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ABSTRACT

Based on large-scale pre-trained multilingual representations, recent cross-lingual
transfer methods have achieved impressive transfer performances. However, the
performance of target languages still lags far behind the source language. In this
paper, our analyses indicate such a performance gap is strongly associated with the
cross-lingual representation discrepancy. To achieve better cross-lingual transfer
performance, we propose the cross-lingual manifold mixup (X-MIXUP) method,
which adaptively calibrates the representation discrepancy and gives compromised
representations for target languages. Experiments on the XTREME benchmark
show X-MIXUP achieves 1.8% performance gains on multiple text understanding
tasks, compared with strong baselines, and reduces the cross-lingual representation
discrepancy significantly.

1 INTRODUCTION

Many natural language processing tasks have shown exciting progress utilizing deep neural models.
However, these deep models often heavily rely on sufficient annotation data, which is not the case in
the multilingual setting. The fact is that most of the annotation data are collected for popular languages
like English and Spanish (Ponti et al., 2019; Joshi et al., 2020), while many long-tail languages could
hardly obtain enough annotations for supervised training. As a result, cross-lingual transfer learning
(Prettenhofer & Stein, 2011; Wan et al., 2011; Ruder et al., 2019) is crucial, transferring knowledge
from the annotation-rich source language to low-resource or zero-resource target languages. In this
paper, we focus on the zero-resource setting, where labeled data are only available in the source
language.

Recently, multilingual pre-trained models (Conneau & Lample, 2019; Conneau et al., 2020a; Xue
et al., 2020) offer an effective way for cross-lingual transfer, which yield a universal embedding space
across various languages. Such universal representations make it possible to transfer knowledge
from the source language to target languages through the embedding space, significantly improving
the transfer learning performance (Chen et al., 2019; Zhou et al., 2019; Keung et al., 2019; Fang
et al., 2020). Besides, Conneau et al. (2018) proposes translate-train, a simple yet effective cross-
lingual data augmentation method, which constructs pseudo-training data for each target language via
machine translation. Although these works have achieved impressive improvements in cross-lingual
transfer (Hu et al., 2020; Ruder et al., 2021), significant performance gaps between the source
language and target languages still remain (see Table 1). Hu et al. (2020) refers to the gap as the
cross-lingual transfer gap, a difference between the performance on the source and target languages.

To investigate how the cross-lingual transfer gap emerges, we perform relevant analyses, demonstrat-
ing that transfer performance correlates well with the cross-lingual representation discrepancy (see
Section 3 for details). Here the cross-lingual representation discrepancy means the degree of differ-
ence between the source and target language representations in the universal embedding space. As
shown in Figure 1(a), in translate-train, the representation distribution of Spanish almost overlaps
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Code is available at https://github.com/yhy1117/X-Mixup.
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Figure 1: Representation visualization of four languages: English (en), Spanish (es), Arabic (ar) and
Swahili (sw) based on XLM-R. We plot the sentence representation of the XNLI test set, which is
parallel across 15 languages. We average hidden states of the last layer to get sentence representations
and implement the dimensionality reduction by PCA. Obviously, the cross-lingual representation
discrepancies are large in translate-train, but X-MIXUP reduces the discrepancy significantly.

with English, while Arabic shows a certain representation discrepancy compared with English and
Swahili performs larger discrepancy, where translate-train achieves 88.6 accuracy on English, 85.7 on
Spanish, 82.2 on Arabic and 77.0 on Swahili. Intuitively, a larger representation discrepancy could
lead to a worse cross-lingual transfer performance.

In this paper, we propose the Cross-Lingual Manifold Mixup (X-MIXUP) approach to fill the cross-
lingual transfer gap. Based on our analyses, reducing the cross-lingual representation discrepancy is a
promising way to narrow the transfer gap. Given the cross-lingual representation discrepancy is hard
to remove, X-MIXUP directly faces the issue and explicitly accommodates the representation discrep-
ancy in the neural networks, by mixing the representation of the source and target languages during
training and inference. With X-MIXUP, the model itself can learn how to escape the discrepancy,
which adaptively calibrates the representation discrepancy and gives compromised representations
for target languages to achieve better cross-lingual transfer performance. X-MIXUP is motivated by
robust deep learning (Vincent et al., 2008), while X-MIXUP adopts the mixup (Zhang et al., 2018)
idea to handle the cross-lingual discrepancy.

Specifically, X-MIXUP is designed upon the translate-train approach, faced with the exposure bias
(Ranzato et al., 2016) problem and data noise problem. During training, the source sequence is a real
sentence and the target sequence is a translated one, while situations are opposite during inference.
Besides, the translated text often introduces some noises due to imperfect machine translation systems.
To address them, we further impose the Scheduled Sampling (Bengio et al., 2015) and Mixup Ratio in
X-MIXUP to handle the distribution shift problem and data noise problem, respectively.

We verify X-MIXUP on the cross-lingual understanding benchmark XTREME (Hu et al., 2020),
which includes several understanding tasks and covers 40 languages from diverse language families.
Experimental results show X-MIXUP achieves 1.8% performance gains across different tasks and lan-
guages, comparing with strong baselines. It also reduces the cross-lingual representation discrepancy
significantly, as Figure 1(b) shows.

2 RELATED WORK

Multilingual Representation Learning Recent studies have demonstrated the superiority of large-
scale pre-trained multilingual representations on downstream tasks. Multilingual BERT (mBERT;
Devlin et al., 2019) is the first work to extend the monolingual pre-training to the multilingual setting.
Then, several extensions achieve better cross-lingual performances by introducing more monolingual
or parallel data and new pre-training tasks, such as Unicoder (Huang et al., 2019), XLM-R (Conneau
et al., 2020a), ALM (Yang et al., 2020), MMTE (Siddhant et al., 2020), InfoXLM (Chi et al., 2020),
HICTL (Wei et al., 2020), ERNIE-M (Ouyang et al., 2020), mT5 (Xue et al., 2020), nmT5 (Kale
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Table 1: Cross-lingual transfer performances of POS and NER tasks on languages with different
data resources or different language families, where there are only labeled training data in English.
The data resource refers to the resource of each language utilized in the pre-training process. For
the language family, English belongs to the Germanic languages, so we divide languages into two
types: Germanic one and others. Results show high-resource languages outperform low-resource
ones significantly and languages dissimilar to the source language tend to perform worse.

Language Type Source Language Resource Language Family
High-resource Low-resource Germanic Other

Language en es it pt eu kk mr af de nl ar hi ja

mBERT POS 95.5 86.9 88.4 86.2 60.7 70.5 69.4 86.6 85.2 88.6 56.2 67.2 49.2
NER 85.2 77.4 81.5 80.8 66.3 45.8 58.2 77.4 78.0 81.8 41.1 65.0 29.0

XLM-R POS 96.1 88.3 89.4 87.6 72.5 78.1 80.8 89.8 88.5 89.5 67.5 76.4 15.9
NER 84.7 79.6 81.3 81.9 60.9 56.2 68.1 78.9 78.8 84.0 53.0 73.0 23.2

et al., 2021), AMBER (Hu et al., 2021) and VECO (Luo et al., 2021). They have been the standard
backbones of current cross-lingual transfer methods.

Cross-lingual Transfer Learning Cross-lingual transfer learning (Prettenhofer & Stein, 2011;
Wan et al., 2011; Ruder et al., 2019) aims to transfer knowledge learned from source languages to
target languages. According to the type of transfer learning (Pan & Yang, 2010), previous cross-
lingual transfer methods can be divided into three categories: instance transfer, parameter transfer,
and feature transfer. The cross-lingual transferability improves a lot when engaged with the instance
transfer by translation (i.e. translate-train, translate-test) or other cross-lingual data augmentation
methods (Singh et al., 2019; Bornea et al., 2020; Qin et al., 2020; Zheng et al., 2021). Chen
et al. (2019) and Zhou et al. (2019) focus on the parameter transfer to learn a share-private model
architecture. Besides, other works implement the feature transfer to learn the language-invariant
features by adversarial networks (Keung et al., 2019; Chen et al., 2019) or re-alignment (Libovický
et al., 2020; Zhao et al., 2020). X-MIXUP utilizes both the instance transfer and feature transfer,
which is based on the translate-train data augmentation approach and implements the feature transfer
by cross-lingual manifold mixup.

Mixup and Its Variants Mixup (Zhang et al., 2018) proposes to train models on the linear interpo-
lation at both the input level and label level, which is effective to improve the model robustness and
generalization. Generally, the interpolated pair is selected randomly. Manifold mixup (Verma et al.,
2019) performs the interpolation in the latent space by conducting the linear combinations of hidden
states. Previous mixup methods (Chen et al., 2020; Jindal et al., 2020) focus on the monolingual
setting. However, X-Mixup focuses on the cross-lingual setting and faces many new challenges (see
Section 4 for details). Besides, in contrast to previous mixup methods, X-MIXUP mixes the parallel
pairs, which share the same semantics across different languages. As a result, the choice of parallel
pairs for interpolation can build a smart connection between the source and target languages.

3 ANALYSES OF THE CROSS-LINGUAL TRANSFER PERFORMANCE

In this section1, we concentrate on the cross-lingual transfer performance and find it is strongly
associated with the cross-lingual representation discrepancy. Firstly, we observe the cross-lingual
transfer performance on different target languages and propose an assumption. Then we conduct
qualitative and quantitative analyses to verify it.

Although previous studies (Hu et al., 2020; Ruder et al., 2021) have shown impressive improvements
on cross-lingual transfer, the cross-lingual transfer gap is still pretty large, more than 16 points in
Hu et al. (2020). Furthermore, results in Table 1 show the performance of low-resource languages
and dissimilar languages fall far behind other languages in cross-lingual transfer tasks.

Compared with English, the representations of other languages, especially low-resource languages,
are not well-trained (Lauscher et al., 2020; Wu & Dredze, 2020), because high-resource languages
dominate the representation learning process, which results in the cross-lingual representation

1In our analyses, we take English as the source language, and the dissimilar language is the language which
is dissimilar to English.
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Table 2: Spearman’s rank correlation ρ between the CKA score and cross-lingual transfer performance
on two XTREME tasks, where † denotes training on the source language, and ‡ denotes the translate-
train approach. ∗ denotes the p-value is lower than 0.05. Results indicate the correlation is solid.

Task XNLI† XNLI‡ PAWS-X† PAWS-X‡

ρ 0.76∗ 0.69∗ 0.90∗ 0.93∗

discrepancy. Besides, dissimilar languages often show differences in language characteristics (like
vocabulary, word order), which also leads to the representation discrepancy. As a result, we assume
that the cross-lingual transfer performance is closely related to the representation discrepancy between
the source language and target languages.

Following Conneau et al. (2020b), we utilize the linear centered kernel alignment (CKA; Kornblith
et al., 2019) score to indicate the cross-lingual representation discrepancy

CKA(X,Y ) =
||Y >X||2F

||X>X||2F||Y >Y ||2F
, (1)

where X and Y are parallel sequences from the source and target languages, respectively. A higher
CKA score denotes a smaller cross-lingual representation discrepancy.

To verify our assumption, we perform qualitative and quantitative analyses on the relationship
between the CKA score and cross-lingual transfer performance. Figure 3 in Appendix B indicates a
higher CKA score tends to induce better cross-lingual transfer performance. We also calculate the
Spearman’s rank correlation between the CKA score and the transfer performance in Table 2, which
shows a strong correlation between them. Both the trend and correlation score confirm the cross-
lingual transfer performance is highly related to the cross-lingual representation discrepancy.

4 METHODOLOGY: X-MIXUP

Based on the aforementioned analyses, we believe that reducing the cross-lingual representation
discrepancy is the key to filling the cross-lingual transfer gap. In this section, we propose X-MIXUP
to explicitly reduce the representation discrepancy by implementing the manifold mixup between
the source language and target language. With X-MIXUP, the model can adaptively calibrate the
representation discrepancy and give compromised representations for target languages. This section
will first introduce the overall architecture of X-MIXUP and its details. After that, the training
objectives and inference process will be shown.

4.1 OVERALL ARCHITECTURE

Figure 2 illustrates the overall architecture of X-Mixup. Sequences from the source and target
languages are first encoded separately. Then within the encoder, X-MIXUP implements the manifold
mixup between the paired sequences (original sequence and its translation) within a specific layer,
where Mixup Ratio controls the degree of mixup and Scheduled Sampling schedules the data sampling
process during training.

Notations We use S to denote the source language and T to denote the target language. hl denotes
the hidden states of a sequence in layer l. D denotes the real text data collection and D̃ denotes
the translation data collection. For downstream understanding tasks, there are annotation data
in the source language DTrain

S = (X Train
S ,YTrain

S ) and raw test data in the target language DTest
T =

(X Test
T ). Through translate-train, we can get pseudo-training data in the target language D̃Train

T =

(X̃ Train
T , ỸTrain

T ). Similarly, through translate-test, we can get pseudo-test data in the source language
D̃Test

S = (X̃ Test
S ). During training, the Scheduled Sampling process uses translation data2 D̃Train

S =

(X̃ Train
S ) from the source language. Note that we use translation data (X̃ Train

T and X̃ Test
S ) and translate-

train labels (ỸTrain
T ) from the official XTREME repository, which is in the same setting as baselines.

2These data are acquired by forward translation (from S to T ) then backward translation (from T to S).
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Figure 2: The model architecture of X-MIXUP, where the cross-lingual manifold mixup process is in
the green block. Note that the manifold mixup process is implemented only in a certain layer (the
same layer of both sides), and in other layers the process is omitted.

Basic Model We use mBERT (Devlin et al., 2019) or XLM-R (Conneau et al., 2020a) as the
backbone model. Within each layer, there are two sub-layers: the multi-head attention layer and the
feed-forward layer3, followed by the residual connection and layer norm. We use the same multi-head
attention layer (see details in Appendix A.1) as BERT (Devlin et al., 2019), where inputs are query,
key, and value respectively. In layer l + 1, the hidden states of the source sequence xS and target
sequence xT are acquired by the multi-head attention

hl+1
S = MultiHead(hl

S ,h
l
S ,h

l
S), hl+1

T = MultiHead(hl
T ,h

l
T ,h

l
T ). (2)

Manifold Mixup To reduce the cross-lingual representation discrepancy, a straightforward idea is
to find compromised representations between the source and target languages. It’s difficult to find
such representations because of varying degrees of differences across languages, like vocabulary and
word order. However, manifold mixup provides an elegant way to get intermediate representations by
conducting linear interpolation on hidden states.

To extract target-related information from the source hidden states, the target hidden states are used
as the query, and the source hidden states are used as the key and value. This cross-attention process
is computed as

hl+1
T |S = MultiHead(hl+1

T ,hl+1
S ,hl+1

S ), (3)

which shares parameters with the multi-head attention. The manifold mixup process mixes the target
hidden states hl+1

T and the source-aware target hidden states hl+1
T |S based on the mixup ratio λ

h̃l+1
T = LN(λhl+1

T |S + (1− λ)hl+1
T ), (4)

where λ is an instance-level parameter, ranging from 0 to 1, and indicates the degree of manifold
mixup. LN denotes the layer norm operation.

Mixup Ratio The machine translation process may change the original semantics and introduce
data noises in varying degrees (Castilho et al., 2017; Fomicheva et al., 2020). Thus we introduce the

3In this section, the feed-forward layer is omitted for simplification.
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translation quality modeling in the mixup process to handle this problem. Following Fomicheva et al.
(2020), we use the entropy of attention weights to measure the translation quality

H(A) = −1

I

I∑
i

J∑
j

AjilogAji, where Aij = softmax(
hTih

>
Sj√
n

). (5)

I is the number of target tokens and J is the number of source tokens. Lower entropy implies better
cross-lingual alignment and higher translation quality.

To introduce the translation quality modeling into the manifold mixup process, we compute the mixup
ratio as λ = λ0 ·σ[(H(A) + H(A>))W + b], where σ is the sigmoid function, and W , b are trainable
parameters. λ0 is the max value of the mixup ratio, which is set to 0.5 in this paper. We consider
two-way alignment in the translation quality modeling, i.e. H(A) and H(A>).

Scheduled Sampling The source sequences utilized in training and inference are drawn from
different distributions. During training, the source sequence is a real text from DTrain

S , while during
inference, the source sequence is a translation from D̃Test

S . This discrepancy, commonly called the
exposure bias, leads to a gap between training and inference.

Motivated by the scheduled sampling approach (Bengio et al., 2015) in NMT, we sample the source
sequence dynamically during training. Specifically, the source sequence fed into the manifold mixup
is either a real text from DTrain

S or translation from D̃Train
S with a certain probability p{

p <= p∗, xs ∈ DTrain
S ,

p > p∗, xs ∈ D̃Train
S ,

(6)

where p∗ is decreasing during training to match the situation of inference. We utilize the inverse
sigmoid decay (Bengio et al., 2015), which decreases p∗ as a function of the index of mini-batch.

4.2 FINAL TRAINING OBJECTIVE

The training loss is composed of two parts: the task loss and the consistency loss

L = Ltask︸︷︷︸
task loss

+ MSE(rS , rT ) + KL(pS ,pT )︸ ︷︷ ︸
consistency loss

. (7)

where MSE(·) is Mean Squared Error and KL(·) is Kullback-Leibler divergence. r∗ is the sequence
representation4 and p∗ is the predicted probability distribution of downstream tasks.

The task loss Ltask is the sum of the source language task loss LS
task and target language one LT

task,
weighted by the hyper-parameter α, which is utilized to balance the training process

Ltask = αLS
task + (1− α)LT

task. (8)

For classification, structured prediction, and span extraction tasks, the task loss is the cross-entropy
loss (see details in Appendix A.2). For structured prediction tasks, it is non-trivial to implement the
token-level label mapping across different languages. Thus we use the label probability distribution,
predicted by the source language task model, as the pseudo-label for training, where tokens and labels
are corresponding.

The consistency loss is composed of two parts: the representation consistency loss and the prediction
consistency loss. The first loss is a regularization term and provides a way to align representations
across different languages (Ruder et al., 2019). The second loss is to make better use of the supervision
of downstream tasks. It only exists in the classification task, as the translation process does not
change the label of this task, while in other tasks, it does.

4.3 INFERENCE

During inference, the manifold mixup process is the same as training, except for the Scheduled
Sampling process. Concretely, for the source language, only translation data are available in the

4We utilize the mean pooling of the last layer’s hidden states as the sequence representation, which is
independent of the sequence length.
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Table 3: Main results on the XTREME benchmark. † denotes using other data augmentation strategy
in addition to machine translation. ‡ denotes results from Ruder et al. (2021), which is an updated
version of Hu et al. (2020).

Model Pair Sentence Structured Prediction Question Answering Avg.XNLI PAWS-X POS NER XQuAD MLQA TyDiQA

Metrics Acc Acc F1 F1 F1/EM F1/EM F1/EM -

Based on XLM-R-large
XLM-R (Hu et al., 2020) 79.2 86.4 73.8 65.4 76.6/60.8 71.6/53.2 65.1/45.0 70.1
Trans-train (Wei et al., 2020) 82.9 90.1 74.6 66.8 80.4/65.6 72.4/54.7 66.2/48.2 72.6
Filter (Fang et al., 2020) 83.9 91.4 76.2 67.7 82.4/68.0 76.2/57.7 68.3/50.9 74.4
XTUNE (Zheng et al., 2021) 84.8 91.6 79.3† 69.9† 82.5/69.0† 75.0/57.1† 75.4/60.8† 76.5
X-MIXUP 85.3 91.8 78.4 69.0 82.6/69.3 76.5/58.1 69.0/52.8 75.5

Based on mBERT
mBERT (Hu et al., 2020) 65.4 81.9 71.5 62.2 64.5/49.4 61.4/44.2 59.7/43.9 63.2
Joint-Align (Zhao et al., 2020) 72.3 - - - - - - -
Trans-train (Hu et al., 2020) 75.1 88.9 - - 72.4/58.3 67.6/49.8 59.5/45.8‡ -
X-MIXUP 78.8 89.7 76.5 65.0 73.3/58.9 69.0/50.9 60.8/46.5 70.0

inference stage, without real data, so we use xs ∈ D̃Test
S . For classification tasks, we synthesize the

predictions of both the source and target sequences by taking the mean of the predicted probability
distributions as the final prediction. For structured prediction and QA tasks, we only consider the
prediction of the target sequence.

5 EXPERIMENTS

This section first introduces the cross-lingual understanding benchmark, XTREME. Then briefly
introduces the configurations of downstream tasks and baselines. Finally, shows the main results of
baselines and X-MIXUP on XTREME.

5.1 TASKS AND SETTINGS

Tasks In our experiments, we focus on three types of tasks in XTREME: (1) sentence pair classifi-
cation task: XNLI (Conneau et al., 2018) and PAWS-X (Yang et al., 2019); (2) structured prediction
task: POS (Nivre et al., 2018) and NER (Pan et al., 2017); (3) question answering task: XQuAD
(Artetxe et al., 2020), MLQA (Lewis et al., 2020) and TyDiQA (Clark et al., 2020). The details of
these datasets can refer to Hu et al. (2020). We utilize the translate-train and translate-test data from
the XTREME repo5, which also provide the pseudo-label of translate-train data for classification
tasks and question answering tasks. The rest translation data are from Google Translate6.

Models Experiments are based on two multilingual pre-trained models: mBERT and XLM-R. We
use the pre-trained models of Huggingface Transformers7 as the backbone model.

Hyper-parameters We select XNLI, POS, and MLQA as representative tasks to search for the best
hyper-parameters. The final model is selected based on the averaged performance of all languages on
the dev set. We perform grid search over the balance training parameter α and learning rate from [0.2,
0.4, 0.6, 0.8] and [3e-6, 5e-6, 2e-5, 3e-5]. We also search for the best manifold mixup layer from [1,
4, 8, 12, 16, 20, 24]. In final results, we implement mixup in the first layer for classification tasks, 4th
layer for structured prediction tasks. For QA tasks, we implement mixup in the 16th layer for large
model, 8th layer for base model. Concrete details of experiments are presented in Appendix C.1.

5.2 BASELINES

We conduct experiments on two strong multilingual pre-trained models to verify the generality
of methods: (1) mBERT Multilingual BERT is a 12-layer transformer model pre-trained on the

5https://github.com/google-research/xtreme.
6https://translate.google.com/.
7We use bert-base-multilingual-cased for mBERT and xlm-roberta-large for XLM-R.
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Table 4: Comparisons between X-MIXUP and XTUNE under the same setting: XLM-R-base model
and machine translation data augmentation. Results of XTUNE are from Zheng et al. (2021) Table 4.

Model XNLI POS MLQA

XTUNER1 (Zheng et al., 2021) 79.7 - -
XTUNER2 (Zheng et al., 2021) 78.9 76.6 68.7/51.1
X-MIXUP 80.4 77.8 71.2/53.1

Wikipedias of 104 languages. (2) XLM-R XLM-R-large is a 24-layer transformer model pre-
trained on 2.5T data extracted from Common Crawl covering 100 languages. Based on them, these
are some strong baselines: (1) Trans-train Abbreviation for Translate-train. The training set of
the source language is machine-translated to each target language and then the model is trained on
the concatenation of all training sets. (2) Joint-Align Zhao et al. (2020) aligns the monolingual
sub-spaces of the source and target language by minimizing the distances of embeddings for matched
word pairs. (3) Filter Fang et al. (2020) splices the representation of the target sequence and its
translation in intermediate layers to extract multilingual knowledge. (4) XTUNE Zheng et al. (2021)
uses two types of consistency regularization based on four types of data augmentation.

5.3 MAIN RESULTS

Results on the XTREME benchmark are shown in Table 3. Concrete results for each task are presented
in Appendix C.2. Compared with strong baselines, X-MIXUP shows its superiority across different
backbones and tasks, which indicates its generality. X-MIXUP outperforms Trans-train by 2.2%
based on mBERT, and X-MIXUP outperforms Filter by 1.5% based on XLM-R. The superiority of
X-MIXUP over Filter is that X-MIXUP gives a calibrated representation for target languages, not just
the concatenation of two representations. Besides, X-MIXUP considers the noise of translation data
and limits the noise propagation by introducing mixup ratio.

XTUNE achieves the best results on structured prediction tasks and the low-resource QA task TyDiQA
(only 3.7k training data in English), but XTUNE uses three other data augmentation approaches in
addition to machine translation. To make a fairer comparison, we conduct experiments under the
same setting in Table 4, which indicates X-MIXUP outperforms XTUNE on three types of tasks
with only machine translation data augmentation. Besides, X-MIXUP only needs one-stage training,
while XTUNE implements a two-stage training algorithm. However, X-MIXUP and XTUNE are
complementary, where the former focuses on finding better representations for target languages while
the latter concentrates on the cross-lingual data augmentation and consistency regularization.

6 ANALYSIS AND DISCUSSION

To better understand X-MIXUP and explore how X-MIXUP influences the cross-lingual transfer
performance, we conduct analyses8 on several questions. Results show X-MIXUP achieves perfor-
mance improvements across different languages and it also reduces the cross-lingual representation
discrepancy obviously. Table 6 in Appendix B verifies the effectiveness of X-Mixup on both seen
and unseen languages. Besides, ablation results show the cross-lingual manifold mixup training
contributes a lot to cross-lingual transfer.

(Q1) How X-MIXUP influences the cross-lingual representation discrepancy? Language centroid
(Rosenberg & Hirschberg, 2007) is the mean of the representations within each language. We plot
the language centroid of different methods (see Figure 4 in Appendix B), which indicates X-MIXUP
brings closer language centroids significantly. We also calculate the CKA scores of the XNLI
dataset (see Table 7 in Appendix B). Results show X-MIXUP reduces the cross-lingual representation
discrepancy evenly across different target languages, improving the CKA score by 10.4% on average.
In conclusion, both the language centroids visualization and the CKA score improvement indicate
X-MIXUP reduces the cross-lingual representation discrepancy effectively.

8In this section, we utilize the XLM-R-large model as the backbone model.
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Table 5: Ablation results on X-MIXUP, where w/o mixup denotes remove the cross-lingual manifold
mixup during training and inference and λ = λ0 denotes a constant mixup ratio.

Model XNLI POS MLQA

X-MIXUP 85.3 78.4 76.5/58.1
w/o mixup 82.9 75.7 72.7/54.8
w/o mixup inference 84.0 77.6 75.6/57.3
w/o scheduled sampling 84.6 78.0 76.3/57.9
w/o consistency loss 84.2 78.0 76.5/58.0
λ = λ0 84.1 77.8 75.8/57.5

(Q2) How X-MIXUP influences the cross-lingual transfer gap? We compare the cross-lingual
transfer gap in Appendix B Table 8. Compared with Trans-train, X-MIXUP reduces the averaged
gap by 39.8% and shows its superiority across three types of tasks. Compared with state-of-the-art
methods, X-MIXUP achieves the smallest cross-lingual transfer gap on four out of seven datasets,
which suggests the effectiveness of X-MIXUP on classification and QA tasks.

(Q3) What is the essential component of X-MIXUP? There are five major components of X-
MIXUP: cross-lingual manifold mixup training, mixup inference, Mixup Ratio, Scheduled Sampling,
and consistency loss. To better understand X-MIXUP, we implement ablation studies in Table 5.
Comparisons between X-MIXUP and w/o mixup show the effectiveness of cross-lingual manifold
mixup across different tasks, and even without mixup inference (translate-test data), the mixup
training can also achieve 2.6% improvements on average. Besides, comparisons between X-MIXUP
and λ = λ0 show the effectiveness of introducing the translation quality modeling in the mixup
process. Scheduled sampling achieves more performance improvements on the classification task, as
the task shares labels across languages, and scheduled sampling can prevent the model from solely
relying on the gold source sequence to make predictions. In addition, the consistency loss is also
more effective on the classification task, because there is additional prediction consistency loss which
can transfer the task capability from the source language to target languages. Detailed ablation results
on the consistency loss are shown in Appendix B Table 9, which shows the KL consistency loss
contributes more than the MSE consistency loss on the classification task.

(Q4) Which layer is the best to implement the manifold mixup? We implement the cross-lingual
manifold mixup in different layers (see Figure 5 in Appendix B for details) and find different tasks
prefer different mixup layers. Although different tasks have their own preferences, no matter which
layer we mix, the cross-lingual transfer performance can be improved, except for mixing within
a higher layer on classification tasks. The drop in classification task is mainly because the source
and target sequences share the same task label. Performing mixup in a higher layer may make
the model rely on the source sequence and ignore the target sequence. The structured prediction
task is not sensitive to the mixup layer, mainly because this task relies on both the short and long
dependence. For QA tasks, the cross-lingual transfer performance shows a trend from rise to decline
as the mixup layer increases. The QA task needs higher-level understanding, but higher layers are
more language-specific, where sequences from different languages have different gold answers.

7 CONCLUSION

This paper focuses on enhancing the cross-lingual transfer performance on understanding tasks.
Considering the large cross-lingual transfer gap in recent works, this paper first analyses related
factors and finds this gap is strongly associated with the cross-lingual representation discrepancy.
Then X-MIXUP is proposed to alleviate the discrepancy, which gives compromised representations
for target languages by implementing the manifold mixup between the source and target languages.
Empirical evaluations on XTREME verify the effectiveness of X-MIXUP across different tasks and
languages. Besides, both the visualization and quantitative analyses show X-MIXUP reduces the
cross-lingual representation discrepancy effectively. Furthermore, X-Mixup can also be applied to
the multilingual pre-training process by implementing the cross-lingual manifold mixup on parallel
data. Findings on the relationship between the cross-lingual transfer performance and representation
discrepancy shed light on a promising way to boost cross-lingual transfer for future research.
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and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computational
Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, pp. 6931–6936.
International Committee on Computational Linguistics, 2020. doi: 10.18653/v1/2020.coling-main.
611. URL https://doi.org/10.18653/v1/2020.coling-main.611.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. The state
and fate of linguistic diversity and inclusion in the NLP world. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 6282–6293, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.560. URL
https://www.aclweb.org/anthology/2020.acl-main.560.

11

https://www.aclweb.org/anthology/2020.acl-main.747
https://www.aclweb.org/anthology/2020.acl-main.536
https://www.aclweb.org/anthology/2020.acl-main.536
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://arxiv.org/abs/2009.05166
https://arxiv.org/abs/2009.05166
https://transacl.org/ojs/index.php/tacl/article/view/1997
https://transacl.org/ojs/index.php/tacl/article/view/1997
https://doi.org/10.18653/v1/2021.naacl-main.284
https://www.aclweb.org/anthology/D19-1252
https://doi.org/10.18653/v1/2020.coling-main.611
https://www.aclweb.org/anthology/2020.acl-main.560


Published as a conference paper at ICLR 2022

Mihir Kale, Aditya Siddhant, Rami Al-Rfou, Linting Xue, Noah Constant, and Melvin Johnson. nmt5 -
is parallel data still relevant for pre-training massively multilingual language models? In Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event, August
1-6, 2021, pp. 683–691. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
acl-short.87. URL https://doi.org/10.18653/v1/2021.acl-short.87.

Phillip Keung, Yichao Lu, and Vikas Bhardwaj. Adversarial learning with contextual embeddings for
zero-resource cross-lingual classification and NER. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 1355–1360, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1138. URL https:
//www.aclweb.org/anthology/D19-1138.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey E. Hinton. Similarity of neural net-
work representations revisited. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceed-
ings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 3519–3529.
PMLR, 2019. URL http://proceedings.mlr.press/v97/kornblith19a.html.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and Goran Glavaš. From zero to hero: On the
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A METHOD DETAILS

A.1 MULTI-HEAD ATTENTION

In the multi-head attention layer, multiple attention heads are concatenated

MultiHead(Q,K, V ) = Concat(head1,...,h)WO, (9)

and each head is the scaled dot-product attention

headi = Attention(QW q
i ,KW k

i , VW v
i ), (10)

Attention(Q,K, V ) = softmax(
QK>√

d
)V, (11)

where WO, W q , W k and W v are trainable parameters.

A.2 TRAINING OBJECTIVE

For classification tasks (e.g. NLI), the task loss is the cross-entropy loss

Ltask = −
C∑
j

yj logpj , (12)

where C is the size of the label set.

For structured prediction tasks (e.g. POS) and span extraction tasks (e.g. QA), the task loss is also
the cross-entropy loss

Ltask = −
n∑
i

C∑
j

yij logpij . (13)

where n is the sequence length.
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B ANALYSIS RESULTS
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Figure 3: Performances on PAWS-X and XNLI test set, where languages are sorted by decreasing
CKA scores. The trend indicates the performance gets worse along with the CKA score decreasing.
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Figure 4: Language centroids visualization of the POS test set, which indicates X-Mixup brings
closer these centroids obviously.
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Figure 5: Performances on implementing X-MIXUP (solid line) in different layers and Trans-train
(dashed line) on three downstream tasks.
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Table 6: Performances on XNLI test set, where Trans-train and X-MIXUP are trained on 8 seen
languages and tested on both these seen languages and 7 unseen languages. ∆ is the performance
difference between X-MIXUP and Trans-train. Results show X-MIXUP performs better than Trans-
train by a large margin on both seen and unseen languages.

Model Seen Languages Unseen Languages Avg.en bg el fr ru th ur zh ar de es hi sw tr vi
Trans-train 87.6 84.7 84.2 84.6 82.9 80.1 76.5 83.0 82.6 84.5 85.0 80.6 77.8 82.7 82.7 82.6
X-MIXUP 89.5 87.1 86.3 86.8 84.7 82.7 79.0 85.0 85.3 86.3 86.9 82.9 80.3 84.5 84.5 84.8
∆ +1.9 +2.4 +1.9 +2.2 +1.8 +2.6 +2.5 +2.0 +2.7 +1.8 +1.9 +1.7 +2.5 +1.8 +1.8 +1.8

Table 7: CKA scores and performances on XNLI test set, where ∆ is the score or performance
difference between X-MIXUP and Trans-train. Results show X-MIXUP improves the CKA scores
evenly across different target languages and the performance improvements are diverse. There is no
obvious correlation between the CKA score improvement and performance improvement.

Model en es de vi fr bg tr el ru ar hi sw ur th zh Avg.

CKA score
Trans-train 1.00 0.81 0.80 0.78 0.78 0.78 0.76 0.75 0.75 0.74 0.74 0.73 0.72 0.72 0.72 0.77
X-MIXUP 1.00 0.88 0.87 0.86 0.86 0.86 0.85 0.83 0.82 0.84 0.83 0.82 0.81 0.80 0.79 0.85
∆ 0.00 0.07 0.07 0.08 0.08 0.08 0.09 0.08 0.07 0.10 0.09 0.09 0.09 0.08 0.07 0.08

Performance
Trans-train 88.6 85.7 84.5 82.6 84.2 85.2 82.1 84.5 81.8 82.2 80.8 77.0 77.7 80.2 82.7 82.6
X-MIXUP 89.9 87.7 86.9 85.4 87.1 87.3 84.9 86.8 85.1 85.2 83.5 81.2 79.6 83.2 85.2 85.3
∆ +1.3 +2.0 +2.4 +2.8 +2.9 +2.1 +2.8 +2.3 +3.3 +3.0 +2.7 +4.2 +1.9 +3.0 +2.5 +2.7

Table 8: The cross-lingual transfer gap (lower is better) of different methods on the XTREME
benchmark. For QA tasks, we only show EM scores. † denotes results from Wei et al. (2020). Overall,
X-MIXUP achieves the smallest cross-lingual transfer gap on four out of seven datasets.

Model XNLI PAWS-X POS NER XQuAD MLQA TyDiQA Avg.

mBERT (Hu et al., 2020) 16.5 14.1 25.5 23.6 25.0 27.5 22.2 22.1
XLM-R (Hu et al., 2020) 10.2 12.4 24.3 19.8 16.3 19.1 13.1 16.5
Trans-train (Hu et al., 2020) 7.3 9.0 22.4† 20.5† 17.6 22.2 24.2 17.6
Filter (Fang et al., 2020) 6.0 5.2 19.7 16.3 7.3 15.7 9.2 11.3
XTUNE (Zheng et al., 2021) 5.5 5.2 17.3 14.8 10.1 18.5 0.9 10.3
X-MIXUP 4.9 5.2 18.1 15.9 6.7 13.9 9.6 10.6

Table 9: Ablation results on the consistency loss, which show the KL consistency loss contributes
more than the MSE consistency loss on the classification task.

Model XNLI POS MLQA

X-MIXUP 85.3 78.4 76.5/58.1
w/o MSE consistency loss 84.6 78.0 76.5/58.0
w/o KL consistency loss 84.3 - -
w/o both 84.2 - -
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C EXPERIMENTAL DETAILS

C.1 HYPER-PARAMETERS

For all tasks, we fine-tune on 8 Nvidia V100-32GB GPU cards with the batch size 64. For XQuAD
and MLQA, we finetune 2 epochs. For other tasks, we finetune 4 epochs. There is no dev set in
XQuAD, so we use the dev set of MLQA for the model selection. Table 10 shows hyper-parameters
used for X-MIXUP.

Table 10: Hyper-parameters used for X-MIXUP, where α is used for balanced training in Eq 8 and pk
is the scheduled sampling decay rate.

Parameter Classification Structured Prediction QA

α 0.4 0.8 0.2
pk 1000 1000 2000

C.2 DETAILED RESULTS

Detailed results of each tasks and languages are shown below. Results of mBERT, XLM, MMTE
and XLM-R are from XTREME (Hu et al., 2020). Results of Filter is the best results of Fang et al.
(2020).

Model en ar bg de el es fr hi ru sw th tr ur vi zh Avg.
mBERT 81.9 73.8 77.6 77.6 75.9 79.1 77.8 70.7 75.4 70.5 70.0 74.3 67.4 77.0 77.6 75.1
XLM 82.8 66.0 71.9 72.7 70.4 75.5 74.3 62.5 69.9 58.1 65.5 66.4 59.8 70.7 70.2 69.1
MMTE 79.6 64.9 70.4 68.2 67.3 71.6 69.5 63.5 66.2 61.9 66.2 63.6 60.0 69.7 69.2 67.5
XLM-R 88.6 82.2 85.2 84.5 84.5 85.7 84.2 80.8 81.8 77.0 80.2 82.1 77.7 82.6 82.7 82.6
Filter 89.5 83.6 86.4 85.6 85.4 86.6 85.7 81.1 83.7 78.7 81.7 83.2 79.1 83.9 83.8 83.9
XTUNE 89.9 84.0 87.0 86.5 86.2 87.4 86.6 83.2 85.2 80.0 82.7 84.1 79.6 84.8 84.3 84.8

X-MIXUP 89.9 85.2 87.3 86.9 86.8 87.7 87.1 83.5 85.1 81.2 83.2 84.9 79.6 85.4 85.2 85.3

Table 11: XNLI accuracy scores for each language.

Model en de es fr ja ko zh Avg.
mBERT 94.0 85.7 87.4 87.0 73.0 69.6 77.0 81.9
XLM 94.0 85.9 88.3 87.4 69.3 64.8 76.5 80.9
MMTE 93.1 85.1 87.2 86.9 72.0 69.2 75.9 81.3
XLM-R 94.7 89.7 90.1 90.4 78.7 79.0 82.3 86.4
Filter 95.9 92.8 93.0 93.7 87.4 87.6 89.6 91.5
XTUNE 96.1 92.6 93.1 93.9 87.8 89.0 88.8 91.6

X-MIXUP 96.3 93.2 93.6 94.6 87.3 88.2 89.5 91.8

Table 12: PAWS-X accuracy scores for each language.
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Model af ar bg de el en es et eu fa fi fr he hi hu id it
mBERT 86.6 56.2 85.0 85.2 81.1 95.5 86.9 79.1 60.7 66.7 78.9 84.2 56.2 67.2 78.3 71.0 88.4
XLM 88.5 63.1 85.0 85.8 84.3 95.4 85.8 78.3 62.8 64.7 78.4 82.8 65.9 66.2 77.3 70.2 87.4
XLM-R 89.8 67.5 88.1 88.5 86.3 96.1 88.3 86.5 72.5 70.6 85.8 87.2 68.3 76.4 82.6 72.4 89.4
Filter 88.7 66.1 88.5 89.2 88.3 96.0 89.1 86.3 78.0 70.8 86.1 88.9 64.9 76.7 82.6 72.6 89.8
XTUNE 90.4 72.8 89.0 89.4 87.0 96.1 88.8 88.1 73.1 74.7 87.2 89.5 83.5 77.7 83.6 73.2 90.5

X-MIXUP 89.4 70.1 88.8 88.7 86.7 96.0 89.0 88.3 76.2 72.5 87.0 88.2 82.4 78.0 83.8 72.4 90.3

Model ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh Avg.
mBERT 49.2 70.5 49.6 69.4 88.6 86.2 85.5 59.0 75.9 41.7 81.4 68.5 57.0 53.2 55.7 61.6 71.5
XLM 49.0 70.2 50.1 68.7 88.1 84.9 86.5 59.8 76.8 55.2 76.3 66.4 61.2 52.4 20.5 65.4 71.3
XLM-R 15.9 78.1 53.9 80.8 89.5 87.6 89.5 65.2 86.6 47.2 92.2 76.3 70.3 56.8 24.6 25.7 73.8
Filter 40.4 80.4 53.3 86.4 89.4 88.3 90.5 65.3 87.3 57.2 94.1 77.0 70.9 58.0 43.1 53.1 76.9
XTUNE 65.3 79.8 56.0 85.5 89.7 89.3 90.8 65.7 85.5 61.4 93.8 78.3 74.0 57.5 27.9 68.8 79.3

X-MIXUP 62.7 79.0 55.3 84.8 89.6 88.8 90.1 63.6 87.4 59.9 93.1 77.1 72.4 59.4 27.3 68.3 78.4

Table 13: POS results (F1) for each language.

Model en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv
mBERT 85.2 77.4 41.1 77.0 70.0 78.0 72.5 77.4 75.4 66.3 46.2 77.2 79.6 56.6 65.0 76.4 53.5 81.5 29.0 66.4
XLM 82.6 74.9 44.8 76.7 70.0 78.1 73.5 74.8 74.8 62.3 49.2 79.6 78.5 57.7 66.1 76.5 53.1 80.7 23.6 63.0
MMTE 77.9 74.9 41.8 75.1 64.9 71.9 68.3 71.8 74.9 62.6 45.6 75.2 73.9 54.2 66.2 73.8 47.9 74.1 31.2 63.9
XLM-R 84.7 78.9 53.0 81.4 78.8 78.8 79.5 79.6 79.1 60.9 61.9 79.2 80.5 56.8 73.0 79.8 53.0 81.3 23.2 62.5
Filter 83.5 80.4 60.7 83.5 78.4 80.4 80.7 74.0 81.0 66.9 71.3 80.2 79.9 57.4 74.3 82.2 54.0 81.9 24.3 63.5
XTUNE 85.0 80.4 59.1 84.8 79.1 80.5 82.0 78.1 81.5 64.5 65.9 82.2 81.9 62.0 75.0 82.8 55.8 83.1 30.5 65.9

X-MIXUP 84.5 79.0 58.4 84.0 81.4 80.6 81.4 73.8 81.5 65.7 61.6 80.4 80.3 64.4 74.7 82.0 53.4 82.2 38.8 63.5

Model ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh
mBERT 64.6 45.8 59.6 52.3 58.2 72.7 45.2 81.8 80.8 64.0 67.5 50.7 48.5 3.6 71.7 71.8 36.9 71.8 44.9 42.7
XLM 67.7 57.2 26.3 59.4 62.4 69.6 47.6 81.2 77.9 63.5 68.4 53.6 49.6 0.3 78.6 71.0 43.0 70.1 26.5 32.4
MMTE 60.9 43.9 58.2 44.8 58.5 68.3 42.9 74.8 72.9 58.2 66.3 48.1 46.9 3.9 64.1 61.9 37.2 68.1 32.1 28.9
XLMR 71.6 56.2 60.0 67.8 68.1 57.1 54.3 84.0 81.9 69.1 70.5 59.5 55.8 1.3 73.2 76.1 56.4 79.4 33.6 33.1
Filter 71.0 51.1 63.8 70.2 69.8 69.3 59.0 84.6 82.1 71.1 70.6 64.3 58.7 2.4 74.4 83.0 73.4 75.8 42.9 35.4
XTUNE 76.3 56.9 67.1 72.6 71.5 72.5 66.7 85.8 82.1 75.2 72.4 66.0 61.8 1.1 77.5 83.7 75.6 80.8 44.9 36.5

X-MIXUP 76.5 51.7 63.9 69.8 71.2 70.4 67.9 84.5 83.1 73.5 70.7 65.6 59.3 4.4 75.0 81.8 73.1 78.2 41.6 47.8

Table 14: NER results (F1) for each language.

Model en ar de el es hi ru th tr vi zh Avg.
mBERT 83.5 / 72.2 61.5 / 45.1 70.6 / 54.0 62.6 / 44.9 75.5 / 56.9 59.2 / 46.0 71.3 / 53.3 42.7 / 33.5 55.4 / 40.1 69.5 / 49.6 58.0 / 48.3 64.5 / 49.4
XLM 74.2 / 62.1 61.4 / 44.7 66.0 / 49.7 57.5 / 39.1 68.2 / 49.8 56.6 / 40.3 65.3 / 48.2 35.4 / 24.5 57.9 / 41.2 65.8 / 47.6 49.7 / 39.7 59.8 / 44.3
MMTE 80.1 / 68.1 63.2 / 46.2 68.8 / 50.3 61.3 / 35.9 72.4 / 52.5 61.3 / 47.2 68.4 / 45.2 48.4 / 35.9 58.1 / 40.9 70.9 / 50.1 55.8 / 36.4 64.4 / 46.2
XLM-R 86.5 / 75.7 68.6 / 49.0 80.4 / 63.4 79.8 / 61.7 82.0 / 63.9 76.7 / 59.7 80.1 / 64.3 74.2 / 62.8 75.9 / 59.3 79.1 / 59.0 59.3 / 50.0 76.6 / 60.8
Filter 86.4 / 74.6 79.5 / 60.7 83.2 / 67.0 83.0 / 64.6 85.0 / 67.9 83.1 / 66.6 82.8 / 67.4 79.6 / 73.2 80.4 / 64.4 83.8 / 64.7 79.9 / 77.0 82.4 / 68.0
XTUNE 88.8 / 78.1 79.7 / 63.9 83.7 / 68.2 83.0 / 65.7 84.7 / 68.3 80.7 / 64.9 82.2 / 66.6 81.9 / 76.1 79.3 / 65.0 82.7 / 64.5 81.3 / 78.0 82.5 / 69.0

X-MIXUP 86.7 / 75.4 81.3 / 63.5 83.5 / 66.8 84.3 / 67.6 85.2 / 68.2 83.9 / 68.5 83.0 / 67.7 82.6 / 76.9 80.9 / 65.3 84.8 / 66.8 72.4 / 75.6 82.6 / 69.3

Table 15: XQuAD results (F1 / EM) for each language.

Model en ar de es hi vi zh Avg.
mBERT 80.2 / 67.0 52.3 / 34.6 59.0 / 43.8 67.4 / 49.2 50.2 / 35.3 61.2 / 40.7 59.6 / 38.6 61.4 / 44.2
XLM 68.6 / 55.2 42.5 / 25.2 50.8 / 37.2 54.7 / 37.9 34.4 / 21.1 48.3 / 30.2 40.5 / 21.9 48.5 / 32.6
MMTE 78.5 / – 56.1 / – 58.4 / – 64.9 / – 46.2 / – 59.4 / – 58.3 / – 60.3 / 41.4
XLM-R 83.5 / 70.6 66.6 / 47.1 70.1 / 54.9 74.1 / 56.6 70.6 / 53.1 74.0 / 52.9 62.1 / 37.0 71.6 / 53.2
Filter 84.0 / 70.8 72.1 / 51.1 74.8 /60.0 78.1 / 60.1 76.0 / 57.6 78.1 /57.5 70.5 / 47.0 76.2 / 57.7
XTUNE 85.3 / 72.9 69.7 / 50.1 72.3 / 57.3 76.3 / 58.8 74.0 / 56.0 76.5 / 55.9 70.8 / 48.3 75.0 / 57.1

X-MIXUP 83.1 / 70.0 71.9 / 51.1 74.5 / 59.4 77.7 / 60.0 76.3 / 57.7 78.0 / 57.5 73.7 / 51.1 76.5 / 58.1

Table 16: MLQA results (F1 / EM) for each language.

Model en ar bn fi id ko ru sw te Avg.
mBERT 75.3 / 63.6 62.2 / 42.8 49.3 / 32.7 59.7 / 45.3 64.8 / 45.8 58.8 / 50.0 60.0 / 38.8 57.5 / 37.9 49.6 / 38.4 59.7 / 43.9
XLM 66.9 / 53.9 59.4 / 41.2 27.2 / 15.0 58.2 / 41.4 62.5 / 45.8 14.2 / 5.1 49.2 / 30.7 39.4 / 21.6 15.5 / 6.9 43.6 / 29.1
MMTE 62.9 / 49.8 63.1 / 39.2 55.8 / 41.9 53.9 / 42.1 60.9 / 47.6 49.9 / 42.6 58.9 / 37.9 63.1 / 47.2 54.2 / 45.8 58.1 / 43.8
XLM-R 71.5 / 56.8 67.6 / 40.4 64.0 / 47.8 70.5 / 53.2 77.4 / 61.9 31.9 / 10.9 67.0 / 42.1 66.1 / 48.1 70.1 / 43.6 65.1 / 45.0
Filter 72.4 / 59.1 72.8 / 50.8 70.5 / 56.6 73.3 / 57.2 76.8 / 59.8 33.1 / 12.3 68.9 / 46.6 77.4 / 65.7 69.9 / 50.4 68.3 / 50.9
XTUNE 73.8 / 61.6 77.8 / 60.2 73.5 / 61.1 77.0 / 62.2 80.8 / 68.1 66.9 / 56.5 72.1 / 51.9 77.9 / 65.3 77.6 / 60.7 75.3 / 60.8

X-MIXUP 73.9 / 61.4 73.8 / 54.2 67.4 / 49.6 75.4 / 60.6 78.8 / 65.0 32.9 / 12.0 69.1 / 52.2 78.0 / 66.9 72.0 / 53.5 69.0 / 52.8

Table 17: TyDiQA-GolP results (F1 / EM) for each language.
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