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Abstract

Despite dropout’s ubiquity in machine learning, its effectiveness as a form of data augmentation
remains under-explored. We address two key questions: (i) When is dropout effective as an augmenta-
tion strategy? (ii) Is dropout uniquely effective under these conditions? To explore these questions, we
propose Deep Augmentation, a network- and modality-agnostic method that applies dropout or PCA
transformations to targeted layers in neural networks. Through extensive experiments on contrastive
learning tasks in NLP, computer vision, and graph learning, we find that uniformly applying dropout
across layers does not consistently improve performance. Instead, dropout proves most beneficial
in deeper layers and can be matched by alternative augmentations (e.g., PCA). We also show that
a stop-gradient operation is critical for ensuring dropout functions effectively as an augmentation,
and that performance trends invert when moving from contrastive tasks to supervised tasks. Our
analysis suggests that Deep Augmentation helps mitigate inter-layer co-adaptation—a notable issue
in self-supervised learning due to the absence of labeled data. Drawing on these insights, we outline
a procedure for selecting the optimal augmentation layer and demonstrate that Deep Augmentation
can outperform traditional input-level augmentations. This simple yet powerful approach can be
seamlessly integrated into a wide range of architectures and modalities, yielding notable gains in both
performance and generalization.

1 Introduction
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Figure 1: Left: Traditional augmentation. Right:
Deep Augmentation at layer l.

Self-supervised learning has emerged as a powerful paradigm
in machine learning, enabling the creation of representations
and pre-trained models without reliance on human-annotated
labels. It has propelled breakthroughs in computer vision (Chen
et al., 2020), natural language processing (Devlin et al., 2019),
graph learning (Zhu et al., 2021), speech processing (Oord
et al., 2016), and genomics (Zaheer et al., 2020). Within this
landscape, contrastive learning (Oord et al., 2018; Chen et al.,
2020) has gained particular prominence by leveraging augmen-
tations that generate complementary pairs of samples, thereby
preserving semantic structure (Shorten & Khoshgoftaar, 2019)
and effectively expanding the training set.

Despite recent progress, effective augmentation strategies
in contrastive learning often hinge on domain-specific
knowledge—for instance, cropping and blurring in im-
ages (Chen et al., 2020), and token masking in NLP (Gao et al.,
2021). Designing such augmentations can be time-consuming and may not generalize well across diverse modalities.
This motivates the exploration of more universally applicable techniques.
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A simple yet under-explored direction is to treat dropout (Labach et al., 2019; Salehin & Kang, 2023) not solely as
a regularization tool, but also as a form of data augmentation (Srivastava et al., 2014). Dropout randomly zeros out
activations, and its potential as an augmentation has been noted in self-supervised settings (Gao et al., 2021); however,
the precise conditions under which it proves most effective remain unclear.

To address this gap, we introduce Deep Augmentation (Figure 1), a network- and modality-agnostic technique for
augmenting high-dimensional activations in neural networks. Deep Augmentation applies dropout (Srivastava et al.,
2014) or principal component analysis (PCA) (F.R.S., 1901) to specific layers, optionally combined with a stop-gradient
operation. This design enables us to pose and investigate two central questions:

1. When is dropout effective as an augmentation strategy?
2. Is dropout uniquely effective under these conditions?

Through extensive experiments, we find that applying dropout uniformly across all layers does not consistently improve
contrastive learning performance; instead, targeting deeper layers yields substantial gains. Moreover, we show that
a stop-gradient operation is sometimes critical for harnessing the full potential of dropout-based augmentation, as it
prevents detrimental gradient flow through the augmented representations. Notably, a similar effect can be achieved
using PCA-based augmentations, suggesting that dropout is not uniquely suited to these conditions.

Interestingly, the performance trends reverse under supervised learning, indicating that Deep Augmentation mitigates
inter-layer co-adaptation—a challenge that arises in the absence of labeled data. Our approach is straightforward to
integrate into standard architectures such as ResNets (He et al., 2016), Transformers (Vaswani et al., 2017), and Graph
Neural Networks (Kipf & Welling, 2017). It does not depend on manually designed augmentations or labeled datasets,
making it an appealing option for a wide range of tasks.

Contributions. In summary, our main contributions are as follows:

• We show that dropout, when selectively applied to deeper layers (with or without a stop-gradient), can substantially
improve performance in contrastive settings, while offering little benefit (or even proving detrimental) in supervised
tasks.

• We demonstrate that dropout is not uniquely effective: a simple PCA-based augmentation can yield comparable gains.
• We highlight the significance of a stop-gradient operation for stabilizing and enhancing the effects of layer-targeted

dropout, ensuring consistent performance boosts.
• We propose a practical procedure for selecting which layer to augment, showing that this choice is key to mitigating

inter-layer co-adaptation.
• We thoroughly validate our approach on Transformers, ResNets, and Graph Neural Networks across multiple data

modalities, underscoring the broad applicability of Deep Augmentation.

2 Related Work

Self-Supervised Learning. Self-supervised learning (Chen et al., 2020; Grill et al., 2020; Caron et al., 2020; Chen &
He, 2021; Rani et al., 2023) leverages abundant unlabeled data to train transferable representations. By replacing human-
annotated labels with automatically generated pseudo-labels, it enables training larger models on extensive datasets
while mitigating overfitting. This paradigm has become increasingly popular for learning high-quality representations
across diverse downstream tasks.

Data Augmentation. Data augmentation traditionally alleviates the scarcity of labeled data in supervised tasks, expand-
ing the training set with semantically faithful transformations (Lecun et al., 1998). While contrastive and supervised
learning often employ similar augmentations (Chen et al., 2020), label-dependent methods such as Mixup (Zhang et al.,
2018a) are unique to supervised settings. In most self-supervised pipelines, augmentations focus on the input space,
which, although intuitive, may not exploit the most semantically rich features available in deeper layers.

Hierarchical and Higher-Layer Features. Neural networks inherently learn hierarchical representations, with early
layers capturing low-level patterns (e.g., edges) and deeper layers capturing higher-level semantics (e.g., textures,
objects) (Bilal et al., 2018; Brüel Gabrielsson & Carlsson, 2019). Distances between higher-layer features can align
with human judgments of semantic similarity (Zhang et al., 2018b; Ulyanov et al., 2018), underscoring their practical
importance. Recent work has emphasized that capturing semantic granularity in deeper layers can notably enhance
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downstream performance (Zhou et al., 2022; Hinton, 2023). Consequently, augmentations at these deeper layers can
promote invariance to more abstract transformations than those found at the input level.

Higher-Layer Augmentation. Several approaches directly modify hidden or latent spaces. Manifold Mixup (Verma
et al., 2018) applies mixup to hidden-layer outputs, and other work interpolates features for image classification (DeVries
& Taylor, 2017). MODALS (Cheung & Yeung, 2021) unifies these ideas within a reinforcement-learning framework.
Together, these studies highlight the potential of deeper-layer augmentation as a complement—or even alternative—to
input-level transformations.

Dropout as Augmentation. Dropout (Labach et al., 2019; Salehin & Kang, 2023) is typically viewed as a regularizer
that randomly zeroes out activations (Bouthillier et al., 2015), yet it can also serve as a general-purpose data aug-
mentation (Srivastava et al., 2014). Recent work has explored this perspective in self-supervised contexts (Gao et al.,
2021), but often by uniformly applying dropout across all layers. In contrast, we show that selectively targeting deeper
layers can yield significant gains in contrastive learning, thereby challenging the one-size-fits-all assumption underlying
uniform dropout usage. Our findings extend prior efforts that examine dropout’s role in specialized settings (Wu & Gu,
2015), demonstrating its nuanced effects.

Stop-Gradient & Information Collapse. Stop-gradient mechanisms have been explored in Siamese networks (Chen
& He, 2021), where they help avoid trivial collapses (Jing et al., 2022) and lessen the reliance on large batches or
negative samples. In SimCLR (Chen et al., 2020), applying stop-gradient to one side of a positive pair slightly degraded
performance (Chen & He, 2021), indicating that the effect may be context-specific. We broaden this investigation by
introducing stop-gradient at different layers in conjunction with dropout- and PCA-based augmentations across diverse
domains (including supervised tasks). From an information-theoretic perspective (Tian et al., 2020; Shwartz-Ziv &
LeCun, 2023; Tishby & Zaslavsky, 2015), our layer-targeted augmentation appears to reduce unwanted uniformity or
co-adaptation in latent features—an effect that can markedly improve contrastive learning performance while sometimes
inhibiting performance on supervised tasks.

Analysis of Representation Learning. Prior theoretical works provide benchmarks for evaluating representation
quality. For instance, Wang & Isola (2020) propose two criteria for contrastive-learning representations: alignment of
positive pairs and uniformity on the hypersphere. Kornblith et al. (2019) introduce a similarity index (equivalent to
centered kernel alignment, CKA) for comparing representational similarity across neural networks. We draw on these
and similar methods to analyze how our Deep Augmentation strategy shapes the internal representations.

3 Method

3.1 Preliminaries

Contrastive learning seeks to learn representations by drawing semantically similar pairs closer while pushing dissimilar
pairs apart. Given a dataset X = {x1, . . . , xN }, it forms pairs D = {(x1

i , x2
i )}m

i=1, where x1
i and x2

i are distinct views
of the same underlying sample xi ∈ X , yet semantically similar. Constructing such pairs is pivotal, as it defines the
invariances captured by the learned representations. Commonly, pairs are generated by applying random transformations
(e.g., cropping, flipping, distortion) to the same sample.

Formally, let Z ∼ µ be a random variable, where µ is a probability distribution over some space Ω. (For instance,
Ω could be discrete—e.g., cropping size—or continuous—e.g., blurring variance.) Let A : Rd × Ω → Rd be an
augmentation function, and let B ⊂ X be a randomly drawn batch. For each sample xi ∈ B, draw z1

i , z2
i ∼ µ. The

features of the augmented pairs are defined as

hj
i := fθ(A(xi, zj

i )) for j ∈ {1, 2},

where fθ is a neural network with learnable parameters θ. The InfoNCE loss (Chen et al., 2020) for batch B is then:

l(θ; B) = 1
|B|

|B|∑
i=1

log ecosine-sim(h1
i ,h2

i )/τ∑|B|
j=1 ecosine-sim(h1

i
,h2

j
)/τ

, (1)

where τ is a temperature parameter. This loss encourages fθ to be invariant to the augmentation A and promotes a
uniform distribution of normalized features (Wang & Isola, 2020).
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3.2 Deep Augmentation

A neural network fθ processes data by successively applying L layers. For −1 ≤ a ≤ b < L, let fa,b
θ denote the

operation from layer a to layer b, where a = −1 represents the input itself, and fa,a
θ is the identity. In particular,

fθ = f l+1,L−1
θ ◦ f−1,l

θ for any −1 ≤ l < L. For example, applying an input augmentation corresponds to:

fθ(A(xi, zj
i )) = f0,L−1

θ

(
A(f−1,−1

θ (xi), zj
i )

)
.

In this work, we investigate:
gl

θ(xi, zj
i ) = f l+1,L−1

θ ◦ A
(
f−1,l

θ (xi), zj
i

)
, (2)

where −1 ≤ l < L, as illustrated in Figure 1. Throughout, our primary augmentation A is dropout, but we also explore
an alternative PCA-inspired augmentation (Section 5). For dropout, zj

i corresponds to a random mask that zeros out a
specific percentage of activations in xi, meaning that zj

i is the source of stochasticity in the augmentation. Ideally, A
should satisfy three properties:

1. Layer-agnostic—the same A applies at any layer l without modification.
2. Network-agnostic—A does not depend on a specific architecture for fθ.
3. Modality-agnostic—A does not depend on the input domain.

Both dropout and our PCA-based approach satisfy these criteria.

We aim to identify which value(s) of l yield the best representation gl
θ, as measured by downstream performance. When

combining Deep Augmentation with standard input-level transformations, we simply compose the two augmentations
(i.e., first apply the input-space augmentation, then apply the in-network augmentation).

PCA Augmentation. To test whether dropout is uniquely effective in Deep Augmentation, we compare it with a
principal-component removal variant. Given a mini-batch Ib = {1, . . . , K}, define the mean µ = 1

K

∑
k∈Ib

xk, the
centered samples x̃k = xk − µ, and the stacked matrix X̃ = [x̃1, . . . , x̃K ] ∈ Rd×K , and compute the singular-value
decomposition X̃ = UΣV⊤. Denote by Vp ∈ Rd×p the first p right singular vectors (the top p PCs). Each sample is
augmented as

Ap(xi) =
(
I − VpV⊤

p

)︸ ︷︷ ︸
project away from top p PCs

(xi − µ) + µ.

Thus we subtract the components of xi that lie in the subspace spanned by the batch’s top p principal directions, using
the batch itself (not an external noise vector) to generate the perturbation. We refer to this augmentation as PCA in
subsequent sections.

Stop-Gradient. In equation 2, once l > −1, learnable layers exist before the augmentation. We optionally apply a
stop-gradient operation at layer l, which prevents gradients from flowing into these earlier layers (Chen & He, 2021).
This design enables us to distinguish two regimes: one where the network learns invariance only to the already applied
augmentations (when using stop-gradient), and one where it additionally learns invariance to upcoming augmentations
(when not using stop-gradient). In effect, by cutting off the gradient at the augmentation point, we prevent the upstream
layers from “learning to undo” the perturbation, thereby preserving the desired invariances.

Partial Batch Sampling. By default, we apply Deep Augmentation to a random 50% of each mini-batch. This enhances
variation in the training process and ensures that some samples remain unaugmented, maintaining alignment with
evaluation conditions. Moreover, this approach preserves learning in all layers even if some samples experience a
stop-gradient (it only applies to half of the batch). See Appendix A.5 for an ablation study.

Co-Adaptation. We define co-adaptation between layers as a scenario where two layers capture essentially the
same information. To quantify this, we measure activation similarity using the centered kernel alignment (CKA)
index (Kornblith et al., 2019). A high CKA value indicates that the two layers are effectively redundant. Since
deterministic transformations cannot create new information (Shwartz-Ziv & LeCun, 2023), strong co-adaptation
implies that minimal additional processing occurs in the deeper layer. Conversely, weaker co-adaptation suggests more
effective information filtering, which can foster better generalization.
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4 Main Results

We show that Deep Augmentation consistently and substantially improves contrastive learning performance across
vision (Table 2), natural language processing (Table 1), and graph-based learning (Table 3). These gains primarily stem
from the targeted use of dropout and stop-gradient; they need not reflect the absolute best performance achievable under
every possible Deep Augmentation hyperparameter.

Sentence Embeddings. We follow the approach of Gao et al. (2021), pre-training a BERT transformer (Devlin
et al., 2019) on 106 randomly sampled sentences from English Wikipedia. Hyperparameters are tuned on the STS-B
development set (Cer et al., 2017), and final evaluations are conducted on seven standard semantic textual similarity
(STS) tasks (Agirre et al., 2012; Cer et al., 2017; Marelli et al., 2014).

Vision. For images, we employ a ResNet (He et al., 2016) and follow the SimCLR framework (Chen et al., 2020),
testing on CIFAR10, CIFAR100, and a 100-class subset of ImageNet (Deng et al., 2009). Again, we target deeper
layers for dropout and stop-gradient, leading to measurable improvements over standard SimCLR.

Graph Contrastive Learning. In graph-based tasks, we adopt the GCL framework (Zhu et al., 2021) with a GCN
backbone (Kipf & Welling, 2017). We evaluate on COLLAB and IMBD-Multi (Yanardag & Vishwanathan, 2015),
as well as NCI1 (Wale & Karypis, 2006) and PROTEINS (Borgwardt et al., 2005). Hyperparameters are tuned on a
validation split, with results reported on a separate test set. Table 3 shows that applying Deep Augmentation in deeper
layers benefits performance across most datasets.

Compute & Memory Savings. Stop-gradient can reduce both training time and memory usage. In our setup, the
portion of the network cut off by stop-gradient no longer computes gradients, saving roughly 4× the compute time
and 3× the memory for the affected layers. Most of these savings are realized on the GPU. By selectively applying
stop-gradient to deeper layers and to only half of each batch, overall training time drops to about 62.5% of the baseline,
while memory usage is trimmed to about 66%. Tables 1, 2, and 3 provide approximate “Compute” metrics reflecting
these savings.

Table 1: Contrastive Learning on Sentence Embeddings with Transformer. Performance on STS tasks (Spearman’s
correlation, where higher is better). SimCSE versus SimCSE with Deep Augmentation, specifically layer-targeted
dropout and stop-gradient at layer 8. Compute refers to the estimated use of compute time and memory, as compared to
SimCSE.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg. Compute
SimCSE 66.71±0.505 81.13±1.279 73.13±1.818 80.82±0.593 78.47±0.644 77.54±0.906 71.49±0.904 75.61±0.924 100%
SimCSE+DeepAug 69.00±1.111 81.82±0.127 74.48±0.311 81.84±0.439 78.41±0.146 78.63±0.114 71.75±0.442 76.56±0.161 ∼79%

Table 2: Contrastive Learning in Vision with ResNets. SimCLR versus SimCLR with Deep Augmentation, specifically
layer-targeted dropout and stop-gradient at layer 4, across all datasets. Values represent classification accuracies (higher
is better). Compute refers to the estimated use of compute time and memory, as compared to SimCLR.

Model CIFAR10 CIFAR100 ImageNet100 Compute
SimCLR 90.37 61.64 79.38 100%
SimCLR+DeepAug 91.04 64.01 79.56 ∼66%

Table 3: Contrastive Learning on Graphs with GNNs. GCL (Graph Contrastive Learning) versus GCL with Deep
Augmentation, specifically layer-targeted dropout and stop-gradient at layer 6, across all datasets. Values represent
classification accuracies (higher is better) measured in f1mi (Micro-averaged F1 Score). Compute refers to the estimated
use of compute time and memory, as compared to GCL.

Model COLLAB IMDB-Multi NCI1 PROTEINS Compute
GCL 72.40±0.6 53.33±1.1 73.97±1.6 72.32±1.5 100%
GCL+DeepAug 73.80±1.3 52.89±4.2 75.83±1.0 73.21±1.5 ∼66%
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5 Ablations

Deep Augmentation introduces additional hyperparameters (e.g., the targeted layer, augmentation type, stop-gradient
usage). In this section, we present ablation studies demonstrating its consistent performance across different datasets.
We analyze the impact of (i) contrastive vs. supervised settings, (ii) layer depth, (iii) stop-gradient usage, (iv) dropout
vs. PCA augmentations, and (v) pre-trained initialization.

5.1 Sentence Embeddings

SimCSE (Gao et al., 2021) first showed that using only dropout can improve contrastive learning for sentence embeddings
(built on a pre-trained MLM model). We extend SimCSE’s setup by applying layer-specific dropout or PCA, with or
without stop-gradient, both with and without additional MLM augmentations.

Augmentation, Layer, and Stop-Gradient. Figures 2a and 2b illustrate our results using (a) dropout and (b) PCA-based
transformations on the STS-B development set. For PCA, we tested removing both the largest and sixth-largest principal
component; Figure 2b reports the largest component, which worked best. The sixth-component results appear in the
Appendix.

Overall, Deep Augmentation surpasses plain SimCSE across a range of layer depths. Adding stop-gradient further
boosts performance with dropout, though the gains are smaller for PCA.
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Figure 2: SimCSE vs. Deep Augmentation with (a) Dropout or (b) PCA, with and without stop-gradient. “Stop”:
stop-gradient. Deep Augmentation outperforms SimCSE.

Deep Augmentation and Masked Language Modeling (MLM). Figure 3 compares Deep Augmentation to MLM’s
original data augmentations in SimCSE. Although SimCSE already tunes dropout rates (0%, 1%, 5%, 10%, 15%, 20%),
our fixed 50% dropout rate at a chosen layer still yields higher results, underscoring the robustness of layer-targeted
augmentation alongside MLM—this reduces dependece on pre-trained models and development sets, by supporting
simultaneous Deep Augmentation and MLM training. Across standard STS tasks, the best Deep Augmentation setup
exceeds SimCSE’s strongest Spearman correlation (e.g., 74.32 vs. 69.31). Moreover, even in a purely MLM setting (i.e.,
no contrastive objective), Deep Augmentation significantly improves performance (Appendix, Figure 51), and there the
effect of stop-gradient is less pronounced.

Supervised Learning. To contrast Deep Augmentation’s impact in supervised vs. contrastive learning, we train on
STS-B directly as a supervised task. Figures 4a and 4b show results with dropout and PCA, respectively, with/without
stop-gradient. Contrary to our contrastive findings, Deep Augmentation reduces performance in the supervised
setting—especially in higher layers. This stark difference supports our hypothesis that deeper-layer augmentations help
most when no explicit supervision is provided, forcing the model to learn robust invariances on its own.
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Figure 3: SimCSE vs. Deep Augmentation with and without stop-gradient, both with MLM. “Stop”: stop-gradient. *:
includes hyperparameter search over dropout rates.
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Figure 4: Supervised only. Deep Augmentation with (a) Dropout (best performing across dropout rates .5, .25, .125)
and (b) PCA, with and witout stop-gradient, on STS-B.

5.2 Vision

For vision, our primary experiments use CIFAR-100 (Appendix reports CIFAR-10). ImageNet100 results follow the
same layer-targeted dropout and stop-gradient configuration determined optimal for CIFAR.

Architecture. We adopt ResNet18 (Appendix A.1, Table 4). Compared to Transformers and GNNs, ResNet has less
regularity across depths: ResNet contains convolutional layers upfront, followed by a fully connected layer, with
average pooling interspersed. This, in addition to the varying dimensionality across layers, makes vision-specific
hyperparameters more challenging.

Dropout is Not Sufficient Alone. Unlike for sentence embeddings, using only dropout as the augmentation did not yield
competitive results in vision. Consequently, we complement deep augmentations with standard image augmentations.
Future work could investigate adapting pre-trained vision models to new domains via dropout alone (similar to SimCSE
in NLP).

Data Augmentation and Targeted Dropout. Figure 14, in Appendix, show that uniform dropout across all layers
degrades contrastive learning, but layer-specific dropout can mitigate these losses. Notably, 50% dropout uniformly
applied is detrimental, whereas targeting the same 50% rate to certain layers has much less impact on performance.

Augmentation, Layer, and Stop-Gradient. Now we apply Deep Augmentation with dropout (Figure 5a), with
and without stop-gradient. Deep Augmentation with dropout and stop-gradient demonstrate significant performance
improvements, particularly for layers 4 and 6; however, not using the stop-gradient did not achieve performance
comparable to using stop-gradient. A small tuning of dropout rate yielded the results in Table 2 (Appendix A). We also
evaluate Deep Augmentation with PCA augmentation, removing the largest and the sixth largest principal component.
Removing the sixth largest yields superior performance (results with and without stop-gradient in Figure 5b). For the
largest, see the Appendix. Similar to dropout, stop-gradient consistently enhances performance, especially in higher
layers.

7



Published in Transactions on Machine Learning Research (05/2025)

−1 0 1 2 3 4 5 657

58

59

60

61

62

63

64

65

Layer

D
ow

ns
tr

ea
m

V
al

id
at

io
n

A
cc

ur
ac

y

SimCLR
SimCLR*

Stop
Stop*

w/o Stop

(a) Dropout

−1 0 1 2 3 4 5 657

58

59

60

61

62

63

64

65

Layer

D
ow

ns
tr

ea
m

V
al

id
at

io
n

A
cc

ur
ac

y

SimCLR
Stop

w/o Stop

(b) PCA

Figure 5: Contrastive learning. Deep Augmentation with (a) dropout or (b) PCA, with and without stop-gradient. *:
initialized with pre-trained SimCLR model. “Stop” is short for stop-gradient. Note: Layer 5 is an average pooling.
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Figure 6: Supervised only. Deep Augmentation with (a) dropout or (b) PCA, with and without stop-gradient. *:
initialized with pre-trained SimCLR model. “Stop” is short for stop-gradient.

Initialization & Freezing Weights. Augmentations may have a more significant impact on higher layers that already
possess useful, discriminative features. In addition, the concurrent objectives of learning features and maintaining
invariance to their alterations could conflict, slowing down or destabilizing training. In Figure 5a, ‘SimCLR*’ and ‘Stop*’
apply Deep Augmentation atop a SimCLR-pretrained ResNet. While using a pre-trained initialization outperforms not
using a pre-trained initialization, the gains are marginal, indicating that extensive pre-training is not essential for Deep
Augmentation. Similarly, freezing specific layers before or after the augmentation point does not yield notable benefits
(Appendix A.7).

Supervised Learning. Figures 6a and 6b compare Deep Augmentation’s effect in supervised vision tasks. Here,
dropout or PCA does not provide benefits. Notably, omitting stop-gradient actually performs better—opposite to our
contrastive results. Retaining basic data augmentations remains crucial; removing them lowers accuracy to around
59.02%.

5.3 Graphs

Finally, we evaluate Deep Augmentation on graph contrastive learning, extending our insights from vision and NLP to
GNNs. We use standard Graph Contrastive Learning (GCL) augmentations (Zhu et al., 2021) on COLLAB, IMDB-
Multi, NCI1, and PROTEINS. In GCL, a graph is augmented—using operations such as node and edge deletion—to
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create two distinct views, and the model is trained to identify pairs of views originating from the same graph. We use
the f1mi (Micro-averaged F1 Score) metric; further details can be found in Appendix C.

Augmentation, Layer, and Stop-Gradient. Figures 7 and 8 show results for dropout and PCA (removing the sixth-
largest principal component). Since graph inputs vary in embedding size per number of nodes, we adapt PCA to operate
over across node embeddings in the batch. While trends vary somewhat by dataset, Deep Augmentation with dropout
and stop-gradient significantly boosts performance in most cases (especially at higher layers).
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Figure 7: Graphs: Deep Augmentation with Dropout
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Figure 8: Graphs: Deep Augmentation with PCA

5.4 Findings

In summary, our ablation studies indicate:

• Contrastive vs. Supervised Learning: Deep Augmentation generally has opposite effects on self-supervised versus
supervised learning. See Figure 9. It is surprising that Deep Augmentation reduces performance in the supervised
setting, particularly in higher layers, given that dropout is commonly effective in supervised learning. A likely
explanation is that our Deep Augmentation setting departs from conventional dropout: we use larger dropout rates,
confine the mask to a single layer, and adjust other hyperparameters. Accordingly, we emphasize the direction of the
effect rather than the absolute numbers.

• Layer Depth: Applying augmentation to higher layers typically yields the largest gains in contrastive learning.
• Stop-Gradient: Improves contrastive performance across diverse data but often reduces accuracy in supervised tasks.
• Augmentation Type: Both dropout and PCA are effective, though they exhibit different behaviors and trade-offs.
• Pre-trained Weights: Starting from pre-trained models is not essential for successful dropout-based augmentation.

6 Analysis

Deep Augmentation demonstrates strikingly different effects in contrastive and supervised learning. This section
explores why Deep Augmentation benefits contrastive learning while offering little or no gains in supervised contexts,
and how we can determine which layers to target for best results. We integrate alignment–uniformity metrics (Wang &
Isola, 2020) and CKA similarity (Kornblith et al., 2019) to show how these transformations reshape latent representations
and mitigate co-adaptation among layers.
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Figure 9: Regression lines are fitted to experimental results across NLP, vision, and graph-based tasks. All data have
been z-score normalized (with the original mean preserved). In the self-supervised setting, deep augmentation improves
performance in higher layers when using stop-gradient, while the opposite trend is observed without stop-gradient. In
contrast, for supervised learning, deep augmentation generally does not yield benefits, and the trends across layers are
reversed.

Contrastive Learning. Our findings indicate that Deep Augmentation helps reduce overfitting and eliminate spurious
alignment in contrastive tasks, while also maintaining or enhancing uniformity across learned features. This is evident
from alignment–uniformity analyses, which show improved invariance properties, and from CKA measures, which
confirm that stronger feature transformations in targeted layers reduce inter-layer similarity (co-adaptation). Importantly,
these techniques also identify which layers are most susceptible to co-adaptation, guiding the strategic selection of
layers where Deep Augmentation is most beneficial.

Supervised Learning. In stark contrast, supervised learning sees little benefit—and can even suffer—when Deep
Augmentation is applied. Because labeled tasks already specify ground-truth invariances (the intra-class differences),
they do not rely on broad augmentations to combat spurious alignments. In effect, the network is already “regularized” by
the labels themselves, leading to naturally lower co-adaptation in deeper layers. Consequently, additional perturbations
introduced by Deep Augmentation can degrade performance. This aligns with studies on information bottlenecks (Tishby
& Zaslavsky, 2015; Shwartz-Ziv & LeCun, 2023; Jing et al., 2022), which highlight how supervised training inherently
enforces a more constrained representation space compared to contrastive methods optimizing mutual information
across potentially infinite augmentations.

Taken together, these findings illuminate how Deep Augmentation simultaneously combats overfitting and enforces
useful invariances in contrastive tasks, yet exerts little positive influence—and sometimes a negative one—when the
target invariances are already determined by label supervision.

6.1 Co-Adaptation Between Layers

Sentence Embeddings and Transformers. Figure 10 shows CKA similarity for a Transformer model under different
conditions:

• BERT: The pre-trained baseline for SimCSE and Deep Augmentation.
• SimCSE: Contrastive learning applied to BERT, notably reducing co-adaptation across its higher layers (i.e., 10–12).
• Layer 10 (w/o Stop): Deep Augmentation applied at Layer 10 (highlighted by a red cross) without stop-gradient.
• Layer 8 (w/ Stop): Deep Augmentation with stop-gradient at Layer 8 (highlighted by a red cross).

In BERT, layers 8–11 show a stretch of co-adaptation (between the black crosses). Deep Augmentation at or near
these points reduces similarity in subsequent layers, overcoming the co-adaptation that persists even after SimCSE.
Interestingly, choosing the earlier “cross” for stop-gradient and the later “cross” for without stop-gradient perform the
best. This suggests a potential extension: targeting multiple layers could further boost performance. Overall, CKA
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similarity index highlights a co-adaptation issue between layers and determines at what layer Deep Augmentation
should be applied.

Appendix Figure 59 shows that, in a supervised setting, co-adaptation is already weaker even without Deep Augmen-
tation, emphasizing that ground-truth labels inherently curb excessive co-adaptation. Further details are provided in
Appendix E.

Figure 10: CKA similarity index for “BERT,” “SimCSE,” “Layer 10 without Stop” (Deep Augmentation applied without
stop-gradient at Layer 10), and “Layer 8 with Stop” (Deep Augmentation applied with stop-gradient at Layer 8) on the
STS-B dataset. Black crosses mark the beginning and end of a co-adaptation region in BERT, while red crosses on
“Layer 10 without Stop” and “Layer 8 with Stop” highlight the targets of Deep Augmentation. Optimal performance of
Deep Augmentation is observed near the black crosses, indicating its effectiveness and guiding the selection of layers
for targeting.
Images and ResNet. Figure 11 compares CKA similarity for:

• Random: A randomly initialized ResNet18,
• SimCLR: ResNet18 trained with SimCLR,
• Layer 4 without Stop: ResNet18 with Deep Augmentation at Layer 4 (w/o Stop).

We find that co-adaptation between Layers 4 and 5 emerges after SimCLR training and is even stronger in the poorer-
performing “Layer 4 (w/o Stop).” Conversely, the best-performing models (Layer 4 or Layer 6 with stop-gradient)
avoid this excessive similarity. This corroborates the Transformer and sentence embeddings findings: certain layers
(e.g., Layer 4 in ResNet18) are especially prone to co-adaptation, pinpointing where Deep Augmentation can be most
beneficial. See Appendix E for more details.

Appendix Figure 56 shows a similar pattern to Transformer and sentence embeddings in supervised training, with
consistently lower co-adaptation than in self-supervised settings (particularly in the last layer)—further evidence that
labeled tasks intrinsically limit over-adaptation between layers.

Figure 11: Indications of why Layer 4 is special in Figure 5a, as the major divide between co-adaptation across layers.
Layers 0-4 are convolutional. All high-performing NNs have the pattern of SimCLR, and failure cases have stronger
co-adaptation between Layers 4 and 5. “Layer 4 without Stop” corresponds to the failure case of Deep Augmentation
without stop-gradient at Layer 4.

Sentence Embeddings and Transformer. Alignment and Uniformity measures for sentence embedding methods are
in Figure 12, computed as in SimCSE (Gao et al., 2021) w.r.t. ground truth (STS-B development set), during training,
and with methods converging to higher density regions.
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Following Gao et al. (2021), we measure alignment and uniformity on the STS-B development set (Figure 12), during
training, and with methods converging to higher density regions. Without MLM, Deep Augmentation trends toward
better uniformity (lower is better) than SimCSE alone. Adding stop-gradient further enhances alignment at some
expense of uniformity (“S” vs. “w/o S”). However, introducing MLM reverses the optimization direction, boosting
alignment at some cost to uniformity. Again, the Deep Augmentation variants (with or without stop-gradient) tend to
outperform the SimCSE baselines.

In Appendix Table E, we compare alignment and uniformity in supervised learning. Deep Augmentation slightly
improves alignment but not uniformity, consistent with the notion that supervised models already have high uniformity
on ground-truth labels, leaving less room for improvement.

Note, since these measures are computed on ground truth validation classes rather than augmentations, they offer a
different perspective from the original introduction of these measures for contrastive learning Wang & Isola (2020).
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Figure 12: Alignment and Uniformity (lower is better) for sentence embeddings on STS-B: SimCSE vs. Deep
Augmentation (with and without stop-gradient). We also include these methods combined with the pre-training method
of BERT, i.e., Masked Language Modeling (MLM). Arrows indicate the direction during training, which reverses when
MLM is introduced. “S” is short for stop-gradient.

Images and ResNet. For vision, we standardize on SimCLR augmentations to measure alignment and uniformity
(Figure 13). Checking multiple training checkpoints (e.g., epochs 300, 600, 900, 1200, 1500), we observe that:

• Higher training epochs improve uniformity on test data and alignment on training data.
• Layers 4 and 6 (w/ Stop) consistently outperform SimCLR on test alignment/uniformity, avoiding the overfitting to

alignment that SimCLR shows on training data.
• Layer 4 (w/o Stop) matches SimCLR on these metrics but underperforms on downstream tasks, highlighting these

metrics’ limitations in capturing latent space quality. Hence, our preference for the CKA similarity index for
comprehensive assessment.

Appendix Figure 54 shows that, in supervised training, the differences are less pronounced. However, Layer 4 (w/
Stop) perform better on both metrics but this does not translate to better classification accuracy. This highlights
that the invariances in self-supervised learning and supervised learning remain fundamentally different, and superior
performance on the self-supervised task does not necessarily translate to improved performance on the supervised
downstream task. Avoiding overfitting to alignment is crucial when that alignment differs from the ground truth, but less
critical when alignment matches the ground truth. Again, tasks with ground-truth labels do not see the same overfitting
challenges as contrastive setups, reducing the need for strong regularization from Deep Augmentation.

7 Discussion

Our work affirms that dropout, widely known as a regularizer, can indeed serve as an effective in-network augmentation
method—particularly within self-supervised pipelines where the risk of inter-layer co-adaptation runs high. The success
of PCA-inspired augmentations further underscores that dropout is but one avenue for improving contrastive training in
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Figure 13: Alignment and Uniformity (lower is better) of SimCLR augmentations on CIFAR. Left: Test data. Right:
Training data. Deep Augmentation outperforms SimCLR when measuring alignment and uniformity using SimCLR’s
augmentations on the test set, and SimCLR overfits at Alignment on the training set. “L” is short for Layer and “S” is
short for stop-gradient.

deep networks. By providing a procedure for layer selection and underscoring the importance of stop-gradient, we hope
this work encourages more granular thinking about dropout-like augmentations in deep learning, inspiring new ways to
exploit activation-space transformations for both performance and generalization gains.
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A CIFAR

In this section, we outline the training specifics for our experiments on the CIFAR datasets, complemented by
supplementary results and comparative analyses.

A.1 ResNet Architecture

The specifications for ResNet18 are detailed in Table 4.

Table 4: Configuration of ResNet18 on CIFAR

ResNet18 on CIFAR
Layer Type #Neurons
-1 Input Data 322 × 3 = 3072
0 Conv(k=3, s=1) 322 × 64 = 65536
1 Conv(k=3, s=2) 322 × 64 = 65536
2 Conv(k=3, s=2) 162 × 128 = 32768
3 Conv(k=3, s=2) 82 × 256 = 16384
4 Conv(k=3, s=2) 42 × 512 = 8192
5 Avgpool 512
6 MLP 128

A.2 Dropout at All Layers Versus 50% Layer Targeted Dropout

In Figure 14, we compare dropout rates at all layers versus 50% dropout rate targeted at a specific layer.
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Figure 14: Comparing dropout rates at all layers versus 50% dropout rate targeted at a specific layer. For ratio of
dropped to total nodes when targeting a layer, see Appendix A.3; there is no trend.

A.3 Proportion of Dropped Nodes

When setting a dropout rate for a specific layer, it exclusively affects that layer. Consequently, a 50% dropout rate
at one layer results in fewer neurons being dropped compared to a 50% dropout applied uniformly across all layers.
Additionally, the same dropout rate can impact different numbers of neurons in various layers, reflecting the varying
neuron counts in each layer.

In Table 5 we include the number of nodes in each layer, the total nodes across all layers. Thus, for 0.5 dropout, we show
the proportion of dropped nodes when a layer is targeted. There is not trend between the proportion and performance.

A.4 Training Details

For implementation, we utilized the code provided by (Khosla et al., 2020), available at this link. Our experiments were
conducted with a batch size of 1024, training each method for 1500 epochs.
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Table 5: Proportion of Dropped Nodes per Layer at 50% dropout

Layer Dropped Nodes Total Nodes Proportion

0 0.5 × 65536 192640 0.17
1 0.5 × 65536 192640 0.17
2 0.5 × 32768 192640 0.085
3 0.5 × 16384 192640 0.043
4 0.5 × 8192 192640 0.021
5 0.5 × 512 192640 0.001
6 0.5 × 128 192640 0.0003

A.5 Naïve Deep Augmentation with stop-gradient on CIFAR100

In Figure 15, we include results of 50% dropout with stop-gradient at individual layers on 100% of the batch. Such
naïve augmentations generally give poor performances. All layers besides the input data layer lead to downstream
accuracy of 1% (equivalent with random guess). The input data layer arrives at a downstream accuracy of 61.38%.
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Figure 15: CIFAR100. 50% dropout with stop-gradient applied at individual layers on 100% of the batch. I.e. freezing
earlier layers to random weights.

A.6 Including Deep Augmentation w/o stop gradient initialized with SimCLR

For completion, we also include Deep Augmentation without stop gradient, initialized with pre-trained SimCLR model,
together with the other variants—see Figure 16.
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Figure 16: Comparing sampling 50% and applying 50% dropout, with or without stop-gradient. *: initialized with
pre-trained SimCLR model. Stop: short for stop-gradient.
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A.7 Freezing

We repeat the experiment with pre-trained initialization but freeze all the layers up to and including the layer at which
the targeted transformation occurs; see “Freeze before” in Figure 17. Compared to not freezing, this strategy gives very
different results. In particular, the downstream performance of Layers 3 and 4 is critically reduced.

Deep Augmentation after frozen SimCLR layers may not work well due to co-adaptation between neurons, leading to
overfitting. Suppose a layer of a NN exhibits strong co-adaptation within several subsets of neurons, i.e., each subset
encodes a single data feature. Randomly dropping neurons is unlikely to remove a complete co-adapted subset of
neurons. Ideally, features are learned per neuron so dropping any of them provides a complementary view. Alternatively,
features might be represented continuously among neurons in a layer such that dropout corresponds to something akin
to blurring the feature continuously.

Because early layers have fewer parameters to distort the input data, such layers may have less co-adaptation. This
might explain why earlier layers, rather than later layers, perform better when frozen during Deep Augmentation.
Similarly, higher layers may benefit from higher dropout rates because they are more susceptible to co-adaptation,
explaining why in Figure 5a, Deep Augmentation in higher layers yields the best downstream performance.

Reversely, we may freeze the layers following the targeted layer; results are labeled “Freeze after” in Figure 17.
Compared to “Freeze before”, Layer 3 improves, Layer 5 worsens, while Layer 4 performs similarly. This asserts that
later layers, some more than others, benefit from learning to be invariant to Deep Augmentation.

We see that Deep Augmentation with freezing layers and initialized to SimCLR-model, works better for earlier layers
than for later layers. Especially in Figure 39a and 43, we see that earlier layers outperform SimCLR earlier in the
training. This suggests that incrementally freezing layers, and adding Deep Augmentation at the next layer, might help
improve performance and speed up training.
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Figure 17: Freezing layers before and after Deep Augmentation with stop-gradient, initialized with pre-trained SimCLR
model. For “Freeze before,” Layer -1 freezes nothing, and for “Freeze after” Layer 6 freezes nothing.

A.8 PCA Augmentation

In Figure 21, results demonstrate that removing the largest principal component from a batch sample is less effective
than subtracting the sixth largest (Figure 28).

Figure 20 presents the six largest principal values from the layers of a randomly initialized ResNet18 versus one trained
with SimCLR on CIFAR100. Post-SimCLR training, the distribution of values becomes more uniform, and there is a
notable shift in the rank of layers before and after the training process.

A.9 Supervised Learning

For our supervised learning experiments, training was conducted for 100 epochs but otherwise using the same
hyperparameters as those in the fine-tuning phase post pre-training, which lasted 28 epochs.

Figure 23 presents results from supervised learning on CIFAR100, comparing the effects of uniform dropout across all
layers with 50% dropout applied to a targeted layer.
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Figure 18: Random init. Figure 19: After SimCLR

Figure 20: The six largest principal value from the layers of a random initialized ResNet18 and one trained with
SimCLR on CIFAR100.
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Figure 21: PCA: Comparing sampling 50% of batch and subtracting the largest principal component from that sample,
with and without stop-gradient.

Figure 22 presents the results of supervised training but also includes standard deviations.

A.10 Domain Transfer: CIFAR100 to CIFAR10

We perform basic domain transfer experiments by taking networks pretrained on CIFAR100 and finetuning them on
CIFAR10. In Figure 24 we include results comparing SimCLR with Deep Augmentation with and without stop-gradient,
across layers. We also include performance for different checkpoints across training, see Figure 25a and Figure 25b for
Deep Augmentation with and without stop gradient, respectively. Note the overfitting tendencies.
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Figure 22: Supervised only. Deep Augmentation with (a) dropout or (b) PCA, with and without stop-gradient. *:
initialized with pre-trained SimCLR model. “Stop” is short for stop-gradient.
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Figure 23: Supervised on CIFAR100: Comparing dropout rates at all layers versus 50% dropout rate targeted at a
specific layer.
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Figure 24: Finetuning on CIFAR10 of networks pre-trained on CIFAR100. Comparing SimCLR with Deep Augmenta-
tion with and without stop-gradient. Stop: short for stop-gradient.

A.11 Different dropout rates

In Figure 26, we tune over dropout rates 0.5, 0.25, and 0.125 and find that 0.125 at Layer 4 performs the best.

A.12 CIFAR10

We include results on most of the experiments that were run on CIFAR100, also on CIFAR10. In general, results show
the same trends as for CIFAR100. In Figure 30, we include results comparing dropout rates across all layers to 50%
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(a) With stop-gradient.
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(b) Without stop-gradient

Figure 25: SimCLR and Deep Augmenation with and without stop-gradient pre-trained on CIFAR100 and finetuned on
CIFAR10, for different checkpoints during training. Observe the overfitting behavior.
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Figure 26: CIFAR100: Comparing sampling 50% of batch and applying dropout to that sample, with and without
stop-gradient, for different dropout rates. “Stop” is short for stop-gradient.

dropout at single layers. Again, we see targeted dropout at some layers showing much better performance than dropout
across all layers.

In Figure 31 we include results of sampling 50% of batch and performing 50% dropout with and without stop-gradient,
called “Stop” and “w/o Stop” respectively. We also include a benchmark of SimCLR. Here “*” refers to the networks
being initialized with a pre-trained SimCLR model. Again, we see Layer 4 (with stop-gradient) and Layer 6 (with and
without stop-gradient) stand out. It is also interesting to note that when initializing with a pre-trained SimCLR model,
performance differs significantly more for Deep Augmentation with stop-gradient than without.

In Figures 27 and 28, we subtract the largest and sixth largest principal component from half the samples of the batch.
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Figure 27: PCA CIFAR10: Comparing sampling 50% of batch and subtracting the largest principal component from
that sample, with and without stop-gradient.
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Figure 28: PCA CIFAR10: Comparing sampling 50% of batch and subtracting the sixth principal component from that
sample, with and without stop-gradient.

In Figure 32, we include results of Deep Augmentation with stop-gradient but freezing layers up to the targeted layer
versus freezing after the targeted layer. Again, we see the performance change, especially Layer 3 and 4 degrading,
while Layer 2 improves.
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In Figure 29, we include results of supervised learning on CIFAR10, with dropout across all layers as well as 50%
dropout at targeted-layer.
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Figure 29: Supervised on CIFAR10: Comparing dropout rates at all layers versus 50% dropout rate targeted at a specific
layer.

We perform basic domain transfer experiments by taking networks pretrained on CIFAR10 and finetuning them on
CIFAR100. In Figure 33 we include results comparing SimCLR with Deep Augmentation with and without stop-
gradient, across layers. We also include performance for different checkpoints across training, see Figure 45a and
Figure 45b for Deep Augmentation with and without stop gradient, respectively. Note the overfitting tendencies.

In Figure 34, we tune over dropout rates 0.5, 0.25, and 0.125 and fine that 0.125 at Layer 4 performs the best.
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Figure 30: CIFAR10: Comparing dropout rates at all layers versus 50% dropout targeted at a specific layer.
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Figure 31: CIFAR10: Comparing SimCLR with Deep Augmentation with and without stop-gradient. *: Initialized with
pre-trained SimCLR model. Stop: short for stop-gradient.
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Figure 32: CIFAR10: Comparing freezing layers before or after Deep Augmentation with stop-gradient, initialized with
pre-trained SimCLR model. Note that for ”Freeze before” Layer -1 freezes nothing, and for ”Freeze after” Layer 6
freezes nothing.
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Figure 33: Finetuning on CIFAR100 of networks pre-trained on CIFAR10. Comparing SimCLR with Deep Augmenta-
tion with and without stop-gradient.

A.13 CIFAR100 across epochs

We include results where we finetuned and tested checkpoints at different epochs for various experiments.

In Figure 35, we include results for dropout everywhere at different rates and 50% dropout at single layers.

In Figure 36, we include results for sampling 50% of each batch and performing 50% dropout on that sample, with and
without stop-gradient.

In Figures 37 and 38, we include results for sampling 50% of each batch and subtracting the largest and sixth largest
(respectively) principal component from that sample, with and without stop-gradient.

In Figure 39, we compare freezing layers before or after Deep Augmentation with stop-gradient initialized with
pre-trained SimCLR model.

In Figure 40, we inlcude results for 50% sampling, 50% dropout, with and without stop-gradient, and initialized with
pre-trained SimCLR model.

A.14 CIFAR10 across epochs

We include results where we finetuned and tested checkpoints at different epochs for various experiments.

In Figure 41, we include results for dropout everywhere at different rates and 50% dropout at single layers.

In Figure 42, we include results for sampling 50% of each batch and performing 50% dropout on that sample, with and
without stop-gradient.
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Figure 34: CIFAR10: Comparing sampling 50% of batch and applying dropout to that sample, with and without
stop-gradient, for different dropout rates. “Stop” is short for stop-gradient.
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(a) Dropout at all layers
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(b) 50% dropout at single layer

Figure 35: CIFAR100. Comparing dropout rates at all layers versus 50% dropout targeted at a specific layer. Note
difference in y-axis.

In Figure 43, we compare freezing layers before or after Deep Augmentation with stop-gradient initialized with
pre-trained SimCLR model.

In Figure 44, we inlcude results for 50% sampling, 50% dropout, with and without stop-gradient, and initialized with
pre-trained SimCLR model.
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(a) With stop-gradient
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(b) Without stop-gradient

Figure 36: CIFAR100. Comparing sampling 50% and applying 50% dropout, with or without stop-gradient.
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(a) With stop-gradient
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(b) Without stop-gradient

Figure 37: PCA CIFAR100: Comparing sampling 50% of batch and subtracting the largest principal component from
that sample, with and without stop-gradient.

400 600 800 1,000 1,200 1,40057

58

59

60

61

62

63

64

65

Num. Epochs Pre-training

D
ow

ns
tr

ea
m

V
al

id
at

io
n

A
cc

ur
ac

y

S
L-1
L0
L1
L2
L3
L4
L5
L6

(a) With stop-gradient
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(b) Without stop-gradient

Figure 38: PCA CIFAR100: Comparing sampling 50% of batch and subtracting the sixth largest principal component
from that sample, with and without stop-gradient.
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(a) Freeze layers before Deep Augmentation
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(b) Freeze layers after Deep Augmentation

Figure 39: CIFAR100. Comparing freezing layers before or after Deep Augmentation with stop-gradient initialized
with pre-trained SimCLR model.
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(a) With stop-gradient.
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(b) Without stop-gradient.

Figure 40: CIFAR100. 50% sampling, 50% dropout, with and without stop-gradient, and initialized with pre-trained
SimCLR model.
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(a) Dropout at all layers
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(b) 50% dropout at single layer

Figure 41: CIFAR10. Comparing dropout rates at all layers versus 50% dropout targeted at a specific layer. Note
difference in y-axis.
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(a) With stop-gradient
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(b) Without stop-gradient

Figure 42: CIFAR10. Comparing sampling 50% and applying 50% dropout, with or without stop-gradient.
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(a) Freeze layers before Deep Augmentation
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(b) Freeze layers after Deep Augmentation

Figure 43: CIFAR10. Comparing freezing layers before or after Deep Augmentation with stop-gradient initialized with
pre-trained SimCLR model.
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(a) With stop-gradient.
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(b) Without stop-gradient.

Figure 44: CIFAR10. 50% sampling, 50% dropout, with and without stop-gradient, and initialized with pre-trained
SimCLR model.
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(a) With stop-gradient.
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(b) Without stop-gradient

Figure 45: SimCLR and Deep Augmenation with and without stop-gradient pre-trained on CIFAR10 and finetuned on
CIFAR100, for different checkpoints during training. Observe the overfitting behavior.
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(a) Random initialization.
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(b) SimCLR initialization

Figure 46: Deep Augmentation with stop-gradient, only lower-to-higher augmentation pairs.
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(a) Random initialization.

Figure 47: Deep Augmentation without stop-gradient, only lower-to-higher augmentation pairs.

A.15 CIFAR100 Miscellaneous Experiments

We include some preliminary results on different aspects of Deep Augmentation that deserve further investigation.

In Figure 46, we include results of Deep Augmentation with stop-gradient where each pair consists of one sample
that has only input-data augmentation and another sample that has input-data and higher-layer augmentation. I.e. we
remove all the higher-to-higher and lower-to-lower pairs. We see that for Layer 4 and 6 the performance does not
change substantially, but for Layer 3 performance degrades substantially.

In Figure 47, we include results of Deep Augmentation without stop-gradient where each pair consists of one sample
that has only input-data augmentation and another sample that has input-data and higher-layer augmentation. I.e. we
remove all the higher-to-higher and lower-to-lower pairs. We see that for the layers involved performance does not
change substantially.

This suggests that lower-to-higher pairs are sufficient to make Deep Augmentation successful, but that certain layers are
greatly helped by also including other lower-to-lower or higher-to-higher pairs.

In Figure 48, we include results of Deep Augmentation with stop-gradient and freezing layers before, but initialized
with random weights instead of initialized with a pre-trained SimCLR model. We note that several layers are severely
hurt by this compared to the SimCLR pre-trained model initialization.

In Figure 49, we include results of Deep Augmentation with stop-gradient and freezing layers before, but initialized
with a model pre-trained with SimCLR and 20% dropout across all layers. We wanted to see if a model trained with
high dropout everywhere was more helpful as a starting point for Deep Augmentation. Future work may investigate
ways to optimally train a NN so that dropout serves as a useful higher transformation.
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Figure 48: Deep Augmentation with stop-gradient and random initialization, freeze layers before.
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Figure 49: Deep Augmentation with stop-gradient and SimCLR-trained-with-20%-dropout initialization, freeze layers
before.
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B Sentence Embeddings

B.1 Training Details

We used the training protocol of (Gao et al., 2021) with code released at link. Deep Augmentation at Layer 0 correspond
to just after the first token-embeddings. Deep Augmentation at the subsequent layers was applied after each transformer
layer in the code, with the last Layer 13 corresponding to the output latent vector.

B.2 PCA Augmentation

In Figure 50, we include results with Deep Augmentation and subtracting the sixth largest principal component.
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Figure 50: PCA: SimCSE vs. Deep Augmentation to 50% of the batch and subtracting the sixth largest principal
component from that sample, with and without stop-gradient. “Stop”: stop-gradient. Deep Augmentation outperforms
SimCSE..

B.3 Deep Augmentation and MLM only

In Figure 51, we include results with Deep Augmentation and MLM only, without contrastive learning. Deep
Augmentation boosts performance substantially. This demonstrates that Deep Augmentation can boost performance in
self-supervised learning settings beyond contrastive learning.
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Figure 51: MLM vs. MLM with Deep Augmentation with and without stop-gradient, both without contrastive learning.
“Stop”: stop-gradient.

B.4 Additional Results

In Figure 52, we include results of different dropout rates and hyper-parameter settings for using Deep Augmentation
with SimCSE.
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Figure 52: S: short for stop-gradient. D: short for default-dropout, referring to the 10% dropout (including attention-
dropout) utilized by BERT and SimCSE. The decimal numbers refer to the Deep Augmentation drop out rate, and is .5
when unspecified.

C Graph Contrastive Learning

We follow the protocol and code of Zhu et al. (2021) that can be found at https://github.com/PyGCL/PyGCL.
We pre-train for 1000 epochs and use the following data augmentations in GCL:

A.RandomChoice([
A.RWSampling(num_seeds=1000,

walk_length=10),
A.NodeDropping(pn=0.1),
A.FeatureMasking(pf=0.1),
A.EdgeRemoving(pe=0.1)],

1)

We use f1mi (Micro-averaged F1 Score) as the evaluation metric. The f1mi metric computes the overall F1 score by
aggregating the true positives (TP), false positives (FP), and false negatives (FN) across all classes. It is defined as:

Precisionmicro =
∑

i TPi∑
i(TPi + FPi)

,

Recallmicro =
∑

i TPi∑
i(TPi + FNi)

,

F1micro = 2 · Precisionmicro · Recallmicro

Precisionmicro + Recallmicro
.

This metric is particularly useful for evaluating performance in imbalanced multi-class or multi-label classification
tasks.

For ablation study with standard deviations, see Table 6.

C.1 Dropout Rate Ablation

In Figure 53, we present an ablation study on various dropout rates. Note that the results reported are evaluated on
the test sets. For Table 6, we report test results corresponding to the hyperparameters achieving the highest validation
accuracy.
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Table 6: Contrastive Learning on Graphs with GNNs. GCL (Graph Contrastive Learning) versus GCL with Deep
Augmentation, dropout, PCA, and with and without stop-gradient.

Model COLLAB IMDB-Multi NCI1 PROTEINS
GCL 72.40±0.6 53.33±1.1 73.97±1.6 72.32±1.5
GCL+DeepAug Drop L0 w/ S 70.93±2.3 56.44±3.0 73.07±0.7 72.92±2.9
GCL+DeepAug Drop L2 w/ S 70.33±1.5 54.00±2.8 72.34±0.6 71.73±2.3
GCL+DeepAug Drop L4 w/ S 71.00±1.8 52.44±5.1 73.32±1.5 72.62±1.1
GCL+DeepAug Drop L6 w/ S 73.80±1.3 52.89±4.2 75.83±1.0 73.21±1.5
GCL+DeepAug Drop L0 w/o S 71.87±2.7 56.89±2.2 75.51±1.7 73.51±2.6
GCL+DeepAug Drop L2 w/o S 70.40±2.0 52.44±3.9 73.32±2.5 73.81±2.1
GCL+DeepAug Drop L4 w/o S 70.93±1.6 53.56±3.0 75.67±3.3 72.32±1.9
GCL+DeepAug Drop L6 w/o S 70.87±1.1 52.00±2.7 74.61±1.1 73.81±2.3
GCL+DeepAug PCA L0 w/ S 71.2±1.3 54.44±0.8 73.4±1.9 74.4±2.9
GCL+DeepAug PCA L2 w/ S 70.53±3.0 54.44±2.7 73.48±2.4 73.21±1.5
GCL+DeepAug PCA L4 w/ S 70.73±1.4 51.11±5.1 74.37±0.8 72.92±1.1
GCL+DeepAug PCA L6 w/ S 72.0±0.4 50.22±2.2 75.59±0.1 73.51±0.8
GCL+DeepAug PCA L0 w/o S 68.13±2.4 52.89±3.8 74.78±0.6 74.4±1.7
GCL+DeepAug PCA L2 w/o S 70.53±1.3 54.0±2.0 74.45±0.5 72.62±2.3
GCL+DeepAug PCA L4 w/o S 71.93±0.8 54.22±4.9 74.21±0.9 72.92±2.3
GCL+DeepAug PCA L6 w/o S 70.87±1.5 53.11±0.3 75.18±1.0 72.02±0.4
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Figure 53: Ablation plots for dropout rates across datasets. Accuracy on test set.
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D Alignment and Uniformity

First, we reiterate the fundamental drawbacks of Alignment and Uniformity for our work. Alignment is defined either
with respect to a set of augmentations (the original intent Wang & Isola (2020)) or with respect to embeddings from
different datapoints within the same class (as in SimCSE Gao et al. (2021)).

This poses the following issues for our work: (i) We must be very carefully to compare the Alignment and Uniformity
results of sentences with those of images. (ii) Since Deep Augmentation introduces new augmentations, for images, we
select only the default data augmentations for the Alignment and Uniformity metrics to enable comparison between
Deep Augmentation, baselines, and other settings.

In Table 7, we present the Alignment and Uniformity measures for supervised models on sentence embeddings.

Table 7: Comparison of alignment and uniformity metrics across different models of Supervised Setting on Sentence
Embeddings. ∗: Example of collapse

Model Alignment Uniformity

Random Init 0.032 -0.514
Regular 0.790 -2.415
Deep Augmentation L8 w/ stop 0.734 -2.318
Deep Augmentation L10 w/o stop 0.671 -2.153
Deep Augmentation L1 w/o stop (Fail)∗ 0.002 -0.019
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Figure 54: Alignment and Uniformity (lower is better) of Supervised model on SimCLR augmentations on CIFAR. Left:
Test data. Right: Training data. Best performance on Alignment and Uniformity does not translate to best performance
in supervised setting where the ground truth labels are known. “L” is short for Layer and “S” is short for stop-gradient.

E CKA Similarity Index Analysis

We include more complete results using CKA similarity index.

In Figure 55, we include results for several configurations for ResNet18 and CIFAR100. “Layer 4 without Stop” and
“Layer 5 with Stop” do not perform well in their downstream performance and share the same increased co-adaptation
between layers 4 and 5.

In Figure 57, we include results for several configurations for ResNet18 and CIFAR10. The same trends that were
observed on CIFAR100 is also observed on CIFAR10.

Figure 58 displays results for various configurations on sentence embeddings and the STS-B development set. Deep
Augmentation achieves optimal performance in the later co-adaptation region, with stop-gradient at its onset and without
stop-gradient towards its conclusion.

In Figure 59, we also present the CKA similarity for supervised models. Additionally, Figure 60 shows the CKA
similarity for a randomly initialized model. The supervised setting exhibits significantly less co-adaptation between
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layers, particularly in the later layers. Although Deep Augmentation slightly decreases co-adaptation, this does not
correlate with improved performance on the supervised task, suggesting that co-adaptation is less problematic for
supervised learning compared to self-supervised learning. We include the “Deep Aug (Fail)” example to illustrate that
training collapses, resulting in extremely low accuracy, are associated with very low co-adaptation, indicating that a
nuanced level of co-adaptation is necessary to retain information from the data.

It is also worth noting that, since information cannot be created by a deterministic function (i.e., I(X; Y ) ≥
I(X; f(Y ))), the reduction in co-adaptation through transformations likely corresponds to a removal of some in-
formation from the input data distribution. This suggests that reduced co-adaptation and less overfitting may be linked
through the reduction of spurious information in the later layers of the neural network.

Figure 55: CKA similarity index of ResNet18 for different pre-training methods on CIFAR100.

Figure 56: CKA similarity index of ResNet18 for and Deep Augmentation in contrastive learning (self-supervised)
versus supervised learning settings on CIFAR100.
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Figure 57: CKA similarity index of ResNet18 for different pre-training methods on CIFAR10.

Figure 58: CKA similarity index for different methods trained to produce sentence embeddings. Black crosses indicate
the start and end of co-adaptations stretch of layers in BERT, and red crosses indicate where the Deep Augmentation
was applied. The layers at which Deep Augmentation performs the best are around the black crosses at the initialization
”BERT”.
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Figure 59: CKA similarity index for different methods trained to produce sentence embeddings. Black crosses indicate
the start and end of co-adaptations stretch of layers in BERT, and red crosses indicate where the Deep Augmentation
was applied. The layers at which Deep Augmentation performs the best are around the black crosses at the initialization
”BERT”. Upper row is with contrastive learning (self-supervised) setting and lower row is in supervised setting.

Figure 60: CKA similarity index for a random initialized model.
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