1),

(β̃2 − 1)∆3
t(√

ṽt + τ
)(√

β̃2ṽt−1 + τ

)(√
ṽt +

√
β̃2ṽt−1

)〉

We prepare the global inequality equation 10 for telescoping. It is straightforward to see that collecting
inequalities gives

E[F (xt)] ≤ E[F (xt−1)] +
η2tLK

2u2t (η
t
ℓ)

2

2τ2
−Kηtηtℓ

∥∥∥∥∥∥∥∥
∇F (xt−1)√√
β̃2ṽt−1 + τ

∥∥∥∥∥∥∥∥
2

Gd

τ
Kηtη

t
ℓdt +

GLK2d

2τ
ηt(η

t
ℓ)

2ut +
2α−1Gd

τ
Kηtη

t
ℓ(M

α +Bα)u1−α
t +

dG(1− β̃2)(utηtℓ)3
τ3

Rearranging and telescoping gives

T∑
t=1

Kηtη
t
ℓE


∥∥∥∥∥∥∥∥
∇F (xt−1)√√
β̃2ṽt−1 + τ

∥∥∥∥∥∥∥∥
2 ≤ E[F (x0)]− E[F (xT )] +

T∑
t=1

η2tLK
2u2t (η

t
ℓ)

2

2τ2

+

T∑
t=1

(
Gd

τ
Kηtη

t
ℓdt +

GLK2d

2τ
ηt(η

t
ℓ)

2ut +
2α−1Gd

τ
Kηtη

t
ℓ(M

α +Bα)u1−α
t +

dG(1− β̃2)(utηtℓ)3
τ3

)
By non-negativity of squared pseudogradients, we immediately obtain β̃2ṽt−1 ≤ ṽt−1. Therefore
up to constants, the convergence bound collapses to asymptotically equivalent bounds than that of
Theorem 6, up to constant multiples from the exponentially decaying moving average of the second
moment pseudogradient. The modification to coordinate-wise clipping instead of L2 clipping follows
analogous steps.

Incorporating momentum into the first pseudogradient moment further complicates the analysis, and
yields the results presented in Section D.6.

D.6 CONVERGENCE OF ADAM-TailClip

By incorporating a moving average of the first pseudogradient moment as a form of momentum, we
derive Algorithm 7. For this variant, we demonstrate that the expected minimal gradient does not
diverge, even when the algorithm undergoes restarts. Practically, this ensures that the located gradient
value update of any single step remains bounded in expectation. The key challenge in proving
convergence to 0 arises from the moving average applied to the first moment, which effectively
retains historical gradient information, significantly complicating the proof structure. Investigating
the conditions required to guarantee convergence under this framework presents a promising avenue
for future research. Our bound highlights that the dominating terms are influenced by the upper
clipping threshold ur, suggesting that the algorithm’s convergence behavior may be closely related
the choice of this threshold and can be tuned in practice.
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Algorithm 7 Adam-TailClip

Require: Initial model x1, learning rate schedule ηt, clipping schedules ut, dt
Synchronization timestep z ∈ Z>0, adaptivity/EMA parameters τ > 0, β̃1, β̃2 ∈ [0, 1)

1: for t = 1, . . . , T do
2: for each node i ∈ [N ] in parallel do
3: xti,0 ← xt
4: for each local step k ∈ [z] do
5: Draw minibatch gradient gti,k = ∇Fi(x

t
i,k, ξ

t
i,k)

6: xt+1
i,k ← xti,k − ηt · TailClip(ut, dt, gti,k)

7: end for
8: end for
9: ∆t =

1
N

∑
i∈[N ]

(
xti,z − xt−1

)
10: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

11: ṽt = β̃2ṽt−1 + (1− β̃2)∆2
t

12: xt = xt−1 + η m̃t√
ṽt+τ

13: end for

Theorem 8. Let the exponentially decaying moving average parameters satisfy β̃1 ∈ (0, 1), β̃2 ∈
[0, 1) for the outer optimizer first and second order pseudogradient moments, respectively. Extremize
the unbiased stochastic noise such that ∄αk ∈ (1, 2) for which E[∥ξk∥αk ] < Bαk

k for integrable
ξk. Then, Algorithm 7 gives under constant upper clipping threshold invariant to global timestep t
(ζ = 0) that

min
t∈[T ]

E[∥∇F (xt)∥2] ≲ O(1),

where for ηt = Θ(tω), ηtℓ = Θ(tν), and dt = Θ(tγ), we impose

ν ∈ (−1, 0), −ν − 1 < ω ≤ 0, −(1 + ν + ω) < γ < 0. (11)

Proof. As in the case of outer optimizer Adagrad, we analyze the convergence of the global objective.
By L-smoothness, we have

F (xt) ≤ F (xt−1) + ⟨∇F (xt−1), xt − xt−1⟩+
L

2
∥xt − xt−1∥2

= F (xt−1) + ηt

〈
∇F (xt−1),

β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ︸ ︷︷ ︸
A1

〉
+
η2tL

2
∥A1∥2 . (12)

To proceed with the proof, we note that

⟨∇F (xt−1), A1⟩ =
〈
∇F (xt−1),

β̃t
1m̃0√
ṽt + τ

〉
+ (1− β̃1)

t∑
r=1

β̃t−r
1

〈
∇F (xt−1),

∆r√
ṽt + τ

〉
,

which we further decompose by using〈
∇F (xt−1),

∆r√
ṽt + τ

〉
=

t−r∑
q=0

〈
∇F (xt−1),

∆r√
β̃q
2 ṽt−q + τ

− ∆r√
β̃q+1
2 ṽt−q−1 + τ

〉
︸ ︷︷ ︸

A1,q

+

〈
∇F (xt−1)−∇F (xr−1),

∆r√
β̃t−r+1
2 ṽr−1 + τ

〉
︸ ︷︷ ︸

B1

+

〈
∇F (xr−1),

∆r√
β̃t−r+1
2 ṽr−1 + τ

〉
︸ ︷︷ ︸

B2

.
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We have that

A1,q =

t−r∑
q=0

〈
∇F (xt−1),

∆r

(√
β̃q+1
2 ṽt−q−1 −

√
β̃q
2 ṽt−q

)
(√

β̃q
2 ṽt−q + τ

)(√
β̃q+1
2 ṽt−q−1 + τ

)〉 =

t−r∑
q=0

B1,q

:=

t−r∑
q=0

〈
∇F (xt−1),

−(1− β̃2)β̃q
2∆

2
t−q∆r(√

β̃q
2 ṽt−q + τ

)(√
β̃q+1
2 ṽt−q−1 + τ

)(√
β̃q+1
2 ṽt−q−1 +

√
β̃q
2 ṽt−q

)〉 .
To upper bound B2, we observe

B2 =

〈
∇F (xr−1),

∆r√
β̃t−r+1
2 ṽr−1 + τ

+
Kηrℓ∇F (xr−1)√
β̃t−r+1
2 ṽr−1 + τ

〉
︸ ︷︷ ︸

C0,r

−Kηrℓ

∥∥∥∥∥∥∥∥
∇F (xr−1)√√
β̃t−r+1
2 ṽr−1 + τ

∥∥∥∥∥∥∥∥
2

where C0,r = C1,r + C2,r for

C1,r =

〈
∇F (xr−1),

∑
i∈[N ]

∑
v∈[K]−1 piη

r
ℓ (∇Fi(x

r
i,v)−BiClip(ur, dr,∇Fi(x

r
i,v) + ξri,v))√

β̃t−r+1
2 ṽr−1 + τ

〉

C2,r =

〈
∇F (xr−1),

∑
i∈[N ]

∑
v∈[K]−1 piη

r
ℓ (∇Fi(x

r
i,0)−∇Fi(x

r
i,v))√

β̃t−r+1
2 ṽr−1 + τ

〉
.

Noting that E[ · ] = E[Er[ · ]] by the tower law, we have as before

E[C0,r] ≤
Gd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
r
ℓdrP(∥∇Fi(x

r
i,v; ξ

r
i,v))∥ ≤ dr) +

GLK2d

2τ
(ηrℓ )

2ur

+
2α−1Gd

τ

∑
i∈[N ]

∑
v∈[K]−1

piη
r
ℓ (M

α +Bα)u1−α
r P

(
∥∇Fi(x

r
i,v; ξ

r
i,v))∥ ≥ ur

)
≤ Gd

τ
Kηrℓdr +

GLK2d

2τ
(ηrℓ )

2ur +
2α−1Gd

τ
Kηrℓ (M

α +Bα)u1−α
r .

We retain the α for clarity and to draw comparision to previous proofs, however we note that α = 1
as higher moments do not exist. Now, to bound B1, we use L-smoothness:

∥B1∥ ≤
LηrℓurK

τ
∥xt−1 − xr−1∥ ≤

LηrℓurK diam(X )
τ

.

Collecting all inequalities gathered thus far gives

E[F (xt)] ≤ E[F (xt−1)] +
η2tL

2
E[∥A1∥2] + β̃t

1ηtE
[〈
∇F (xt−1),

m̃0√
ṽt + τ

〉]

+ (1− β̃1)ηt
t∑

r=1

β̃t−r
1

t−r∑
q=0

E[B1,q]−KηrℓE


∥∥∥∥∥∥∥∥

∇F (xr−1)√√
β̃t−r+1
2 ṽr−1 + τ

∥∥∥∥∥∥∥∥
2+

LηrℓurK diam(X )
τ


+ (1− β̃1)ηt

t∑
r=1

β̃t−r
1

(
Gd

τ
Kηrℓdr +

GLK2d

2τ
(ηrℓ )

2ur +
2α−1Gd

τ
Kηrℓ (M

α +Bα)u1−α
r

)
.
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We note the use of Jensen and convexity to ensure ∥E[B1]∥ ≤ E[∥B1∥]. We now rearrange and
telescope t ∈ [1, T ]:

(1− β̃1)
T∑

t=1

ηt

t∑
r=1

β̃t−r
1

KηrℓE

∥∥∥∥∥∥∥∥

∇F (xr−1)√√
β̃t−r+1
2 ṽr−1 + τ

∥∥∥∥∥∥∥∥
2


︸ ︷︷ ︸
F1

≤ E[F (x0)]− E[F (xT )]︸ ︷︷ ︸
F2

+

T∑
t=1

η2tL

2
E[∥A1∥2]︸ ︷︷ ︸
F3

+

T∑
t=1

ηtβ̃
t
1E
[〈
∇F (xt−1),

m̃0√
ṽt + τ

〉]
︸ ︷︷ ︸

F4

+(1− β̃1)
T∑

t=1

ηt

t∑
r=1

β̃t−r
1︸ ︷︷ ︸

F5


t−r∑
q=0

E[B1,q]︸ ︷︷ ︸
F6

+
LηrℓurK diam(X )

τ︸ ︷︷ ︸
F7



+ (1− β̃1)
T∑

t=1

ηt

t∑
r=1

β̃t−r
1︸ ︷︷ ︸

F5

Gdτ Kηrℓdr︸ ︷︷ ︸
F8

+
GLK2d

2τ
(ηrℓ )

2ur︸ ︷︷ ︸
F9

+
2α−1Gd

τ
Kηrℓ (M

α +Bα)u1−α
r︸ ︷︷ ︸

F10

 .

We now aim to bound each term in the left hand side from below, and right hand side from above.
Letting ηt = Θ(tω), ηtℓ = Θ(tν), dt = Θ(tγ), and ut = Θ(tζ), we move to the asymptotic regime to
simplify notation and suppress auxiliary constants for readability. We have that

(1− β̃1)
T∑

t=1

t∑
r=1

ηtβ̃
t−r
1 ηrℓ = (1− β̃1)

T∑
t=1

ηtβ̃
t
1

(
t∑

r=1

β̃−r
1 ηrℓ

)
≳ (1− β̃1)

T∑
t=1

ηtβ̃
t
1

∫ t

1

β̃−r
1 rν dr.

(13)
Then, L’Hôpital’s rule allows us to derive an asymptotically sharp bound as follows:∫ t

1

β̃−r
1 rν dr =

[
β̃−r
1 rν

− loge(β̃1)

]t
r=1

−
∫ t

1

νβ̃−r
1 rν−1

− loge(β̃1)
dr ≳

β̃−t
1 tν

| loge(β̃1)|
(14)

Here, we used that ν ≤ 0 and 0 < β̃1 < e. Asymptotic equivalence is verified via

lim
t→∞

| loge(β̃1)|(
∫ t

1
β̃−r
1 rν dr)

β̃−t
1 tν

= lim
t→∞

| loge(β̃1)|β̃−t
1 tν

− loge(β̃1)β̃
−t
1 tν + νβ̃−t

1 tν−1
= 1.

Therefore, the rightmost side of equation 14 is an asymptotically sharp approximation, relieving the
condition ν ≤ 0 for validity of the approximation. Within β̃1 ∈ (0, 1), the approximation diverges
as expected, validating the asymptotic analysis. Recall that |∆r| ≤ Kηrℓur, which now gives via
equation 14

β̃t−r+1
2 ṽr−1 ≲

r−1∑
z=1

β̃r−1−z
2 ∆2

z ≲ β̃r−1
2

r−1∑
z=1

β̃−z
2 (ηzℓ )

2u2z ≲ max
{
O(1), T 2(ν+ζ)

}
. (15)

Here, we used β̃2 ≤ 1 and r ≤ T . We thus obtain

(1−β̃1)
T∑

t=1

t∑
r=1

ηtβ̃
t−r
1 ηrℓ ≳ (1−β̃1)

T∑
t=1

ηt
tν

| loge(β̃1)|
≳ (1−β̃1)

∫ T

1

tω+ν

loge(β̃1)
dt ≈ (1− β̃1)Tω+ν+1

(ω + ν + 1)| loge(β̃1)|
.

Therefore as ν + ζ < 0, we conclude that

F1 ≳ Ω

(
(1− β̃1)

(ω + ν + 1) loge(β̃1)
· Tω+ν+1 · min

t∈[T ]
E[∥∇F (xt)∥2]

)
.

Clearly, F2 ≲ O(1). To bound F3, we have

F3 =

T∑
t=1

η2tL

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

≲
T∑

t=1

t2ω

τ2

β̃2t
1 ∥m̃0∥2 + (1− β̃1)2
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t∑

r=1

β̃t−r
1 ∆r

∥∥∥∥∥
2


≲
O(1)
τ2

+
(1− β̃1)2
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t=1 t

2ν+2ζ+2ω

τ2(loge(β̃1))
2

≲
O(1)
τ2

+
(1− β̃1)2 T 2(ν+ζ+ω)+1

τ2(loge(β̃1))
2

.

38



Published as a workshop paper at MCDC - ICLR 2025

F4 is bounded similarly after using Jensen,

|F4| ≤
T∑

t=1

ηtβ̃
t
1E
[〈
|∇F (xt−1)|,

|m̃0|√
ṽt + τ

〉]
≤

T∑
t=1

ηtβ̃
t
1dG ·max

j∈[d]

|m̃0|j√
[ṽt]j + τ

≲ O(1).

Bounding F5 and F6 is more complex. We begin by noting that

|E[B1,q]| ≤
d∑
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q
2
2

τ2
· E
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[∆2
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2
2
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Therefore,

F5F6 ≲ (1− β̃1)
T∑
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t∑
r=1
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ℓ ut−q)
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Under the substitution q ← t− q̃, we have that

F5F6 ≲ (1− β̃1)
T∑

t=1

ηt
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1 (1− β̃2)ηrℓurβ̃
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2
2
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2
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As O(1) terms are subsumed by F4, F5F7 is bounded via
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The remaining terms may also be bounded as follows:
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where F9 and F10 can be bounded via
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F5F10 ≲ (1− β̃1)
T∑
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1

ηrℓu
1−α
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Standard calculations imply that under the conditions equation 11, the dominating terms are F7, F10

with order O(1). Within the derived upper bound, ζ > 0 destabilizes F7 and decays F10 to 0, while
ζ < 0 gives the analogous properties with F7 and F10 swapped.

E EXPERIMENT SETUP & FULL RESULTS

In this section, we present the experimental setups and results across two primary domains: synthetic
data and natural language processing tasks. More precisely, we evaluate the performance of TailOPT
instantiations with state-of-the-art benchmarks on convex models (with synthetic data), transformer
encoders, as well as generative models. For convex, synthetic experiments, we construct datasets
to emulate heavy-tailed stochastic gradients, focusing on linear regression models trained under
contaminated label noise. The design includes generating feature matrices and labels while injecting
noise from heavy-tailed distributions to study convergence behaviors. Additionally, we introduce
the SynToken dataset, which models the heavy-tailed distribution of token frequencies observed
in natural language processing. For brevity, we only include the results of the SynToken dataset,
denoted ‘Synthetic data’, in the main text (Figure 1). This allows us to evaluate learning algorithms
in controlled settings, easing out and exploring the effects of both common and rare features.

For assessing the optimization of transformer encoders on natural language processing tasks, we
evaluate RoBERTa Liu et al. (2019) on the General Language Understanding Evaluation (GLUE)
benchmark Wang et al. (2019), which encompasses a diverse range of tasks such as sentiment analysis,
paraphrase detection, and natural language inference. By fine-tuning RoBERTa on GLUE, we assess
its generalization capabilities and robustness. The benchmark’s inclusion of multiple datasets
ensures a comprehensive evaluation of model performance across various linguistic phenomena.
Additionally, we also evaluate the capabilities of the T5 Raffel et al. (2020) generative model on
WMT machine translation tasks Foundation (2019). These experiments provide insights into the
behavior of optimization algorithms and pretrained models under realistic and challenging conditions.
For RoBERTa, we optimize over GLUE across 10 simulated compute nodes, whereas for T5, we
model 3 compute node fine-tuning on WMT benchmark datasets.

Compute Resources. We conducted our experiments on a compute cluster equipped with dozens
of GPUs, with dynamic availability fluctuating based on overall cluster usage by other users. The
cluster featured a set of GPU models, including H100, L40S, and A40 machines.

E.1 CONVEX MODELS (SYNTHETIC EXPERIMENTS)

E.1.1 DATA GENERATION PROCESS

To simulate heavy-tailed stochastic gradients in a simple yet controlled linear regression setting, we
generated a synthetic dataset as follows. The feature matrix X ∈ RM×m was constructed with entries
drawn independently from a standard normal distribution, Xij ∼ N (0, 1). The true weight vector
wtrue ∈ Rm was sampled from N (0, Im), where Im is the m×m identity matrix.

The true labels were computed using:

ytrue = Xwtrue.

To induce heavy-tailed stochastic gradients, we injected noise into the label vector by adding a noise
term ξ, resulting in contaminated labels:

ŷ = ytrue + ξ,

where ξ ∈ RM is a noise vector with entries drawn independently from a heavy-tailed distribution D.
For simplicity, we assume coordinate-wise independence of the noise components.

After generating the dataset, we distributed the data across n = 10 data centers in an IID fashion.
Notably, the heavy-tailed noise was injected once prior to distribution, and no additional data were
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generated afterward. This approach ensured that the same contaminated training data are used locally
throughout the training process.

E.1.2 LINEAR REGRESSION MODEL

We consider a single-layer neural network without biases, parameterized by w ∈ Rm, which is
equivalent to linear regression. Training is performed using the contaminated labels (X, ŷ) with the
mean-squared error (MSE) loss function:

L(w) = 1

2
∥ŷ −Xw∥2.

The gradient of the loss with respect to w is given by:

∇wL(w) = −X⊤(ŷ −Xw).
Substituting ŷ = ytrue + ξ = Xwtrue + ξ, we have:

∇wL(w) = −X⊤(Xwtrue + ξ −Xw) = −X⊤X(wtrue − w)−X⊤ξ.

Simplifying, we obtain:
∇wL(w) = X⊤X(w − wtrue)−X⊤ξ.

The term −X⊤ξ reflects the influence of the heavy-tailed noise on the gradient. Given that X has
Gaussian entries and ξ follows a heavy-tailed distribution, the stochastic gradients∇wL(w) are also
heavy-tailed.

E.1.3 THE SYNTOKEN DATASET

To model the heavy-tailed nature of token frequencies observed in natural language processing, we
created the synthetic SynToken dataset. In natural language, word or token usage often follows a
heavy-tailed distribution. That is, a small number of tokens appear very frequently, while a large
number of tokens appear infrequently but carry significant contextual information.

In our dataset, we partitioned the feature space into common and rare features to reflect this phe-
nomenon. Specifically, we designated the first p = 10% of the columns of X as common features
and the remaining 90% as rare features. The common features were generated by sampling from a
Bernoulli distribution with a high probability of success:

Xcommon ∼ Bernoulli(0.9),

resulting in features that are frequently active. The rare features were sampled from a Bernoulli
distribution with a low probability of success:

Xrare ∼ Bernoulli(0.1),

introducing sparsity and emulating infrequently occurring tokens.

The complete feature matrix X was formed by concatenating Xcommon and Xrare:

X = [Xcommon, Xrare] .

The weight vector w was sampled from a standard multivariate normal distribution, w ∼ N (0, Im),
consistent with the previous setup. Noise injection was analogously applied to the labels as before.
This approach was taken to mimic the key characteristics of tokenization and word embeddings in
natural language processing, via a minimal yet effective model. One benefit of synthetic datasets
is that by simulating the distribution of common and rare tokens, the SynToken dataset allows us
to study the effects of heavy-tailed data distributions on learning algorithms in a controlled setting.
Additionally, we note that the problem being studied is µ-strongly convex with probability 1, as the
setting is linear regression under Gaussian features.

E.2 SYNTHETIC EXPERIMENTS DISCUSSION

Does the heavy-tailed distribution of covariates matter? Figure 3 (a) and (c) illustrate that
a heavy-tailed distribution of token frequencies has significant impacts on the performance of
optimization strategies. In (a), RMSProp-BiClip performs competitively under standard tokenization.
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Figure 3: (Top) The results on the non-tokenized synthetic dataset are presented. In the absence of noise injection,
Avg-Adam, Avg-SGD, and RMSProp-BiClip demonstrate the most competitive performance. However, under
heavy-tailed noise injection, RMSProp-BiClip and Adam-BiClip achieve the highest performance, while
Avg-SGD exhibits among the poorest outcomes. Notably, oscillations observed in Adam-BiClip may reflect
the impact of amplified update step sizes in the outer optimizer, potentially enabling finer-grained exploration of
the optimization landscape. (Bottom) Tokenization drastically alters algorithmic performance. Without noise,
Avg-SGD decays the fastest, while Avg-Adam converges to a superior optimum. However, when synthetic,
unbiased heavy-tailed noise is introduced, Avg-SGD becomes highly unstable, whereas Adam-BiClip and
RMSProp-BiClip consistently deliver the best results.

However, in (c), heavy-tailed tokenization applied to the feature matrix destabilizes RMSProp-
BiClip. Interestingly, under tokenized conditions without noise, RMSProp exhibits oscillatory
behavior, whereas Adam maintains relative stability. This is consistent with the interpretation of
Adam as incorporating an exponentially decaying moving average of the gradient’s first moment,
which augments optimization stability. Upon noise injection, best performing hyperparameters for
RMSProp-BiClip does not show oscillatory behavior, but is larger in terms of distance ∥w∗ − ŵ∥
than the case without noise.

Does noise matter? When noise is injected into the labels, the performance dynamics shift consider-
ably. outer optimizer adaptive or non-adaptive methods combined with inner optimizer SGD perform
poorly, which may indicate that inner optimizers should take a focal role in addressing the challenges
posed by heavy-tailed noise. While the choice of the outer optimizer may appear to a limited impact
on the binary question of learnability for this specific synthetic data (i.e., “Can the algorithm decrease
distance to the true w∗ or not?”), under tokenized conditions with heavy-tailed noise (Figure 3(d)),
outer optimizer Adam demonstrates the best performance. Figure 3 reveals that heavy-tailed noise
generally destabilizes all algorithms, including adaptive methods, clipped approaches, and pure SGD
(c.f., minimum values in (a) and (c) to (b) and (d)). Notably, coordinate-wise BiClip consistently
outperforms L2 clipping, aligning with the results in Table 1.

How far should these results generalize? A word of caution is warranted against overgeneraliza-
tion. These results are derived from a simplified regression model, limiting the ability to generalize
the observed trends. Nevertheless, the experiments underscore the pronounced effects of heavy-tailed
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noise in a controlled synthetic environment and highlight the noise-mitigating capabilities of opti-
mizers such as Adam, RMSProp, and BiClip. Additionally, it is important to note that real-world
transformer models often comprise tens of millions to billions of parameters.

E.3 TRANSFORMER ENCODERS (ROBERTA & GLUE BENCHMARKS)

The General Language Understanding Evaluation (GLUE) benchmark Wang et al. (2019) serves as
a comprehensive framework for evaluating natural language understanding (NLU) models across
a diverse range of tasks. By incorporating datasets that span various linguistic challenges, GLUE
provides a rigorous testbed for assessing the generalization capabilities of NLP models. Below, we
summarize the datasets and tasks included in GLUE:

CoLA (Corpus of Linguistic Acceptability): A binary classification task that evaluates a model’s
ability to determine whether a given sentence is grammatically acceptable. Sentences are drawn
from linguistic theory literature, with performance measured by the Matthews Correlation Coefficient
(MCC). We fine-tune for 15 epochs (15 outer optimizer steps, where each inner optimizer performs 1
epoch on their allocated data).

SST-2 (Stanford Sentiment Treebank): This binary sentiment analysis task involves classifying movie
reviews as expressing positive or negative sentiment. Accuracy is the primary evaluation metric. We
fine-tune for 5 epochs.

MRPC (Microsoft Research Paraphrase Corpus): A paraphrase detection task where the goal is
to identify whether two sentences, often drawn from news sources, have equivalent meanings.
Performance is evaluated using both accuracy and F1 score. We fine-tune for 30 epochs.

STS-B (Semantic Textual Similarity Benchmark): A regression task that assesses the semantic
similarity between two sentences on a continuous scale from 0 (unrelated) to 5 (identical in meaning).
The dataset combines multiple sources, with evaluation based on Pearson and Spearman correlations.
We fine-tune for 10 epochs.

QQP (Quora Question Pairs): Another paraphrase detection task, QQP focuses on identifying whether
pairs of questions from the Quora platform are semantically equivalent. Metrics include accuracy and
F1 score. We fine-tune for 5 epochs.

MNLI (Multi-Genre Natural Language Inference): A three-class classification task (entailment,
neutral, contradiction) that evaluates a model’s ability to perform natural language inference across
multiple genres, including fiction, government reports, and spoken dialogue. We fine-tune for 7
epochs.

QNLI (Question Natural Language Inference): Adapted from the Stanford Question Answering
Dataset (SQuAD), this binary classification task assesses whether a given sentence provides a valid
answer to a question. We fine-tune for 10 epochs.

RTE (Recognizing Textual Entailment): Similar to MNLI but on a smaller scale, this binary classifi-
cation task involves determining whether a hypothesis logically follows from a given premise. Data
sources include news articles and Wikipedia. We fine-tune for 30 epochs.

WNLI (Winograd Natural Language Inference): A specialized task focusing on pronoun resolution
in sentences. The dataset is based on the Winograd Schema Challenge, where resolving pronouns
requires understanding contextual nuances. We note that it is standard to exclude the evaluation
of WNLI when reporting GLUE results, due to the intrinsically adversarial nature of the dataset
(i.e., validation data are constructed as subtle perturbations applied to the training data with opposite
labels) Raffel et al. (2020).

RobERTa. RoBERTa is a state-of-the-art transformer-based model designed to enhance the perfor-
mance of the original BERT architecture through improved pretraining strategies. Proposed by Liu
et al. (2019), RoBERTa optimizes BERT by refining its training setup, enabling more robust natural
language understanding (NLU) across diverse tasks. Key innovations introduced by RoBERTa include
the removal of the next sentence prediction (NSP) objective, an increase in batch sizes and training
data, and the use of longer training schedules. Additionally, RoBERTa employs dynamic masking
during training, which prevents models from overfitting to static token masks.
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Trained on significantly larger datasets (e.g., the BooksCorpus, CC-News, and OpenWebText),
RoBERTa achieves superior performance on several benchmarks, including GLUE, SuperGLUE, and
SQuAD. Its flexibility and robustness make it particularly effective for fine-tuning on a wide range of
downstream tasks, from sentiment analysis to question answering. By refining BERT’s pretraining
process, RoBERTa underscores the importance of hyperparameter tuning and data utilization in
achieving state-of-the-art results.

E.4 GENERATIVE MODELS (T5 & WMT DATASET BENCHMARKS)

We additionally evaluate our method using T5 Raffel et al. (2020), a state-of-the-art text-to-text
transformer model developed by Google Research. T5 unifies natural language processing tasks
under a text-to-text framework, where both inputs and outputs are text strings, making it highly
versatile across tasks such as summarization, translation, and classification. The model was pretrained
on the Colossal Clean Crawled Corpus (C4) using a span corruption objective and is available in
multiple sizes, ranging from T5-Small (60M parameters) to T5-XXL (11B parameters). This unified
framework and scalability allow T5 to excel in a wide range of tasks, making it a strong baseline for
evaluating our proposed method.

To evaluate machine translation tasks, we utilize the WMT datasets, a widely recognized benchmark
for translation research Foundation (2019). Specifically, we fine-tune T5 on the TED Talks and News
Commentary datasets. The TED Talks dataset, originally sourced from IWSLT 2017 Cettolo et al.
(2017), provides multilingual translations of TED Talk transcripts, offering diverse linguistic and
domain-specific challenges. In contrast, the News Commentary dataset contains parallel text derived
from news articles in various languages, presenting a more formal and structured domain. These
datasets represent distinct styles and linguistic features, providing a rigorous evaluation of algorithm
agility in optimizing across various domains or tasks.

E.5 HYPERPARAMETER SWEEP GRID

The sweep grids in Tables 3, 4 were determined by first performing a coarser sweep using an
approximate grid, then localizing near the discovered well-performing hyperparameters.

Table 3: Hyperparameter Sweeps: Gradient Clipping Parameters. i u, i d = inner optimizer u, d, o u, o d =
outer optimizer u, d.

Algorithm i u i d o u o d

Avg-SGD - - - -

Avg-L2Clip SGD np.linspace(10−4, 1.5, 12) 0.0 - -

Avg-BiClip np.linspace(10−4, 1.5, 4) np.linspace(10−7, i u, 4) - -

Avg-BiClip (L2) np.linspace(10−4, 1.5, 4) np.linspace(10−7, i u, 4) - -

Avg-Adagrad - - - -

Avg-Adam - - - -

Adagrad-SGD - - - -

RMSProp-SGD - - - -

Adam-SGD - - - -

Adagrad-BiClip np.linspace(10−4, 1.5, 3) np.linspace(10−7, i u, 3) - -

RMSProp-BiClip np.linspace(10−4, 1.5, 3) np.linspace(10−7, i u, 3) - -

Adam-L2Clip np.linspace(10−4, 1.5, 12) 0.0 - -

Adam-BiClip np.logspace(−2, 1, 5) np.linspace(10−7, i u, 3) - -

Adam-BiClip (L2) np.linspace(10−4, 1.5, 3) np.linspace(10−7, i u, 3) - -

Adam2 - - - -

Bi2Clip (Coordinate-wise) np.linspace(10−4, 1.5, 3) np.linspace(10−7, i u, 3) np.linspace(10−4, 1.5, 3) np.linspace(10−7, o u, 3)

Bi2Clip (L2) np.logspace(−1, 0.5, 3) np.linspace(10−7, i u, 3) np.logspace(−1, 0.5, 3) np.linspace(10−7, o u, 3)

DiLoCo - - - -

E.6 OPTIMAL HYPERPARAMETERS

In this subsection, we display the optimal hyperparameters located during our extensive sweep. For
readability, we report the results as Tables 6-9.
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Table 4: Hyperparameter Sweeps: Learning Rates and Adaptivity Parameters. ilr = inner optimizer learning
rate, olr = outer optimizer learning rate, ieps = inner optimizer ε, oeps = outer optimizer ε. Additionally,
DiLoCo swept over the nesterov learning rates (0.9, 0.95), and inner optimizer weight decay parameters
(10−1, 10−4), reported in prior works such as Douillard et al. (2024); Huo et al. (2020).

Algorithm ilr olr ieps oeps

Avg-SGD np.logspace(−9, 1, 100) - - -

Avg-L2Clip SGD np.linspace(10−9, 1, 10) - - -

Avg-BiClip np.linspace(10−9, 1, 10) - - -

Avg-BiClip (L2) np.linspace(10−9, 1, 10) - - -

Avg-Adagrad np.linspace(10−9, 1, 30) - {10−8, 10−6, 10−4, 10−3} -

Avg-Adam np.linspace(10−9, 1, 30) - {10−8, 10−6, 10−4, 10−3} -

Adagrad-SGD np.linspace(10−5, 0.1, 7) np.logspace(−5, −1, 7) - {10−7, 10−5, 10−3}
RMSProp-SGD np.linspace(10−5, 0.1, 7) np.linspace(10−5, 0.1, 7) - {10−7, 10−5, 10−3}
Adam-SGD np.linspace(10−5, 0.1, 7) np.logspace(−5, −1, 7) - {10−7, 10−5, 10−3}
Adagrad-BiClip np.linspace(10−5, 0.1, 4) np.logspace(−5, −1, 4) - {10−7, 10−5, 10−3}
RMSProp-BiClip np.linspace(10−5, 0.1, 4) np.logspace(−5, −1, 4) - {10−7, 10−5, 10−3}
Adam-L2Clip np.linspace(10−5, 0.1, 4) np.linspace(10−5, 0.1, 4) - {10−7, 10−5, 10−3}
Adam-BiClip np.logspace(−6, −1, 5) np.logspace(−6, −1, 5) - {10−7, 10−5, 10−3}
Adam-BiClip (L2) np.linspace(10−5, 0.1, 4) np.linspace(10−5, 0.1, 4) - {10−7, 10−5, 10−3}
Adam2 np.logspace(−6, −1, 5) np.logspace(−6, −1, 5) {10−7, 10−5, 10−3} {10−7, 10−5, 10−3}
Bi2Clip (Coordinate-wise) np.linspace(10−9, 1, 3) np.linspace(10−9, 1, 3) - -

Bi2Clip (L2) np.logspace(−1, 0.5, 3) np.logspace(−1, 0.5, 3) - -

DiLoCo np.logspace(−5, −1, 5) {1, 0.7, 0.5, 10−1, 10−2} - {10−7, 10−5, 10−3}

45



Published as a workshop paper at MCDC - ICLR 2025

Table 5: Best hyperparameter selection over a sweep of various parameter grids. ‘ilr’ = inner optimizer learning
rate, ‘olr’ = outer optimizer learning rate, ‘ieps’ = inner optimizer ε, ‘oeps’ = outer optimizer ε, ‘o u’, ‘o d’
= outer optimizer u, d, ‘i u’, ‘i d’ = inner optimizer u, d. Here, ε is the adaptivity or ε-smoothing parameter
employed in the denominator of adaptive optimizers to enhance stability of learning dynamics.

Algorithm Dataset ilr olr ieps oeps o u o d i u i d

Avg-SGD STS-B 0.019 - - - - - - -
RTE 0.095 - - - - - - -
QNLI 0.0059 - - - - - - -
QQP 0.0074 - - - - - - -
CoLA 0.019 - - - - - - -
SST-2 0.0074 - - - - - - -
MRPC 0.038 - - - - - - -
MNLI 0.0059 - - - - - - -

Avg-L2Clip STS-B 0.56 - - - - - 1.5 0.0
RTE 1 - - - - - 0.14 0.0
QNLI 0.33 - - - - - 0.14 0.0
QQP 0.44 - - - - - 0.14 0.0
CoLA 0.33 - - - - - 0.14 0.0
SST-2 0.11 - - - - - 0.27 0.0
MRPC 0.22 - - - - - 0.41 0.0
MNLI 0.11 - - - - - 0.41 0.0

Avg-BiClip STS-B 0.44 - - - - - 0.0001 0.0001
RTE 1 - - - - - 0.0001 6.7e-5
QNLI 0.44 - - - - - 0.0001 6.7e-5
QQP 0.56 - - - - - 0.0001 3.3e-5
CoLA 0.89 - - - - - 0.0001 0.0001
SST-2 0.56 - - - - - 0.0001 6.7e-5
MRPC 0.89 - - - - - 0.0001 6.7e-5
MNLI 0.56 - - - - - 0.0001 3.3e-5

Avg-BiClip (L2) STS-B 0.067 - - - - - 0.75 0.75
RTE 1 - - - - - 0.0001 6.7e-5
QNLI 0.067 - - - - - 0.75 0.75
QQP 0.11 - - - - - 0.5 0.33
CoLA 0.067 - - - - - 0.75 0.75
SST-2 0.1 - - - - - 0.75 0.38
MRPC 0.11 - - - - - 1 1
MNLI 0.033 - - - - - 1.5 1.5

Bi2Clip STS-B 0.5 0.5 - - 0.0001 0.0001 0.0001 1e-7
RTE 1 1 - - 0.0001 0.0001 0.001 5e-5
QNLI 0.5 1 - - 0.0001 0.0001 0.0001 5e-5
QQP 0.5 1 - - 1.5 1e-7 0.0001 5e-5
CoLA 0.5 1 - - 0.0001 0.0001 0.0001 0.0001
SST-2 0.5 1 - - 0.75 1e-7 0.0001 1e-7
MRPC 1 1 - - 0.0001 0.0001 0.0001 1e-7
MNLI 0.5 1 - - 0.75 1e-7 0.0001 1e-7

Bi2Clip (L2) STS-B 0.56 3.2 - - 0.1 0.05 0.1 0.05
RTE 0.1 0.56 - - 0.1 0.1 0.56 0.56
QNLI 0.1 0.1 - - 3.2 3.2 0.56 1e-7
QQP 0.1 3.2 - - 0.56 1e-7 0.56 0.56
CoLA 0.1 3.2 - - 0.1 0.05 0.56 1e-7
SST-2 0.56 0.1 - - 3.2 3.2 0.1 1e-7
MRPC 0.56 0.1 - - 0.56 0.56 0.1 0.1
MNLI 0.1 0.56 - - 3.2 1.6 0.56 1e-7

46



Published as a workshop paper at MCDC - ICLR 2025

Table 6: Best hyperparameter selection over a sweep of various parameter grids. ‘ilr’ = inner optimizer learning
rate, ‘olr’ = outer optimizer learning rate, ‘ieps’ = inner optimizer ε, ‘oeps’ = outer optimizer ε, ‘o u’, ‘o d’
= outer optimizer u, d, ‘i u’, ‘i d’ = inner optimizer u, d. Here, ε is the adaptivity or ε-smoothing parameter
employed in the denominator of adaptive optimizers to enhance stability of learning dynamics.

Algorithm Dataset ilr olr ieps oeps o u o d i u i d

Adam-SGD STS-B 0.017 4.6e-5 - 1e-7 - - - -
RTE 0.033 4.6e-5 - 1e-7 - - - -
QNLI 0.017 2.2e-4 - 1e-7 - - - -
QQP 0.017 2.2e-4 - 1e-7 - - - -
CoLA 0.033 0.001 - 1e-5 - - - -
SST-2 0.017 4.6e-5 - 1e-7 - - - -
MRPC 0.017 4.6e-5 - 1e-7 - - - -
MNLI 0.017 2.2e-4 - 1e-7 - - - -

Adam-L2Clip STS-B 0.067 0.033 - 0.001 - - 0.75 0.0
RTE 0.033 1e-5 - 1e-7 - - 1.5 0.0
QNLI 0.067 0.067 - 0.001 - - 0.75 0.0
QQP 0.067 0.033 - 0.001 - - 1.5 0.0
CoLA 0.1 0.033 - 0.001 - - 0.75 0.0
SST-2 0.1 0.033 - 0.001 - - 1.5 0.0
MRPC 0.033 0.033 - 0.001 - - 0.75 0.0
MNLI 0.067 0.033 - 0.001 - - 0.75 0.0

Adam-BiClip STS-B 0.0056 3.2e-4 - 1e-5 - - 0.01 0.0067
RTE 3.2e-4 1.8e-5 - 1e-7 - - 0.01 0.0067
QNLI 0.0056 3.2e-4 - 1e-7 - - 0.01 0.0067
QQP 0.0056 0.00032 - 1e-7 - - 0.01 0.0033
CoLA 0.0056 1.8e-5 - 1e-7 - - 0.01 0.01
SST-2 0.0056 1.8e-5 - 1e-7 - - 0.01 0.0067
MRPC 0.0056 0.0056 - 0.001 - - 0.056 0.019
MNLI 0.0056 3.2e-4 - 1e-5 - - 0.01 0.0033

Adam-BiClip (L2) STS-B 0.033 0.033 - 0.001 - - 1.5 0.75
RTE 0.033 0.067 - 0.001 - - 0.75 0.38
QNLI 0.033 0.067 - 0.001 - - 1.5 0.75
QQP 0.067 0.033 - 0.0001 - - 0.75 0.38
CoLA 0.033 0.033 - 0.001 - - 1.5 0.75
SST-2 0.067 0.033 - 0.001 - - 1.5 1e-7
MRPC 0.033 0.033 - 0.001 - - 1.5 1e-7
MNLI 0.067 0.033 - 0.001 - - 1.5 0.75

Adam2 STS-B 1.8e-5 1.8e-5 1e-5 1e-7 - - - -
RTE 1.8e-5 1.8e-5 1e-5 1e-7 - - - -
QNLI 1.8e-5 3.2e-4 1e-5 1e-5 - - - -
QQP 1.8e-5 3.2e-4 1e-5 1e-7 - - - -
CoLA 1.8e-5 0.0056 1e-5 0.001 - - - -
SST-2 1.8e-5 1.8e-5 0.001 1e-7 - - - -
MRPC 1.8e-5 1.8e-5 1e-5 1e-7 - - - -
MNLI 1.8e-5 3.2e-4 1e-5 1e-7 - - - -
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Table 7: The notational setup is analogous to Table 6. For DiLoCo∗, we provide the Nesterov learning rate and
weight decay parameter in the i u, i d entries, respectively.

Algorithm Dataset ilr olr ieps oeps o u o d i u i d

Adagrad-SGD STS-B 0.017 0.0046 - 0.001 - - - -
RTE 0.033 0.001 - 1e-5 - - - -
QNLI 0.017 0.001 - 1e-5 - - - -
QQP 0.017 0.0001 - 1e-5 - - - -
CoLA 0.017 2.2e-4 - 1e-7 - - - -
SST-2 0.017 2.2e-4 - 1e-5 - - - -
MRPC 0.017 2.2e-4 - 1e-7 - - - -
MNLI 0.017 0.0001 - 1e-7 - - - -

RMSProp-SGD STS-B 0.017 1e-5 - 1e-7 - - - -
RTE 0.017 1e-5 - 1e-7 - - - -
QNLI 0.033 0.001 - 1e-5 - - - -
QQP 0.017 1e-5 - 1e-7 - - - -
CoLA 0.017 1e-5 - 1e-7 - - - -
SST-2 0.017 1e-5 - 1e-7 - - - -
MRPC 0.033 1e-5 - 1e-7 - - - -
MNLI 0.017 1e-5 - 1e-7 - - - -

Adagrad-BiClip STS-B 1e-5 2.2e-4 - 1e-7 - - 1.5 1.5
RTE 0.033 2.2e-4 - 1e-7 - - 1.5 1e-7
QNLI 1e-5 0.0046 - 0.001 - - 1.5 1.5
QQP 1e-5 0.0046 - 0.0001 - - 1.5 1.5
CoLA 0.1 2.2e-4 - 1e-7 - - 0.0001 5e-5
SST-2 1e-5 0.0046 - 0.001 - - 1.5 1.5
MRPC 1e-5 2.2e-4 - 1e-7 - - 1.5 0.75
MNLI 1e-5 0.0046 - 0.001 - - 1.5 1.5

RMSProp-BiClip STS-B 1e-5 1e-5 - 1e-7 - - 1.5 1.5
RTE 0.067 1e-5 - 1e-7 - - 0.0001 5e-5
QNLI 0.1 1e-5 - 1e-7 - - 0.0001 0.0001
QQP 0.1 0.0046 - 1e-7 - - 0.0001 5e-5
CoLA 0.1 0.0046 - 0.001 - - 0.0001 1e-7
SST-2 0.1 1e-5 - 1e-7 - - 0.0001 0.0001
MRPC 1e-5 0.0046 - 0.001 - - 0.75 0.75
MNLI 0.1 0.0046 - 0.001 - - 0.0001 0.0001

DiLoCo∗ STS-B 1.8e-5 0.7 1e-5 - - - 0.9 0.1
RTE 1.8e-5 1 1e-5 - - - 0.95 0.0001
QNLI 1.8e-5 1 1e-5 - - - 0.9 0.0001
QQP 1.8e-5 1 1e-5 - - - 0.95 0.0001
CoLA 1.8e-5 1 1e-5 - - - 0.95 0.1
SST-2 1.8e-5 0.1 1e-5 - - - 0.9 0.0001
MRPC 1.8e-5 0.7 1e-5 - - - 0.9 0.1
MNLI 1.8e-5 1 1e-5 - - - 0.9 0.1
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Table 8: Best hyperparameter selection over a sweep of various parameter grids for GLUE tasks. The notation is
analogous to Table 6.

Algorithm Dataset ilr olr ieps oeps o u o d i u i d

Avg-Adagrad STS-B 3e-5 - 1e-8 - - - - -
RTE 1.5e-4 - 1e-6 - - - - -
QNLI 3.3e-4 - 0.001 - - - - -
QQP 3.3e-4 - 0.001 - - - - -
CoLA 6.7e-5 - 1e-6 - - - - -
SST-2 3.3e-4 - 0.001 - - - - -
MRPC 1.5e-4 - 1e-6 - - - - -
MNLI 3.3e-4 - 0.001 - - - - -

Avg-Adam STS-B 1.4e-5 - 1e-6 - - - - -
RTE 3e-5 - 1e-8 - - - - -
QNLI 6.2e-6 - 1e-8 - - - - -
QQP 1.4e-5 - 1e-8 - - - - -
CoLA 6.2e-6 - 1e-8 - - - - -
SST-2 6.2e-6 - 1e-8 - - - - -
MRPC 3e-5 - 1e-8 - - - - -
MNLI 3e-5 - 0.0001 - - - - -

Table 9: Best hyperparameter selection over a sweep of various parameter grids for WMT. The conventions are
identical with Tables 6-8.

Algorithm Dataset ilr olr ieps oeps o u o d i u i d

Avg-SGD TED-T (en-de) 0.03 - - - - - - -
TED-T (en-fr) 0.015 - - - - - - -
NewsComm (en-fr) 0.015 - - - - - - -

Avg-L2Clip TED-T (en-de) 0.89 - - - - - 1.4 0.0
TED-T (en-fr) 0.89 - - - - - 0.55 0.0
NewsComm (en-fr) 0.78 - - - - - 0.41 0.0

Bi2Clip TED-T (en-de) 1 1 - - 0.0001 0.0001 0.75 1e-7
TED-T (en-fr) 1 1 - - 0.0001 0.0001 0.75 1e-7
NewsComm (en-fr) 0.5 1 - - 1.5 1e-7 0.0001 5e-5

Adam2 TED-T (en-de) 3.2e-4 0.0056 1e-7 0.001 - - - -
TED-T (en-fr) 1.8e-5 1.8e-5 1e-5 1e-7 - - - -
NewsComm (en-fr) 3.2e-4 0.0056 1e-5 0.001 - - - -
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F ADDITIONAL EXPERIMENTS

BiClip is inspired by the principles of adaptivity, particularly the selection of coordinate-wise
learning rates based on historical gradient statistics in adaptive optimizers. It leverages this intuition
by efficiently amplifying smaller gradient values while tempering larger gradients. This selective
adjustment enables BiClip to maintain computational efficiency while achieving highly competitive
performance, as demonstrated in Tables 1 and 2, where it rivals more resource-intensive optimizers
such as Adam.

However, Figure 4 highlights how gradient distributions can be distinctly altered by adaptive or
clipping operations, which is reflected in their respective optimal learning rates. We note that L2

clipping primarily affects gradients at the extremes—those whose L2-norms exceed a predefined
threshold—while leaving the broader gradient distribution largely unchanged during the optimization
process. This limited modification contrasts with the more nuanced adjustments achieved by BiClip
or Adam.

F.1 EXPANDED ALGORITHM PERFORMANCE EVALUATION (GLUE)

Table 10: Evaluation results on GLUE Benchmark datasets during test time. Metrics: CoLA (Matthews
Correlation Coefficient, MCC), SST-2 (Accuracy), MRPC (Accuracy/F1), STS-B (Spearman/Pearson), QQP
(Accuracy/F1), MNLI (Accuracy), QNLI (Accuracy), RTE (Accuracy). Entries marked with 0.0 indicate the
actual metric value (averaged across the granularity of each datapoint in the baseline dataset), which implies
random guessing or failure to learn. Top first, second, and third best-performing algorithms are highlighted.
We note that nested optimization algorithms utilizing adaptivity or coordinate-wise BiClip on both inner
and outer optimizers generally achieve greater than 80% averaged performance (out of 100%). For Adam2,
preconditioners are transmitted between the inner and outer optimizers, whereas DiLoCo requires maintaining
preconditioners on the inner optimizers, both of which incur significant communication or memory overhead.

Algorithm MNLI QNLI QQP (Acc/F1) RTE SST-2 MRPC (Acc/F1) CoLA STS-B (S/P) Average
Avg-SGD McMahan et al. (2017) 81.13 83.21 78.71/78.69 57.40 90.94 67.30/80.52 0.0 26.76/28.20 61.17
Avg-L2Clip Yang et al. (2022) 81.82 85.68 80.00/79.82 54.51 91.97 68.38/81.22 0.0 41.27/40.96 64.15
Avg-BiClip (L2) 81.95 86.16 84.62/79.89 55.59 92.31 68.38/81.23 0.0 36.93/37.22 64.03
Avg-Adagrad 84.70 88.79 87.09/83.34 64.26 93.34 71.56/82.63 27.72 81.93/81.26 76.97
Avg-Adam 84.97 89.47 87.66/84.09 64.62 93.80 81.86/87.74 41.41 86.21/86.55 80.76
Avg-BiClip 85.08 89.45 87.83/84.12 66.06 94.03 71.32/82.45 41.40 84.08/84.48 79.12
Bi2Clip (L2) 84.31 89.20 86.36/82.60 72.20 93.34 86.52/90.23 60.02 82.41/83.00 82.74
Adagrad-SGD Reddi et al. (2021) 82.40 86.61 82.51/77.68 71.48 92.08 85.53/89.52 47.80 40.37/42.24 72.69
RMSProp-SGD Reddi et al. (2021) 84.20 88.46 87.12/83.30 72.56 91.85 85.50/89.17 52.39 45.72/41.80 74.73
Adam-SGD Reddi et al. (2021) 82.93 86.98 85.99/80.87 66.78 90.71 87.01/90.09 49.93 44.48/41.26 73.37
Adam-L2Clip 82.54 86.69 85.88/80.72 59.92 89.67 85.29/89.90 48.54 69.19/67.16 76.86
Adagrad-BiClip 85.54 90.02 88.60/85.05 73.36 93.23 85.78/89.86 48.87 84.03/85.90 82.75
RMSProp-BiClip 85.56 89.82 88.50/84.44 70.75 93.69 84.80/88.92 50.99 87.65/87.79 82.99
Adam-BiClip 84.26 89.20 88.64/84.74 69.67 92.43 86.52/90.09 56.12 82.83/79.71 82.20
Adam-BiClip (L2) 83.18 86.47 85.63/80.27 67.50 89.56 86.02/89.65 53.17 74.73/73.48 79.06
Adam2 Wang et al. (2021b) 85.11 88.87 89.04/85.51 71.48 92.66 87.50/91.03 52.70 84.47/83.82 82.93
DiLoCo Douillard et al. (2024) 85.68 89.87 88.78/85.19 67.87 91.89 87.99/91.20 54.77 85.93/84.76 83.08
Bi2Clip 85.06 89.73 84.93/83.97 76.53 93.80 89.21/92.44 60.08 87.07/86.89 84.52

F.2 PERFORMANCE UNDER NON-IID DATA

F.2.1 CUSTOM SHAKESPEARE DATASET

Though not the main focus of this work, in this section, we aim to briefly evaluate the performance of
TailOPT and baselines under non-datacenter, distributed environments. We utilized the LEAF reposi-
tory Caldas et al. (2018), originally a benchmark suite for federated learning, which provides datasets,
tools, and baselines to evaluate algorithms under real-world conditions. LEAF emphasizes non-IID
data distributions, enabling the study of federated systems where data is naturally heterogeneous
across smaller compute nodes. Among the datasets in LEAF, we modified the Shakespeare dataset,
originally designed for next-character prediction, where each user now represented a character from
Shakespeare’s works. After preprocessing, the dataset contained 1144 inner compute nodes, each
corresponding to a character’s dialogue, with substantial variations in sample sizes, vocabulary,
and syntax across compute nodes. This structure mirrors the imbalanced, domain-specific data
distributions often encountered in federated learning.

To better align with common NLP tasks, we further modified the Shakespeare dataset by redefining
the prediction task from (LSTM) next-character prediction to (transformer) next-token prediction.
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More specifically, the text was tokenized into sequences of words rather than characters, making the
task more semantically meaningful while retaining the dataset’s inherent non-IID nature.

Table 11: Perplexity scores on the Federated Shakespeare Next Word Prediction Task at a 0.1% participation
rate, for distillGPT-2 architecture fine-tuning after 3 communication rounds.

Algorithm Avg-SGD Avg-L2Clip Avg-BiClip RMSProp-BiClip Bi2Clip Adam2

Perplexity Score 1.9813 2.0126 1.7827 2.0054 1.9112 1.9445

F.2.2 CUSTOM PHILOSOPHER DATASET

To mitigate potential data leakage, we constructed a custom dataset, termed the Philosopher Dataset,
to evaluate the non-IID setting and facilitate training from scratch. The Philosopher Dataset was
synthesized by allocating each literary work to one of eight compute nodes, followed by an 80-20
train-test split. These texts were open sourced from Project Gutenberg3, an extensive online repository
offering over 75,000 classic or traditional books while strictly adhering to copyright protections.

Table 12: Composition of the Philosopher Dataset.

Title Author Translator
The Critique of Pure Reason Immanuel Kant J. Meiklejohn
The Collected Works of William Hazlitt, Volume One William Hazlitt -
The Works of Jane Austen Jane Austen -
The Republic Plato Benjamin Jowett
War and Peace Leo Tolstoy -
The Federalist Papers Alexander Hamilton, John Jay, James Madison -
The Count of Monte Cristo Alexandre Dumas -
The Brothers Karamazov Fyodor Dostoevsky Constance Garnett

We instantiated a shallower GPT-2 architecture comprising 2 layers, 256 embedding dimensions, and
4 attention heads. This model was trained from scratch on the Philosopher Dataset. The training
results are summarized in Table 13.

Table 13: Perplexity scores on the Philosopher Next Word Prediction Task at a 100% participation rate for the
compressed GPT-2 architecture after 3 communication rounds.

Algorithm Avg-SGD Avg-L2Clip Avg-BiClip RMSProp-BiClip Bi2Clip Adam2

Perplexity Score 2.6361 2.1183 1.6266 1.7983 2.3488 2.5861

Discussion. In the synthesized non-IID setting, we observe that algorithmic instantiations em-
ploying joint adaptivity or adaptive approximations–i.e., incorporating adaptivity or its efficient
approximations at both the inner and outer optimizers–tend to underperform slightly. This aligns
with the theoretical intuition that highly sensitive, rapidly adapting optimizers are more susceptible to
unmitigated client drift, effectively overfitting to the biases of local data shards at the inner optimizers.
However, Avg-BiClip, which integrates a clipping mechanism to regulate noise variance and stabi-
lize optimization dynamics, exhibits notably robust performance. In particular, Avg-BiClip achieves
the strongest results in settings with high data heterogeneity across compute nodes, suggesting that
BiClip mitigates not only noise variance but also client drift. We further compare these findings to
results on the synthetic dataset (Appendix E.1) where noise-injected data were distributed IID across
nodes, contrasting with the Shakespeare and Philosopher datasets, which are explicitly designed to be
non-IID.

We note that the perplexities obtained are lower compared to those achieved on larger text datasets,
such as WikiText-103 or large-scale Common Crawl subsets (e.g., distillGPT reportedly achieves a
perplexity of around 16 on the WikiText-103 benchmark, a long-term dependency language modeling
dataset)4. This arises from the smaller size of the Shakespeare and Philosopher datasets in comparison

3https://www.gutenberg.org/
4https://github.com/huggingface/transformers/tree/main/examples/

research_projects/distillation
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to larger benchmarks. Finally, we provide the optimal hyperparameters for the non-IID experiments
in Table 14.

Table 14: Best hyperparameter selection over a sweep of various parameter grids. The conventions are identical
with Tables 6-9.

Algorithm Dataset ilr olr ieps oeps o u o d i u i d

Avg-SGD Shakespeare 0.012 - - - - - - -
Philosopher 0.15 - - - - - - -

Avg-L2Clip Shakespeare 0.56 - - - - - 0.55 0
Philosopher 1 - - - - - 0.41 0

Avg-BiClip Shakespeare 1 - - - - - 0.0001 3.3e-5
Philosopher 1 - - - - - 0.0001 3.3e-5

RMSProp-BiClip Shakespeare 0.067 2.2e-4 - 1e-5 - - 0.75 1e-7
Philosopher 0.067 0.0046 - 0.001 - - 0.75 1e-7

Bi2Clip Shakespeare 1 1 - - 1.5 1e-7 0.0001 0.0001
Philosopher 1 1 - - 1.5 1e-7 0.0001 5e-5

Adam2 Shakespeare 1.8e-5 0.0056 1e-7 0.001 - - - -
Philosopher 1.8e-5 0.0056 1e-5 1e-5 - - - -
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Figure 4: Gradient statistics for MNLI in the GLUE Benchmark across different algorithms for the first 5
communication rounds, where rounds increase from left to right. (Top) We visualize local minibatch stochastic
gradient (used as model updates in Avg-SGD) distributions, where the outliers can dominate model updates upon
outer pseudogradient aggregation. The BiClip and Adam optimizers mitigate this phenomenon in different
ways. (Middle) Row 2 displays the local gradients accumulated from all inner optimizers during Bi2Clip
prior to clipping, which uncovers the presence of outliers akin to those visible in Avg-SGD. In Row 3, the
identical gradients are plotted after the coordinate-wise BiClip operation is applied. It is observed that BiClip
stabilizes updates by thresholding large and small gradient coordinates, constraining model update lengths within
a defined range. The distribution of gradient lengths have changed significantly, with outliers autonomously
being mollified. (Bottom) Similar to above, row 4 shows the accumulated gradient lengths across all inner
optimizers while training via Adam2. In row 5, it is observed that Adam amplifies gradients across a larger scale,
with optimal hyperparameters accordingly downscaling model updates by utilizing smaller learning rates at both
inner and outer optimizers. Optimal inner optimizer learning rates are 0.0059, 0.5, and 1.8e-5 for Avg-SGD,
Bi2Clip, and Adam2, respectively, with corresponding outer optimizer learning rates of 1 and 3.2e-4 for the
latter two algorithms. Test-time results show that Bi2Clip outperforms Adam2, which in turn outperforms
Avg-SGD (Table 1). Finally, we note that upon centering, the aggregate update gradient histograms in red depict
the stochastic gradient noise distributions upon application of the optimizer strategy. BiClip attenuates the pure
gradient noise (in blue) by projecting the noise distribution to an almost bell-shaped curve (in red), while Adam
implicitly samples gradient noise from a left-leaning, skewed distribution.
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