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1 ABSTRACT

Covariance estimation on high-dimensional data is a central challenge across multiple scientific
disciplines. Sparse high-dimensional count data, frequently encountered in biological applications
such as DNA sequencing and proteomics, are often well modeled using multinomial logistic normal
models. In many cases, these datasets are also compositional, presented item-wise as fractions of a
normalized total, due to measurement and instrument constraints. In compositional settings, three
key factors limit the ability of these models to estimate covariance: (1) the computational com-
plexity of inverting high-dimensional covariance matrices, (2) the non-exchangeability introduced
from the summation constraint on multinomial parameters, and (3) the irreducibility of the multi-
nomial logistic normal distribution that necessitates the use of parameter augmentation, or similar
techniques, during inference. Using real and synthetic data we show that a variational autoencoder
augmented with a fast isometric log-ratio (ILR) transform can address these issues and accurately es-
timate principal components from multinomially logistic normal distributed data. This model can be
optimized on GPUs and modified to handle mini-batching, with the ability to scale across thousands
of dimensions and thousands of samples.

2 INTRODUCTION

Many scientific disciplines that collect survey data, such as economics, psychology, political science
and the biological sciences routinely deal with compositional data, where only relative information
can be measured. These datasets are often in the form of counts, where the total counts within a
sample are only indicative of the confidence of the measured proportions. The resulting proportions
lie within a simplex and failing to account for the structure of this simplicial sample space can con-
found the interpretation of the measurements. As a result, there has been wide discussion across
disparate disciplines (1; 2; 3; 4) concerning the reproducibility crisis that has arisen from the misin-
terpretation of compositional data. One of the obstacles to the appropriate analysis of compositional
data is the difficulty of efficiently estimating the latent parameters that lie in the simplex.

Accurately scaling probabilistic inference across high-dimensional count data is a major outstand-
ing challenge (5). This problem is apparent in the social sciences and is particularly pronounced in
biological fields where datasets can obtain observations on tens of thousands of features across hun-
dreds or millions of samples. One major computational bottleneck with Gaussian distributed data
is the inversion of a d-dimensional covariance matrix that has a runtime of O(d3) (6; 7). As a re-
sult, probabilistic covariance estimation for high-dimensional data is a computationally challenging
problem.

Recent theoretical developments (8) cementing the connection between Variational Autoencoders
(VAEs) (9) and Probabilistic Principal Components Analysis (PPCA) (10) holds much promise for
enabling accurate, scalable, low-rank approximations of large covariance matrices. Variational au-
toencoders were originally proposed as a generative model (9), but are now commonly deployed
across scientific disciplines and have made contributions to single-cell RNA sequencing (11), mi-
crobiome modeling (12), protein modeling (13; 14; 15), natural language processing (16) and image
processing (9). Following insights that connected regularized linear autoencoders and PCA (17),
Lucas et al. (8) showed that carefully designed VAEs can recover the weights that are solved by
PPCA. A computational advantage of VAEs is that they do not require the inversion of a covariance
matrix, and the resulting runtime is O(ndkT ) for n samples, d dimensions, k latent dimensions
and T epochs. While it has been noted that VAEs may take tens of thousands of epochs to estimate
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the principal component (18), VAEs are easily parallelizable and can be accelerated with GPUs, pre-
senting an attractive alternative to estimating principal components (17) and the resulting covariance
matrix.

The connection between VAEs and PPCA is currently limited to Gaussian distributed data and not
well-suited to a compositional setting. Showing that VAEs can recover the correct principal com-
ponents from count data is nontrivial due to the non-conjugacy issues between the logistic normal
distribution and count distributions such as the multinomial distribution. Furthermore, the parame-
ters of the multinomial distribution are compositional; they are constrained within the simplex and
the resulting covariance matrix is singular and non-invertible (1; 19). Aitchison (20) showed that
PCA can be adapted to compositional data through the use of the center log-ratio (CLR) trans-
form, which maintains isometry. However, this transformation is not isomorphic, requiring that
the resulting log-ratios sum to zero, and as a result, CLR-transformed data will produce a singular
covariance matrix and rank-deficient principal components. It has been shown that the isometric
log-ratio (ILR) transform (21) satisfies both isomorphism and isometry and can handle this singu-
larity issue (22; 23) while enabling the estimation of full-rank principal components. Here, we show
that VAEs augmented with the ILR transform can infer principal components learned from PPCA
on multinomially distributed data, beginning to address these critical shortcomings.

3 RELATED WORK

In the microbiome literature, there have been a number of methods (24; 25; 26; 27; 28) that have
attempted to model ecological networks through the estimation of pairwise microbe correlations
or pairwise inverse-covariance, where microbes are aggregated at different taxonomical scales or
‘taxa’. Of these tools, only Flashweave can scale across more than thousands of taxa; however,
it does this by avoiding the estimation of the covariance matrix. Methods that attempt to estimate
the covariance matrix can only handle on the order of a few thousand dimensions. Although there
is no widely accepted consensus definition of Multinomial PPCA in this context, being able to
efficiently estimate the parameters of Multinomial PPCA would be highly useful for exploratory
biological analysis. A number of studies have proposed using mixture modeling as a proxy for PCA
(29; 30; 31); however, these techniques depend either on the Dirichlet distribution, whose covariance
matrix is not flexible, or on stick-breaking, which violates permutation invariance (32).

Lucas et al. (8) has previously shown that the following two models can obtain the same maximum
likelihood estimates of principal componentsW :

Probabilistic PCA

p(x|z) = N (Wz + µ, σ2Id)

p(z) = N(0, Ik)

∣∣∣∣∣
Linear VAE

p(x|z) = N (Wz + µ, σ2Id)

q(z|x) = N (V (x− µ),D)

Here, p(x|z) denotes the likelihood of observations x ∈ Rd given the latent representation z ∈
Rk, p(z) denotes the prior on z and q(z|x) denotes the estimated variational posterior distribution
of z given an encoder parameterized by V and diagonal variances D. Both models estimate the
same low dimensional representation of the data through z, and learn the same factorization of the
covariance matrix throughW . While PPCA parameters are typically estimated through expectation
maximization (10), linear VAEs are optimized by maximizing the Evidence Lower Bound (ELBO)
given by

log p(x) ≥ Eq(z|x)
[
log p(x|z)

]
−KL

(
q(z|x)

∣∣∣∣p(z))
For linear VAEs with a Gaussian likelihood, the variational posterior distribution q(z|x) can be
shown to analytically agree with the posterior distribution p(z|x) learned from PPCA (8). How-
ever, deriving this connection for count-based likelihoods such as the multinomial distribution is
complicated due to non-conjugacy issues (Appendix A). This is a major obstacle for many biologi-
cal applications; multiple works have shown the merits of incorporating count distributions explicitly
into the model (33; 34; 35; 36). Here, we provide directions for overcoming this issue.

4 METHODS

First, we will redefine Multinomial PPCA with the ILR transform (21). Then we will make the
connection between Multinomial VAEs and Multinomial PPCA by leveraging insights from the
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Collapse-Uncollapse (CU) sampler (33). We will then derive an algorithm to obtain the maximum a
posteriori (MAP) estimate for the VAE parameters.

4.1 PROBABILISTIC MULTINOMIAL PCA

PPCA can be extended to multinomially distributed data with the following generative model:
p(x|η) = Mult(φ(Ψη)) (1)

p(η|z) = N (Wz, σ2Id−1) (2)
p(z) = N (0, Ik) (3)

Here W ∈ Rd−1×k represents the PCA loading matrix, σ2 is the variance, Ψ ∈ Rd×d−1 is a fixed
contrast matrix whose columns sum to zero and φ is the softmax transform. For a single sample,
x ∈ Nd are the observed d -dimensional counts, η ∈ Rd−1 are the latent logits and z ∈ Rk is the
latent representation. The term φ(Ψη) is distributed logistic normal, φ(Ψη) ∼ LN (Wz, σ2I), as
shown by Aitchison (37). Furthermore, p(x|z) yields a multinomial logistic normal distribution,
which is given by marginalizing out η in the following expression:

MLN (x|z) =
∫
η

p(x|η)p(η|z)dη

This integral is not tractable; as a result, this distribution does not have an analytically defined expec-
tation, variance or probability density function. There have been multiple attempts to estimate the
posterior distribution with MCMC (38; 39; 35; 40), but the complexity of this distribution requires
a large number of samples, limiting the scalability of these methods. Variational methods have been
developed to estimate the logistic normal distribution, but due to conditional non-conjugacy, these
methods often rely on approximations to the ELBO, further complicating estimation (41).

Recently, Silverman et al. (33) proposed to use a Laplace approximation to estimate the parame-
ters of the multinomial logistic normal posterior distribution. This approach relies on a two-stage
optimization procedure on the factorized posterior distribution given by

p(η, z|x) ∝ p(η|x)p(z|η) (4)
If η can be directly estimated, then conditional independence can be used to factorize the posterior
distribution. Since the probability densities of the multinomial distribution and the normal distribu-
tion are both log-convex functions, a global optimum can be obtained for the multinomial logistic
normal distribution (33) (Appendix B.3). Furthermore, the multinomial distribution does not in-
troduce additional local optima for estimating Multinomial PCA. Given this, in addition to recent
evidence that a PPCA MAP estimator can be obtained from regularized linear autoencoders (17),
we can design a new algorithm to obtain a Multinomial PPCA MAP estimator.

4.2 THE ILR TRANSFORM ENFORCES IDENTIFIABLITY

The softmax function is a shift-invariant function, which introduces an identifiability issue that has
been addressed by the compositional data analysis community (1; 42). In order to remove the iden-
tifiability issues, an isomorphism between the logits η and the multinomial parameters must be
maintained. One commonly used solution is to use a degenerate softmax, also known as the in-
verse additive log-ratio (ALR) transform (1) (Appendix B.2). Previous work has suggested that
the isometric log-ratio transform (ILR) (21; 22) is more suitable for principal components analysis
(Appendix B). The ILR and inverse ILR are given as follows:

ILR(x) = ΨT logx ILR(x)−1 = φ(Ψx) (5)
where Ψ ∈ Rd×d−1 is a basis such that ΨTΨ = Id−1 and ΨΨT = Id − 1

d1d×d. A naive
implementation of the ILR transform can be memory-intensive and computationally intensive for
large d. However, any orthonormal basis can be used to parameterize the ILR transform and some
of these bases can be represented by binary trees (43; 44; 45). A binary tree can be used to represent
Ψ with O(d log d) elements, where the lth column vector of Ψ is given as follows:

Ψ.l = (0, . . . 0︸ ︷︷ ︸
k

, a, . . . a︸ ︷︷ ︸
r

, b, . . . , b︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
t

) (6)

a =

√
|s|√

|r|(|r|+ |s|)
b =

−
√
|r|√

|s|(|r|+ |s|)
(7)
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where l indexes an internal node in the tree with left children r, right children s, nodes to the left
k and nodes to the right t (46) (Figure S2). Due to rotation invariance, it doesn’t matter which
tree is used to parameterize the ILR basis, but the choice of tree can influence the runtime of the
ILR transform. If a balanced binary tree is used, the memory requirements representing Ψ can be
brought down from O(d2) to O(d log d) and can reduce the matrix vector multplication runtime
from O(d2) to O(d log d) (See Appendix B.1). This can speed up the matrix-vector multiplication
operations by an order of magnitude for datasets with more than ten thousand dimensions.

4.3 MULTINOMIAL VARIATIONAL AUTOENCODER ARCHITECTURE

Our full Multinomial VAE model is given as follows:

p(x|η) = Mult(φ(Ψη)) (8)

p(η|z;θdec) = N (Wz+ µ, σ2Id−1) (9)

q(z|x;θenc) = N (FL
(
ΨT (l̃og(x)− µ)

)
,D) (10)

where θdec = {W , σ2} denotes the decoder parameters, θenc = {FL,D} denotes the encoder
parameters and µ ∈ Rd−1 is a bias parameter. Here, q(z|x;θenc) denotes the variational posterior
distribution of z given by the encoder represented as an L-layer dense neural network with appro-
priate activations. This encoder is directly used to evaluate p(η|z;θdec). Furthermore, flat priors
are assumed for all variables except z.

It is important to note potentially challenging modeling issues when designing the encoder. The ILR
transform is not directly applicable to count data, since log(0) is undefined. A common approach
to this problem is to introduce a pseudocount before applying a logarithm, which we will denote as
l̃og(x) = log(x+ 1). The choice of pseudocount is arbitrary and can introduce biases. To alleviate
this issue, we introduce the deep encoder neural network highlighted in Equation 10; we expect that
the universal approximation theorem would apply here (47; 48) and that the accuracy of estimating
the latent representation z will improve with more complex neural networks. This is supported in
our simulation benchmarks; more complex encoder architectures can better remove biases induced
from the pseudocounts.

4.4 ALTERNATING MINI-BATCH OPTIMIZATION PROCEDURE

Given that our objective here is to obtain the MAP estimate of the VAE model parameters, the
VAE parameters θ = {FL,W ,D, σ2} can be obtained by estimating the global maximum of the
posterior distribution. In the original CU sampler implementation, the parameter (η1, . . . , ηn) is
optimized across the entire dataset and then (η1, . . . , ηn) is fixed in order to estimate the remaining
parameters. For large studies, this can be memory demanding, since (η1, . . . , ηn) ∈ Rn×d−1 alone
can scale to millions of parameters.

To scale this estimation procedure to large high-dimensional datasets we have devised a mini-
batched alternating minimization procedure. For a mini-batch X(i) = (x(1), . . . ,x(b)) of size b

Algorithm 1 VAE Alternating Maximization Optimization
repeat

forX(i) ∈X do
Ĥ ← argmax

η

[
log p(X(i)|H)

]
∈ Rb×d−1

θ ← argmax
θ

[
log q(Ĥ|X(i);θ) + log p(Z)

]
end for

until convergence

and corresponding latent variables Z(i) = (z(1), . . . ,z(b)) and H(i) = (η(1), . . . ,η(b)), the quan-
tities log p(X(i)|H(i)) and log p(Z(i)) are given by Equation 1 and 3. The variational posterior
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distribution of η given by q(H(i)|X(i);θ) =
∏b
j=1 q(η

(j)|x(j);θ) can be obtained by marginaliz-
ing out z in Equations 8, 9 and 10 as follows:

q(η(j)|x(j);θ) = N
(
WFL

(
ΨT (l̃og(x(j))− µ)

)
+ µ, WDW T + σ2Id

)
(11)

The prior log p(Z(i)) is evaluated, given log p(Z(i)) = logN (Z(i)|0, Ik) and the latent encoding
means given by Z(i) = FL

(
ΨT (l̃og(X(i))− µ)

)
, where Z(i) is integrated out of Equation 11.

5 RESULTS

5.1 MULTINOMIAL PPCA AND VAES AGREE IN SIMULATION BENCHMARKS

To determine if the proposed multinomial variational autoencoder can recover principal components,
we extended the benchmarks proposed in (18). Here, we benchmarked our proposed analytical VAE

Figure 1: Dense simulation benchmarks. (a-d) Comparision of ground truth covariances (y-axis)
and estimates from analytical VAE, stochastic VAE, MAP estimator and HMC performed in Stan
(x-axes); all of these methods use the ILR transform and only the posterior means are shown in
(d). (e-h) Correlation, axis-alignment, subspace distance and Procrustes metrics between analytical
VAEs, stochastic VAEs, MAP and HMC after convergence. (i-k) Comparison of log, ALR and ILR
transforms with respect to axis-alignment, subspace distance and Procrustes. The axis-alignment
metric measures the angular differences between W and the ground truth principal components.
The subspace distance is a measure of agreement between the ground truth correlations and the
correlations estimated from W . Procrustes measures the residual error after obtaining the best
rotation and scaling factors to match W to the ground truth principal components. See Appendix
C.5 for descriptions of the correlation, axis-alignment, subspace-distance and Procrustes metrics.

to the stochastic VAEs (9) with a multinomial likelihood across multiple simulations. These method-
ologies were compared against the ground truth covariances of the multinomial logistic normal, in
addition to the MAP and Hamiltonian Monte Carlo (HMC) estimates obtained from Stan (49). The
agreement between the ground truth principal components and the estimated principal components
is measured by axis-alignment, subspace distance, correlation and Procrustes (50) (see Appendix
C.4 for details).
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When fitting against multinomial logistic normal distributed data with no zero counts, all of the ILR-
based methodologies can accurately estimate the covariance matrix up to scale (Figure 1a-d). The
analytical VAE MAP estimate and the posterior samples of HMC all have a correlation close to 1,
suggesting a strong agreement between the ground truth covariance and the estimated covariances. If
the principal components were perfectly estimated, the axis-alignment, subspace distance and Pro-
crustes metrics would all be close to zero. While the subspace distance and Procrustes are notably
close to zero, the axis-alignment metric is above 0.5, which would suggest disagreement between the
ground-truth and the estimated principal component axes. Given that the posterior distribution of the
axis-alignment metrics obtained from HMC overlaps with the analytical VAE, stochastic VAE and
MAP estimates, there is evidence that reducing this metric to zero is inherently difficult for count
data. However, both the subspace distance and Procrustes metrics approach zero, supporting our
claim that principal components can be estimated up to scale and rotation on fully observed count
data. Furthermore, our simulations (Figure 1i-k and Figure 2a-h) suggest that among the log-ratio
transforms benchmarked, only the ILR transform can recover principal components, corroborating
previous findings surrounding compositional PCA (42; 23). Dealing with sparse data presents addi-

Figure 2: Comparison of different log-ratio transforms (a-f) and encoder depths (g-l) in sparse sim-
ulations. Two datasets with 200 and 5000 input dimensions are simulated for benchmarks (a-d, i-l)
and (e-h, m-p) respectively. Log-ratio transform benchmarks investigate different log-ratio trans-
forms using a single-layer encoder. The Encoder Depth benchmark investigates the impact of the
number of encoder layers combined with the ILR transform.
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tional challenges; the zeros in count data are indicative of missing data, which can further complicate
the estimation of principal components. Our hypothesis that boosting the complexity of the encoder
architecture would help alleviate issues with missing data is supported by benchmarks shown in Fig-
ure 2i-p. In both of the sparse datasets, none of the methods were able to achieve optimal accuracy
across any of the benchmark metrics, but there is a clear advantage of utilizing multilayer encoders
compared to single-layer encoders.

Across the simulation benchmarks, the analytical and stochastic VAEs have comparable perfor-
mance, with discrepancies highlighted by the correlation metric in the dense and sparse bench-
marks. On the dense datasets, our proposed analytical VAE has better agreement with the ground
truth covariance metric, whereas on the sparse datasets, it appears that the stochastic VAE has better
agreement. It is difficult to explain the reason for the performance gap between our proposed ana-
lytical VAE and the stochastic VAE due the analytical intractability of the Multinomial VAE ELBO.
The challenge of accurately estimating an optimal H for each mini-batch could be one limiting
factor affecting the performance of our proposed analytical VAE (Appendix B.4).

5.2 PRETRAINING MULTINOMIAL VAES ON A VERY LARGE COMPENDIUM OF MOUSE
MICROBIOME OBSERVATIONS

To showcase this on real microbiome datasets, 11k mouse fecal pellet samples with a total of 8.8k
features across 45 studies were analyzed. We trained 2 models to evaluate the differences between
the stochastic VAE and the analytical VAE. We trained these models for 10k epochs; the models
with the smallest validation error are reported here. The details behind the full training procedure
are given in Appendix C.3. Visualization of the learned decoder weights shown in Figure 3 makes

Figure 3: Comparison of the decoder inner product between the pretrained stochastic VAE and the
pretrained analytical VAE. (a-b) Heatmap of W TW . (c-d) Distribution of diagonal elements and
off-diagonal elements ofW TW .

it clear that the analytical VAE and, to a lesser extent, the stochastic VAE are able to learn orthog-
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onal embeddings, since W TW approximates a diagonal matrix. The orthogonality of the decoder
weights is more apparent in our proposed analytical VAE than in the stochastic VAE decoder; there
is a larger distinction between the diagonal elements and the off-diagonal elements. Unlike linear
VAEs (8), the connection between the eigenvalues and the decoder weights is not as clear due to
the asymmetry between the encoder and the decoder; scale identifiability of the decoder weights
complicates the process of estimating the eigenvalues. This is apparent in Figure 3; heatmaps of the
W inner products are on vastly different scales.

One of the advantages of employing a pretraining strategy with VAEs is that the pretrained models
can enable one-shot learning (51). By estimating a low-dimensional representation from a large
unlabeled high-dimensional dataset, fewer labeled samples for training downstream classifiers. We
showcase this property in two classification benchmarks.

5.3 CLASSIFICATION AND CORRELATION BENCHMARKS

To construct benchmarks on real biological datasets, we analyzed 16S sequencing data obtained
from a study conducted by Tripathi et al. investigating hypoxia that used mouse fecal pellets (52)
and a study conducted by Shalapour et al. investigating cancer effects on mice (53).

Due to the connections between Multinomial VAEs and compositional PCA (20; 22), we expect
that, if our VAE is performing well, we will see that the row Euclidean distances of ΨW ∈ Rd×k
correspond to Lovell’s un-normalized proportionality metric (54; 23) given by∥∥∥∥(ΨW )i − (ΨW )j

∥∥∥∥2
2

∝ Var
(
log

xi
xj

)
(12)

where x refers to the observed proportions and i and j refer to the two features being compared.
The proportionality metric has a simple interpretation; if this variance is small, that implies that the
two features are highly co-occurring.

Here, only a relative relationship between the proportionality metric and the VAE decoder row dis-
tances can be stated due to scale identifiability issues inherent in Multinomial PPCA. Proportionality
has been shown to be a more reliable metric for compositional data compared to standard correla-
tion metrics such as Pearson and Spearman in single cell RNA sequencing and microbiome studies
(3; 55; 56; 2), supporting the notion that our proportional comparison of our VAE decoder to Lovell’s
un-normalized proportionality metric will provide a sound perspective, as well as a means for inter-
preting the weights of the VAE.

We compared the estimated VAE embeddings with the proportionality metric to determine if this
relationship holds empirically. The pairwise decoder distances are compared to the pairwise propor-
tionality metrics of 300 selected features (Table 1 and Figure S5). The learned VAE representations
are benchmarked using K-nearest neighbors (KNN) classification. KNN is applied to the learned
VAE encodings across the two microbiome datasets to determine how well the classifiers can iden-
tify the mice that were induced with hypoxia (52) and classify mice based on their experimental
group (53). These classification models are compared against two baseline models, namely KNN
trained on LDA topic proportions (31), and KNN trained on raw counts.

From the classification benchmarks illustrated in Table 1, we can see that there is a large margin
between the VAE models and the baseline models across the measured metrics. Both VAEs had
a higher F1 score and AUC, suggesting that the learned representations can better separate the ex-
perimental groups. Part of this performance boost could be attributed to the differences between
distance metrics. When the ILR transform is utilized, the Euclidean distance between the latent
encodings approximates the Aitchison distance between proportions (57; 23), which measures rel-
ative differences instead of absolute differences. Our findings collaborate theoretical insights from
compositional data analysis and empirical microbiome observations, where the Aitchison distance
provided a substantial boost in KNN classification accuracy compared to other distance metrics
(58; 59). Furthermore, the average negative log-likelihood score (NLL) is lower for both of the VAE
models compared to LDA, suggesting that the VAE models generalized better on held out data than
LDA. This decrease in the predictive log-likelihood could be attributed to the increased flexibility of
the covariance matrix in the logistic normal distribution compared to the Dirichlet distribution.

There are a couple of notable discrepancies between the two Multinomial VAE models. The stochas-
tic VAE appears to have superior classification performance and lower reconstruction error com-
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Dataset Method NLL F1 score AUC Proportionality

Shalapour et al. analytical-VAE 57750 0.700 ± 0.021 0.910± 0.013 0.60
stochastic-VAE 11615 0.732± 0.023 0.891 ± 0.015 0.30
LDA 169384 0.507 ± 0.034 0.742 ± 0.018 NA
raw NA 0.406 ± 0.039 0.686 ± 0.018 NA

Tripathi et al. analytical-VAE 117789 0.867 ± 0.005 0.873 ± 0.004 0.62
stochastic-VAE 13815 0.926± 0.004 0.928± 0.003 0.28
LDA 132091 0.718 ± 0.006 0.744 ± 0.005 NA
raw NA 0.700 ± 0.007 0.729 ± 0.006 NA

Table 1: Classification and Correlation benchmarks. KNN classification was performed with k=5
for all representations. The average negative log-likelihood (NLL) was evaluated on samples that
were held out during the training of the VAEs. 100 rounds of 10-fold cross validation were applied
to estimate average F1 score, AUC and standard errors. “Raw” indicates that no transformation was
applied to the raw counts before performing KNN classification. The agreement between the VAE
decoder weights and Lovell’s proportionality metric is measured according to Pearson’s r on the
log-transformed metrics.

pared to the analytical VAE. The exception to this is the HCC dataset (53), where the analytical
VAE marginally outperforms the stochastic VAE in terms of AUC. However, the analytical VAE can
learn more apparent orthogonal embeddings (Figure 3) and better agrees with Lovell’s proportion-
ality metric (Table 1). Only the analytical VAE was able to recover the log-linear relations between
Lovell’s proportionality and the VAE embedding distances, suggesting that it can more accurately
learn biologically relevant correlations (Figure S5).

CONCLUSION

Prior work aiming to build frameworks for probabilistic estimation of covariance matrices from
count data have been largely limited to conjugate priors due to their tractability. However, these
choices can lead to models with lower explanatory power due to the rigid structure of the resulting
covariances. Further, the correct treatment of compositional data requires additional development
in this context. For example, disregarding the simplicial sample space associated with composi-
tional data and performing Pearson correlations on raw count data is common practice in scientific
applications, but is a source of reproducibility issues (2). Due to the negative bias induced from
the covariance on the observed count data, the estimated covariances will not agree with the ground
truth covariances in the system of interest, a fact noted by Pearson in 1897 (60).

Adapting the logistic normal distribution in place of conventional conjugate priors provides a means
to remedy the issue of inferring correlations on compositional data. The covariance matrix on ILR-
transformed data can be interpreted using Lovell’s proportionality metric, and can serve as a re-
placement for pairwise correlations. Since log-ratios are scale-invariant, the dependence on the total
counts disappears, which is critical for assuring agreement between the relative quantities measured
through count data and the absolute quantities in the system that aren’t directly observable. While
there is sound motivation to employ the logistic normal distribution in this context, its application
has been limited due to the challenge of estimating these distributions. Here, we have provided a
means to accurately and efficiently estimate these distributions and covariance matrices up to scale
using the ILR transform. To this end, we have provided a proof-of-concept that Multinomial VAEs
can learn the principal components obtained from Multinomial PPCA.

We have shown that fitting low-rank approximations using Multinomial VAEs can provide more
explanatory representations than LDA while providing a means to obtain interpretable correlations.
These methods can be used in one-shot learning and transfer learning settings, requiring fewer la-
beled samples for training and allowing for the use of pretrained models to extract features from
smaller datasets. Given the vast number of scientific disciplines that collect compositional data,
we anticipate that models such as these Multinomial VAEs will have a significant impact on many
scientific applications.

9



Under review as a conference paper at ICLR 2021

CODE AVAILABILITY

All of our software and analyses can be found on Zenodo at http://doi.org/10.5281/zenodo.4289004
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made easy: Stick breaking with the Pólya-gamma augmentation. Advances in Neural Informa-
tion Processing Systems, 2015-Janua:3456–3464, 2015.

[33] Justin D. Silverman, Kimberly Roche, Zachary C. Holmes, Lawrence A. David, and Sayan
Mukherjee. Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-
T Processes. pages 1–39, 2019.

[34] Travis E Gibson and Georg K Gerber. Robust and scalable models of microbiome dynamics.
arXiv preprint arXiv:1805.04591, 2018.

11



Under review as a conference paper at ICLR 2021
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[66] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array
programming with numpy. arXiv preprint arXiv:2006.10256, 2020.

[67] Max A Woodbury. Inverting modified matrices. Memorandum report, 42(106):336, 1950.

[68] William H Press, Saul A Teukolsky, Brian P Flannery, and William T Vetterling. Numerical
recipes in Fortran 77: volume 1, volume 1 of Fortran numerical recipes: the art of scientific
computing. Cambridge university press, 1992.

[69] Jonathan Chung-Kuan Huang and Tomasz Malisiewicz. Fitting a hierarchical logistic normal
distribution. Unpublished Manuscript, pages 2–4.

13



Under review as a conference paper at ICLR 2021

[70] Antonio Gonzalez, Jose A Navas-Molina, Tomasz Kosciolek, Daniel McDonald, Yoshiki
Vázquez-Baeza, Gail Ackermann, Jeff DeReus, Stefan Janssen, Austin D Swafford,
Stephanie B Orchanian, et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nature
methods, 15(10):796–798, 2018.

[71] Daniel McDonald, Benjamin Kaehler, Antonio Gonzalez, Jeff DeReus, Gail Ackermann,
Clarisse Marotz, Gavin Huttley, and Rob Knight. redbiom: a rapid sample discovery and
feature characterization system. mSystems, 4(4), 2019.
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Appendices
A CHALLENGES IN DERIVATION OF AN ANALYTICAL MULTINOMIAL VAE

ELBO

Recall that the generative model for Multinomial PPCA is given as follows:
p(x|η) = Mult(x|φ(Ψη)) (13)

p(η|z) = N (η|Wz + µ, σ2Id−1) (14)
p(z) = N (z|0, Ik) (15)

With this in mind, we wish to estimate variational distributions q(η, z|x) = q(η|z)q(z|x) to ap-
proximate the posterior p(η, z|x). These variational distributions can both be chosen to be normal
distributions as follows:

q(z|x) = N (VΨT (l̃og(x)− µ),D)

q(η|z) = p(η|z)

Noting that z ∼ N (VΨT (l̃og(x)− µ),D), q(η|x) can be derived from q(z|x) as follows:

q(η|x) = N
(
WVΨT (l̃og(x))− µ) + µ,WDW + σ2I

)
To fine-tune these variational distributions to approximate the posterior distribution, we can mini-
mize the following KL divergence:

argmax
q(η,z|x)

KL(q(η, z|x)
∣∣∣∣p(η, z|x))

Since we cannot optimize this quantity directly, we opt instead to maximize the evidence lower
bound (ELBO) given by

Eq(η,z|x)
[
log

p(η, z|x)
q(η, z|x)

]
≥ Eq(η,z|x)

[
log

p(x|η)p(η|z)p(z)
q(η, z|x)

]
We can partition this lower bound into three parts, given as follows:

= Eq(η|x)q(z|x)[log p(x|η)]︸ ︷︷ ︸
(i)

+Eq(η|x)
[
log

p(η|z)
q(η|x)

]
︸ ︷︷ ︸

(ii)

+Eq(z|x)
[
log

p(z)

q(z|x)

]
︸ ︷︷ ︸

(iii)

Since Mult(x|p) ∝
d∑
i=1

xi log pi, the first term is given by

Eq(η|x)q(z|x)
[
log p(x|η)

]
∝ Eq(η|x)

[ d∑
i=1

xiφ(Ψη)i

]

∝
∫
η

N
(
WVΨT (l̃og(x)− µ),WDW + σ2I

) d∑
i=1

xiφ(Ψη)i dη
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Estimating the above integral is equivalent to estimating the expectation of a logistic normal distri-
bution, which does not have an analytical solution (37). As a result, the analytical ELBO for the
Multinomial VAE is intractable.

B THE ILR TRANSFORM

As outlined in Equation 5, any orthogonal basis Ψ can be used to perform the ILR transform.
However, there are a select few bases that can be represented by a binary tree. To see how an
orthogonal basis can be constructed from a binary tree, consider the illustration in Figure S1.

Figure S1: A small example showing how an orthogonal basis can be constructed from a binary tree.
x = (x1, x2, x3, x4) ∈ S4 represents species proportions and η = (η1, η2, η3) ∈ R3 represents the
log-ratios in the internal nodes. Ψ is a matrix of orthogonal contrasts that also can be represented
from a binary tree.

Here the rows of the matrix in Figure S1 are orthogonal and the resulting product η = ΨT logx
yields

η1 = log
x1

x2x3x4
η2 = log

x2x3
x4

η3 = log
x3
x4

The contrast matrix Ψ can be forced to be orthonormal such that ΨTΨ = Id−1, as highlighted in
Equation 6. Furthermore, this construction can be scaled to large binary trees as shown in Figure
S2. Here, ηl represents the log-ratios at the internal node l, given by

ηl =

√
|r||s|
|r|+ |s|

log
g(xr)

g(xs)
(16)

The runtime of this operation is further discussed in Appendix B.1.

B.1 THE RUNTIME OF THE ILR TRANSFORM

The naive runtime of the ILR transform of a single sample x ∈ Rd is O(d2) due to the running
time of dense matrix-vector multiplication. As shown in Equation 5, the ILR transform can also
be represented by log-linear transformation with a contrast matrix. The binary tree can be used to
represent a contrast matrix, as discussed in (46).

If the binary tree is balanced, each row of Ψ will have O(log d) non-zero elements, since the tree
has a height of O(log d). Given that there are d rows, the matrix-vector multiplication behind the
inverse ILR transform Ψη can be done in O(d log d). For the same reason, the ILR transform has a
runtime of O(d log d).
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Figure S2: An illustration of how the ILR basis can be constructed on large trees. The quantities
g(xr) and g(xs) yield the geometric means within a vector of proportion x for subsets xr and xs.
Here, r and s refer to the sets of features in the left and right subtrees for the internal node l. The
log-ratios η can be obtained from either Equation 6 or Equation 16
.

B.2 SHIFT INVARIANCE OF THE SOFTMAX TRANSFORM

There are two different scale identifiability issues. The softmax transform that is commonly used is
shift invariant, where

φ(x)← φ(x+ a) ∀a ∈ R
This shift invariance will cause an identifiability issue when identifying the decoder matrixW . The
inverse ALR transform resolves this issue by enforcing an isomorphism; one of the coordinates is
set to zero as follows:

ALR(x) =

[
log

x1
xd
, . . . , log

xd−1

xd
, 0

]
, ALR−1(x) = φ

(
(x1, . . . , xd−1, 0)

)
One of the implicit constructions of this transform is that the resulting contrast matrix is not or-
thogonal (42). Furthermore, because the ALR transform is not isometric, the resulting Euclidean
distances in z will not approximate the Aitchison distance. The ILR transform provides the best
of both worlds, enforcing both isometry and isomorphism. Furthermore, there is a tight connection
between the ILR transform and compositional PCA that is further discussed in the next section.

B.3 GLOBAL LOG-CONVEXITY OF THE MULTINOMIAL LOGISTIC NORMAL DISTRIBUTION

Since the multinomial logistic normal distribution is difficult to directly evaluate, it is challenging
to make statements regarding its maximum likelihood estimator. With the posterior factorization
highlighted in Equation 4, we can make concrete statements about the original posterior factors.
The log probability density of the multinomial distribution p(x|η) can be written as

log p(x|η) ∝
d∑
i=1

xi log φ(Ψη)i

=

d∑
i=1

xi(Ψη)i −m log

( d∑
j=1

exp(Ψη)i

)
= g(η) · T (x)−A(η)

where m =
∑d
i=1 xi is the total number of counts and the functions g(η)i = (Ψη)i, T (x)i = xi,

and A(η) = log

(∑d
j=1 exp(Ψη)i

)
are the natural parameters of the exponential family distribu-
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tion. The Hessian of log p(x|η) is given by

d2 log p(x|η)
dηidηj

=
d2A(η)

dηidηj

Since A(η) is strictly convex, log p(x|η) is also strictly convex.

Similarly, the log probability density of the multivariate Gaussian distribution p(z|η) = N (µ,σ)
is also strictly convex with respect to µ and Σ. Since the multinomial logistic normal distribution
can be written as the sum of log p(z|η) and log p(x|η), it is also strictly convex. Therefore, there
must be a unique optimal estimate for µ and Σ.

B.4 MULTINOMIAL VARIATIONAL AUTOENCODER ESTIMATION

The covariance matrixWDW T + σ2Id−1 ∈ Rd−1×d−1 in Equation 11 can be efficiently inverted
using the Woodbury identity (67; 68). The prior log p(Z(i)) is evaluated given log p(Z(i)) =

N (Z(i)|0, Ik), where Z(i) = FL
(
ΨT (l̃og(X(i))− µ)

)
.

The optimal Ĥ(i) that maximizes log p(X(i)|H(i)) is obtained through gradient descent optimiza-
tion. Once Ĥ(i) is obtained, the remaining VAE parameters θ can be estimated via gradient descent
optimization. Like the EM algorithm proposed in (69), this procedure alternates between estimat-
ing H(i) and θ and repeats until convergence. For a single-layer linear encoder, this optimization
procedure will eventually reach the global maxima with respect toH(i) and the multivariate normal
mean and covariance in q(H(i)|θ,X(i)), due to the log-convexity of the multinomial and normal
distributions (Appendix B.3). On fully observed data,W andD can be estimated up to rotation and
scale (Appendix B.6). This is not guaranteed for sparse count data, but using simulations, we can
empirically show that increasing the complexity encoder architectures can help. Since Ĥ(i) needs
to be accurately estimated before optimizing FL,W , σ, and D, multiple gradient descent steps are
required for a given mini-batch.

In practice, obtaining the optimal Ĥ(i) for a given mini-batch i may require hundreds of gradient
descent steps from a random initialization. Since H(i) is used to approximate the multinomial
parameters describing the observed counts x, we can initializeH(i) with Ĥ(i)

0 = ΨT l̃og(X(i)). In
practice, this can greatly reduce the number of gradient descent updates needed per mini-batch.

B.5 THE CONNECTION BETWEEN MULTINOMIAL VAES AND COMPOSITIONAL PCA

With singular value decomposition, the resulting factors can be used to approximate the row and
column distances. For a singular value decomposition given by X = USV T , row distances and
column distances can be approximated as follows:

‖xi. − xj.‖2 ≈ ‖siui − sjuj‖2
‖x.i − x.j‖2 ≈ ‖sivi − sjvj‖2

This relationship also yields a connection to the row and column covariances; the row covariances
are given byXTX = US2U and the column covariances are given byXXT = V S2V .

A similar relationship applies to compositional PCA, except the singular value decomposition is
applied to CLR-transformed values of X . The CLR transform is given by

CLR(x) =

[
log

x1
g(x)

, . . . , log
xd
g(x)

]
CLR−1(x) = φ(x)

The inverse CLR transform is equivalent to the softmax transform φ(x). The Euclidean distance on
CLR and ILR transformed values is given by the Aitchison distance (57). As a result, the row and
column distances are given by the Aitchison distance. The covariance matrix of CLR-transformed
values is singular, and as a result, the resulting singular value decomposition will have a full rank of
d−1. As shown by Egozcue et al. (23), the top d−1 components of the singular value decomposition
are all in ILR coordinates. This observation cements the connection between compositional PCA
and our proposed Multinomial VAE; since all of the singular value components can be represented
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in ILR coordinates, this theoretically justifies the use of the ILR transform within our proposed
Multinomial VAE.

Due to this connection, the distances between the learned VAE representations z across pairs of sam-
ples should be proportional to the Aitchison distance. Furthermore, the distances between rows of
ΨW would also be given by the Aitchison distance, which is equivalent to Lovell’s un-normalized
proportionality constant (23).

B.6 LACK OF SCALE IDENTIFIABILITY OF PPCA

As discussed in (8), VAEs will have the same identifiability issues that PPCA has; namely, for a
diagonal matrixA ∈ Rk×k, the following equivalences hold:

W ←WA, V ← A−1V

As a result, the decoder weightsW can only be identified up to scale. Furthermore, the Multinomial
VAE architecture is asymmetric and, as a result, the Tranpose Theorem proposed by (17) is not as
readily applicable. The lack of symmetry between W and V complicates the process of obtaining
eigenvalues fromW .

C SIMULATION AND MICROBIOME BENCHMARKS

C.1 SIMULATION DETAILS

In the dense simulation highlighted in Figure 1, there were 100 features, 1000 samples and 1 million
counts per sample. These counts were drawn from a multinomial logistic normal distribution whose
covariance matrix had a rank of 10. The sparse dataset highlighted in Figure 2a-h contained 200
dimensions and 1000 samples, each of which contained 100 counts that were sampled from a multi-
nomial logistic normal distribution whose covariance matrix had a rank of 10. The sparse dataset
highlighted in Figure 2i-p contained 5000 dimensions and 10000 samples, each of which contained
only 1000 counts total. These counts were sampled from a multinomial logistic normal distribution
whose covariance matrix had a rank of 128.

The encoder architecture used for the stochastic and analytical VAEs consisted of fully connected
dense layers with interwoven softplus activation functions. The intermediate encoder layers all have
the same input and output dimension as the number of latent dimensions specified in the model. The
same architecture was used for both the stochastic VAEs and the analytical VAEs. A schematic of
the architecture is shown in Figure S3.

Multinomial PCA was fitted using both penalized likelihood estimation and Hamiltonian Monte
Carlo using Stan (Appendix C.4). The initialization of these models was determined by the es-
timated factor loadings from the analytical VAE. This is particularly critical for fitting HMC on
high-dimensional datasets. We were not able to run Stan on the sparse datasets.

C.2 EXPERIMENTAL DATASET DETAILS

The full 8.8k mouse pellet dataset was retrieved from qiita (70) using redbiom (71).

In the hypoxia study conducted by Tripathi et al., mice were placed in simulated conditions to induce
intermittent hypoxic/hypercapnic (IHH) stress, where the mouse’s oxygen supply was reduced and
its CO2 supply was increased. The goal of this experiment was to detect the gut microbiome differ-
ences between the IHH mice and the control mice. We will use this information as a classification
benchmark to determine if the experimental conditions the mice were placed under can be predicted
from 16S sequencing counts. In total, there were 48 mice; 24 of these mice were placed in these
IHH conditions and the remaining 24 mice served as controls. Fecal samples were collected twice a
week for 6 weeks, resulting in 579 samples total. There were 5775 microbial taxa that were detected
in this dataset.

The goal of the hepatocellular carcinoma (HCC) study conducted by Shalapour was to investigate the
interplay between immunity, diet and carcinoma. In total, there were 478 mice with 52 phenotypes,
split according to diet, immunity status and whether or not the mice were induced with HCC. Our
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Figure S3: Visualization of VAE architecture

classification objective is to predict the mouse phenotype from the 16S sequencing counts obtained
from their fecal pellets. In total, there was one fecal pellet collected from each mouse and there were
2794 microbial taxa detected across these samples. This benchmark is more challenging than the
IHH benchmark due to the extreme class imbalance; some phenotypes contain upwards of 30 mice
and other contain as few as 2 mice (Figure S4). The resulting classification benchmarks are shown
in Table 1.

C.3 MICROBIOME VAE TRAINING DETAILS

For the full 11k fecal pellet dataset, we focused on samples that were processed using closed-
reference OTU picking using vsearch (72). This dataset was split into a 80/10/10 train/validation/test
split in order measure out-of-distribution generalizability.

We trained our proposed analytical VAE and the stochastic VAE with 128 latent dimensions and a
batch size of 1000 samples for 10000 epochs, with a learning rate of 10−3 and 100 gradient descent
steps per mini-batch. Checkpoints were recorded every epoch; the models with the best validation
error are reported. Cosine annealing with warm restarts was used as a learning rate scheduler, with
the intention of easily escaping saddle points during optimization.

C.4 METRICS FOR EVALUTING ESTIMATED DECODER WEIGHTS

To measure the agreement between the ground truth simulations and the estimated decoder weights
W , three different metrics were evaluated, namely, axis alignment and subspace distance, as
proposed in (18), in addition to Procrustes analysis (50). Given the decoder weights W and the
ground truth principal components U , these metrics are defined as follows:

Axis alignment

d(U ,W ) = 1− 1

k

k∑
i=1

max
j

(UT
i Wj)

2

‖|Ui‖|22‖|Wj‖|22

This metric is ultimately a measure of the average cosine distance between the ground truth eigen-
vectors and the estimated decoder weights.
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Subspace distance

d(U ,W ) = 1− Tr(UUTW∗W
T
∗ )

where W∗ denotes the left singular vectors of W , given by W = W∗ΛV . Since UUT yields
the ground truth correlations and W∗W T

∗ yields the estimated correlations, this metric can be
interpreted as a measure of agreement between the ground truth correlations and the estimated
correlations.

Procrustes Analysis

d(U ,W ) = argmin
R,A

‖|U −WRA‖|22

for A,R ∈ Rk×k, where A is a diagonal matrix and R is a rotation matrix. Prior to evaluating
this metric, both U and W are standardized such that Tr(UUT ) = Tr(WW T ) = 1 and W is
centered around the origin.

Correlation

d(U ,W ) = Corr(vec(AU ), vec(AW ))

where AU (i, j) = ‖|ui − uj‖|2 and AW (i, j) = ‖|wi −wj‖|2 denote the pairwise distances of U
and W . The pairwise distances are rotation invariant. Furthermore, the measure of the correlation
is agnostic to scale, and will ignore the eigenvalue scale identifiability issues highlighted in the main
text.

C.5 STAN MULTINOMIAL PCA IMPLEMENTATION

data {
i n t<lower=0> N; / / number o f samp les
i n t<lower=0> D; / / number o f d i m e n s i o n s
i n t<lower=0> K; / / number o f l a t e n t d i m e n s i o n s
matrix [D−1, D] P s i ; / / Or thonormal b a s i s
i n t y [N, D ] ; / / o b s e r v e d c o u n t s

}

parameters {
matrix [N, D−1] e t a ; / / i l r t r a n s f o r m e d abundances
matrix [D−1, K] W;
rea l<lower=0> s igma ;

}

transformed parameters {
matrix [D−1, D−1] Sigma ;
matrix [D−1, D−1] I ;
v e c t o r [D−1] z ;
I = d i a g m a t r i x ( r e p v e c t o r ( 1 . 0 , D−1 ) ) ;
Sigma = W ∗ W’ + square ( s igma ) ∗ I ;
z = r e p v e c t o r ( 0 , D−1);

}

model {
/ / g e n e r a t i n g c o u n t s
f o r ( n in 1 :N){

e t a [ n ] ˜ mult i normal ( z , Sigma ) ;
y [ n ] ˜ mul t inomia l ( softmax ( t o v e c t o r ( e t a [ n ] ∗ P s i ) ) ) ;

}
}
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Figure S4: Distribution of 52 phenotypes in the Shalapour et al. study, highlighting the class imbal-
ance inherent in this benchmark.

Dataset Method corrected Pred Log prob F1 score AUC

Shalapour et al. analytical-VAE 57750 0.845 0.820
stochastic-VAE 11615 1.000 1.000
LDA 169384 0.800 0.988
raw NA 1.000 1.000

Tripathi et al. analytical-VAE 117789 0.845 0.820
stochastic-VAE 13815 0.914 0.901
LDA 132091 0.667 0.671
raw NA 0.571 0.632

All Test Samples analytical-VAE 117789
stochastic-VAE 13647
LDA 169384

Table 2: Classification on held out data benchmarks. KNN classifiers were trained on data observed
by the VAE, and evaluated on 1149 held out test samples. KNN with k=1 was used across all
representations. Predictive log probability is also added to measure the generalizability of the VAEs
across held out samples (smaller values are better).

Due to the relationship between squared Euclidean distance and proportionality given in Equation
12, we expect the proportionality metric to exhibit a log-linear relationship between the Euclidean
distances obtained from the VAE embeddings. Indeed, this is apparent with the analytical VAE
embeddings in Shalapour et al., and to a lesser extent in Tripathi et al., as shown in Figure S5.
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Figure S5: Comparison of Lovell’s proportionality metric and the pairwise embedding distances
for the stochastic VAE and the analytical VAE evaluated on the Shalapour et al. dataset and the
Tripathi et al. dataset. The embedding distance is defined by the Euclidean distance between two
rows within ΨW . Since the proportionality metric is not defined for zeros, it is only evaluated for
samples where both taxa are observed. Only the top 300 most abundant microbes are visualized
here.
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