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ABSTRACT

Modern Large Language Models (LLMs) are composed of matrices with billions
of elements, making their storage and processing quite demanding in terms of
computational resources and memory usage. Being significantly large, such ma-
trices can often be expressed in low-rank format with potential to relax resource
requirements. Unlike prior works which focus on developing novel matrix de-
composition algorithms, in this work we first study the emergence of low-rank
structures across matrices within different layers of LLMs and establish a con-
sequential relationship between the gradient dynamics and emerging low-rank
expressiveness of matrices. Our findings reveal that different layers exhibit varying
levels of converged low-rank structure, necessitating a non-uniform rank reduction
across them to minimize performance drop due to compression. In view of that,
we present Weight Low-Rank Projection (WeLore) that unifies weight compres-
sion and memory-efficient fine-tuning as ONE, in a data-agnostic and one-shot
way. WeLore capitalizes the heavy-tail distribution of singular values to identify
a suitable rank reduction ratio for matrices within LLMs. Going beyond only
as a compression technique, WeLore categorizes weight matrices into Low-rank
Components (LRCs) and Non-Low-rank Components (N-LRCs) based on their
ability to express themselves as low-rank. Our gradient perspective and extensive
experiments illustrate that LRCs tend to have better finetuning capabilities and can
closely mimic (sometimes outperform) the training loss trajectory and performance
of full-finetuning with notable memory and compute footprint reduction. For
example, finetuning a 50% compressed LLaMa-2 7B model using only a fraction
of parameters in LRCs (WeLore) can outperform its full finetuning with ∼3×
better throughput and ∼0.6× GPU requirement.

1 INTRODUCTION

In the modern era of deep learning, observing low-rank structures across gigantic matrices is common.
Over the decades, low-rank structures have been notably useful and ubiquitous across numerous
applications, such as image and data compression (Lingala et al., 2011; Arif et al., 2019; Yu et al.,
2014), deep neural network compression (Hsu et al., 2022; Kaushal et al., 2023; Li et al., 2023;
Jaiswal et al., 2023a; Wang et al., 2023), and recently for fine-tuning large language models (LLMs)
(Hu et al., 2021; Dettmers et al., 2024; Meng et al., 2024; Biderman et al., 2024; Lialin et al., 2023).
The storage efficiency and fine-tuning memory footprints associated with the large matrices of LLMs
are currently prohibitive to unlocking the full potential of lightweight domain-specific applications
around them. For example, regular 16-bit fine-tuning of a LLaMA-65B parameter model requires
more than 780 GB of GPU memory (Dettmers et al., 2024), and the VRAM consumption for training
GPT-3 175B reaches 1.2TB (Meng et al., 2024).

In recent efforts to address storage demands and computational complexity linked to the large matrices
of LLMs, several works have been exploring the low-rank characteristics associated with weights and
gradients (Zhao et al., 2024; Hu et al., 2021; Hsu et al., 2022; Kaushal et al., 2023; Li et al., 2023;
Wang et al., 2023; Meng et al., 2024; Wang et al., 2024). One primary limitation of the existing works
is an under-explored assumption of the uniform existence of low-rank structures across the pre-trained
weights, with a main focus on developing matrix factorization techniques for LLM compression.
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Figure 1: Continual-Finetuning statistics and performance comparison of a 50% low-rank compressed
LLaMa-2 7B pretrained checkpoint from HuggingFace using C4 dataset. With exactly same hyper-
paramter configrations, WeLore can can outperform full-finetuning with merely ∼35%× of trainable
parameters while providing ∼3× better throughput.

Recently, (Sharma et al., 2023) interestingly found that it is often possible to significantly improve
the performance of LLMs by selectively removing higher-order components of their weight matrices.

In this work, we first explore how the low-rank structure emerges and differs across weight matrices
corresponding to different Attention and MLP layers within transformer blocks of LLMs. Motivated
by the findings of Galore (Zhao et al., 2024), which establish that gradients during the pretraining of
LLMs become low-rank, our work makes an effort to understand how the gradient behavior changes
over time during LLM pretraining and attempts to establish a consequential relationship between the
emergence of low-rank weight subspace and gradient subspace.

Weight Low-Rank Subspace through the Lens of Gradient Behaviour: Recently, GaLore (Zhao
et al., 2024) theoretically argues that the gradient matrix becomes low-rank during training but does
not establish how the gradient behavior accumulates in the weight space. Moreover, it provides
no distinct consideration on training dynamics of different layers (e.g., attention, MLP) across
transformers blocks in LLMs. To this end, we first carefully investigated the gradient behavior of
all weight matrices during back-propagation starting with random initialization (usually full-rank)
during full pretraining. We found that gradient matrices of some layers (e.g., majority of middle
MLP matrices) saturate significantly within a short span of training iterations. On the other hand,
gradients for some weight matrices (e.g., attention matrices from the first and last transformer blocks)
continuously carry rich error signals from training data and develop low-rank gradient subspace
throughout the training. We conjecture that as a consequence of the cumulative accumulation
of gradients within a low-rank gradient subspace, the corresponding weight matrices exhibit the
emergence of high-quality stable low-rank subspace. Our study found that different layers within
an LLM pose varying levels of converged low-rank structure, which should be accounted for during
low-rank decomposition.

This new gradient perspective into nonuniform weight ranks unfolds several interesting dimensions:

• Weight matrices corresponding to different layers across transformer blocks can be broadly
categorized as: 1 Low-rank Components (LRCs) that exhibit high-quality low-rank struc-
ture (can be estimated by heavy-tail in sorted singular values obtained with SVD) and their
gradients can carry rich error signals from data; 2 Non-Low-rank Components (N-LRCs)
with non-converged low-rank structure (missing heavy-tail in singular values distribution)
and cannot be low-rank factorized without introducing noticeable reconstruction error.

• It provides us a unique opportunity to unify weight compression and memory-efficient fine-
tuning (MEFT) as ONE: (a) compression angle: LRCs with stabilized low-rank weight
structure can be factorized by SVD to significantly high compression ratio; and (b) MEFT
angle: when fine-tuning, we back-propagate only over LRCs in their low-rank decomposed
format to make the most effective gradient progress while leaving N-LRCs frozen.

Our aforementioned discussion led to Weight Low-Rank Projection (WeLore), an one-shot and data-
agnostic layer-wise non-uniform rank reduction technique based on the emerged low-rank subspaces
in LRCs and N-LRCs. More specifically, to achieve a target rank reduction ratio, we exploit the
heavy tail property of normalized singular values of weight matrices factorized using SVD1. LRCs
that can better express themselves as low-rank pose a heavy-tail distribution of normalized singular

1Note that WeLore’s non-uniform rank selection strategy can be easily adapted to activation-guided SVD
techniques (Yuan et al., 2023) and our experiments suggest that our techniques can significantly boost their
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Figure 2: (Row 1) Cosine similarity of the gradients obtained from various checkpoints during
pretraining of LLaMA-130M on C4 dataset for 25,000 training steps using Adam Optimizer. Detailed
layer-wise cosine similarity is presented in Appendix A.9. (Row 2) Low-rank Gradient Subspace
of LLaMa-130M pretraining where each row of individual subplot represents the singular values
obtained with SVD over gradient matrices. All gradients are obtained using a fixed batch of data
samples for uniformity in results.
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Figure 3: Emergence of Low-rank Weight Subspace during pretraining of LLaMA-130M on C4
dataset for 25,000 training steps using Adam Optimizer. Each row of individual subplot represents
the singular values of weights at a given training step for the layers (e.g., mlp.up_proj, attn.q_proj).

values, and are subjected to high-rank reduction without significant loss in information. On the
other hand, N-LRCs that do not have low-rank structures well converged can be left either with
full rank or undergo minimal rank reduction subjected to target reduction ratio. WeLore reduction
ratios can be estimated using the pre-trained checkpoints in once-for-all layers fashion without any
dependence on downstream or pretraining calibration datasets that makes it easily adaptable across
and implementation-friendly with minimizing sensitivity to calibration datasets.

The unique proposition of WeLore lies beyond a low-rank compression technique, in facilitating
memory and parameter-efficient finetuning. WeLore proposes to back-propagate only on significantly
compressed LRCs in their low-rank format (eliminating the need to store full-rank optimizer states,
full-rank weights & activations in memory) that can mimic the optimization similar to full-finetuning
(LRCs and N-LRCs jointly). Note that unlike LoRA (Hu et al., 2021) and its variants, which add
new low-rank matrices unrelated to the original weight (proxy optimization), we rely on existing
low-rank subspaces from pre-trained weights, without introducing additional parameters (instead,
reducing parameters) and thereby operating in the original optimization trajectory. Our extensive
experiments across continual finetuning with C4 dataset (Figure 1) & downstream task finetuning
(Figure 8) illustrate that LRC-based WeLore finetuning can match (even outperform) the performance
of full-finetuning with a fraction of trainable parameters, higher throughput, and notably less GPU
memory need (e.g., in comparison to full-finetuning 50% low-rank compressed LLaMa-2 7B, WeLore
have ∼0.35× trainable parameters, ∼3× better throughput, ∼0.6× GPU requirement).

2 LOW-RANK SUBSPACE OF WEIGHTS AS A CONSEQUENT OF GRADIENTS
DYNAMICS DURING PRETRAINING

The continuous growth in scale of LLMs is making the computational and memory costs of inference
and finetuning them notably prohibitive. Finetuning LLMs has recently been very successful in
boosting their capabilities to follow instructions, adopting response-generating style, and limiting
undesirable behaviors like hallucination, generating toxic contents, etc. To enable the democratization
of these abilities with consumer-grade GPUs, enormous efforts are directed toward LLM compression

performance (Table 2). However, we intentionally focus on simple SVD at weight space to overcome the
high sensitivity of activation-based SVD on calibration datasets along with facilitating ease in system-level
implementation (Chavan et al., 2023).
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and parameter-efficient fine-tuning techniques. Among several techniques (e.g., sparsity (Jaiswal
et al., 2023b;c; Lee et al., 2019; Frankle & Carbin, 2019; Jaiswal et al., 2023a; Yin et al., 2023;
Liu et al., 2023a), quantization (Liu et al., 2023b; Kim et al., 2023; Dettmers et al., 2023a; Frantar
et al., 2022; Lin et al., 2023; Dettmers et al., 2023b)), low-rank decomposition of weight matrices
draws special attention as compressed linear layers remain fully differentiable and all parameters are
trainable while being able to leverage the existing highly efficient kernels over floating point matrices.

Surprisingly, most existing works (Hsu et al., 2022; Kaushal et al., 2023; Li et al., 2023; Wang et al.,
2024) primarily focus on developing new algorithms for effectively decomposing the pre-trained
weight matrices. Their under-explored assumption revolves around uniform existence of low-rank
structures within gigantic matrices in LLMs. In addition, they fail to explore their emergence and
variability across different layer types (eg., attention, mlp) and position (eg., middle or terminal
layers) within the deep LLM model. Recently, Galore (Zhao et al., 2024) presented a theoretical
sketch suggesting gradients during pretraining of LLMs exhibit low-rank behavior but didn’t provide
details of the dynamics and variability of these low-rank structures across different layers of LLMs.
Inspired by GaLore, we aim to explore: 1 How does gradient behavior changes during pretraining
across different layers of LLMs? 2 How does gradient dynamics lead to the emergence of low-rank
structure across gradients and weights? 3 Does the low-rank structure uniformly prevalent in
the pre-trained weights of LLMs? If not, can we build an adaptive low-rank strategy subjected to
quantification meerged low-rank properties during the pretraining?

Firstly, Figure 2 (row 1) represents the pairwise cosine similarity of the gradients captured (using
a fixed batch of data) from model checkpoints of LLaMa-130M sampled every 500 training steps
during pretraining from scratch on C4 dataset. The first two subplots of row 1 indicate the gradient
behavior of self_attn.q_proj & self_attn.k_proj from the 1st transformer block while
the next two subplots are for mlp.down_proj & mlp.up_proj from the middle 7th transformer
block of 11 block deep LLaMa-130M model. Figure 2 (row 2) presents the corresponding gradient
subspace of these layers where every row of each subplot indicates the singular values obtained
by SVD decomposition of gradient matrices during pretraining iterations. Our observations can be
summarized as:

• Gradient dynamics is not uniform across all the sub-layers of the LLMs during pretraining.

• Gradients behavior across some layers (e.g., majority of middle mlp layers) illustrate an
early-bird saturation property and can’t accumulate rich error signals from the training
dataset during pretraining.

• To some layers (e.g., attention matrices from the terminal transformer blocks) the behavior is
opposite and where gradient behavior keeps changing continuously throughout pretraining.

• Connecting previous observations with the gradient subspace in row 2, we found a strong
correlation in the emergence of low-rank structure (heavy-tail illustrated as bright colors to
the left) as a direct consequence of continuously changing rich error propagation signals.

Next, we attempt to understand how these observations translate to the emergence of low-rank
structures in the weight matrices of the model. Figure 3 presents the corresponding emergence of
weight low-rank structures throughout pretraining within layers. Our findings are summarized as:

• We found the emergence of low-rank structure across the weight matrices very early during
pretraining which becomes explicit and notable as pretraining progresses. Similar to gradient
subspace, we found that not all layers can express themselves as low-rank and this property
significantly varies subject to position (middle layers or terminal layers) and role (attention
layers or mlp layers).

• We found a strong correlation between the gradient dynamics and the low-rank
emergence across the weight matrices (e.g., early gradients dynamics saturation of
model.layer.7.mlp.down_proj leading to non-low-rank gradient subspace which
ultimately reflects in the weight matrix not converging to low-rank2). As a consequence of

2A sharp bright line across the subplots in Figure 3 to the left suggests heavy-tail distribution of singular
values. A heavy-tail singular value distribution from SVD is a favorable property that indicates the matrix can be
well compressed using a few singular values without introducing large reconstruction errors.
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the cumulative accumulation of gradients within a low-rank gradient subspace, the corre-
sponding weight matrices of the layers exhibit the emergence of high-quality stable low-rank
subspace.

3 WELORE: ADAPTIVE LOW-RANK WEIGHT PROJECTION OF PRETRAINED
WEIGHTS

LLMs are omnipresent and recently the race of scaling them have attributed to gigantic computational
and memory footprints. Among numerous efforts towards democratization for consumer-grade
GPUs, low-rank decomposition of pretrained weights as a product of two smaller dense matrices
receives special attention because it can leverage the highly optimized floating-point dense matrix
multiplication kernels unlike sparsity and quantization which require specialized kernels to be written,
often different for each hardware backend in order to enable speedup. Recently, several works (Hsu
et al., 2022; Kaushal et al., 2023; Yuan et al., 2023; Wang et al., 2023; Saha et al., 2023; Wang et al.,
2024) have explored matrix factorization of LLMs’ pretrained weights. We found that these works
primarily focus on improving SVD using more informative signals like activation, fisher information
and applying it unilaterally (same rank reduction ratio) across all the weights. As discussed in previous
section, low-rank emergence varies significantly across candidate weights in a pretrained checkpoint.
To this end, we pose an under-explored question: How can we carefully curate a layer-adaptive rank
reduction ratios for all layers in the pretrained checkpoint?

=>
-
>

Figure 4: Normalized singular values of the weight matrices corresponding to different layers of
LLaMa-2 7B pretrained checkpoint. Each subplot indicate sorted & normalized 4096 singular values
corresponding to different layers (e.g., self_attn.q_proj) from 32 transformer blocks.

Figure 4 presents the normalized 4096 singular values corresponding to different layers across
32 transformer blocks of LLaMa-2 7B. It can be clearly observed that for some layers (e.g.,
self_attn.q_proj, self_attn.k_proj, mlp.gate_proj) elicit a heavy tail be-
haviour indicating better low-rank expressivity compared to others (e.g., self_attn.v_proj,
mlp.down_proj). Another important observation to note is that majority of the layers from the
front and tail blocks of the model tend to have better low-rank property which aligns with our
gradient behavior study. Heavy tail indicates only a small fraction of singular values carries maximum
information and the corresponding matrix can be well approximated using a fraction of basis vectors
from SVD with marginal reconstruction error.

Weighted Low-rank Projection (WeLore) proposes a data-agnostic and implementation-friendly
normalized singular value thresholding technique3 with only one global hyperparameter (k) as shown
as the shaded red and green region in Figure 4 for layer-adaptive rank reduction. More specifically, we

3Normalization helps us to compare singular value distribution across all layers at the same scale.
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aim to preserve normalized singular values greater than the threshold k shown as shaded green region.
For a given effective rank reduction ratio4 of ERR, the global threshold k can be approximated using
linear search5 over np.linspace(0, 1, 0.005) with condition as follows:∑

l sum(SWl
< k)∑

l len(SWl
)
≈ ERR (1)

where Wl represents the weight matrix of layer l and SWl
is the array of sorted normalized singular

values estimated with torch.svd(Wl). Note that k estimation is not computationally expensive
as the SWl

∀l can be calculated before searching for k. Given a weight matrix W 4096×4096
l and

SWl
= {s1, s2, ..., s4096}, the compressed rank r can be provided as r = np.sum(SWl

≥ k).
In compressed format, W 4096×4096

l can be represented as a composition of two small matrices
A4096×r

l and Br×4096
l where r << 4096. As it can be read from the Figure 4, for k = 0.175

which indicate an aggregated 50% rank reduction, majority of the self_attn.q_proj from 32
transformer blocks of LLaMa-7B can undergo significant reduction ≥ 90% (i.e., r < 400). On the
other hand, layers such as self_attn.v_proj & mlp.down_proj which are not low-rank
friendly will receive high r.

Given rl for all the layers l in the pretrained checkpoint, WeLore categorizes all the layers into
two broad categories - Low-rank Components (LRCs) and Non-Low-rank Components (N-LRCs).
Layers with heavy-tail which can be effectively represented with rl < 0.5× rank(Wl) falls in LRCs
while the rest falls in N-LRCs. We replace weight matrices of all LRCs in pretrained checkpoint
as composition of two small matrices A & B to achieve notable parameter reduction (e.g., × 0.67
parameters with R = 0.5) saving memory and compute during inference and fine-tuning (low-rank
weight representation allows gradients and optimizer states to be in low-rank during finetuning).

4 MEMORY-EFFICIENT LOW-RANK AMICABLE FINETUNING

Parameter-Efficient finetuning techniques (PEFT) which enable LLMs to perform a new task with
minimal updates has received enormous attention to their ability to allow fine-tuned by only updating
a small number parameters. Unlike LoRA and its varients which finetune a small added fraction of
parameters to original pretrained weight checkpoints not relevant to original pretraining optimization,
WeLore provides an alternative approach by capitalizing the gradient perspective to select a small
fraction of weights from the pretrained model which can undergo fine-tuning. As discussed above,
LRCs exhibits low-rank structure with rich gradient dynamics while N-LRCs can’t be well-expressed
in low-rank format. To this end, WeLore make the following proposal:

Given a low-rank compressed checkpoint with LRCs and N-LRCs, finetuning with backpropagation
only through LRCs (frozen N-LRCs) can closely mimic the performance of full-finetuning (some-
times better) with considerable memory and compute reduction. Given that LRCs are represented in
low-rank format, both gradients and optimizer state will by default in low-rank saving finetuning cost.
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Figure 5: Finetuning statistics and performance comparison of Low Rank Components (LRCs) and
Non-Low-Rank Components (N-LRCs) layers of a 50% compressed LLaMa-2 7B model with C4.
Note that all finetuning hyperparameters are kept same in both settings for fair comparison.

Empirical evidence that LRCs are better at learning than N-LRCs: Here, we investigate the
relative difference in performance and compute expenses related to finetuning LLMs. Figure 5

4Effective Rank Reduction Ratio (ERR): 1−
∑

l rank(W
Compressed
l

)∑
l rank(W

Original
l

)
5Pseudo-code for k estimation is provided in Appendix A.3. We also provide pre-estimated values for

LLaMa-7B and LLaMa-13B used in the submission in the Appendix A.5.
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present our comparison of continual finetuning statistics of LLaMa-7B pretrained checkpoint with
50% effective rank reduction ratio on C4 dataset for 10,000 training steps. Red color indicate
finetuning by back-propagating only through LRCs (freezing all the N-LRCs) while magenta color
indicate finetuning N-LRCs (freezing LRCs). It can be clearly observed that despite ∼ 3× more
trainable parameters, training loss as well as the validation perplexity of finetuning N-LRCs are
significantly under-performing in comparison to finetuning LRCs. Moreover, it is important to note
that the throughput achieved by LRCs is ∼ 2× in comparison to N-LRCs which can be attributed to
the parameter-efficient low-rank represented weight matrices, gradients, and optimizer state.

5 EXPERIMENTS AND ANALYSIS

In this section, we first investigate the superiority of WeLore’s layer-adaptive rank reduction ratio
for effective low-rank compression of pre-trained checkpoints of LLMs. Next, we investigate the
effectiveness of WeLore for joint compression and LRCs-focused parameter efficient finetuning per-
formance across several downstream tasks. We additionally report the empirical GPU requirements for
performing inference and finetuning across different compression ratios. Our extensive experiments
illustrate that unlike prior works which either focus on low-rank compression or parameter-efficient
finetuning, WeLore uniquely differentiates itself by proposing an effective low-rank compression
strategy and presents a novel angle of memory and parameter-efficient fine-tuning using LRCs for
comparable performance to full-finetuning.

LLaMa2-7B [PPL: 7.03] LLaMa2-13B [PPL: 6.53]

Rank Uniform OWL WeLore WeLore Uniform OWL WeLore WeLore
Reduction Reduction Reduction Reduction Finetuned Reduction Reduction Reduction Finetuned

10% 10.58 12.11 7.13 7.15 7.17 7.2 6.55 6.55
20% 16.43 14.49 8.28 7.40 8.61 8.53 6.96 6.68
30% 91.99 NaN 14.41 8.18 13.99 11.63 8.66 7.42
40% NaN NaN 78.17 9.47 1178.03 56.06 24.92 8.69
50% NaN NaN 1836.62 11.87 4167.79 7984.39 1142.53 11.40

Table 1: Perplexity comparison of LLaMa-7B with various rank reduction techniques at different
reduction ratios. Gray column indicates the performance after memory-efficient continual finetuning
of LRCs on 1×A6000 GPU using C4 dataset (7M tokens) with token seqlen of 1024.

5.1 IMPLEMENTATION DETAILS

Network Architectures: For understanding gradient dynamics and its consequent on the weight
space during pretraining, we adopt the LLaMa-130M architecture following (Lialin et al., 2023; Zhao
et al., 2024). For our continual and downstream finetuning experiments, we adopted the pretrained
checkpoint of LLaMa-2 7B, LLaMa-2 13B and Mistral-7B6 from HuggingFace.
Low Rank Compression: For low-rank compression using WeLore for LLaMa-2 7B and 13B
models, we used torch.svd(Wl) to decompose a layer l’s weight matrix Wm×n

l = Am×rBr×n

where r is decided by the heavy tail distribution of the singular values of W as described in Section
3. If W belongs to LRCs, it will be replaced with a composition of two linear layers with low-rank
matrices A & B to improve the computational efficiency. For baselines, we compared with commonly
used uniform rank reduction (Hsu et al., 2022; Kaushal et al., 2023) and adopted recently proposed
outlier-weighed non-uniform ratio (OWL) (Yin et al., 2023). We additionally augmented activation-
guided SVD techniques (Yuan et al., 2023) with WeLore’s adaptive layer-wise rank reduction ratio to
understand how it can benefit them.
Continual and Downstream Finetuning: For continual finetuning settings, we finetune the WeLore
compressed LLaMa-2 7B and 13B models at different compression ratios using C4 dataset. The
C4 dataset is a massive collection of Common Crawl’s web crawl corpus, meticulously filtered
and cleaned to ensure high-quality language modeling and training. For downstream task finetun-
ing of compressed models, we consider a good mixture of tasks from commonsense reasoning
and math reasoning, namely CommonsenseQA, BoolQ, CoinFlip, SVAMP, BigBench,
StrategyQA. For comparison, we have used two baselines: (i) LoRA: LoRA (Hu et al., 2021)

6Perplexity and Downstream Performance results of Mistral are presented in Appendix A.4.
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introduces low-rank adaptors for training the models, W = W0 + UV , where W0 is the pretrained
weights, which are frozen during training. In our setting, we associate U and V with all the compo-
nents of the LRC and N-LRC of the compressed model and fine-tune them while keeping W0 frozen.
(ii) GaLore (Zhao et al., 2024): GaLore projects the gradient into low-rank format and updates the
optimizer states and projects it back for updating weights. In this setting, we perform finetuning
of both LRCs and N-LRCs (full-finetuning) with projected low-rank gradients. Our finetuning
experiments start from the same checkpoint and hyperparameter settings for fair comparison.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

5.2.1 WELORE FOR COMPRESSION OF PRE-TRAINED LLMS

1 WeLore identifies Non-Uniform rank reduction ratio across layers to limit performance drop.
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Figure 6: Layer-wise rank reduction
ratio of 50% compressed LLaMa-7B.

We investigated the layer-wise rank reduction ratio achieved
by WeLore and found it to be highly non-uniform where
some layers can be compressed significantly higher than oth-
ers. In addition, note that layers from the first and last few
transformer blocks are compression-friendly. Figure 6 illus-
trates the rank reduction ratios after 50% effective rank re-
duction of LLaMa-2 7B pretrained checkpoint using WeLore.
Interestingly, it can be noted that self_attn.q_proj
& self_attn.k_proj layers can be expressed as low-
rank with > 90% compression. Moreover, the majority of
layers from transformer blocks at the front and tail end are
better at compression due to well-converged low-rank prop-
erties. The green region indicates LRCs while the red region
indicates the N-LRCs components.

2 WeLore is superior than Uniform and Outlier-Weighted reduction ratio. Low-rank decompo-
sition of LLMs has been primarily investigated with unilateral (same rank) reduction across all the
weights. In contrast, WeLore presents non-uniform rank reduction ratio guided by emerged low-rank
structures in pretrained checkpoints. Table 1 presents the comparison of perplexity of LLaMa-2 7B
and 13B models on C4 validation dataset with EER of 10% to 50% when compressed with WeLore
and our two baselines. It can be clearly observed that as EER increases, the perplexity of the baseline
compressed model significantly explodes (becomes NaN for LLaMa-7B), but WeLore retains the
perplexity within a reasonable range. For example, WeLore is ∼ 6.4 × better than 30% Uniform
EER for LLaMa-2 7B and ∼ 47 × better than 40% Uniform EER for LLaMa-2 13B. Note that
OWL reduction tends to perform sometimes better than Uniform reduction, but its degradation in
performance with increasing EER is more severe.
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Figure 7: Perplexity comparison (↑) for further compression of N-LRCs using SoTA LLM pruning
methods for LLaMa-2 7B on C4. Note that we calculated the increase in perplexity wrt. the initial
perplexity of dense and low-rank compressed checkpoints with ERR of r%.

3 Investigating further Compression Opportunity with SoTA LLM Pruning. Recently (Yin et al.,
2023) investigated the activation outlier-based non-uniform sparsity ratios for different transformer
blocks within LLMs. A careful observation of their layer-wise sparsity ratio reveals that the majority
of middle transformer blocks can be subjected to a higher pruning ratio which is complementary to
WeLore low-rank reduction ratio that favours terminal blocks being low-rank friendly. We therefore
ask an unexplored question: How does LLM performance changes when we further compress only
the dense N-LRCs using SoTA pruning methods?
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Reduction Total Model
seqlen = 512 seqlen = 1024 seqlen = 2048 seqlen = 4096Params Memory

0% 6738.42M 13,579 MB 14,467 MB 15,145 MB 17,193 MB 24,519 MB
30% 5794.25M 11,993 MB 12,565 MB 12,923 MB 14,549 MB 20,853 MB
50% 4543.67M 9,501 MB 10,125 MB 10,433 MB 12,049 MB 18,377 MB
70% 3072.84M 6,657 MB 7,285 MB 7,625 MB 9,233 MB 15,549 MB

Table 3: Empirical estimate of Inference GPU Memory Requirement (measured with GPUtil library)
of LLaMa-2 7B compressed with WeLore with varying context sequence length.

Figure 7 presents the increase in the perplexity of LLaMa-2 7B on the C4 dataset when we compress a
dense checkpoint (blue) using SoTA LLM pruning methods. We compared it with further compressing
dense N-LRCs of WeLore checkpoints with ERR of 10%, 30%, and 50%. Our key observations are:
(i) WeLore checkpoints can further enjoy high compression with sparsification of dense N-LRCs
without signification performance drop to a noticeable sparsity ratio (e.g., WeLore checkpoint with
ERR of 50% can be additionally sparsified using Wanda (Sun et al., 2023) with < 2 points increase
in perplexity); (ii) ad-hoc sparsification of LRCs and N-LRCs (dense) suffers higher performance
degradation compared to N-LRCs which demands actively exploring amalgamation of different
compression techniques for LLMs to ripe maximum benefits; (iii) development of better sparsity
algorithms (e.g., Wanda (Sun et al., 2023), SparseGPT (Frantar & Alistarh, 2023)) clearly retain their
benefits even in mixed compression settings.

5 WeLore’s Non-uniform Ratios also benefits Activation-Guided Rank Decomposition.
Model LLaMa2-7B

Rank Uniform Uniform+ActSVD WeLore+ActSVD
Reduction Reduction Reduction Reduction

10% 10.58 7.24 7.05
20% 16.43 7.75 7.21
30% 91.99 8.85 7.87
40% NaN 11.33 9.75
50% NaN 17.03 14.76

Table 2: Performance benefit (PPL on C4)
of WeLore reduction ratio on ActSVD.

Activation-guided SVD techniques (Yuan et al., 2023;
Wang et al., 2024) have been found more effective than
weight-oriented SVD methods by managing activation
outliers and adjusting the weight matrix based on the
activation distribution. Despite our work focusing on
simple weight SVD to enable easy adaptation and min-
imize sensitivity to calibration datasets, we conducted
experiments to illustrate that WeLore can also signifi-
cantly benefit from Activation-SVD. Table 2 and Ap-
pendix A.2 present the perplexity comparison of Uniform ActSVD wrt. when it is augmented with
the non-Uniform reduction ratio identified by WeLore.

6 Inference Memory Statistics of WeLore Compression. In this section, we investigate the
memory requirement for inference with WeLore compressed models. Table 3 how WeLore allows
reducing the memory requirement to load the model parameters by substituting the full-rank weight
matrices in their low-rank format. Given a consumer-grade GPU like GeForce RTX 4090, WeLore
can facilitate inference with 4K context length where the original model will flag an OOM error.

LLaMa2-7B [1×] LLaMa2-13B [1×]

Reduction→ 30% 50% 60% 70% 30% 50% 60% 70%

Compressed Params 0.85× 0.67× 0.56× 0.45× 0.83× 0.64× 0.53× 0.43×
LoRA Finetuning 8.21 12.48 21.23 382.24 7.49 21.53 27.99 124.44
GPU Requirement 26,859MB 25,129 MB 24,621 MB 23,711 MB 46,162 MB 42,293 MB 41,191 MB 40,513 MB

Galore Finetuning 9.02 18.57 396.05 670.29 8.02 60.07 2454.03 3396.19
GPU Requirement 29,773 MB 25,673 MB 24,155 MB 22,777 MB 54,378 MB 45,810 MB 41,703 MB 37,448 MB

WeLore Finetuning 8.18 11.87 17.87 47.92 7.42 11.40 19.20 73.59
GPU Requirement 30,197 MB 28,281 MB 27,193 MB 25,955 MB 52,452 MB 47,091 MB 43.136 MB 42,922 MB

Table 4: Performance (perplexity) comparison of compressed LLaMa-2 7B & 13B with WeLore
adaptive rank selection technique and continual finetuning with LoRA and GaLore wrt. WeLore.

5.2.2 WELORE FOR JOINT COMPRESSION AND PARAMETER-EFFICIENT FINETUNING

1 Continual-Finetuning of WeLore Compressed Models. In this section, we investigate the
performance statistics of LRC-focused WeLore tuning with respect to LoRA and GaLore in different
compression ratios. Given a pretrained checkpoint (LLaMa-7B and 13B), we first perform rank
reduction using WeLore with varying ERR between 30-70% which can achieve up to 55% reduction
in total model parameters. For fair comparison, we perform continual finetuning of the compressed
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Figure 8: Downstream Finetuning statistics and performance comparison of WeLore vs. full-
finetuning and LoRA of a 50% compressed LLaMa-2 7B model with StrategyQA dataset with
max_len of 512. All finetuning hyperparameters are kept same in all settings for fair comparison.

model using LoRA, GaLore and WeLore with sequence length of 1024 on 0.7M tokens; all other
hyperparameters are set identically. Table 4 illustrates the superiority of LRCs-focused WeLore
finetuning where the benefits increase with a higher degree of compression.

2 Downstream-Finetuning of WeLore Compressed Models. To understand the effectiveness
of LRCs-only WeLore finetuning, we consider full-parameter finetuning, LoRA, and GaLore for
dense pretrained checkpoint as well as WeLore compressed checkpoint of LLaMa-7B. We conducted
several experiments across various compression ratios on math and commonsense reasoning tasks
and report our performance in Table 5. Surprisingly, LRCs-based finetuning of WeLore compressed
models tends to closely match and sometime outperform even the dense as well as compressed full-
parameter finetuning of LLaMa-7B pretrained checkpoint. Additionally, the performance achieved
by LRCs-focused WeLore finetuning is significantly and consistently higher than both LoRA and
GaLore across all the tasks while having memory requirements close to LoRA. Figure 8 illustrate that
unlike LoRA, LRC-focused WeLore finetuning can closely mimic the loss trajectory of full-finetuning
with significantly low GPU memory requirements and can achieve throughput greater than LoRA
based fine-tuning.

Reduction Method CommonsenseQA SVAMP BoolQ CoinFlip BigBench7 StrategyQA

Dense Full Finetune 77.052 40.672 88.189 75.000 83.742 69.581
Dense LoRA Finetune 76.414 50.090 70.962 69.333 80.995 68.690

Dense GaLore Finetune 75.339 41.667 68.362 65.667 77.980 67.325

30%
Full Finetune 75.925 40.667 84.005 51.333 83.364 70.783

LoRA 64.537 44.333 81.776 61.333 68.750 65.255
GaLore 64.015 42.667 80.892 55.333 75.735 62.490
WeLore 76.744 53.333 85.040 98.667 81.818 69.648

40%
Full Finetuning 71.908 38.333 83.603 49.000 90.224 68.502

LoRA 54.386 36.667 75.021 54.667 76.002 65.154
GaLore 52.078 36.333 71.039 50.333 77.910 65.440
WeLore 76.003 42.667 81.646 98.666 87.857 67.794

50%
Full Finetuning 70.120 25.333 80.113 53.333 89.431 63.411

LoRA 35.382 23.667 75.482 50.667 54.022 62.408
GaLore 35.122 21.667 71.552 47.667 58.975 61.336
WeLore 70.516 30.667 80.377 94.666 87.802 67.290

Table 5: Downstream performance of Dense and WeLore compressed LLaMa-2 7B checkpoint
under full-finetuning along with memory-efficient finetuning techniques (LoRA and GaLore). All
downstream finetuning is performed starting from the same initial checkpoint state for fair comparison.

6 CONCLUSION

We study the emergence of non-uniform low-rank structures across different layers of transformer
blocks from gradient behavior perspective. We present WeLore, an adaptive layer-wise low-rank
compression strategy for low-rank decomposition which can achieve high compression ratio with
minimal drop in performance. The unique proposition of WeLore lies in categorizing weight matrices
of pretrained models into two borad categories - LRCs and N-LRCs based on their ability to express
themselves as low-rank. We conducted extensive experiments to validate that LRCs pose better
trainability than N-LRCs. Given limited compute & memory budget, WeLore recommends finetuning
LRCs while keeping N-LRCs frozen with back-propagation for maximal gain (sometimes better than
full-finetuning). The primary limitation of our work remains limited exploration for only the LLaMa
family of models and unexplored benefits of WeLore for training LLMs from scratch.
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A APPENDIX

A.1 BACKGROUND WORK

Memory-Efficient Finetuning: Memory-efficient fine-tuning of LLMs aims to address the signifi-
cant costs associated with their fine-tuning. This field encompasses several notable techniques. For
instance, Prompt Learning Methods optimize input tokens or embedding while keeping the model’s
remaining parameters static Hambardzumyan et al. (2021); Zhong et al. (2021). Layer-freezing tech-
niques enhance training efficiency by selectively freezing certain layers Liu et al. (2021); Brock et al.
(2017); Li et al. (2024). Additionally, Adapter Methods introduce a small, update-focused auxiliary
module into the model’s architecture, significantly reducing the number of trainable parameters, as
introduced by Houlsby et al. (2019); Diao et al. (2022). Among them, one noteworthy technique
is Low-Rank Adaptation (LoRA) (Hu et al., 2021) and its successors (Renduchintala et al., 2023;
Sheng et al., 2023; Xia et al., 2024; Zhang et al., 2023; Hayou et al., 2024; Hao et al., 2024; Liu et al.,
2024), which introduces a low-rank weight adapter for each layer to reduce the memory footprint by
only optimizing the adapter. These low-rank adapters can then be seamlessly merged back into the
original model.

Unlike LoRA which performs proxy optimization over additional parameters while keeping the
original parameters frozen, WeLore backed by an understanding of gradient dynamics suggests
finetuning the original parameters of LRCs in represented in low-rank to mimic full-finetuning.
Recently, (Biderman et al., 2024) found that full finetuning is more accurate and sample-efficient
than LoRA across several task categories and WeLore can be an effective alternative to achieve the
benefits of full-finetuning within a limited compute and memory budget.

Low Rank Compression: Large Language Models (LLMs) have succeeded remarkably across
various natural language processing tasks. However, the massive scale of these models poses
significant challenges in terms of storage efficiency and computational complexity. Among several
techniques of LLM compression (e.g.,pruning, quantization, etc.), low-rank decomposition which
retains only the top-k components in the low-rank space have special privilege to leverage the existing
highly efficient kernels over floating point matrices. (Hsu et al., 2022) developed a data-aware
modification of SVD that incorporates approximate second-order gradient information. Similarly,
(Yuan et al., 2023) proposed a data-aware decomposition method that minimizes activation error. One
primary drawback of these reductions is that they uniformly reduce rank across all weight matrices.
In contrast, our work experimentally validates existence of non-uniform low-rank expressiveness
across different layers and should be accounted for during low-rank compression. Recently, (Zhao
et al., 2023; Wang et al., 2023) found that dynamic rank selection during pretraining can achieve
comparable prediction performance as full-rank counterpart.

A.2 ACTIVATION BASED SVD

Model LLaMa2-chat-7B

Rank Uniform WeLore Uniform+ActSVD WeLore+ActSVD
Reduction Reduction Reduction Reduction Reduction

10% 10.97 6.65 6.60 6.53
20% 63.63 8.09 7.08 6.90
30% nan 19.60 8.43 8.24
40% 28027.73 254.74 12.56 10.94
50% 22029.66 3209.67 26.02 15.80

Table 6: Perplexity of Wikitext-2 under comparison of LLaMa-V2-chat with various rank reduction
techniques at different reduction ratios. The gray column highlights the use of activation-based SVD.
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A.3 ADAPTIVE THRESHOLD SELECTION

Algorithm 1: Adaptive Threshold Selection Algorithm in WeLore
Input: A LLM with weights θ, target reduction ratio sp, current reduction ratio st, reduction

tolerance sδ , threshold incremental value Hi.
Output: A compressed model θ satisfying the target reduction ratio sp, singular threshold H
Initialization: Initialize a singular threshold threshold H = 0
while not (sp + sδ > st > sp − sδ) do

for each MLP layer tensor θl in θ do
svl ← calculate_singular_values(θl);
svln ← normalize_singular_values(svl);
pl ← 0; for each s in svln do

if s < H then
pl ← pl + 1;

Pr ←
∑

l p
l;

st ← Pr/Pt;
if sp + sδ ≥ st ≥ sp − sδ then

break;
else

H ← H +Hi;

A.4 GENERALIZATION OF WELORE TO MIXTRAL-7B PRETRAINED CHECKPOINT

5% 10% 20% 30% 40% 50%

Uniform Rank Reduction 9.67 12.31 78.695 6746.48 162301.04 248042.97
OWL Rank Reduction 9.02 11.63 NaN NaN NaN NaN

WeLore Rank Reduction 8.19 8.76 11.90 30.69 429.08 1351.32
WeLore Finetuned Rank Reduction 8.18 8.32 8.92 9.71 14.85 21.37

Table 7: Perplexity-based performance comparison of WeLore Adaptive Rank reduction.

CommonsenseQA SVAMP BoolQ StrategyQA

Full Finetuning 68.45 19.66 75.09 62.37
LoRA 68.03 20.22 73.97 61.43

GaLore 65.77 12.68 73.12 61.08
WeLore 69.36 21.59 77.41 65.17

Table 8: Downstream performance comparison of WeLore w.r.t. LoRA, GaLore and Full finetuning.

From Table 7, it can be observed that WeLore generalizes well to Mistral-7B significantly reducing
the perplexity of the compressed model in comparison with Uniform rank reduction as well as Outlier-
based rank reduction. Moreover, with fine tuning only 20% of parameters (at 50% rank reduction
ratio) of 7B model, WeLore can notably outperform LoRA, GaLore as well as full-finetuning for
downstream task.
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A.5 PRE-ESTIMATED SINGULAR VALUE THRESHOLDS (K) FOR LLAMA-2 7B AND 13B

Model 10% 20% 30% 40% 50% 60% 70%

LLaMa-2 7B 0.065 0.084 0.115 0.145 0.175 0.215 0.260
LLaMa-2 13B 0.065 0.085 0.115 0.140 0.180 0.225 0.270

Table 9: Thresolds used for low-rank decomposition to different compression level in our experiments
for LLaMa-2 7B and 13B. The singular values are calculated using pytorch torch.svd() function.

A.6 WELORE RANK REDUCTION RATIO AND PARAMETER COUNT

Rank Reduction LRCs/Trainable # Param Count N-LRCs/Frozen # Param Count Total # Model Param

0% 0 6738.42M 6738.42M
10% 291.93M 6408.90M 6700.83M
20% 1225.96M 5171.58M 6397.54M
30% 1450.00M 4344.25M 5794.25M
40% 1498.39M 3663.72M 5162.12M
50% 1453.52M 3090.15M 4543.67M

Table 10: WeLore rank reduction and estimate of total number of LRCs and N-LRCs parameters in
the compressed checkpoint.

A.7 HYPERPARAMETERS FOR CONTINUAL FINETUNING OF LLAMA-7B AND 13B

Hyperparamter LLaMa-2 7B LLaMa-2 13B

Model Link Download Download
Batch Size 1 1

Max. Sequence Length 1024 1024
Learning Rate 5e-05 5e-05

Schedular cosine cosine
Num. Training STeps 10000 10000

Warmup Steps 500 500
dtype bfloat16 bfloat16

Table 11: Primary hyperparamter configuration setting for continual finetuning of LLaMa-7B & 13B.

A.8 HYPERPARAMETERS FOR DOWNSTREAM FINETUNING WITH WELORE
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Hyperparameter CommonsenseQA SVAMP BoolQ CoinFlip BigBench StrategyQA

Train Samples (avg. words) 9741(28.00) 700 (31.83) 9427 (14.81) 350 (37.05) 295 (34.90) 1603 (9.61)
Test Samples (avg. words) 1221(27.75) 300(31.56) 3270 (14.70) 150 (36.96) 74 (35.58) 687 (9.57)

Batch Size 8 8 8 8 8 8
Max_length 512 512 512 512 512 512

Training Steps 5000 500 2000 500 1000 1000
Learning Rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Table 12: Hyperparamters settings for downstream finetuning of LLaMa-7B

A.9 DETAILED QUANTATIVE AVERAGE OF LAYER-WISE COSINE SIMILARITY OF GRADIENTS
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Figure 9: Cosine similarity for gradients of different layers obtained from various checkpoints during
pretraining of LLaMA-130M on C4 dataset for 25,000 training steps using Adam Optimizer.
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