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ABSTRACT

The online construction of vectorized high-definition (HD) maps is a cornerstone
of modern autonomous driving systems. State-of-the-art approaches, particularly
those based on the DETR framework, formulate this as an instance detection prob-
lem. However, their reliance on independent, learnable object queries results in a
predominantly local query perspective, neglecting the inherent global representa-
tion within HD maps. In this work, we propose MapGR (Global Representation
learning for HD Map construction), an architecture designed to learn and utilize a
global representations from queries. Our method introduces two synergistic mod-
ules: a Global Representation Learning (GRL) module, which encourages the dis-
tribution of all queries to better align with the global map through a carefully de-
signed holistic segmentation task, and a Global Representation Guidance (GRG)
module, which endows each individual query with explicit, global-level contextual
information to facilitate its optimization. Evaluations on the nuScenes and Argo-
verse2 datasets validate the efficacy of our approach, demonstrating substantial
improvements in mean Average Precision (mAP) compared to leading baselines.
The code is provided in the supplementary materials and will be released upon
acceptance of this paper.

1 INTRODUCTION

Online high-definition (HD) map construction is a crucial task in autonomous driving (Liu et al.,
2023; Yuan et al., 2024; Chen et al., 2024; Hao et al., 2024), as it aims to provide high-precision
perception of map elements essential for safe and efficient navigation. Unlike traditional offline
HD maps (Shan & Englot, 2018; Shin et al., 2025), which require extensive pre-collection and
manual updates, online HD map construction allows autonomous vehicles to construct local maps
on the fly by leveraging sensors such as LiDAR and cameras, resulting in more easily adapting to
changing road conditions such as construction zones, lane modifications, and unexpected obstacles.
Many prior online HD map construction methods have treated this task as a semantic segmentation
problem in Bird’s-Eye-View (BEV) space (Gosala et al.; Li et al., 2022b; Philion & Fidler, 2020;
Zhou & Krähenbühl, 2022). However, their effectiveness is limited by the extensive post-processing
needed to extract vectorized map representations. To overcome these limitations, recent research
has shifted toward DETR-like frameworks (Ding et al., 2023; Qiao et al., 2023; Yu et al., 2023; Liu
et al., 2024), leveraging learnable queries for vectorized instance detection.

Unlike conventional object detection scenarios where targets exhibit independent spatial distribu-
tions (characterized as ‘spiky’ distributions), High-Definition (HD) maps manifest distinctive spa-
tial continuity in the BEV space, which we characterize as ‘streak’ distributions. This fundamental
distributional divergence presents significant challenges in the direct application of the DETR (De-
tection Transformer) framework, as its architecture was primarily optimized for object detection
tasks that inherently accommodate spiky distributional patterns. To address this issue, existing ap-
proaches introduce manual instance partitioning for maps, where each instance is represented by
a set of discrete points and treated as an independent object, as in the object detection task. This
transformation enables the direct application of DETR-like framework to HD map reconstruction
tasks, with training objectives designed to encourage the model outputs to approximate the parti-
tioned instances. However, this manual partitioning approach has several obvious limitations. First,
information loss is inevitable during the sampling process. For example, representing each instance
with a finite set of points may result in the loss of local road structure details (Zhang et al., 2023a).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a)

(b)

(c)
...

... ......

... ...
 Map Global
Embedding

Decoder
Layers Prediction

Ground TruthOn-vehicle Images

Figure 1: (a) Multi-view images from on-board sensors. (b) A conventional DETR-like HD map
construction pipeline. (c) Our proposed global representation learning of queries for the map con-
struction task significantly improves query distribution from the initial to the final decoder layers.
This improvement leads to smoother and more consistent curvature changes in instances, ensuring
better alignment with the global structure. Qi represents the query set from the i-th decoding layer.
The red box marks a region where query distribution improves significantly.

Additionally, independent optimization of each instance overlooks the spatial relationships between
instances as well as their structural dependencies in the global map, potentially leading to suboptimal
learning in optimization.

To address the above limitations, we introduce a method that enables the model to learn a global HD
map representation directly from all object queries. which is subsequently leveraged to facilitate
the learning of each individual query. Specifically, our approach consists of two key components:
a Global Representation Learning (GRL) module and a Global Representation Guidance (GRG)
module. The GRL module aims to learns a global map representation from all queries, then the rep-
resentation is used to predict a holistic, rasterized representation of the map, which is supervised by
the GT map. The GRG module aims to enhance the information of each local query by incorporat-
ing the global representation learned from the GRL module. The global representation encompasses
not only the information of all queries but also the information derived by the GRL module based
on all the queries as inputs. By integrating the global representation into queries, each query can
be optimized individually while also maintaining a global perspective at the same time. The main
differences between our method and previous approaches, as well as our advantages in map recon-
struction results, are presented in Figure 1. Extensive experiments on public challenging HD map
construction datasets, including both nuScenes (Caesar et al., 2020) and Argoverse 2 (Wilson et al.,
2023) demonstrate that the proposed method achieves better mean average precision (mAP) while
maintaining good efficiency. The main contributions of our work can be summarized as follows:

• We propose an effective and efficient approach for HD map construction based on global
representation learning across all queries, formulated as a plug-and-play module seamlessly
compatible with mainstream methods.

• We design a Global Representation Learning module to enhance the global distribution
learning of queries by aggregating local queries into a global embedding, which is then
supervised by the rasterized GT map distribution.

• Additionally, we propose a Global Representation Guidance module, which guides the
optimization of individual queries through the global information of maps.

• Extensive experiments on nuScenes and Argoverse 2 confirm that our approach signifi-
cantly improves performance across diverse baselines, achieving state-of-the-art results.

2 RELATED WORKS

2.1 QUERY-BASED OBJECT DETECTION

DETR (Misra et al., 2021) introduced a class of end-to-end query-based models that treat object
detection as a set prediction problem. During the training of DETR, a predefined number of object
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Figure 2: The details of our proposed method. The map encoder transforms multi-view images into
a BEV embedding, while the decoder enables map queries to interact and extract information from
the BEV embedding to decode vectorized map instances. The GRL module aggregates these queries
into a global representation for the overall map distribution. The global representation is then used
by the GRG module to enhance the query in the subsequent decoding process.

queries are matched to either ground truth or background by solving the Hungarian Matching prob-
lem. Multiple decoder stages iteratively refine the queries, similar to Cascade RCNN, with each
intermediate stage being supervised by the matching results. In recent years, many algorithms have
been developed based on the concept of DETR. Deformable DETR (Zhu et al., 2010) introduces a
deformable attention module that addresses previous limitations and significantly enhances conver-
gence speed by a factor of 10. Conditional DETR (Meng et al., 2021) separates object queries into
content and spatial queries within the decoder’s cross-attention module, enabling the model to learn
a conditional spatial query from the decoder embedding. This facilitates the rapid learning of dis-
tinctive object boundaries in ground-truth data. Anchor-DETR (Wang et al., 2022) structures object
queries as anchor points, allowing each query to focus on a specific region near its assigned anchor.
This design has inspired numerous subsequent works. Efficient DETR (Yao et al., 2021) enhances
DETR’s performance by integrating a dense prior into the query mechanism. DAB-DETR (Liu et al.,
2022) explores the role of object queries more deeply by directly utilizing anchor box coordinates as
spatial queries to accelerate training. The model leverages spatial priors by adjusting the positional
attention map based on the width and height of the bounding box. DN-DETR (Li et al., 2022a) fur-
ther enhances the convergence speed and query-matching stability of DAB-DETR through a Ground
Truth denoising mechanism.

2.2 QUERY-BASED MAP CONSTRUCTION

VectorMapNet (Liu et al., 2023) is an end-to-end mapping approach that directly predicts vector-
ized maps from sensor data, avoiding rasterization and post-processing. It represents map elements
as ordered polylines and treats their construction as a detection task. It uses ordered polylines and
DETR models to detect 3D structures, outperforming centerpoint-based methods in HD map learn-
ing. MapTR (Liao et al., 2022) proposed a structured end-to-end framework for efficient online HD
map construction. It introduces a permutation-equivalent modeling approach that represents map
elements as point sets with equivalent permutations, improving shape accuracy and learning stabil-
ity. By utilizing hierarchical query embedding, bipartite matching, and loss functions to supervise
geometric structures. BeMapNet (Qiao et al., 2023) is an efficient HD-map modeling method us-
ing piecewise Bézier curves. It integrates geometric priors, models dynamic curves, and applies
multi-level supervision through PCR-Loss. MapTRv2 (Liao et al., 2024b) is an improved version
of MapTR, featuring a structured end-to-end framework with hierarchical query embeddings and
decoupled self-attention to enhance computational efficiency. Additionally, an optimized training
strategy significantly boosts performance and convergence. Pivotnet (Ding et al., 2023) incorporates
both subordinate and geometrical point-line priors into the network. MapVR (Zhang et al., 2023a)
uses differentiable rasterization to improve vectorization accuracy and scalability. It also employs a
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rasterization-based evaluation metric to better detect small deviations and assess map vectorization
performance. GeMap (Zhang et al., 2023b) explicitly models local geometric structures as shape at-
tention and relation attention in the learning process. HiMap (Zhou et al., 2024) provides an efficient
framework with a hybrid representation. A point-element interaction module helps predict precise
point coordinates and element shapes by fusing information from both levels. MapQR (Liu et al.,
2025) proposes a novel online end-to-end map construction method based on scatter-and-gather
queries. Combining with compatible positional embeddings facilitates point-set-based instance de-
tection within DETR architectures. Although most DETR-like frameworks have achieved promising
results, map reconstruction differs from object detection in that it entails richer global structural in-
formation. Yet, this crucial aspect is often overlooked by mainstream approaches.

3 METHOD

3.1 OVERALL ARCHITECTURE OF MAPGR

Our method aims to construct HD map of the surrounding environment through multi-view images
captured by cameras on the vehicles. The map is represented as multiple distinct instances, with each
instance corresponding to a portion of the whole map. For example, an instance may represent a part
of a lane. The combination of all instances forms the complete map. Each instance is represented
as a set of points: P = {(xi, yi)}li=1, where l denotes the number of points used for each lane line
and (xi, yi) denotes the 2D coordinates. Additionally, the instance also contains class information,
such as lane divider, pedestrian crossing, and road boundary. The overall workflow of the proposed
method is shown in Figure 2.

Given the input surrounding images Imgs = {img0, img1, . . . , imgk}, where k denotes the number
of images, typically k = 6 for the nuScenes dataset and k = 7 for the Argoverse 2 dataset. We
first use a 2D image feature extraction network to get the image features and then project the 2D
features into the 3D BEV space using Camera-to-BEV transformation, obtaining the BEV features
Fbev ∈ RC×H×W , where C, H , and W represent the channel dimensions, height, and width of
the BEV features, respectively. We then decode the instance predictions from BEV features with
multi-layer transformer. The proposed GRL and GRG modules are integrated into the Transformer
layer decoding process, facilitating more effective query learning. It can be seen (Figure 2) that our
proposed method has minimal impact on the overall framework, making it a convenient plugin that
can be easily applied to most of the current mainstream frameworks.

3.2 GLOBAL REPRESENTATION LEARNING MODULE

3.2.1 FORMULATION OF QUERY REPRESENTATION LEARNING

Given the multi-view images as inputs for the model, the map construction task seeks to minimize
the discrepancy between the predictions Dpred and the ground truth Dgt:

minDist(Dgt,Dpred), (1)

where Dist(, ) is a distance function used to measure the distance between two inputs. Dgt =

{I0gt, I1gt, . . . , Im−1
gt }, where Iigt is the partitioned instances from the overall gt map. Dpred =

{I0pred, I1pred, . . . , I
n−1
pred}, where Iipred denotes the prediction results of instance query qi. Typi-

cally, n > m to accommodate the varying number of GT samples across different scenarios. The
calculation of the distance between D̄gt and D̄pred involves matching ground truth samples to the
predictions generated by the queries. The objective can be written as:

min
∑

Ii
gt∈Dgt

dist(Iigt, I
π(i)
pred)), (2)

where Iigt and I
π(i)
pred represent the matched pair of a ground truth instance and its corresponding

query prediction. π(i) represents the index of query in the model’s query set Q = {q0, q1, ..., qn−1}
that is successfully matched to Iigt.

In this paper, we argue that learning from the individual instance presents certain limitations. First,
representing each instance as discrete points may result in the loss of fine-grained details. Second,
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the instance generation process may introduces subjective factors, such as the map partition strategy,
that may confuse the model learning. Lastly, instance-level constraints operate at a local scale,
overlooking the global structural information of the map, potentially leading the query learning to
fall into a local optimum.

To address the issues identified in the above analysis, we introduce an auxiliary task focused on
learning a global representation from queries for the map. Rather than concentrating on individual
instance learning, this task involves a function F(·), that jointly processes all the queries Q =
{q1, q2, . . . , qn} and then decoded into a global holistic map prediction Mpred, rather than predicting
local map segments. The process can be expressed as: Mpred = Decode(F(Q)), the predicted map
Mpred is directly supervised by the global GT map Mgt, eliminating the need for instance matching.
The learning objective is to minimize the discrepancy between these two map representations:

minDglobal(Mgt, Decode(F(Q))), (3)

where Dglobal(, ) is a distance measurement function that evaluates the similarity of the overall map.

3.2.2 MODULE DESIGN DETAILS

Global Supervision from GT: To realize the global representation learning in Equation 3, we first
need to obatain the representation for the GT map Mgt. This is achieved by rasterizing the ground
truth map and representing it in the BEV space. Each pixel in the BEV pseudo-image is denoted as
pixel{i,j} ∈ {0, 1}, where i ∈ [0, H − 1] and j ∈ [0,W − 1]. Specifically, pixel{i,j} = 0 indicates
the absence of map element at that location, while pixel{i,j} = 1 signifies the presence of a map
element. We take this binary mask as Mgt in this paper. In practice, we take into account not only
the presence of map elements but also their semantic categories, such as pedestrian crossings and
road boundaries. So the mask is multi-channel, denote as Mgt ∈ RC×H×W , where C represents the
number of classes, with each channel corresponding to a distinct semantic category.

Global Representation Construction from Queries: In a standard DETR-like framework, in-
stance predictions are generated from a set of queries Q, which will be refined through several
transformer decoder layers. Ultimately, each query qki is independently passed through a Multi-
Layer Perceptron (MLP) to produce a prediction for the individual instance. Therefore, to construct
the global representation of the map, it is essential to consider all the queries. In the following, we
provide a detailed description of the global representation construction process.

First, each query feature qki ∈ R1×C is individually projected and reshaped into a small 2D spatial
feature map q̄k

i ∈ R1×h×w using an MLP.

q̄k
i = Reshape(MLP(qki )) (4)

Then, these individual spatial feature maps are concatenated along a new dimension, stacking them
to form a unified tensor Q̄ ∈ Rn×h×w that aggregates information from all n queries.

Q̄ = Concat(q̄1
i , q̄

2
i , . . . , q̄

n
i ) (5)

This aggregated tensor Q̄i is then processed by a lightweight convolutional network ϕ(·) and up-
sampled via bilinear interpolation to match the target BEV resolution (H,W ). This yields the final
predicted global map Mpred ∈ RC×H×W .

Mpred = Upsample(ϕ(Q̄i)) (6)

With both Mgt and Mpred obtained, we choose to apply a standard Binary Cross-Entropy (BCE) loss
between the predicted map Mpred and the ground truth map Mgt to enforce consistency between
them. Thus the Global Representation Learning Loss, Lglobal, is formulated as:

Lglobal = BCE(Mpred,Mgt) (7)

The differences between our proposed global representation learning and the previous DETR-like
approach are illustrated in Figure 3. As depicted,, the previous method operates only on success-
fully matched predictions, with each prediction focusing exclusively on its paired ground truth (GT)
instance during optimization. In contrast, our method propagates gradients to all instance queries in
optimization, as the Lglobal is computed based on all queries.
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(a)

Figure 3: (a) Sampling and matching-based query learning. (b) Global representation aided query
learning. It is evident that not all queries can be matched and obtain gradients. However, by leverag-
ing global embedding to aggregate queries, all queries can obtain gradients derived from the global
distribution prediction.

It should be noted that in MapTR and subsequent methods based on MapTR, each point within
an instance has a distinct point-level query for prediction, i.e., qi = {p0, p1, . . . , pl−1}. In this
scenario, to simplify the above process and reduce computational costs, we compute the mean of
all point query features that belong to the same instance to form one feature representation qi =
Mean(p0, p1, . . . , pl−1).

3.3 GLOBAL REPRESENTATION GUIDANCE MODULE

The estimated Mpred captures the global map information of the current scene. We argue that incor-
porating this global information into individual queries can enhance query learning for the following
reasons: First, incorporating global information allows query learning beyond local perspectives and
steers the optimization process from a more global viewpoint. Furthermore, although global infor-
mation is derived from all individual queries, the global representation estimation model may be able
to infer missing details or reconstruct incomplete regions of the map by leveraging existing predic-
tions. Consequently, the estimated distribution Mpred may encapsulate more information about the
map distribution than a mere aggregation of all queries, which can further support query learning.

We incorporate the global information into individual queries as follows: First, we encode the global
information representation Mpred using a simple MLP:

Fglobal = MLP(Flatten(Mpred)), (8)

where Fglobal is regarded as the map global embedding. Then, we incorporate the encoded global
information into each individual query by concatenating it with every query. An MLP is then used
to fuse the local query with the global information. The process can be expressed as:

qi = MLP(concat([qi, Fglobal])). (9)

Finally, we employ the above query that incorporates global information to perform the final predic-
tion decoding.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Datasets We perform extensive experiments using two publicly available datasets: nuScenes (Caesar
et al., 2020) and Argoverse 2 (Wilson et al., 2023). The nuScenes dataset includes 1000 driving
scenes collected from Boston and Singapore, each approximately 20 seconds long and consisting of
40 keyframes sampled at 2Hz. In line with previous methods (Liao et al., 2022; 2024a; Liu et al.,
2025), we use 700 scenes with 28,130 samples for training and 150 scenes with 6,019 samples for

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

validation. For each sample, the dataset provides 6 perspective images along with corresponding
point clouds from a 32-beam LiDAR. Argoverse 2 consists of 1000 scenes collected from six cities,
each consisting of 15 seconds of 20Hz RGB images from 7 cameras, 10Hz LiDAR sweeps, and a 3D
vectorized map. The dataset is divided into training, validation, and test sets, with 700, 150, and 150
logs, respectively. We mainly focus on three primary categories of map elements: road boundaries,
lane dividers, and pedestrian crossings.

Evaluation Metrics To ensure a fair comparison with previous methods (Liao et al., 2022; 2024a),
we adopt Average Precision (AP) as the primary evaluation metric, following prior works, with
Chamfer distance as the matching criterion. A prediction is deemed True-Positive (TP) only if its
chamfer distance to the ground truth is below a specified threshold. The AP is averaged across two
distance thresholds set: 0.2m, 0.5m, 1.0m for AP1 and 0.5m, 1.0m, 1.5m for AP2. The final mean
AP (mAP) is calculated by averaging the AP scores across three road element types: pedestrian
crossing (APped), lane divider (APdiv), and road boundary (APbou). With the ego-car at the center,
the perception ranges extending from [-15.0m, 15.0m] along the X-axis and [-30.0m, 30.0m] along
the Y-axis.

4.2 IMPLEMENTATION DETAILS

The nuScenes dataset provides images at a resolution of 1600 × 900. For model training and evalua-
tion, we downscale these images by a factor of 0.5. In the Argoverse 2 dataset, the 7 camera images
have varying resolutions: 1550 x 2048 for the front view and 2048 x 1550 for the remaining views.
To standardize the image sizes, we first pad all 7 camera images to 2048 x 2048, then resize them
by a factor of 0.3. Additionally, color jitter is applied to both the nuScenes and Argoverse2 datasets
by default. We adopt AdamW (Loshchilov, 2017) optimizer with weight decay 0.01. The default
training schedule is 24 epochs, and the initial learning rate is set to 6× 10−4 with cosine decay and
cosine annealing schedule.

Unless stated otherwise, we apply the GRL and GRG module on first two layers of the six-layer de-
coder. This is because enforcing global distribution constraints conflicts with the objective of final
convergence. Specifically, while the global constraint encourages a more dispersed query distribu-
tion, effective convergence requires queries to be concentrated around the ground truth. To balance
these effects, we limit the application to the first two layers. The weight ratio between the global
representation learning loss and the query prediction loss is set at 1.0:0.1.

For the MapTR baseline, following the official settings, we employ 50 instance queries to detect
map element instances, with each instance represented by 20 sequential points. The model is trained
with 4 NVIDIA V100 GPUs with a batch size of 4 x 4. For the MapQR baseline, we follow its
settings by employing 100 instance queries to detect map element instances. Our model is trained
on 4 NVIDIA A800 GPUs using a batch size of 4 x 8. We use ResNet50 (He et al., 2016) in all
experiments as the backbone for comparison.

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

Results on nuScenes. We conduct experiments on multiple baselines to assess the effectiveness of
our proposed query global distribution learning strategy for online HD map construction. To ensure
a fair comparison with previous work, we select three baselines: MapTR (Liao et al., 2022), Map-
TRv2 (Liao et al., 2024a), MapQR (Liu et al., 2025) and followed their official experiments setting
unless otherwise specified. As shown in Table 1, our method consistently enhances perfo.mance
across all baselines when integrated as a plug-in module. With MapTR as the baseline, our method
improves mAP1 by 4.2% and mAP2 by over 4.9% after training for 110 epochs, while yielding
gains of 3.9% in mAP1 and 4.2% in mAP2 after 24 epochs. For MapTRv2, our method achieves a
3.9% improvement in mAP1 and 3.5% improvement in mAP2 after 24 epochs, with corresponding
gains of gains 2.5% and 2.4% after 110 epochs. When using MapQR as the baseline, our approach
achieves state-of-the-art performance, achieving a substantial 3.2% improvement in mAP1 and 2.9%
in mAP2 after training for 24 epochs. It ultimately reaches mAP1 of 45.3% and mAP2 of 68.1% on
the nuScenes validation set.

Results on Argoverse 2. In Table 2, we summarize the experimental results on Argoverse 2. All
models were trained for 6 epochs with ResNet-50 as the backbone while keeping the dimensions
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Table 1: Comparison of with state-of-the-art methods on nuScenes validation set. The best results
are highlighted in bold. Grey indicated the reproduced result in our setting, the rest APs are taken
from the papers. “-” means that the corresponding results are not available.
Method Epoch APdiv APped APbou mAP1 APdiv APped APbou mAP2

BeMapNet (Qiao et al., 2023) 30 46.9 39.0 37.8 41.3 62.3 57.7 59.4 59.8
110 52.7 44.5 44.2 47.1 66.7 62.6 65.1 64.8

StreamMapNet (Yuan et al., 2024) 24 42.9 32.3 33.2 36.2 64.1 58.2 59.4 60.6

PivotNet (Ding et al., 2023) 24 41.4 34.3 39.8 38.5 56.5 56.2 60.1 57.6

MapTR (Liao et al.) 24 30.7 23.2 28.2 27.3 51.5 46.3 53.1 50.3
110 40.5 31.4 35.5 35.8 59.8 56.2 60.1 58.7

MapTR + Ours 24 36.2 25.9 31.6 31.2(+3.9↑) 57.1 50.1 56.4 54.5(+4.2↑)
110 45.6 34.8 39.4 40.0(+4.2↑) 65.5 60.0 65.1 63.6(+4.9↑)

MapTRv2 (Liao et al., 2024a) 24 40.0 35.4 36.3 37.2 62.4 59.8 62.4 61.5
110 49.0 43.6 43.7 45.4 68.3 68.1 69.7 68.7

MapTRv2 + Ours 24 44.0 39.1 40.3 41.1(+3.9↑) 64.9 64.5 65.6 65.0(+3.5↑)
110 52.3 45.8 45.6 47.9(+2.5↑) 71.3 69.8 72.3 71.1(+2.4↑)

MapQR (Liu et al., 2025) 24 49.9 38.6 41.5 43.3 68.0 63.4 67.7 66.4
110 57.3 46.2 48.1 50.5 74.4 70.1 73.2 72.6

MapQR 24 48.1 36.9 41.2 42.1 66.8 61.9 67.1 65.3

MapQR + Ours 24 51.6 41.3 42.9 45.3(+3.2↑) 69.8 65.8 68.8 68.1(+2.8↑)
110 58.9 48.1 48.8 51.9(+1.4↑) 75.3 70.5 73.6 73.1(+0.5↑)

Table 2: Comparison with SOTA methods on Argoverse 2. Grey indicated the reproduced result in
our setting.

Method APdiv APped APbou mAP1 APdiv APped APbou mAP2

MapTR 40.5 27.9 32.9 33.7 58.7 55.4 59.1 57.8
MapTR + Ours 41.4 29.6 34.8 35.3(+1.6↑) 58.9 57.3 60.4 58.9(+1.1↑)

MapTRv2 48.1 30.5 36.7 38.4 69.1 59.8 65.3 64.7
MapTRv2 + Ours 49.0 32.1 37.8 39.6(+1.2↑) 69.5 61.6 65.8 65.6(+0.9↑)

MapQR 53.6 33.4 39.4 42.1 69.8 60.5 65.0 65.1
MapQR + Ours 53.1 34.6 41.0 42.9(+0.8↑) 69.8 61.8 66.4 66.0(+0.9↑)

consistent with baselines. Our proposed methods consistently outperform the tested baselines. No-
tably, the MapQR-based baseline achieves the highest performance, reaching mAP1 of 42.9% and
mAP2 of 66.0%. Furthermore, compared to MapTR and MapTRv2, our method demonstrates an
approximate 1% performance gain.

4.4 VISUALIZATIONS

Qualitative results in Figure 4 demonstrate that our method consistently improves map prediction
across various driving scenarios compared to previous methods. Notably, in the first and third rows,
our results are more accurate and visually smoother in the mini-roundabout region, better capturing
the road environment. This improvement is particularly evident in the central triangle region of the
first row. Additional visual results comparison are provided in the supplementary material.

4.5 ABLATIONS

Components Ablation: To further demonstrate the effectiveness of the two components in our
method, we conduct an ablation study on GRL and GRG module, as presented in Table 3. The
first row represents the original MapTRv2, which does not incorporate any global information. In
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GTMapGR + OursMapQRMultiview Images MapTRv2

Figure 4: Quantitative comparison between our methods with MapQR and MapTRv2 on the
nuScenes validation dataset.

Table 3: Ablation study of different components. Numbers in parentheses indicate improvement
over the baseline setting.

MapTRv2 GRL GRG APdiv APped APbou mAP2

✓ 59.8 62.4 62.4 61.5
✓ ✓ 63.8 63.0 64.2 63.7 (+2.2)
✓ ✓ ✓ 64.9 64.5 65.6 65.0 (+3.5)

the second row, we introduce global representation learning for the queries. The third row, which
integrates both components, results in further performance improvements.

Ablation on Feature Dimensions in GRL: We analyze the impact of the MLP dimension in Equa-
tion 4 on performance, the results is shown in Table 4. It can be seen that performance drops at low

9
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Table 4: Ablation study on the feature dimension of GRL module.
Dimension 512 2048 8192
mAP2 64.6 65.0 64.2

Table 5: Ablation study on the effect of applying our methods to the first N layers of the decoder.
N APdiv APped APbou mAP2

1 68.36 64.13 68.61 67.03
2 69.78 65.75 68.84 68.12
3 68.75 63.81 68.78 67.11

dimensions due to information loss, and also drops at high dimensions due to overfitting caused by
increased parameters, which limits generalization.

Auxiliary Layers Our methods were applied to queries from layer N like below:

Qi+1 =

{
C(Qoutput

i ), i ≤ N

Qoutput
i , i > N,

(10)

where C denotes the applying our methods, Qoutput
i denotes the Query output from layer i. In this

ablation experiment, we apply our method to the query outputs of the first N layers of the decoder
transformer while keeping the remaining (6 − N) layers unchanged. As shown in Table 5, our
method get best performance when applied on the first two layers.

4.6 EFFICIENCY ANALYSES

In autonomous driving tasks, resources are highly limited, thus imposing stringent efficiency re-
quirements on the model. Consequently, we analyze the impact of introducing the GRL and GCG
modules proposed in this paper on the model’s efficiency. The results is shown in Table 6. The
added GRL and GRG module only brings parameter growth (4–23% depending on baseline) and
1% overhead (≤1.2 ms; see Table 1).

Table 6: Efficiency comparison with baselines.
Methods Parameter FPS
MapTR 47.5M 24.2
MapTR + Ours 58.5M 23.8
MapTRV2 56.1M 19.6
MapTRV2 + Ours 67.1M 19.4
MapQR 225.4M 17.9
MapQR + ours 236.4M 17.7

5 CONCLUSION

In this paper, we propose to leverage the global representation learning from queries to enhance the
quality of map perception. Our method includes a Global Representation Learning (GRL) module,
which aims to learn a global representation from all queries, and a Global Representation Guid-
ance (GRG) module, which utilizes global information to guide the optimization process of local
queries. The proposed approach functions as a plug-and-play module that can be seamlessly inte-
grated into most mainstream methods. Our experimental results demonstrate that incorporating our
method significantly enhances performance without increasing computational cost, and achieves
state-of-the-art results on both the nuScenes and Argoverse 2 datasets. Future research could focus
on developing more effective global representations and supervision strategies for map to further
enhance query learning.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11621–11631,
2020.

Jiacheng Chen, Yuefan Wu, Jiaqi Tan, Hang Ma, and Yasutaka Furukawa. MapTracker: Tracking with Strided
Memory Fusion for Consistent Vector HD Mapping, October 2024. URL http://arxiv.org/abs/
2403.15951. arXiv:2403.15951 [cs].

Wenjie Ding, Limeng Qiao, Xi Qiu, and Chi Zhang. Pivotnet: Vectorized pivot learning for end-to-end hd map
construction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3672–
3682, 2023.
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A APPENDIX

A.1 ANNOUNCEMENT FOR LLM TOOL USAGE IN THIS PAPER

We employed a large language model (Google’s Gemini) as a general-purpose writing assistance
tool during the final stages of manuscript preparation. The precise role of the LLM was confined to
language enhancement, which included refining sentence structure, improving clarity, and checking
for grammatical and typographical errors. All suggestions provided by the LLM were critically re-
viewed, and the authors made the final decisions on all textual modifications. We affirm that no part
of the core research, including the ideation, methodology, and interpretation of results, was gener-
ated by the LLM. All authors have reviewed the final manuscript and assume complete responsibility
for its content and scientific integrity.

A.2 REPRODUCIBILITY STATEMENT

To support the verification and extension of our research, we have made our source code available
in the supplementary materials. The successful reproduction of our results can be guided by the
”Implementation Details” section within the main body of the paper, in conjunction with the ap-
pendix. The appendix provides further essential information, specifically a discussion on ”Gradient
Weakening” and a detailed list of all ”Detail Hyperparameters” utilized.

A.3 FULL DETAILS AND ADDITIONAL RESULTS

Additional Ablation on Loss Weights Ablations about the weight of original detection loss on
affected layeres are presented in Table 7. ω = 0.1 corresponds to appropriate supervision and is
adopted as the default setting.

Table 7: Ablation on layer loss weights
ω APped APdiv APbou mAP2

0.1 67.88 63.82 67.88 66.53
0.3 67.07 61.42 67.46 65.32

Gradient Weakening In scenarios where a conflict occurs between global distribution learning and
map-based object detection—such as encountering gradient explosion—we mitigate the issue by ap-
plying gradient weakening to the processed query. Specifically, we modify the gradient computation
as follows: f(X) = X · (1− c) +Xdetach · c. The Ablation of the c are presented in Table 8.

Table 8: Ablation study of θ used in gradient weakening
θ APdiv APped APbou mAP2

0.9 67.88 63.82 67.88 66.53
0.8 69.21 63.46 67.83 66.83
0.7 67.48 63.14 66.05 65.56

Explanation from Another Perspective Our work can be regarded as a method of incorporating
map structures as prior information into the query. By embedding global information within the
query, we enhance the relative interactions between queries, making it easier to learn associations
between targets. Different from independent object detection, these associations are reflected in the
map structure; for instance, adjacent lane markings typically exhibit smooth curvature transitions,
while neighboring road elements tend to align at endpoints and maintain similar lengths. Addi-
tionally, visualization results indicate that our method produces smoother outputs, further validating
these structural properties.

Can a simple MLP encode a whole image properly In our experiments, the rasterized HD map
is encoded into a 256-dimensional feature vector via an MLP, which we deem sufficient to capture
its key information. To validate this, we conducted a reconstruction experiment (a) on the nuScenes
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dataset. We randomly sampled 2,000 rasterized maps from the training subset of the nuScenes
dataset for training, and 200 maps from the validation subset for evaluation. Reconstruction results
on val set are shown below 6.
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Figure 5: Experiments of MLP-based image encoding and decoding.

More ablation of how global features are generated

We compare three approaches for global feature generation: BEV Segmentation Mask (BSM), Cross
Attention (CA), and our proposed GIG method. Evaluated on the nuScenes validation set as shown
in Table 9, GIG demonstrates superior performance:
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Figure 6: Details of different global information generation approaches.

Table 9: Comparison of using different global representation learning methods
Baseline (w/o global embedding) BSM Based CA Based GIG (Ours)

61.5 62.1 63.6 65.0

Detail Hyperparameters Below Table 10 is the detailed list of hyperparameters adopted for training
MapGR on the nuScenes dataset.

Table 10: Hyperparameters used for training MapGR on nuScenes dataset.

Hyperparameter Value
Learning Rate 6e-4

Batch Size 4 x 8
Optimizer AdamW

Weight Decay 0.01
Learning Rate Scheduler Cosine Annealing

Warm-up Steps 500
Number of Epochs 24 or 110

Dropout Rate 0.1
Number of Queries 100

MapGR Applied Layers 2
Loss Function of GDC BCE

Loss Ratio on Applied Layers 1.0
Ratio of Other Loss on Applied Layers 0.2

Number of Segmentation Classes 3
Gradient Weakening Coefficient 0.8
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Additional Visualization Figure 7 presents a visual comparison between MapQR augmented with
our method, the original MapQR baseline, and MapTRv2.

GTMapQR + OursMapQRMapTRv2Multiview Images

Figure 7: Quantitative comparison between our methods with MapQR and MapTRv2 on nuScenes
dataset.
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