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ABSTRACT

Artificial Intelligence (AI) has demonstrated significant potential in healthcare,
particularly in disease diagnosis and treatment planning. Recent progress in Med-
ical Large Vision-Language Models (Med-LVLMs) has opened up new possibil-
ities for interactive diagnostic tools. However, these models often suffer from
factual hallucination, which can lead to incorrect diagnoses. Fine-tuning and
retrieval-augmented generation (RAG) have emerged as methods to address these
issues. However, the amount of high-quality data and distribution shifts between
training data and deployment data limit the application of fine-tuning methods. Al-
though RAG is lightweight and effective, existing RAG-based approaches are not
sufficiently general to different medical domains and can potentially cause mis-
alignment issues, both between modalities and between the model and the ground
truth. In this paper, we propose a versatile multimodal RAG system, MMed-RAG,
designed to enhance the factuality of Med-LVLMs. Our approach introduces a
domain-aware retrieval mechanism, an adaptive retrieved contexts selection, and
a provable RAG-based preference fine-tuning strategy. These innovations make
the RAG process sufficiently general and reliable, significantly improving align-
ment when introducing retrieved contexts. Experimental results across five med-
ical datasets (involving radiology, ophthalmology, pathology) on medical VQA
and report generation demonstrate that MMed-RAG can achieve an average im-
provement of 43.8% in the factual accuracy of Med-LVLMs.

1 INTRODUCTION

Artificial Intelligence (AI) has already transformed healthcare and still has a lot of potential for
further advancements (Tăuţan et al., 2021; Wang et al., 2019; Ye et al., 2021; Tu et al., 2024).
Recently, Medical Large Vision-Language Models (Med-LVLMs) have shown great promise for
advancing interactive and intelligent diagnosis (Li et al., 2023a; Moor et al., 2023; Zhang et al.,
2023b; Wu et al., 2023b). Despite this potential (Li et al., 2023b; Wu et al., 2023a; Shi et al., 2024),
current Med-LVLMs still face significant reliability issues, particularly their tendency to generate
non-factual medical responses (Xia et al., 2024a; Royer et al., 2024; Chen et al., 2024a; Jiang et al.,
2024), making them unreliable in critical medical applications. These factuality issues raise serious
concerns when deploying such models in clinical settings, where even small diagnostic errors could
lead to severe consequences for patient care.

Recently, researchers have begun to focus on improving the factuality of Med-LVLMs through var-
ious techniques, including fine-tuning (Li et al., 2023a; Moor et al., 2023; Thawkar et al., 2023;
Zhang et al., 2023b; Chen et al., 2024b) and retrieval-augmented generation (RAG) (Xia et al.,
2024b; He et al., 2024; Sun et al., 2024b). Fine-tuning is a direct method to improve model per-
formance, but it faces several limitations in the medical field. First, there is a lack of sufficient
high-quality labeled data for fine-tuning in the medical domain. Additionally, a distribution gap
often exists between the training data and the real-world deployment data (Schrouff et al., 2022),
leading to significantly worse model performance during deployment. Hence, RAG has emerged
as a viable alternative by providing external references during the inference stage, enhancing the
factuality of Med-LVLMs (Wu et al., 2023c; Gao et al., 2023). However, despite its advantages, cur-
rent RAG implementations in Med-LVLMs have significant limitations. First, these methods tend to
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be dataset-specific, reducing their generalizability across various medical domains. Second, these
models are still facing misalignment issues that lead to factuality problems. This misalignment may
arise from the impact of adding RAG on the original Med-LVLMs’ cross-modality alignment, as
well as on the overall alignment between the model and ground truth.

To address these challenges, we propose a versatile factual Multimodal Medical RAG system called
MMed-RAG. Specifically, MMed-RAG first introduces a domain-aware retrieval mechanism, de-
signed to handle different domains of medical images more effectively. Here, we design a domain
identification module to adaptively select a corresponding retrieval model given the input medical
image. Secondly, we include a adaptive calibration approach for selecting the number of retrieved
contexts. Lastly, MMed-RAG incorporates RAG-based preference fine-tuning to enhance cross-
modality alignment and overall alignment with ground truth. The preference pairs are designed to
achieve two goals: first, to improve cross-modality alignment by encouraging the model to avoid
generating responses without utilizing input medical images, even the responses are correct; sec-
ond, to improve overall alignment by encouraging the model to understand retrieved contexts when
unsure, while avoiding interference from irrelevant retrieved information.

The primary contribution of this paper is MMed-RAG, a versatile multimodal RAG system designed
specifically for Med-LVLMs to generate more factual responses. Under mild assumptions, our the-
oretical analysis demonstrates that MMed-RAG mitigates both cross-modality misalignment and
overall misalignment with ground truth. Furthermore, empirical results on five medical multimodal
datasets, covering three medical image modalities (radiology, pathology, and ophthalmology), show
that MMed-RAG significantly improves the factual accuracy of Med-LVLMs, achieving improve-
ments of 18.5% and 69.1% on Medical VQA and report generation tasks, respectively, compared
to the original Med-LVLM. These empirical findings further demonstrate the effectiveness of our
proposed components and support the theoretical analysis in addressing misalignment issues.

2 PRELIMINARIES

In this section, we will provide a brief overview of Med-LVLMs and preference optimization.

Medical Large Vision Language Models. Med-LVLMs bridge LLMs with medical visual mod-
ules, allowing the model to take medical image xv and clinical query xt as input x, and autoregres-
sively predict the probability distribution of the next token. The text output is denoted as y.

Preference Optimization. Preference optimization has achieved remarkable results in LLM align-
ment. Give an input x, a language model policy πθ can produce a conditional distribution πθ(y | x)
with y as the output text response. The recently popular DPO (Rafailov et al., 2023) utilizes
preference data achieve objective alignment in LLMs. The preference data is defined as D =

{x(i), y
(i)
w , y

(i)
l }

N
i=1, where y

(i)
w and y

(i)
l represent preferred and dispreferred responses given an in-

put prompt x. The probably of obtaining each preference pair is p(yw ≻ yl) = σ(r(x, yw)− r(x, yl)),
where σ(·) is the sigmoid function. In DPO, the optimization can be formulated as classification
loss over the preference data as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
α log πθ(yw|x)

πref(yw|x) − α log πθ(yl|x)
πref(yl|x)

)]
. (1)

where πθ represents the reference policy, which is the LLM fine-tuned through supervised learning.

3 MMED-RAG: A VERSATILE MEDICAL RAG SYSTEM

In this section, as illustrated in Figure 1, we will propose MMed-RAG, a versatile RAG system for
improving the factuality of Med-LVLMs. Specifically, MMed-RAG consists of three complemen-
tary modules. First, we design a domain-aware retrieval mechanism to select the optimal retriever
by feeding each given medical image to the domain identification module. Second, to select an
optimal number of retrieved contexts and filter out low-quality information, MMed-RAG adopts a
adaptive method by filtering out low-quality information using the similarity scores during the RAG
phase. Lastly, we use a RAG-based preference fine-tuning approach to improve the cross-modality
alignment and the overall alignment between groundtruth. We detail these steps as follows:

2



NeurIPS 2024 Workshop on Safe Generative AI

IU
-X

ra
y

M
IM

IC
Q

ui
lt

Domain 
Identification

Radiology

Radiology

Pathology

Retriever 
(Radiology)

Retriever 
(Pathology)

Domain-Aware Retrieval Mechanism Adaptive Retrieved Context Selection

Medical 
Image

Retriever

Domain 
Label

Med-LVLM

Top-k Reports

…

Is there any 
focal airspace 

opacity present?Question

Similarity Scores

…
Adaptive-k Reports

RAG-Based Preference Fine-Tuning

Direct Copy Homework from Others
Think it by Self ✏

Unrelated Image

Med-LVLM
Unrelated 

Image

RAG

Med-LVLMOriginal 
Image

RAG

1⃣
2⃣

Med-LVLMOriginal 
Image

RAG

Med-LVLMOriginal 
Image

Cannot Solve Problems by Self
Learn How to Copy ✏

3⃣
Med-LVLM

Original 
Image

RAG

Med-LVLMOriginal 
Image

Copied homework is Wrong
Avoid Interference from Incorrect Homework ✏

Preference Data

Preference 
Fine-Tuning

Stronger Med-LVLM

Constructed 
Preference Pairs

Original ImageG
ro
un

d-
Tr
ut
h

Figure 1: Overview of MMed-RAG, a versatile factual multimodal RAG system designed to enhance
the reliability of Med-LVLMs. It introduces a domain-aware retrieval mechanism that effectively
handles different domains of medical images by selecting suitable retrieval models. Additionally, it
uses an adaptive context selection approach to determine the optimal number of retrieved contexts
and employs preference fine-tuning to improve both cross-modality and overall alignment.

3.1 DOMAIN-AWARE RETRIEVAL MECHANISM

In MMed-RAG, we introduce a domain-aware retrieval mechanism to efficiently handle medical
images from different sources (e.g., radiology, pathology, ophthalmology). Specifically, we first
employ a domain identification module that assigns a domain label to each input medical image.
To achieve this, we create a small dataset with medical images as inputs and their corresponding
domain labels as outputs, using this dataset to fine-tune the BiomedCLIP model (Zhang et al., 2023a)
to improve its domain awareness. Formally, for a given medical image xv , we predict its domain
d = F(xv). Based on the assigned domain label d, the image xv is fed into the corresponding
multimodal retriever Rd(·) for knowledge retrieval.

Here, each multimodal retriever Rd(·) for each domain d is trained through contrastive learn-
ing (Radford et al., 2021). Specifically, the visual and textual information Ximg, Xtxt are pro-
cessed by their corresponding encoders Eimg(·), Etxt(·) to generate textual and visual embeddings
Vtxt = Etxt(Xtxt), Vimg = Eimg(Ximg). Contrastive learning loss is then applied to maximize the
similarity between text and image embeddings representing the same example, while minimizing
the similarity between embeddings representing different examples, as defined below:

L =
Limg + Ltxt

2
,where Limg = − 1

N

N∑
i=1

log
exp(Si,i)∑N
j=1 exp(Si,j)

,Ltxt = −
1

N

N∑
i=1

log
exp(Si,i)∑N
j=1 exp(Sj,i)

,

(2)
where S ∈ RN×N represents the similarity matrix between image and text modalities, calculated
as: S =

Vimg

|Vimg| · (
Vtxt

|Vtxt| )
T , where each element Si,j represents the similarity between the image

representation of example i and the text representation of example j.

Figure 2: Relations between se-
lected contexts and similarity score.

Finally, for the input image xt, after feeding into the cor-
responding multimodal retriever Rd(·), the multimodal re-
triever will retrieves the top-k most similar reports for the im-
age. These retrieved reports xr = Rd(xv) are then provided
to the Med-LVLM M(·) as references to guide the genera-
tion.

3.2 ADAPTIVE RETRIEVED CONTEXT SELECTION

Following the domain-aware retrieval mechanism, the next
step is to determine the optimal amount of context to retrieve.
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Retrieving too much or too little information can result in hallucinations (Xia et al., 2024b). Current
RAG methods applied to Med-LVLMs generally rely on empirical results or fixed values based on
validation sets to select the optimal value of the number of retrieved contexts k (Xia et al., 2024b;
He et al., 2024; Sun et al., 2024b). However, the distribution of similarity scores varies depending
on the complexity of the image and its alignment with the textual information from the data source.
These fixed-k methods do not guarantee optimal performance on target data, as they overlook the
similarity scores generated during the retrieval process. To address this, we propose an adaptive
method that dynamically selects k based on the similarity scores of the retrieved contexts. Specif-
ically, during the domain-aware retrieval mechanism phase, the retrieved information is denoted as
xr(k) = Rd(xv; k), where k represents the number of retrieved contexts, and the corresponding
similarity scores are denoted as Sk. For simplicity, when there is no ambiguity, we will refer to
xr(k) as xr.

As illustrated in Figure 2, our method is based on a key observation: the similarity scores (CLIP
score in this case) between retrieved contexts often exhibit a sharp decline after a certain number of
results (nearly top-9 in this case). This suggests that lower-quality information can still be included
among the top-k retrieved contexts when using a fixed-k strategy, especially in cases where the fixed
value of k is too large. These lower-quality retrievals introduce noise and irrelevant information,
which can significantly impair the model’s ability to generate factual and coherent responses. To
mitigate this issue, we draw inspiration from the Gap statistic method used in clustering (Tibshirani
et al., 2001) and extend this concept to RAG for Med-LVLMs. Specifically, after retrieving the
top-k contexts, we perform an additional round of k optimization by analyzing the similarity ratios
between consecutive retrievals. These similarity ratios are denoted as ui = log(Si/Si+1) for 0 <
i ≤ k, where Si represents the similarity score of the i-th retrieved context. When ui exceeds a
predefined threshold γ, this indicates a substantial drop in relevance, suggesting that the remaining
retrievals are less likely to contribute preferredly to the model’s output. At this point i, we truncate
k, effectively discarding the less relevant retrievals that follow. This adaptive truncation mechanism
ensures that only the most relevant contexts are retained for generating the final response, reducing
the risk of hallucination and improving the factual accuracy of the outputs.

Although the threshold γ is fixed, this approach provides a adaptive way to balance the bias and
variance in retrieved contexts. By adapting to the characteristics of each input xv , our method
enhances the robustness of the retrieval process and ensures that the selection of k is tailored to the
specific data at hand, thereby improving overall performance across diverse contexts and tasks.

3.3 RAG-BASED PREFERENCE FINE-TUNING

After context selection, MMed-RAG supplies Med-LVLM with reliable retrieved information as
external knowledge to aid in generating factual responses. However, incorporating this retrieved
knowledge may potentially disrupt the original alignment within the existing Med-LVLM, a concern
we will elaborate on below:

Alignment Analysis. In the alignment analysis, we aim to explore how incorporating retrieved con-
text impacts the original alignment in Med-LVLMs, focusing on two key aspects: (1) cross-modality
alignment and (2) overall alignment with the ground truth. To evaluate cross-modality alignment,
we conduct two tests on LLaVA-Med-1.5 (Li et al., 2023a) using the Harvard-FairVLMed (Luo
et al., 2024) dataset. First, when replacing the original image with a highly noisy image associated
with a different ground truth, the original model gives incorrect answers (the ground truth being
the response for the original image). After incorporating RAG, where context is retrieved based
on the original image, 55.08% of these cases return correct answers. This indicates that the model
directly references the retrieved knowledge without considering the input image, highlighting signif-
icant cross-modal misalignment issues. Furthermore, 43.31% of the questions that were originally
answered correctly are answered incorrectly after incorporating RAG, suggesting interference from
incorrect retrieval information, which leads to overall misalignment with the ground truth.
To address cross-modality misalignment and the overall misalignment introduced by incorporating
retrieved knowledge, as shown in Algorithm 1, we propose a RAG-based preference fine-tuning
(RAG-PT) approach to fine-tune the target Med-LVLM M(·). Specifically, RAG-PT constructs two
types of preference pairs designed to mitigate both categories of misalignment.

Preference Pairs for Cross-Modality Alignment. We first construct preference pairs aimed at
improving cross-modality alignment. In this dataset, we select samples fromD = {x(i)

v , x
(i)
t , y(i)}Ni=1,
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Algorithm 1: Versatile Multimodal RAG System (MMed-RAG)

Input: D = {x(i)
v , x

(i)
t , y(i)}Ni=1: Dataset; πθ: Parameters of the Med-LVLM; Med-LVLM:M(·, ·);

Domain Identification: F(·); Retriever: R(·); Noisy Function: I(·).
Output: πref: Parameters of the reference model.

1 ▷ Training Stage
2 Initialize Dcm with an empty set
3 foreach (xv, xt, y) ∈ D do
4 Generate retrieved contexts with an assigned domain label xr ←RF(xv)(xv)
5 Generate the noisy image x∗

v ← I(xv)
6 ▷ Cross-Modality Alignment
7 ifM(xv, (xt, xr)) = y andM(x∗

v, (xt, xr)) = y then
8 Select the preferred response yw,o1 ← y, dispreferred response yl,o1 ←M(x∗

v, (xt, xr))
9 Put {(xv, xt), yw,o1, yl,o1} into Dcm

10 ▷ Overall Alignment
11 Initialize D1

oa and D2
oa with empty set

12 ifM(xv, (xt, xr)) = y andM(xv, xt) ̸= y then
13 Select the preferred response yw,o2 ← y, dispreferred response yl,o2 ←M(xv, xt)

14 Put {(xv, xt), yw,o2, yl,o2} into D1
oa

15 ifM(xv, xt) = y andM(xv, (xt, xr)) ̸= y then
16 Select the preferred response yw,o3 ← y, dispreferred response yl,o3 ←M(xv, (xt, xr))

17 Put {(xv, xt), yw,o3, yl,o3} into D2
oa

18 Dpt = Dcm ∪ Doa, Doa = D1
oa ∪ D2

oa

19 foreach ((xv, xt), yw,o, yl,o) ∈ Dpt do
20 Compute the losses Lpt following equation 4 and update πref
21 ▷ Inference Stage
22 foreach test sample (xv, xt) do
23 Select top-k retrieved contexts with an assigned domain label xr ←RF(xv)(xv)
24 Get the predictions of the model w/ RAG-PT p←M(xv, (xt, xr))

where xv , xt, and y represent the input medical image, clinical query, and ground-truth answer,
respectively. For simplicity, we omit the sample index (i) in the following sections. A model’s
correct response using retrieved knowledge, i.e., M(xv, xt + xr) = y, is considered a preferred
response pi, where xr is the retrieved information. A dispreferred response ni is selected from cases
where the model makes a correct inference based on an unrelated image, i.e., M(x∗

v, xt) ̸= y, but
M(x∗

v, xt + xr) = y, reflecting the model’s reliance on the retrieved knowledge. The unrelated
images x∗

v are generated through a two-step process: first, we use the retriever to select an image x′
v

with the lowest similarity to the target image; then, we introduce diffusion noise into the selected
unrelated image. We define the noise step as s, and the noised image at step s is expressed as:

x∗
v =

√
ξs · x′

v +
√
1− ξs · ϵ, (3)

where ξ̄s =
∏s

i=0 ξi and ξs ∈ (0, 1) is a hyperparameter. The preference pairs constructed in
this stage are denoted as Dcm. By comparing the preferred and dispreferred responses in Dcm, we
encourage the model to prioritize the input medical image when generating responses.

Preference Pairs for Overall Alignment. Second, we construct preference pairs to improve overall
alignment, focusing on enhancing the model’s ability to effectively leverage retrieved knowledge
when generating responses. The preference pairs in this stage are constructed from two subsets.
The first subset, D1

oa, is designed to strengthen the model’s comprehension and reasoning abilities
regarding the retrieved knowledge. Preferred responses are selected where the model correctly an-
swers based on both the original image and the retrieved information, i.e., M(xv, xt + xr) = y,
while dispreferred responses represent cases where the model answers incorrectly based on the im-
age without using retrieval, i.e., M(xv, xt) ̸= y. Comparing these preferred and dispreferred re-
sponses enhances the model’s understanding of the retrieved information and improves the overall
effectiveness of RAG. In the second subset, D2

oa, the goal is to mitigate interference from the re-
trieved knowledge. Preferred responses are selected where the model correctly answers based solely
on the original image without using retrieved knowledge, i.e., M(xv, xt) = y, while dispreferred
responses occur when the model answers incorrectly using both the image and retrieved informa-
tion, i.e., M(xv, xt + xr) ̸= y. This helps the model learn when to rely on its internal knowledge
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versus retrieved knowledge. Finally, we combine the first and second subsets to form the second set
of preference pairs, Doa = D1

oa ∪ D2
oa.

Finally, we merge the first and second preference set and denote the preference dataset as Dpt =

Dcm ∪ Doa = {x(i), y
(i)
w,o, y

(i)
l,o}

N
i=1, where y

(i)
w,o, y

(i)
l,o are represented as preferred and dispreferred

responses, respectively. Based on the curated preferences, we fine-tune Med-LVLM using direct
preference optimization (Rafailov et al., 2023) with the following loss:

Lpt = −E(x,yw,o,yl,o)∼D

[
log σ

(
α log

πθ(yw,o|x)
πo(yw,o|x) − α log

πθ(yl,o|x)
πo(yl,o|x)

)]
. (4)

4 EXPERIMENT

In this section, we evaluate the performance of MMed-RAG, aiming to answer the following
questions: (1) Can MMed-RAG effectively improve the factuality of Med-LVLMs compared to
decoding-based and RAG-based baselines? (2) How effective is each proposed component on per-
formance? (3) What is the effect of preference data for different alignment goals? and (4) Does
MMed-RAG actually improve cross-modality alignment and overall alignment?

4.1 EXPERIMENTAL SETUPS

Implementation Details. We use LLaVA-Med-1.5 7B (Li et al., 2023a) as the backbone model.
During the preference fine-tuning process, we adapt LoRA fine-tuning (Hu et al., 2021). For the
training of retriever, the vision encoder is a ResNet-50 (He et al., 2016), and the text encoder is a
bio-BioClinicalBERT (Alsentzer et al., 2019). We use the AdamW optimizer with a learning rate of
10−3, weight decay of 10−2 and a batch size of 32. The model is trained for 360 epochs. For more
detailed information on training hyperparameters and training data, please see Appendix A.1.1.

Baseline Methods. We compare MMed-RAG with two types of LVLM hallucination mitigation
methods that show promising results in natural image understanding. 1) Decoding-based methods,
including Greedy Decoding, Beam Search (Sutskever et al., 2014), DoLa (Chuang et al., 2023),
OPERA (Huang et al., 2023), VCD (Leng et al., 2023). These methods manipulate the logits of the
model’s output tokens to enhance factual accuracy. 2) Multimodal RAG-based methods, including
MedDr (He et al., 2024), FactMM-RAG (Sun et al., 2024b), RULE (Xia et al., 2024b). Furthermore,
we compare the performance with other open-source Med-LVLMs, including Med-Flamingo (Moor
et al., 2023), MedVInT (Zhang et al., 2023b), RadFM (Wu et al., 2023b).

Evaluation Datasets. We utilize five medical vision-language datasets for medical VQA and report
generation tasks, i.e., MIMIC-CXR (Johnson et al., 2019), IU-Xray (Demner-Fushman et al., 2016),
Harvard-FairVLMed (Luo et al., 2024), PMC-OA (Lin et al., 2023a) (we only select the pathology
part) and Quilt-1M (Ikezogwo et al., 2024). These datasets cover radiology, ophthalmology, and
pathology. To construct the VQA benchmarks, following (Xia et al., 2024a), we generate question-
answer pairs from medical reports using GPT-4 (OpenAI, 2023), with answers formatted as yes or
no. Pathology images are excluded from the report generation task due to their brief and insufficient
descriptions. The detailed dataset descriptions are provided in the Appendix A.2.

Evaluation Metrics. Following (Jing et al., 2017; Lin et al., 2023b), we use Accuracy, F1 Score and
AUROC for evaluating medical VQA task, and BLEU Score (Papineni et al., 2002), ROUGE-L (Lin,
2004) and METEOR (Banerjee & Lavie, 2005) for evaluating report generation task.

4.2 MAIN RESULTS

In this section, we provide a comprehensive comparison with various baseline methods and other
open-source Med-LVLMs on medical VQA and report generation tasks.

Comparison with Baselines. We compare MMed-RAG with baseline methods on medical VQA
and report generation tasks, with the results presented in Table 1 and Table 2, respectively. Overall,
MMed-RAG outperforms all baselines across nearly all metrics and datasets. Specifically, MMed-
RAG demonstrates a significant performance boost, improving by 18.5% and 69.1% over the orig-
inal Med-LVLM in medical VQA and report generation tasks, respectively. When compared to
baseline methods, MMed-RAG surpasses decoding-based approaches, achieving improvements of
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Table 1: Model performance (%) of different methods based on LLaVA-Med-1.5 on medical VQA
task. Notably, we report the accuracy, F1 score and AUROC. The best results and second best results
are highlighted in red and blue , respectively.

Models Radiology Ophthalmology Pathology

IU-Xray MIMIC-CXR Harvard-FairVLMed Quilt-1M PMC-OA (Pathology)

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

LLaVA-Med-1.5 75.47 64.04 67.46 75.79 80.49 68.84 63.03 74.11 63.05 62.80 72.90 60.03 59.28 71.98 54.19

+ Greedy 76.88 65.59 68.74 78.32 86.75 71.13 82.54 85.98 70.09 64.72 70.12 58.75 58.61 70.42 53.10
+ Beam Search 76.91 66.06 68.77 81.56 86.36 73.79 80.93 88.08 68.94 63.52 69.33 57.65 56.29 69.84 52.89
+ DoLa 78.00 66.75 72.19 81.35 85.73 72.73 76.87 85.53 67.10 63.47 69.10 57.58 57.71 70.27 52.95
+ OPERA 70.59 61.54 63.22 69.34 76.66 62.46 71.41 81.37 65.59 60.51 66.32 54.79 55.32 68.30 51.86
+ VCD 68.99 54.35 61.08 70.89 75.57 64.61 65.88 77.20 64.16 61.43 67.39 55.72 55.10 67.94 51.62

+ MedDr 83.33 67.80 77.15 55.16 56.18 58.47 70.17 80.72 64.15 68.15 73.23 67.01 59.97 69.19 57.01
+ FactMM-RAG 84.51 68.51 77.07 77.58 81.86 70.09 83.67 87.21 72.20 69.25 73.62 68.15 60.49 69.38 57.31
+ RULE 87.84 78.00 85.78 83.92 87.49 83.44 87.12 92.89 77.08 68.97 73.80 68.13 61.41 70.36 58.91

MMed-RAG 89.54 80.72 87.13 83.57 88.49 85.08 87.94 92.78 80.81 72.95 76.35 72.25 64.54 73.09 61.42

Table 2: Model performance (%) of different methods based on LLaVA-Med-1.5 on report genera-
tion task. Notably, we report the average BLEU, ROUGE-L, METEOR.

Models Radiology Ophthalmology

IU-Xray MIMIC-CXR Harvard-FairVLMed

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

LLaVA-Med-1.5 9.64 12.26 8.21 12.11 13.05 11.16 18.11 11.36 10.75

+ Greedy 11.47 15.38 12.69 16.63 14.26 14.19 17.98 11.49 13.77
+ Beam Search 12.10 16.21 13.17 16.97 14.74 14.43 18.37 12.62 14.50
+ DoLa 11.79 15.82 12.72 17.11 14.89 14.81 18.26 12.51 14.51
+ OPERA 10.66 14.70 12.01 15.40 12.52 13.72 16.59 11.47 13.63
+ VCD 10.42 14.14 11.59 15.18 12.30 13.38 16.73 11.38 13.89

+ MedDr 12.37 16.45 13.50 18.59 15.72 16.77 19.82 13.72 15.40
+ FactMM-RAG 14.70 18.05 15.92 18.71 15.84 16.82 20.82 14.17 15.31
+ RULE 27.53 23.16 27.99 18.61 15.96 17.42 22.35 14.93 17.74

MMed-RAG 31.38 25.59 32.43 23.25 12.34 20.47 24.82 16.59 19.85

11.5% and 44.2% in the two tasks. Furthermore, recent RAG-based methods show substantial im-
provements over earlier techniques, yet our approach still outperforms RAG-based baselines by
2.8% and 16.1% in the medical VQA and report generation tasks, respectively. This indicates that
MMed-RAG effectively mitigates misalignment issues introduced by RAG. Notably, MMed-RAG
achieves more pronounced gains in report generation, likely due to the higher complexity of the task
and the greater influence of retrieved contexts in guiding open-ended generation.

Table 3: Performance compar-
ison with several Med-LVLMs.
Rad: Radiology, Opt: Ophthalo-
mology, Pat: Pathology.

Model Rad Opt Pat

Med-Flamingo 27.42 22.50 29.11
MedVInT 33.17 29.40 25.33
RadFM 35.82 27.07 24.82
miniGPT-Med 36.66 25.28 23.16
MMed-RAG 56.94 56.38 54.10

Comparison with Other Med-LVLMs. To provide a com-
prehensive comparison, we evaluate MMed-RAG against other
open-source Med-LVLMs to demonstrate the superiority of our
approach. We assess the performance of these models across
different medical image modalities, reporting the average re-
sults for medical VQA and report generation tasks in Table 3
(see Appendix A.6 for detailed results). Our findings show that
MMed-RAG significantly outperforms Med-LVLMs pre-trained
on large-scale datasets across various domains. This reinforces
the generalizability and effectiveness of our approach across di-
verse image domains and medical multimodal tasks.

4.3 ANALYSIS
Table 4: Ablation results on two datasets
covering different domains. RG: report gen-
eration, FairVLMed: Harvard-FairVLMed.

Model IU-Xray FairVLMed
VQA RG VQA RG

LLaVA-Med-1.5 68.99 10.04 66.63 13.41
+DR 77.12 13.23 72.69 15.89
+RCS 79.56 17.92 75.74 17.22
+RAG-PT (Ours) 85.80 29.80 87.18 20.42

In this section, we provide a detailed analysis of
each module’s performance, along with a series
of analytical experiments, to better understand the
performance gains of MMed-RAG. Additionally,
we demonstrate the compatibility of our approach,
achieving a consistent 40.3% performance improve-
ment on a different backbone, i.e., LLAVA-Med-1.0
(see details in Appendix A.6).
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Ablation Studies. We conduct a series of ablation
experiments to evaluate the impact of each component in MMed-RAG. The results for both medical
VQA and report generation tasks on the IU-Xray and Harvard-FairVLMed datasets are summarized
in Table 4. According to the results, we can see that: (1) The domain-aware retrieval mechanism
(DR) significantly improves the factuality of Med-LVLM, with an average performance increase of
17.9% and 16.1% on the IU-Xray and FairVLMed datasets, respectively. Here, the retrieved knowl-
edge aids the model in generating more factual responses. (2) Building on this, the introduction of
adaptive retrieval context selection (RCS) further filters out unreliable retrieved contexts, yielding
an additional performance boost of 19.3% and 6.3% on the IU-Xray and FairVLMed datasets. (3)
The inclusion of RAG-based preference fine-tuning (RAG-PT) enhances the model’s understanding
of the retrieved knowledge, leading to substantial performance gains of 37.1% and 16.9% on the
respective datasets. This demonstrates that RAG-PT effectively addresses misalignment issues.

Table 5: Performance using RAG-PT based
on subsets of preference data.

Model IU-Xray FairVLMed
VQA RG VQA RG

LLaVA-Med-1.5 68.99 10.04 66.63 13.41
+RAG-PT 1 80.19 19.38 79.42 18.37
+RAG-PT 2 80.27 20.16 79.35 18.66
+RAG-PT 3 81.30 19.43 80.07 18.92

Impact of the Preference Data in RAG-PT. To
better understand how RAG-PT mitigates the mis-
alignment issue and improves performance, we con-
ducted a detailed study on the training preference
data composition of RAG-PT. As described in Sec-
tion 3.3, the RAG-PT data is designed to address
both cross-modality alignment and overall align-
ment objectives, with the latter focusing on en-
hanced understanding of retrieved knowledge and
minimizing retrieval interference. The detailed experimental results in Table 5 demonstrate that
the preference data tailored for different alignment objectives positively impacts the model’s perfor-
mance, showing the effectiveness of RAG-PT.

How Effective is MMed-RAG in Mitigating Misalignment Issues? To gain a more intuitive un-
derstanding of the effectiveness of MMed-RAG in addressing misalignment issues: 1) we calculate
the proportion of errors caused by RAG and compare it to the proportion after incorporating MMed-
RAG. 2) We visualize the attention maps of image and text tokens with and without RAG-PT. First,
as mentioned in Section 3.3, the model may directly copy reference information, referred to as
Copy-Reference (CR) rate. After applying MMed-RAG, as shown in Figure 3, the CR rate drops to
28.19%. Additionally, the proportion of errors affected by RAG interference, referred to as Over-
Reliance (OR) rate, which is initially 43.31%, decreased to 8.38% after incorporating MMed-RAG.
Furthermore, as shown in Figure 4, the original Med-LVLM tends to rely more heavily on text while
ignoring visual information. When retrieval information is introduced, the original Med-LVLM fo-
cused more on the retrieved answers, even if the content is incorrect. After RAG-PT, the model
significantly increases its attention to visual information and reduces the interference of RAG, thus
better aligning the model’s knowledge with the fundamental facts.

Figure 3: Alignment analysis
with and without RAG. OR:
Over-Reliance; CR: Copy-
Reference.
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Figure 4: Visualization of attention map. The red box region is
labeled with the attentions that can be enhanced by MMed-RAG.

5 CONCLUSION

This paper introduces MMed-RAG, a versatile multimodal RAG system designed to address the
critical issue of factual hallucination in Med-LVLMs. MMed-RAG employs a domain-aware re-
trieval mechanism, adaptive calibration for selecting the optimal number of retrieved contexts, and
RAG-based preference fine-tuning to improve both cross-modality alignment and overall alignment
with the ground truth. These enhancements significantly boost the factual accuracy of Med-LVLMs.
Experimental results demonstrate MMed-RAG’ effectiveness in enhancing factual accuracy across
various imaging domains, underscoring its potential for reliable use in healthcare.

8



NeurIPS 2024 Workshop on Safe Generative AI

REFERENCES

Asma Alkhaldi, Raneem Alnajim, Layan Alabdullatef, Rawan Alyahya, Jun Chen, Deyao Zhu,
Ahmed Alsinan, and Mohamed Elhoseiny. Minigpt-med: Large language model as a general
interface for radiology diagnosis. arXiv preprint arXiv:2407.04106, 2024.

Emily Alsentzer, John R Murphy, Willie Boag, Wei-Hung Weng, Di Jin, Tristan Naumann,
and Matthew McDermott. Publicly available clinical bert embeddings. arXiv preprint
arXiv:1904.03323, 2019.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or summarization, pp. 65–72, 2005.

Jiawei Chen, Dingkang Yang, Tong Wu, Yue Jiang, Xiaolu Hou, Mingcheng Li, Shunli Wang,
Dongling Xiao, Ke Li, and Lihua Zhang. Detecting and evaluating medical hallucinations in
large vision language models. arXiv preprint arXiv:2406.10185, 2024a.

Junying Chen, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xidong Wang,
Ruifei Zhang, Zhenyang Cai, Ke Ji, Guangjun Yu, et al. Huatuogpt-vision, towards injecting
medical visual knowledge into multimodal llms at scale. arXiv preprint arXiv:2406.19280, 2024b.

Zhanpeng Chen, Chengjin Xu, Yiyan Qi, and Jian Guo. Mllm is a strong reranker: Advancing
multimodal retrieval-augmented generation via knowledge-enhanced reranking and noise-injected
training. arXiv preprint arXiv:2407.21439, 2024c.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models, 2024d. URL https://arxiv.org/
abs/2401.01335.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:
Decoding by contrasting layers improves factuality in large language models. arXiv preprint
arXiv:2309.03883, 2023.

Dina Demner-Fushman, Marc D Kohli, Marc B Rosenman, Sonya E Shooshan, Laritza Rodriguez,
Sameer Antani, George R Thoma, and Clement J McDonald. Preparing a collection of radiol-
ogy examinations for distribution and retrieval. Journal of the American Medical Informatics
Association, 23(2):304–310, 2016.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Sunan He, Yuxiang Nie, Zhixuan Chen, Zhiyuan Cai, Hongmei Wang, Shu Yang, and Hao Chen.
Meddr: Diagnosis-guided bootstrapping for large-scale medical vision-language learning. arXiv
preprint arXiv:2404.15127, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
via over-trust penalty and retrospection-allocation. arXiv preprint arXiv:2311.17911, 2023.

Wisdom Ikezogwo, Saygin Seyfioglu, Fatemeh Ghezloo, Dylan Geva, Fatwir Sheikh Mohammed,
Pavan Kumar Anand, Ranjay Krishna, and Linda Shapiro. Quilt-1m: One million image-text
pairs for histopathology. Advances in neural information processing systems, 36, 2024.

9

https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335


NeurIPS 2024 Workshop on Safe Generative AI

Yue Jiang, Jiawei Chen, Dingkang Yang, Mingcheng Li, Shunli Wang, Tong Wu, Ke Li, and Lihua
Zhang. Medthink: Inducing medical large-scale visual language models to hallucinate less by
thinking more. arXiv preprint arXiv:2406.11451, 2024.

Baoyu Jing, Pengtao Xie, and Eric Xing. On the automatic generation of medical imaging reports.
arXiv preprint arXiv:1711.08195, 2017.

Alistair EW Johnson, Tom J Pollard, Nathaniel R Greenbaum, Matthew P Lungren, Chih-ying Deng,
Yifan Peng, Zhiyong Lu, Roger G Mark, Seth J Berkowitz, and Steven Horng. Mimic-cxr-jpg, a
large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042,
2019.

Yogesh Kumar and Pekka Marttinen. Improving medical multi-modal contrastive learning with
expert annotations. arXiv preprint arXiv:2403.10153, 2024.

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
Mitigating object hallucinations in large vision-language models through visual contrastive de-
coding. arXiv preprint arXiv:2311.16922, 2023.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
mann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision assis-
tant for biomedicine in one day. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023a.

Yingshu Li, Yunyi Liu, Zhanyu Wang, Xinyu Liang, Lingqiao Liu, Lei Wang, Leyang Cui, Zhaopeng
Tu, Longyue Wang, and Luping Zhou. A comprehensive study of gpt-4v’s multimodal capabilities
in medical imaging. arXiv preprint arXiv:2310.20381, 2023b.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Weixiong Lin, Ziheng Zhao, Xiaoman Zhang, Chaoyi Wu, Ya Zhang, Yanfeng Wang, and Weidi Xie.
Pmc-clip: Contrastive language-image pre-training using biomedical documents. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 525–536.
Springer, 2023a.

Zhihong Lin, Donghao Zhang, Qingyi Tao, Danli Shi, Gholamreza Haffari, Qi Wu, Mingguang
He, and Zongyuan Ge. Medical visual question answering: A survey. Artificial Intelligence in
Medicine, 143:102611, 2023b.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual in-
struction tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 26296–26306, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024b.

Yan Luo, Min Shi, Muhammad Osama Khan, Muhammad Muneeb Afzal, Hao Huang, Shuaihang
Yuan, Yu Tian, Luo Song, Ava Kouhana, Tobias Elze, et al. Fairclip: Harnessing fairness in
vision-language learning. arXiv preprint arXiv:2403.19949, 2024.

Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Yash Dalmia, Jure Leskovec, Cyril
Zakka, Eduardo Pontes Reis, and Pranav Rajpurkar. Med-flamingo: a multimodal medical few-
shot learner. In Machine Learning for Health (ML4H), pp. 353–367. PMLR, 2023.

OpenAI. Gpt-4 technical report, 2023. https://arxiv.org/abs/2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Xiaoye Qu, Qiyuan Chen, Wei Wei, Jishuo Sun, and Jianfeng Dong. Alleviating halluci-
nation in large vision-language models with active retrieval augmentation. arXiv preprint
arXiv:2408.00555, 2024.

10

https://arxiv.org/abs/2303.08774


NeurIPS 2024 Workshop on Safe Generative AI

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Corentin Royer, Bjoern Menze, and Anjany Sekuboyina. Multimedeval: A benchmark and a toolkit
for evaluating medical vision-language models. arXiv preprint arXiv:2402.09262, 2024.

Jessica Schrouff, Natalie Harris, Sanmi Koyejo, Ibrahim M Alabdulmohsin, Eva Schnider, Krista
Opsahl-Ong, Alexander Brown, Subhrajit Roy, Diana Mincu, Christina Chen, et al. Diagnosing
failures of fairness transfer across distribution shift in real-world medical settings. Advances in
Neural Information Processing Systems, 35:19304–19318, 2022.

Congzhen Shi, Ryan Rezai, Jiaxi Yang, Qi Dou, and Xiaoxiao Li. A survey on trustworthiness in
foundation models for medical image analysis. arXiv preprint arXiv:2407.15851, 2024.

Jiashuo Sun, Jihai Zhang, Yucheng Zhou, Zhaochen Su, Xiaoye Qu, and Yu Cheng. Surf: Teach-
ing large vision-language models to selectively utilize retrieved information. arXiv preprint
arXiv:2409.14083, 2024a.

Liwen Sun, James Zhao, Megan Han, and Chenyan Xiong. Fact-aware multimodal retrieval aug-
mentation for accurate medical radiology report generation. arXiv preprint arXiv:2407.15268,
2024b.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Yitian Tao, Liyan Ma, Jing Yu, and Han Zhang. Memory-based cross-modal semantic alignment
network for radiology report generation. IEEE Journal of Biomedical and Health Informatics,
2024.
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A EXPERIMENT

A.1 EXPERIMENTAL SETUP

A.1.1 DATA STATISTICS

The data quantities used in this study are presented in Table 6, Table 7 and Table 8. We clarify that
for training the retriever, the data refers to the number of image-text pairs, while for fine-tuning,
it refers to the number of QA items. The “All” category represents the total amount of data used
to construct the preference dataset for RAG-PT. The training of RAG-PT includes three types of
samples: (a) clean samples with originally correct answers that remain correct even after adding
noise to the images, (b) clean image samples with originally incorrect answers that become correct,
and (c) clean image samples with originally correct answers that become incorrect.

Table 6: Data statistics for medical VQA task. ”Train (DR)” refers to the number of image-text pairs
for retriever training, ”All (RAG-PT)” refers to the total data for RAG-PT, and ”Train (RAG-PT)-
a/b/c” refer to the respective subsets for RAG-PT training.

Dataset Train (DR) All (RAG-PT) Train (RAG-PT)-a Train (RAG-PT)-b Train (RAG-PT)-c

Ophthalomology 7000 3247 1082 1030 1135
Radiology 4034 4836 1612 1989 1235
Pathology 5000 1990 663 523 804

A.1.2 HYPERPARAMETER SETTINGS

Following the settings of CLIP (Radford et al., 2021), we adopt the same architecture and hyperpa-
rameters for the vision and text encoders. The vision encoder is a ResNet-50 (He et al., 2016), and
the text encoder is a bio-bert-based model (Alsentzer et al., 2019). We use the AdamW optimizer
with a learning rate of 10−4 and a batch size of 512. The model is trained for 360 epochs. For the
first phase, we trained for 3 epochs, and for the second phase, the training was conducted for 1 epoch.
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Table 7: Data statistics for report generation. ”Train (DR)” refers to the number of image-text pairs
for retriever training, ”All (RAG-PT)” refers to the total data for RAG-PT, and ”Train (RAG-PT)-
a/b/c” refer to the respective sample categories for RAG-PT training.

Dataset Train (R) All (RAG-PT) Train (RAG-PT)-a Train (RAG-PT)-b Train (RAG-PT)-c

Ophthalmology 7000 3247 142 78 207
Radiology 4034 4836 233 126 342

Table 8: Data statistics for various datasets. The rows represent the number of images and QA pairs
for each dataset.

Harvard-FairVLMed IU-Xray MIMIC-CXR PMC-OA Quilt-1M

# Images 713 589 700 530 559
# QA Items 4285 2573 3470 3124 1994

Training for 20 hours on one A100 80G GPU. For the RAG-PT phase, we adjust the diffusion noise
level, symbolized by ξ through a specific formula: ξ = Sigmoid(lt)× (0.5× 10−2− 10−5)+10−5,
where ϵ is drawn from a normal distribution. The reports available for retrieval are from the training
set of the corresponding dataset. In our experiments, we apply cross-validation to tune all hyper-
parameters with grid search. All the experiments are implemented on PyTorch 2.1.2 using four
NVIDIA RTX A6000 GPUs. It takes roughly 3 and 4 hours for fine-tuning CLIP and LLaVA-Med-
1.5 7B, respectively.

A.2 EVALUATED DATASETS

We utilize five open-source medical vision-language datasets, i.e., MIMIC-CXR (Johnson et al.,
2019), IU-Xray (Demner-Fushman et al., 2016), Harvard-FairVLMed (Luo et al., 2024), PMC-
OA (Lin et al., 2023a) and Quilt-1M (Ikezogwo et al., 2024).

• MIMIC-CXR (Johnson et al., 2019) is a large publicly available dataset of chest X-ray images in
DICOM format with associated radiology reports.

• IU-Xray (Demner-Fushman et al., 2016) is a dataset that includes chest X-ray images and corre-
sponding diagnostic reports.

• Harvard-FairVLMed (Luo et al., 2024) focuses on fairness in multimodal fundus images, con-
taining image and text data from various sources. It aims to evaluate bias in AI models on this
multimodal data comprising different demographics.

• PMC-OA (Lin et al., 2023a) is a large-scale dataset comprising figure-caption pairs extracted from
PubMed Central. It covers 2,478,267 papers and includes a total of 12,211,907 figure-caption
pairs. We only use the pathology subset filtered by GPT-4 based on the captions.

• Quilt-1M (Ikezogwo et al., 2024) is the largest vision-language dataset in histopathology, contain-
ing 1 million image-text pairs sourced from platforms such as YouTube, Twitter, research papers,
and other parts of the internet.

A.3 EVALUATED MODELS

We evaluate five open-source Med-LVLMs, i.e., LLaVA-Med (Li et al., 2023a), Med-
Flamingo (Moor et al., 2023), MedVInT (Zhang et al., 2023b), RadFM (Wu et al., 2023b), miniGPT-
Med (Alkhaldi et al., 2024). The selected models are all at the 7B level.

• LLaVA-Med (Li et al., 2023a) is a vision-language conversational assistant, adapting the general-
domain LLaVA (Liu et al., 2024b) model for the biomedical field. The model is fine-tuned using
a novel curriculum learning method, which includes two stages: aligning biomedical vocabulary
with figure-caption pairs and mastering open-ended conversational semantics. It demonstrates
excellent multimodal conversational capabilities.

• Med-Flamingo (Moor et al., 2023) is a multimodal few-shot learner designed for the medical
domain. It builds upon the OpenFlamingo, continuing pre-training with medical image-text data
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from publications and textbooks. This model aims to facilitate few-shot generative medical visual
question answering, enhancing clinical applications by generating relevant responses and ratio-
nales from minimal data inputs.

• RadFM (Wu et al., 2023b) serve as a versatile generalist model in radiology, distinguished by
its capability to adeptly process both 2D and 3D medical scans for a wide array of clinical tasks.
It integrates ViT as visual encoder and a perceiver module, alongside the MedLLaMA language
model, to generate sophisticated medical insights for a variety of tasks. This design allows RadFM
to not just recognize images but also to understand and generate human-like explanations.

• MedVInT (Zhang et al., 2023b), which stands for Medical Visual Instruction Tuning, is designed
to interpret medical images by answering clinically relevant questions. This model features two
variants to align visual and language understanding: MedVInT-TE and MedVInT-TD. Both Med-
VInT variants connect a pre-trained vision encoder ResNet-50 adopted from PMC-CLIP (Lin
et al., 2023a), which processes visual information from images. It is an advanced model that
leverages a novel approach to align visual and language understanding.

• miniGPT-Med (Alkhaldi et al., 2024) is a vision-language model derived from large-scale lan-
guage models and tailored for radiology diagnosis applications. It handles various medical vision-
language task using distinct task identifiers, demonstrating advanced performance in disease
grounding, medical report generation, and medical VQA.

A.4 OVERVIEW OF THE BASELINES

We compare MMed-RAG with two types of LVLM hallucination mitigation methods that show
promising results in natural image understanding. 1) Decoding-based methods, including Greedy
Decoding, Beam Search (Sutskever et al., 2014), DoLa (Chuang et al., 2023), OPERA (Huang et al.,
2023), VCD (Leng et al., 2023). These methods manipulate the logits of the model’s output tokens to
enhance factual accuracy. 2) Multimodal RAG-based methods, including MedDr (He et al., 2024),
FactMM-RAG (Sun et al., 2024b), RULE (Xia et al., 2024b).

• Greedy decoding involves selecting the most probable next token at each step of generation.
While it is efficient and straightforward, it can lead to suboptimal outcomes by getting stuck in
repetitive or less creative patterns.

• Beam search (Sutskever et al., 2014) expands on greedy decoding by maintaining multiple candi-
date sequences (or ”beams”) at each step, allowing for a broader exploration of possible outputs.
This approach balances quality and diversity by selecting the top-k sequences based on their prob-
abilities, resulting in more coherent and creative text generation compared to greedy decoding.

• DoLa (Chuang et al., 2023) derives the next-token distribution by contrasting the logits projected
from later layers against those from earlier layers, leveraging the fact that factual knowledge in
LLMs is typically localized within specific transformer layers.

• OPERA (Huang et al., 2023) is a LVLMs decoding method based on an Over-trust Penalty and a
Retrospection-Allocation strategy The key insight is that hallucinations are closely tied to knowl-
edge aggregation patterns in the self-attention matrix, where MLLMs tend to focus on summary
tokens, neglecting image tokens and resulting in content hallucination.

• VCD (Leng et al., 2023) is a decoding method that tackles the object hallucination issue in
LVLMs. It contrasts output distributions derived from original and distorted visual inputs to cal-
ibrate the model’s output without the usage of external tools, reducing the the over-reliance on
statistical bias and unimodal priors.

• MedDr (He et al., 2024) is a healthcare foundation model built upon generated diagnosis-based
datasets, demonstrating advanced capabilities in various data modalities. Meddr also integrates a
retrieval-augmented medical diagnosis strategy during inferencing to enhance factual accuracy.

• FactMM-RAG (Sun et al., 2024b) is a fact-aware multimodal retrieval-augmented pipeline for
radiology report generation. It utilize RadGraph to annotate chest radiograph reports and mine
clinically relevant pairs to train a universal multimodal retriever.

• RULE (Xia et al., 2024b) is an advanced medical retrieval-augmented generation strategy de-
signed to enhance the factuality of Med-LVLMs. First, it introduces a robust strategy for control-
ling factuality risk through the calibrated selection of retrieved contexts. Second, RULE develops
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Instruction [Round1]
You are a professional medical expert. I will provide you with some medical reports. Please
generate some questions with answers (the answer should be yes or no) based on the provided
report. The subject of the questions should be the medical image or patient, not the report.
Below are the given report:
[REPORT]
Instruction [Round2]
Please double-check the questions and answers, including how the questions are asked and
whether the answers are correct. You should only generate the questions with answers and no
other unnecessary information.
Below are the given report and QA pairs in round1:
[REPORT]
[QA PAIRS R1]

Table 9: The instruction to GPT-4 for generating QA pairs.

a preference optimization strategy to balance Med-LVLMs’ intrinsic knowledge and the retrieved
information.

A.5 PROMPTS

We convert the medical reports into a series of closed-ended questions with yes or no answers. To
ensure the quality of the VQA data, we perform a round of self-checks using GPT-4 (OpenAI, 2023).
Finally, we conduct an round of manual filtering to remove questions with obvious issues or those
related to multiple images or patient histories. The prompt templates used are shown in Table 9.

A.6 ADDITIONAL RESULTS

Generalization on Different Backbones. To demonstrate the compatibility of our approach across
different backbone models, we apply it to LLaVA-Med-1.0. As shown in Table 10, our method
delivers an average improvement of 40.3% over the original LLaVA-Med-1.0, further highlighting
its effectiveness in enhancing RAG performance and its adaptability to various backbones. MMed-
RAG can be transferred to different Med-LVLMs, yielding consistent improvements across various
domains, demonstrating the compatibility of our method.

Table 10: Performance on different backbones.

Model IU-Xray FairVLMed
VQA RG VQA RG

LLaVA-Med-1.0 61.73 8.74 59.54 10.59
+MMed-RAG 80.32 22.63 78.49 15.88

Detailed Results of Other Med-LVLMs. As shown in Table 11, we illustrate the detailed perfor-
mance simply shown in Table 3.

B RELATED WORK

Factuality in Med-LVLMs. The rapid advancements in Large Vision-Language Models
(LVLMs) (Liu et al., 2024a;b) are beginning to influence the field of medical image analysis. Sev-
eral Med-LVLMs (Li et al., 2023a; Moor et al., 2023; Zhang et al., 2023b; Wu et al., 2023b), have
emerged, showing remarkable performance across different medical imaging modalities. Despite
these advances, Med-LVLMs continue to present notable factual hallucination (Xia et al., 2024a;
Royer et al., 2024), generating textual outputs that contradict medical visual information. This
raises concerns about potential misdiagnoses or overlooked conditions. Recently, benchmarks have
been developed to assess the accuracy of Med-LVLMs in tasks such as visual question answering
(VQA) and report generation (Xia et al., 2024a; Royer et al., 2024). However, research aimed at
enhancing the factual accuracy of Med-LVLMs remains relatively unexplored.

Retrieval Augmented Generation in Med-LVLMs. Retrieval-Augmented Generation (RAG) has
proven to be a powerful technique for enhancing factual accuracy in language modeling (Gao et al.,
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Table 11: Model performance (%) of different Med-LVLMs based on LLaVA-Med-1.5 on medical
VQA task.

Models Radiology Ophthalmology Pathology
IU-Xray MIMIC-CXR Harvard-FairVLMed Quilt-1M PMC-OA (Pathology)

LLaVA-Med-1.5 75.47 75.79 63.03 62.80 59.28
MMed-RAG 89.54 83.57 87.94 72.95 64.54

Med-Flamingo 26.74 61.27 42.06 27.11 32.62
MedVInT 73.34 66.06 35.92 26.81 27.77
RadFM 26.67 69.30 52.47 27.02 25.12
miniGPT-Med 54.87 53.92 66.73 26.82 27.03

2023; Wu et al., 2023c; Chen et al., 2024c; Qu et al., 2024; Sun et al., 2024a). In the biomedical
domain, RAG leverages external knowledge to guide the generation of Med-LVLMs, offering clear
advantages in tasks such as medical VQA and report generation (Yuan et al., 2023; Kumar & Mart-
tinen, 2024; Tao et al., 2024; He et al., 2024; Sun et al., 2024b). However, these works mainly focus
on enhancing the relevance of the retrieved contexts without considering the model’s understanding
of retrieved knowledge. Recently, RULE (Xia et al., 2024b) is proposed to use preference fine-tuning
to reduce the model’s over-reliance on retrieved contexts. However, it still overlooks misalignment
issues caused by RAG, as well as the generalizability of the retriever given the diverse domains of
input images. In response, we propose MMed-RAG to mitigate these risks, enhancing the factuality
of Med-LVLMs by addressing these overlooked factors. This can lead to a better cross-modality
and overall alignment to enhance the understanding of retrieved knowledge and visual information,
ensuring more consistent and reliable performance across tasks.

C THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the model obtained from equation 4 and examine
how the image input and retrieved context influences the model. Recall that xv, y, xt, xr denotes
input medical image, groundtruth answer, question, and retrieved information, respectively.

C.1 THE IMPROVEMENT ON CROSS-MODALITY ALIGNMENT

We first consider the loss for cross-modality alignment,

Lcm = −E(x,yw,o,yl,o)∼Dcm

[
log σ

(
α log

πθ(yw,o|x)
πo(yw,o|x) − α log

πθ(yl,o|x)
πo(yl,o|x)

)]
. (5)

where (xw, yw,o) ∼ qw(xw, yw,o|xt, xr) and (xl, yl,o) ∼ ql(xl, yl,o|xt, xr) represent distributions
of the preferred responses and dispreferred responses on Dcm, respectively. Let x denote (xv, xr, xt)

Definition C.1 Define the weight of xv with respect to log πθ(y|x) as

wt(xv, πθ) := Ey∼πθ(·|x)

[
∂

∂xv
log πθ(y|x)

]2

(6)

Definition C.1 describes how log πθ(y|x) changes with respect to xv , and the weight is always non-
dispreferred. We demonstrate that this is a reasonable definition through Lemma C.1.

Lemma C.1 For linear model y = θ1xv + θ2xt + ϵ such that ϵ ∼ N(0, 1), wt(xv, πθ) = θ21

Assumption C.1 Let h(x, y), abbreviate as h, be

h :=

[∑
y

πo(y|x)
(
qw(y|x)
ql(y|x)

) 1
α

]−1 (
qw(y|x)
ql(y|x)

) 1
α

(7)

Assume that wt(xv, πo) < c2, where

c =

√∥∥∥∥√πo(y|x) ·
∂

∂xv
h

∥∥∥∥2

2

+

∫ (
∂

∂xv
h

)2
πo(y|x)

h
dy −

∥∥∥∥√πo(y|x) ·
∂

∂xv
h

∥∥∥∥
2

(8)
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Assumption C.1 requires that xv has a small weight in log πo(y|x). A model πo(y|x) independent
of xv could satisfy Assumption C.1. In this case, the reference model generates answers without
using information from the image.

Theorem C.1 Suppose that Assumption C.1 holds, cross-modality loss increase the weight of xv .
wt(xv, πθ) > wt(xv, πo) (9)

Theorem C.1 indicates that when the weight of xv is too small in the initial model πo(y|x), the
cross-modality loss function adjusts the model to place greater emphasis on images, informed by
the retrieved data. Intuitively, for any sample (x, y), generating unrelated images causes the policy
to rely less on images. By using samples from this distribution as negative samples, the new model
diverges from the initial model, increasing its reliance on images.

C.2 THE IMPROVEMENT ON OVERALL ALIGNMENT

In this section, we analyze the improvement on overall alignment. Let q1w(xv, yw,o|xt, xr) and
q1l (xv, yl,o|xt) represent distributions of the preferred responses and dispreferred responses on
D1

oa, respectively; q2w(xv, yw,o|xt) and q2l (xv, yl,o|xt, xr) represent distributions of the preferred
responses and dispreferred responses on D2

oa, respectively. Overall loss is defined by

Loa = −E(x,yw,o,yl,o)∼Doa

[
log σ

(
α log

πθ(yw,o|x)
πo(yw,o|x) − α log

πθ(yl,o|x)
πo(yl,o|x)

)]
. (10)

Consider π as the generative distribution underlying M, construction of D1
oa and D2

oa indicate that
there is a significant gap between π(y|xv, xt, xr) and π(y|xv, xt, x̃r) for xr generates true answer
while x̃r generate a false one.

Assumption C.2 Assume that π(y|xx, xr, xt) : x → y is L-lipschitz continuous on xr for all
(xv, xt, y) such that |π(y|xv, xt, xr)− π(y|xv, xt, x̃r)| ≤ L · dx(xr, x̃r), where dx is any distance
metric on the text space.

Based on Assumption C.2, x̃r can be viewed as being far from the meaningful retrieved information
xr, resulting in different weight in the model. Then, we claim in the following theorem that the
overall loss in equation 10 can effectively leverage retrieved knowledge while training.

Assumption C.3 Let h1(xv, xt, xr, y), abbreviate as h1, be

h1 :=

[∑
y

πo(y|x)
(
q1w(y|xv, xt, xr) + q2w(y|xv, xt)

q1l (y|xv, xt) + q2l (y|xv, xt, xr)

) 1
α

]−1 (
q1w(y|xv, xt, xr) + q2w(y|xv, xt)

q1l (y|xv, xt) + q2l (y|xv, xt, xr)

) 1
α

(11)
Assume that wt(xr, πo) < c21 and wt(x̃r, πo) > c22, where

c1 =

√∥∥∥∥√πo ·
∂h1

∂xr

∥∥∥∥2

2

+

∫ (
∂h1

∂xr

)2
πo

h1
dy −

∥∥∥∥√πo ·
∂h1

∂xr

∥∥∥∥
2

c2 =

√∥∥∥∥√πo ·
∂h1

∂x̃r

∥∥∥∥2

2

+

∫ (
∂h1

∂x̃r

)2
πo

h1
+

(
∂πo

∂x̃r

)2
h1

πo
dy +

∥∥∥∥√πo ·
∂h1

∂x̃r

∥∥∥∥
2

(12)

Theorem C.2 Suppose that Assumption C.3 holds, then overall loss 10 increase the weight of xr

and decrease the weight of x̃r.
wt(xr, πθ) > wt(xr, πo), wt(x̃r, πθ) < wt(x̃r, πo) (13)

Theorem C.2 suggests that the model tend to improve the overall alignment. When x̃r generates a
false answer, the training procedure tends to reduce the reliance on x̃r, resulting in a decrease in the
weight assigned to x̃r. Conversely, if xr is helpful for generating the true answer, πθ(y|x) tend to
enhance its use of xr.

D PROOFS FOR THEORETICAL RESULTS IN SECTION C

Here we provide proofs for the results in Section C.
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D.1 NOTATIONS

Let xv, y, xt, xr be input medical image, ground-truth answer, question, and retrieved information,
respectively. Denote (xw, yw,o) ∼ qp(xw, yw,o|xt, xr) and (xl, yl,o) ∼ ql(xl, yl,o|xt, xr) as distri-
butions of the preferred responses and dispreferred responses. Let x denote (xv, xr, xt). We aim to
a fine-tune a generative model πθ(y|x, xt) through DPO loss (Rafailov et al., 2023):

argmin
πθ

E(xw,xl,yw,o,yl,o)∼DU

(
α log

πθ(yw,o|x)
πo(yw,o|x)

− α log
πθ(yl,o|x)
πo(yl,o|x)

)
. (14)

where U(t) = log(1 + exp(−t)). Define the weight of xv with respect to log πθ(y|x) as

wt(xv, πθ) := Ey∼πθ(·|x)

[
∂

∂xv
log πθ(y|x)

]2
(15)

D.2 ASSUMPTIONS

Assumption D.1 (Large parameter space) Assume that π(xv, y|xt, xr) lies in the optimization

space {πθ, θ ∈ Θ} such that π(xv, y|xt, xr) ∝ πo(xv, y|xt, xr)
(

qw(xv,y|xt,xr)
ql(xv,y|xt,xr)

) 1
α

Assumption D.1 requires that the parameter space sufficiently large to ensure that πθ can achieve its
global optimum, allowing us to represent the optimizer with a closed form.

Assumption D.2 Let h(x, y), abbreviate as h, be

h :=

[∑
y

πo(y|x)
(
qw(y|x)
ql(y|x)

) 1
α

]−1 (
qw(y|x)
ql(y|x)

) 1
α

(16)

Assume that wt(xv, πo) < c2, where

c =

√∥∥∥∥√πo(y|x) ·
∂

∂xv
h

∥∥∥∥2

2

+

∫ (
∂

∂xv
h

)2
πo(y|x)

h
dy −

∥∥∥∥√πo(y|x) ·
∂

∂xv
h

∥∥∥∥
2

(17)

Assumption D.3 Let h1(xv, xt, xr, y), abbreviate as h1, be

h1 :=

[∑
y

πo(y|x)
(
q1w(y|xv, xt, xr) + q2w(y|xv, xt)

q1l (y|xv, xt) + q2l (y|xv, xt, xr)

) 1
α

]−1 (
q1w(y|xv, xt, xr) + q2w(y|xv, xt)

q1l (y|xv, xt) + q2l (y|xv, xt, xr)

) 1
α

(18)
Assume that wt(xr, πo) < c21 and wt(x̃r, πo) > c22, where

c1 =

√∥∥∥∥√πo ·
∂h1

∂xr

∥∥∥∥2

2

+

∫ (
∂h1

∂xr

)2
πo

h1
dy −

∥∥∥∥√πo ·
∂h1

∂xr

∥∥∥∥
2

c2 =

√∥∥∥∥√πo ·
∂h1

∂x̃r

∥∥∥∥2

2

+

∫ (
∂h1

∂x̃r

)2
πo

h1
+

(
∂πo

∂x̃r

)2
h1

πo
dy +

∥∥∥∥√πo ·
∂h1

∂x̃r

∥∥∥∥
2

(19)

D.3 PROOFS

Lemma D.1 Suppose that Assumption D.1 hold, optimizing equation 14 gives

πθ(y|x) ∝ πo(y|x)
(
qw(y|x)
ql(y|x)

) 1
α

(20)

Lemma D.1 indicates that the model tends to increase πo(y|x) if qw(y|x) > ql(y|x), which is more
likely to occur when (xv, y) represents a preferred sample given xt and xr. Below, we provide an
application of Lemma D.1 using a linear regression example. Lemma D.1 is proved with Lemma
D.2 and Lemma D.3.
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Lemma D.2 (Lemma C.1 in Chen et al. (2024d)) For a, b > 0, the following inequality holds

a · U(t) + b · U(−t) ≥ a log(1 + b/a) + b log(1 + a/b)

and equality holds if and only if t = log(a/b)

Lemma D.3 Denote{
p1(xw, yw,o, xl, yl,o|xt, xr) = qw(xw, yw,o|xt, xr) · ql(xl, yl,o|xt, xr)
p2(xw, yw,o, xl, yl,o|xt, xr) = ql(xw, yw,o|xt, xr) · qw(xl, yl,o|xt, xr)

and abbreviated as p1 and p2 for notational convenience. Then,

2ED [U (f(xw, yw,o, xt, xr)− f(xl, yl,o, xt, xr))]

≥2 log 2−DKL

(
p1
∥∥p1 + p2

2

)
−DKL

(
p2
∥∥p1 + p2

2

)
(21)

Equality holds if and only if

f(x, y) = g(x) + log
qw(xv, y|xt, xr)

ql(xv, y|xt, xr)
(22)

where g(x) is any function that is possibly dependent on xv , xt and xr.

Proof D.1

2ED [U (f(xw, yw,o, xt, xr)− f(xl, yl,o, xt, xr))]

=

∫
q(xt, xr) · p1 · U (f(xw, yw,o, xt, xr)− f(xl, yl,o, xt, xr)) dxdy

+

∫
q(xt, xr) · p2 · U (f(xl, yl,o, xt, xr)− f(xw, yw,o, xt, xr)) dxdy

≥
∫

q(xt, xr)

[
p1 · log

(
1 +

p2
p1

)
+ p2 · log

(
1 +

p1
p2

)]
dxdy

=2 log 2 +

∫
q(xt, xr)

[
p1 · log

(
p1 + p2
2p1

)
+ p2 · log

(
p1 + p2
2p2

)]
dxdy

=2 log 2−KL

(
p1
∥∥p1 + p2

2

)
−KL

(
p2
∥∥p1 + p2

2

)

(23)

where the first inequality follows from Lemma D.2. For equivalence,

f(x, yw,o, xt, xr)− f(xl, yl,o, xt, xr) = log
qw(xw, yw,o|xt, xr) · ql(xl, yl,o|xt, xr)

ql(xw, yw,o|xt, xr) · qw(xl, yl,o|xt, xr)
(24)

Thus, for any xw, yw,o, xl, yl,o, xt, xr,

f(xw, yw,o, xt, xr)− log
qw(xw, yw,o|xt, xr)

ql(xw, yw,o|xt, xr)
= f(xl, yl,o, xt, xr)− log

qw(xl, yl,o|xt, xr)

ql(xl, yl,o|xt, xr)
(25)

Therefore, equation 25 holds if and only if there exists some g(xv, xt, xr) such that

f(xv, xt, xr, y) = g(xt, xr) + log
qw(xv, y|xt, xr)

ql(xv, y|xt, xr)
(26)

Lemma D.3 provides a closed-form solution to equation 14 if the parameter space is sufficiently
large. This lemma is crucial for the proof Lemma D.1, which follows below

Proof D.2 According to the Assumption D.1, we have

π(xv, y|xt, xr) = ĝ(xt, xr)πo(xv, y|xt, xr)

(
qw(xv, y|xt, xr)

ql(xv, y|xt, xr)

) 1
α

(27)
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After reparameterization,

α log

(
π(xv, y|xt, xr)

πo(xv, y|xt, xr)

)
= α log[ĝ(xt, xr)] + log

qw(xv, y|xt, xr)

ql(xv, y|xt, xr)
(28)

which is the global minimum of

argmin
f

ED [U (f(xw, yw,o, xt, xr)− f(xl, yl,o, xt, xr))] (29)

by Lemma D.3. Since π(xv, y|xt, xr) ∈ {πθ, θ ∈ Θ} lies in the optimization space, we have

min
f

EDU (f(xw, yw,o, xt, xr)− f(xl, yl,o, xt, xr))

=min
πθ

EDU

(
α log

πθ(yw,o|xw, xt, xr)

πo(yw,o|xw, xt, xr)
− α log

πθ(yl,o|xl, xt, xr)

πo(yl,o|xl, xt, xr)

) (30)

and πθ(xv, y|xt, xr) is the optimizer of equation 30, which gives

α log

(
πθ(xv, y|xt, xr)

πo(xv, y|xt, xr)

)
= g(xt, xr) + log

qw(xv, y|xt, xr)

ql(xv, y|xt, xr)

=⇒πθ(xv, y|xt, xr) = πo(xv, y|xt, xr)

(
qw(xv, y|xt, xr)

ql(xv, y|xt, xr)

) 1
α

exp

(
1

α
g(xt, xr)

) (31)

Then

πθ(y|x) =
πθ(xv, y|xt, xr)

πθ(x|xt, xr)
=

πo(xv, y|xt, xr)
(

qw(xv,y|xt,xr)
ql(xv,y|xt,xr)

) 1
α

exp
(
1
α (g(xt, xr)

)
∑

y πo(xv, y|xt, xr)
(

qw(xv,y|xt,xr)
ql(xv,y|xt,xr)

) 1
α

exp
(
1
α (g(xt, xr)

)
=

πo(y|x)
(

qw(xv,y|xt,xr)
ql(xv,y|xt,xr)

) 1
α

∑
y πo(y|x)

(
qw(xv,y|xt,xr)
ql(xv,y|xt,xr)

) 1
α

=
πo(y|x)

(
qw(y|xv,xt,xr)
ql(y|xv,xt,xr)

) 1
α

∑
y πo(y|x)

(
qw(y|xv,xt,xr)
ql(y|xv,xt,xr)

) 1
α

(32)

Corollary D.1 Suppose that preferred responses (xw, yw) and dispreferred responses (xl, yl) sat-
isfy yw = βxw + ϵ1 and yl = β̃xl + ϵ2 respectively. DPO for y = θxv + ϵ3 is based on reference
model y = θoxv + ϵ4, where ϵi’s are independent and follow standard normal distribution. Then,

θ = θo +
1

α
(β − β̃) (33)

Corollary D.1 is a direct application of Lemma D.1, indicating that the model updates coefficient θo
towards the direction of β for preferred responses and away from β̃ for dispreferred responses.

Proof D.3 Let ϕ(·) denote the probability density function of standard normal, by Lemma D.1,

ϕ(y − θx) ∝ ϕ(y − θox)

(
ϕ(y − βx)

ϕ(y − β̃x)

) 1
α

=⇒ exp

(
1

2
y2 − θ1xy

)
∝ exp

(
1

2
y2 − θoxy

)
· exp

(
− 1

α
(β − β̃)xy

)
=⇒ exp (θ1xy) ∝ exp (θoxy) · exp

(
1

α
(β − β̃)xy

)
=⇒θ = θo +

1

α
(β − β̃)

(34)

Lemma D.4 For linear model y = θ1xv + θ2xt + ϵ such that ϵ ∼ N(0, 1), wt(xv, πθ) = θ21
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Proof D.4 Let ϕ(·) denote the probability density function of standard normal,

wt(xv, πθ) =

∫ (
−1

2

∂

∂xv
(y − θ1xv − θ2xt)

2

)2

ϕ(y − θ1xv − θ2xt)dy

= θ21

∫
(y − θ1xv − θ2xt)

2
ϕ(y − θ1xv − θ2xt)dy

= θ21

∫
(θ1xv + θ2xt − y)

dϕ(y − θ1xv − θ2xt)

dy
dy

= θ21

∫
ϕ(y − θ1xv − θ2xt)dy = θ21

(35)

Theorem D.2 Suppose that Assumption D.2 holds, then cross-modality increase the weight of xv .

wt(xv, πθ) > wt(xv, πo) (36)

Proof D.5 By Lemma D.1, we have

πθ(y|x) = πo(y|x) · h(x, y),
∫

πo(y|x) · h(x, y)dy = 1 (37)

Abbreviate h(x, y) and πo(y|xv, xt) as h and πo respectively, we have

wt(xv, πθ)− wt(xv, πo) ≥
∫ ( ∂

∂xv
πo

πo
+

∂
∂xv

h

h

)2

πoh dy − wt(xv, πo)

≥
∫ [

∂

∂xv
h

]2
πo

h
dy − 2

√
wt(xv, πo) ·

∥∥∥∥√πo ·
∂

∂xv
h

∥∥∥∥
2

− wt(xv, πo)

(38)
the second inequality follows from Cauchy–Schwarz inequality∫

∂

∂xv
πo ·

∂

∂xv
h dy =

∫
∂

∂xv
πo ·

√
πo√
πo

· ∂

∂xv
h dy ≤

√
wt(xv, πo) ·

∥∥∥∥√πo ·
∂

∂xv
h

∥∥∥∥
2

(39)

Denote c as

c :=

√∥∥∥∥√πo ·
∂

∂xv
h

∥∥∥∥2
2

+

∫ (
∂

∂xv
h

)2
πo

h
dy −

∥∥∥∥√πo ·
∂

∂xv
h

∥∥∥∥
2

(40)

the last term in equation 38 is equivalent to(
c−

√
wt(xv, πo)

)
·
(√

wt(xv, πo) + c+ 2

∥∥∥∥√πo ·
∂

∂xv
h

∥∥∥∥
2

)
(41)

Thus, wt(xv, πθ) > wt(xv, πo) if
√

wt(xv, πo) < c.

Theorem D.3 Suppose that Assumption D.3 holds, the overall loss increase the weight of xr and
decrease the weight of x̃r.

wt(xr, πθ) > wt(xr, πo), wt(x̃r, πθ) < wt(x̃r, πo) (42)

Proof D.6 The distribution of preferred responses can be considered as a mixture distribution:
q1w(xv, yw,o|xt, xr) + q2w(xv, yw,o|xt). Similarly, for dispreferred responses, the distribution is rep-
resented as q1l (xv, yl,o|xt) + q2l (xv, yl,o|xt, xr). By Lemma D.1,

πθ(y|x) = πo(y|x) · h1(x, y),

∫
πo(y|x) · h1(x, y)dy = 1 (43)

Abbreviate h1(x, y) as h1. Follow the same procedure in the proof of Theorem D.2,

wt(xr, πθ)− wt(xr, πo) ≥
∫ [

∂

∂xr
h1

]2
πo

h1
dy − 2

√
wt(xr, πo) ·

∥∥∥∥√πo ·
∂

∂xr
h1

∥∥∥∥
2

− wt(xr, πo)

=
(
c1 −

√
wt(xr, πo)

)
·
(√

wt(xr, πo) + c1 + 2

∥∥∥∥√πo ·
∂

∂xr
h1

∥∥∥∥
2

)
(44)
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where we apply Cauchy–Schwarz inequality in equation 44.

c1 =

√∥∥∥∥√πo(y|x) ·
∂

∂xr
h1

∥∥∥∥2
2

+

∫ (
∂

∂xr
h1

)2
πo(y|x)

h1
dy −

∥∥∥∥√πo(y|x) ·
∂

∂xr
h1

∥∥∥∥
2

(45)

Thus, wt(xr, πθ) > wt(xr, πo) if
√

wt(xr, πo) < c1. Again, by Cauchy–Schwarz inequality

wt(x̃r, πθ)− wt(x̃r, πo)

≤
∫ (

∂h1

∂x̃r

)2
πo

h1
+

(
∂πo

∂x̃r

)2
h1

πo
dy + 2

√
wt(x̃r, πo) ·

∥∥∥∥√πo ·
∂h1

∂x̃r

∥∥∥∥
2

− wt(x̃r, πo)

=−
(√

wt(x̃r, πo)− c2

)
·
(√

wt(x̃r, πo)− c2 + 2

∥∥∥∥√πo ·
∂

∂x̃r
h1

∥∥∥∥
2

) (46)

where

c2 =

√∥∥∥∥√πo ·
∂

∂x̃r
h1

∥∥∥∥2

2

+

∫ (
∂

∂x̃r
h1

)2
πo

h1
+

(
∂

∂x̃r
πo

)2
h1

πo
dy +

∥∥∥∥√πo ·
∂

∂x̃r
h1

∥∥∥∥
2

(47)

Thus, wt(xr, πθ) < wt(xr, πo) if
√

wt(xr, πo) > c2.
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