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Abstract

Neurons in the brain use an event signal, termed spike, encode temporal in-

formation for neural computation. Spiking neural networks (SNNs) take this

advantage to serve as biological relevant models. However, the effective encod-

ing of sensory information and also its integration with downstream neurons of

SNNs are limited by the current shallow structures and learning algorithms. To

tackle this limitation, this paper proposes a novel hybrid framework combining

the feature learning ability of continuous-valued convolutional neural networks

(CNNs) and SNNs, named deep CovDenseSNN, such that SNNs can make use

of feature extraction ability of CNNs during the encoding stage, but still process

features with unsupervised learning rule of spiking neurons. We evaluate them

on MNIST and its variations to show that our model can extract and trans-

mit more important information than existing models, especially for anti-noise

ability in the noisy environment. The proposed architecture provides efficient

ways to perform feature representation and recognition in a consistent temporal

learning framework, which is easily adapted to neuromorphic hardware imple-

mentations and bring more biological realism into modern image classification
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models, with the hope that the proposed framework can inform us how sensory

information is transmitted and represented in the brain.

Keywords: spiking neurons, encoding, feature extraction, noisy environment

There are various conventional methods to implement pattern recognition,

such as maximum entropy classifier, naive Bayes classifier, decision trees, sup-

port vector machines and fuzzy control systems Sun et al. (2019); Qiu et al.

(2019). These computational models, despite inspired by neurosciencce in a

way, are lacking several aspects of biological property of neuron system, one be-

ing the presence of spike, which is the fundamental information unit for neural

computation Bengio et al. (2015).

How information is represented in the brain still remains far from under-

standing. On one hand, deep learning provides comprehensive computational

models to encode and extract hierarchically organized features from arbitrary

images. Wen et al. (2016) has adopted convolutional neural networks (CNNs)

for studying some open questions of neuroscience, although, the prediction of

neuronal responses has a good performance, the final output of that CNN mod-

el is bringing dense computations conducted in many layers, which may not

be relevant to the biological underpinnings of information processing in the

brain. On the other hand, there is strong evidence Hung et al. (2005) to believe

that spikes are an optimal way for transmission and information representa-

tion. Unlike neurons in CNNs, which communicate via real values, neurons in

a spiking neural network (SNN) communicate via spikes. Moreover, SNNs are

event-driven as computation in synapses and neurons are triggered by incoming

spikes. SNNs are advantageous to deal with spatio-temporal information pat-

terns through spike-based learning and memory mechanisms Jian & Buonomano

(2009); Buonomano & Wolfgang (2009).

However, typical SNNs are surely at a great disadvantage about feature

extraction because they consist of just only a fully-connected layer with bio-

logically based neurons. In contrast, deep CNNs has a great ability of feature

extraction at the pixel level Lecun et al. (2015), in addition, recent studies show
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that the convolutional filters are similar to the receptive fields of the retinal

neurons Yan et al. (2018); Maheswaranathan et al. (2018). Serre et al. (2007)

explored the visual system using the hierarchical simple cell and complex cell

feedforward model, and showed that there is a high resemblance of the feature

extraction process between the model and biological brain. Nevertheless, the

previous model Serre et al. (2007) does not fully account for the recognition in

a biological realistic way.

Therefore, CSNN Xu et al. (2018) and S1C1-SNN Yu et al. (2013) try

to construct hierarchical cognitive models to address the pattern recognition

tasks in a biologically plausible way. They both adopt one layer based feature

extractor, which means the feature extraction ability is still limited compared

to deeper and more complex structures. There still exist big challenges about

robust pattern recognition that demands the invariant representation of visual

features and training methods.

In such kind of feature encoding and representation rules, only spatial in-

formation is obtained and transmitted, and it is not able to represent spatial-

temporal information. Spatial-temporal feature encoding mechanisms and ef-

fective training methods remain as open problems, which are not only key ways

for rapid visual recognition tasks Hung et al. (2005) in neural systems, but also

important solutions to achieve highly efficient pattern recognition in dynamic vi-

sual scenes Orchard et al. (2015). For examples, they adopt supervised training

rule (Tempotron) to adjust the parameters of the models, where after presenting

an input example, each neuron receives its specific error signal to update the

weights. Compared to unsupervised learning rules, updating parameters by su-

pervised learning rules means involving tremendous labeled training samples. It

is normally a difficult task with high workload to get large size training datasets.

Moreover, it seems unlikely that such a explicit teaching error signal would be

implemented in the brain O’Reilly & Munakata (2000), instead, more evidence

is pointing toward unsupervised learning rules such as spike-timing-dependent

plasticity (STDP) based learning rules Bi & Poo (2012) in neruonal system.

In this paper, we take advantage of the hierarchical model as the funda-
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mental framework. In addition, we adopt spiking neurons to construct the

classifier for making the final decision. The parameters of this deep CovDens-

eSNN model are updated by unsupervised learning rules. As a single neuron

can be regarded as a dynamic arithmetic operation unit R Angus (2010), we

design algebraic transformation on feature to spikes relation, these rules are em-

bedded into our framework to transfer the real-value based features to specific

incoming spatial-temporal spike trains. This structure and functional units are

expected to improve the representation invariance and enhance the information

representation in neuromorphic visual systems which suggests applicability in

heterogeneous biological neural networks.

Furthermore, this paper adopts a novel experimental setting to test the

generalization ability of networks named mixed training-testing method, which

is implemented by two parts: (1), training on clean-datasets, testing on clean-

datasets and noisy-datasets, (2), training on noisy-datasets, testing on clean-

datasets and noisy-datasets. We evaluate the deep CovDenseSNN framework

on the MNIST and its variations, including learning capabilities, robustness to

noisy stimuli and its classification performance. Our model contributes to a bet-

ter understanding of how the brain builds up a feedforward temporal encoding

and learning model based on more biologically feasible principles.

1. Overview of Deep CovDenseSNN Model

The retina is a functional part in the brain and its structures are remarkably

well known. It is widely believed that the retina receives the external stimuli,

and extracts the features through neuronal spikes. It is therefore understood

that information transmitted from retina to brain encodes the visual stimuli at

each specific receptive field.

Inspired by the mechanisms of vision information in biological brain as

shown in Figure 1 (Figure 1 was adopted from Manassi et al. (2013)), we pro-

pose a brain-inspired deep CovDenseSNN model which is a mixture of a partial

CNN and an SNN as shown in Figure 2. This model is a neuromorphic vi-
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Figure 1: Left: A typical hierarchical, feedforward model about how vision forms in human

brain. External stimuli are processed at the retina, proceeds to the LGN, then to V1, V2,

V4 and IT. Decisions about external stimuli are made in the frontal cortex. Center: Lower

visual areas have smaller receptive fields, while neurons in higher areas gradually increasing

receptive field sizes, integrating information over larger and larger regions of the visual field.

Right: Lower visual areas, such as V1, are sensitive to basic features such as edges and lines.

Higher-level neurons pool information over multiple low-level neurons with smaller receptive

fields and code for more complex features.

sual system which consists of the feature extractor part and decision-making

part. The feature extractor part is a partial CNN which acts as the V1-V4

part of visual cortex, which is an interesting sensory area to study neural infor-

mation processing, since its functional organization and structure are relatively

well known. The decision-making part suggests a role which IT (Inferior Tem-

poral) part plays in visual information. The deep CovDenseSNN model is a

unified systematic model with feature extraction, consistent encoding, learning

and readout parts.

1.1. CNN Based Feature Extractor

Focusing on imitating the information processing in visual sensory system,

we use a continuous-valued neuron, partial CNN for extracting features. This

CNN acts as the feature extractor.

For the deep CovDenseSNN model in which the image information is cap-

tured and filtered by the feature extractor within convolutional and pooling

parts. Convolutional layers in this model act as similar to the lateral geniculate
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spike pattern

 CNN (V1-V4 in human brain) SNN (IT part in human brain)

encoding

time window

output

Figure 2: Visual processing in deep CovDenseSNN model. Deep CNN mimics feature ex-

traction from low-level analysis (edges and lines) to complex figural processing (shapes and

objects) and SNN acts as final decision-making classifier.

nucleus (LGN) part of the brain, since the filters in convolutional layers are

believed to mimic how neural processing in the retina of the eyes extract the

important information from external stimuli Krizhevsky et al. (2012). For the

visual system, the LGN is used as the first layer of the cortex to collect infor-

mation from stimuli, after that, the Lateral Cingulate Cortex (LCC) maintains

the dimensions of the features from the local regions in a whole image produced

by the retina.

There is a similarity between the pooling layers in deep CovDenseSNN

model and the roles played by LGN layer. A pooling layer applies a nonlinear

max pooling operation to its input to achieve invariance. Max pooling over

different directions, different scales and different local positions offers contrast

scale invariance, reverse invariance and position invariance, respectively. Yu

et al. (2002) has proposed biophysically plausible implementations of the MAX

operation. Biological evidence Lampl et al. (2004) of neurons performing MAX-

like operation have been found in visual system.

Following the MAX operation, the activation function would trigger the

value of the feature maps produced by the pooling layer. The pixel would more

easily be activated if its value is larger, whereas numerical small ones would be

activated weakly. In this paper, we choose ReLu Jarrett et al. (2010) as CNN’s
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activation function.

1.2. Encoding Mechanisms of Deep CovDenseSNN Model

In deep CovDenseSNN model, we consider the actual values of neurons’

activations to generate spikes. In particular, we choose rate based encoding

rules as our feature to spike transfer mechanism. Each image is presented to

the encoding layer and converted into spatiotemporal pattern. The encoding

rule is essential as a mapping between numerical values and spikes.

The rate based encoding Peter et al. (2013) is used to encode images into

dense spikes, represented as the average number of spikes counting within a tem-

poral encoding window. A higher firing rate gives higher sensitivity. The rate

based encoding always uses dense spikes (the Poisson spike trains) to represent

the neurons’ firing rate. Compared with the temporal encoding which encodes

a pixel to a firing time, rate encoding tends to generate a spike train.

Eq. (1) illustrates the temporal encoding rule which is adopted by CSNN

and S1C1-SNN, Tspike is the firing time which is calculated from time window

T and features A of row pixel. And eq. (2) gives a example about how to

encode a pixel to a spike train in a time window T , generally, the value of the

pixel is treated as firing rate r in a Poisson Distribution and s(t) is a Heaviside

function to denote the spike firing or not. Temporal encoding is a one pixel to

one spike (one to one) rule which uses the accurate firing time to represent a

pixel, compared with that, rate based encoding can be regarded as a one pixel

to many spikes (one to many) rule which uses a spike train to denote a pixel.

Although larger real value would impose higher computational load on

downstream spiking neurons, it has high fault tolerance. For example, if an

image has the Gaussian noise, other encoding rules (temporal encoding, sparse

encoding and so on) may transfer disparate results compared with rate based

encoding, because this rule maps a real value to a spike train and slight noises

would not influence spike patterns drastically.

Tspike = T − T ∗A, (1)
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Encoding

Figure 3: An image (Digit 9) is encoded to spikes via rate based encoding rule.

r =
nspikes
T

=
1

T

∫ T

0

s(t)dt, (2)

s(t) =

0, t ≤ 0,

1, t ≥ 0,
(3)

The activation values are nonlinearly mapped to firing rate of spikes. The

raw images is presented to the network for constant time span in the form of

Poisson-distributed spike trains, with firing rates proportional to the intensity

of the pixels of the pictures.

The deep CovDenseSNN model is capable to extract the basic information

from an input image and encode it to a spatio-temporal spiking pattern. A

sparse representation is obtained through the encoding process as shown in

Figure 3. The x-axis denotes the time window and the y-axis represents the

indices of the neurons firing spikes. This spatio-temporal can translates the

image into a sparse spiking pattern, to some extent, is compatible with the

biological observations in the visual system of the brain.

1.3. SNN Based Classifier

In the SNN part of the deep CovDenseSNN model, we adopt leaky integrate-

and-fire (LIF) neuron model Hu et al. (2013) as this framework’s fundamental

unit. LIF neuron model is adopted in modeling an SNN because of its strong

biology support and effective computation. There are several variants of the

LIF. The simplest and the most widely used variant is the current-based LIF
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model, which is voltage based. The membrane potential V of a LIF neuron is

governed by the following equations.

Cm
dV

dt
= gl(El − V ) + I, (4)

V = Vrest, if V ≥ Vth, (5)

where, Cm denotes membrane capacitance, gl denotes conductance (inverse of

resistance) of the leakage channels, El denotes the equilibrium potential of the

leakage channels, and I denotes total input current. The membrane potential

V (t) of a LIF neuron is weighted sum of postsynaptic potentials (PSP) from all

afferent stimuli.

Unsupervised learning based on Hebb’s rule, is stated informally as: Neu-

rons that fire together, wire together. More formally, an increase in synaptic ef-

ficacy arises from the pre-synaptic neuron’s repeated and persistent stimulation

of the post-synaptic neuron. Spiking Timing Dependent Plasticity (STDP) is a

Hebbian learning rule for SNNs: for two connected neurons, if the pre-synaptic

neuron A always fires within a small time window before the post-synaptic neu-

ron B fires, which means firing of B is correlated with firing of A, then the

strength of the synapse between A and B is increased (long-term potentiation,

LTP); vice versa, so called long-term depression (LTD), as shown in Figure 4.

∆Wij =

M+exp(
tj−ti
τ+ ), if tj < ti (LTP ),

M−exp(
ti−tj
τ− ), if tj > ti (LTD),

(6)

The STDP rule can be described as Eq. (6), where τ+ and τ− control

the ranges of pre-post synaptic intervals which affect synaptic strengthening

(LTP) or weakening (LTD). M+ and M− are the learning rates to determine

the maximum amounts of synaptic changes for LTP and LTD, respectively.

The SNN part is similar to the previous framework Diehl & Cook (2015).As

shown in Figure 5, this figure comes from Diehl & Cook (2015), the SNN com-

poses a layer with excitatory neurons and a layer with inhibitory neurons. The
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Figure 4: The learning window of the STDP rules.

excitatory neurons are connected to inhibitory neurons through one-to-one con-

nections and each inhibitory neuron is connected to all excitatory neurons, but

apart from the one which receives a connection from. This connectivity provides

lateral inhibition and leads to competition among excitatory neurons.

2. Experimental Results

In this section, we evaluate deep CovDenseSNN model on three benchmark

datasets: basic MNIST Lecun et al. (1998), background MNIST Larochelle et al.

(2007) and background-random MNIST Larochelle et al. (2007) as shown in

Figure 6. For convenience, their names are abbreviated as basic, bg and bg-rand,

respectively. Each dataset consists of 28x28 grayscale images of handwritten

digits from 0 to 9 and the dataset is divided into two parts: training set (50,000

training samples) and test set (10,000 test samples).

In order to show the networks’ generalization ability in the noisy environ-

ment caused by bg and bg-rand MNIST, we divide the sizes of the training set

and test set to verify that deep CovDenseSNN can achieve better performance

on small-size training sets than other cognitive models. For examples, when the

training samples are 500 and the test samples are 100, which means we choose
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Lateral Inhibition

Excitatory Neurons

Inhibitory Neurons

Input Features

Figure 5: Network architecture of the SNN part in deep CovDenseSNN.

basic

bg

bg-rand

Figure 6: MNIST and its variations.

the 500 training samples from the whole 50,000 training samples randomly and

they are evenly distributed in ten classes. All of the experimental results are

obtained from ten independent replicates.

The training method of this deep model follows two steps: Firstly, training

a full CNN with the Stochastic Gradient Descent (SGD) algorithm such as the

Backpropagation (BP). After that, only the convolutional and pooling layers of

the trained CNN are kept, while the fully-connected layers are discarded. Then,

training the SNN part of the model according to the unsupervised rule (STDP).

During the training phase of the SNN, parameters of the CNN are fixed.
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2.1. Experimental Settings

The experiments are conducted on a server equipped with two-processor

Intel(R) Xeon(R) Core CPU and two NVidia GeForce GTX 1080Ti GPUs. The

operating system is Ubuntu 16.04. We use Tensorflow and Brain Dan & Brette

(2008) for training and testing the proposed deep CovDenseSNN model.

For basic, bg and bg-rand MNIST datasets, we trained a CNN as the feature

extractor and adopted its convolutional and pooling layers as feature extractor.

Its architecture is 6C6@28x28-12C5-24C5-P and the SNN architecture which has

been described above. The partial CNN in deep CovDenseSNN model consists

of several convolutional and pooling layers as the aforementioned description.

Furthermore, in order to alleviate the overfitting Qi et al. (2019) in SNN, espe-

cially when the training samples are limited and noisy. We adopt two different

SNN sizes, to be specific, when the training samples are less than 10,000, the

excitatory neurons and inhibitory neurons are 100 respectively. And when the

training samples are equal or greater than 10,000, the excitatory/inhibitory

neurons in SNN are 400. Besides the CNN size, the SNN part in the proposed

system is also changeable according to the size of training samples.

2.2. Evaluation of Hierarchical Structures

The CNN part of deep CovDenseSNN model consists of convolutional and

pooling layers, channels of convolutional kernels will produce multifarious fea-

ture maps. The scale of the partial CNN can be adjusted according to the size

of the training datasets. We compare the proposed deep CovDenseSNN model

with one fully-connected layer based SNN named Un-stdp Diehl & Cook (2015)

to show that the hierarchical structures can extract more important informa-

tion which is helpful for a robust training of the SNN. From the structure of the

convolutional feature maps, the CNN can extract a higher degree of abstract

features than the Un-stdp.

As shown in Figure 7, for both networks, we train them on basic MNIST

and test the performance on its corresponding test sets. We observe that the
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Table 1: Classification accuracy (%) of Un-stdp on clean/noisy MNIST test sets.

train basic basic basic

test basic bg bg-rand

500/100 76.0 12.3 11.2

2500/500 82.0 13.4 12.6

5000/1000 88.0 14.8 13.2

10000/2000 90.4 15.7 15.2

deep CovDenseSNN model can achieve better classification accuracies than Un-

stdp in all cases except the case that training samples are 5000 and test sam-

ples are 1000, but the disparity is not significant between deep CovDenseSNN

(86.2%) and Un-stdp (88.0%). Furthermore, when training samples are limited

(500, 1000), the gap of accuracies between deep CovDenseSNN and Un-stdp is

big. The deep CovDenseSNN can achieve 82.0% and 85.5% when the training

samples are 500 and 1000, meanwhile, the Un-stdp only has 76.0% and 79.0%,

respectively. But the gap is closing with the samples of training set increasing. It

is reasonable that our framework is a hierarchical structure compared to Un-stdp

(one fully-connected layer), the hierarchical system can extract more important

information which is helpful for training the following classifier. With the train-

ing samples increasing, the accuracies of deep CovDenseSNN have some slight

fluctuations and peaks at 92.2% when trained on a training set with 40,000 sam-

ples, and the result of Un-stdp is 90.6%. Although the gap between Un-stdp

and deep CovDenseSNN is closing, the presented deep CovDenseSNN model

behaves better than Un-stdp as a whole.

From the Figure 7, we can conclude that the proposed deep CovDenseSNN

model has strong robustness on different sizes of training sets. And the Un-stdp

cannot perform well if the training samples are limited. In addition, we trained

Un-stdp on clean datasets (basic) and test it on basic, bg and bg-rand MNIST,

the results are reported in Table 1, all of the classification accuracies from the

noisy test sets (bg and bg-rand) are poor (below 16.0%). And the performance
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Figure 7: Test accuracy (%) of basic MNIST from deep CovDenseSNN and Un-stdp.

from the clean test set (basic) is significantly better (from 76.0% to 90.4%)

within the different sizes of training samples than those from the the noisy test

tests. It leads to another conclusion, although neurons from SNNs are more

biological than artificial neurons from ANNs, the noise immunity of the whole

network also depends on the other factors such as hierarchical structures.

2.3. Comparison of Training Methods Between Supervised and Unsupervised

Learning Rules

To show the advanced unsupervised training method and feature extraction

ability adopted by deep CovDenseSNN, we implement and compare our deep

CovDenseSNN model with the other two hierarchical networks S1C1-SNN Yu

et al. (2013) and CSNN Xu et al. (2018) which were trained by supervised

training rule.

S1C1-SNN is an SNN based visual system which chooses gabor filter and

max operation as feature extractor, CSNN is also a neuromorphic image classifi-

cation framework. Since they are both novel hierarchical SNN based framework,
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Table 2: Comparison of training methods and feature extraction ability between S1C1-SNN

(unsupervised training) and CSNN (supervised training)and deep CovDenseSNN (unsuper-

vised training). Each single table cell has three classification accuracies from S1C1-SNN

(Left), CSNN (Center) and deep CovDenseSNN (Right).

Traing basic

Test basic bg bg-rand

500/100 75.0/81.0/82.0 30.0/27.0/11.0 19.0/38.0/9.3

1000/200 78.5/87.0/85.5 29.0/26.0/12.5 14.5/23.5/12.2

5000/1000 77.3/84.7/86.2 32.4/23.5/14.6 15.6/25.9/12.3

10000/2000 77.4/86.1/91.4 31.3/22.3/16.2 12.3/24.0/13.4

40000/8000 76.0/83.8/92.2 29.2/34.7/33.3 14.3/24.4/25.6

Traing bg

Test basic bg bg-rand

500/100 45.0/43.0/52.0 28.0/60.0/26.0 15.0/64.0/30.0

1000/200 58.0/47.0/52.6 34.0/33.5/31.0 15.5/38.5/37.5

5000/1000 64.5/52.2/52.7 25.6/39.8/33.3 12.2/40.6/44.8

10000/2000 60.2/52.9/52.4 19.8/41.8/48.1 10.8/39.9/44.9

40000/8000 59.2/52.6/53.5 20.2/39.6/52.2 11.3/41.6/59.6

Traing bg-rand

Test basic bg bg-rand

500/100 21.0/9.0/12.0 20.0/44.0/20.0 20.0/62.0/40.4

1000/200 19.0/24.0/11.5 21.0/34.5/33.2 15.5/42.5/43.6

5000/1000 10.9/27.3/17.5 14.8/29.4/39.2 12.2/39.0/47.3

10000/2000 11.4/23.3/45.6 15.4/27.2/49.0 12.4/39.2/52.1

40000/8000 9.8/21.5/61.3 13.1/26.3/60.5 11.6/37.0/66.4
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besides comparing the classification performance on basic MNIST, we adopt an

experimental setting to test the generalization ability of networks named mixed

training-testing method which consists of two parts: (1), training the networks

on clean-datasets, testing the performance on clean-datasets and noisy-datasets,

(2), training them on noisy datasets, testing the performance on clean and noisy

datasets. These conditions are expected to help test the different degree of gen-

eralization ability. Hence, there are 9 cases: training set is basic MNIST, test

sets are basic, bg and bg-rand MNIST and so on.

Test accuracies of all 9 conditional cases are show in Table 2. The left result

in the table cell is the classification accuracy from S1C1-SNN, the middle one is

from the CSNN and the right figure is from our proposed model the deep Cov-

DenseSNN. From this table, we can observe that when the training set is clean

(basic), the test accuracies of the deep CovDenseSNN are significant better than

those from the other two models. For example, when they are all trained on

basic MNIST and tested on its corresponding test set, the deep CovDenseSNN

reaches nearly 87.5% no matter how the size of the dataset changes, compared

to that, S1C1-SNN and CSNN only achieve about 77% and 86% which depend

on the amount of the training samples obviously. The other two cases training

on basic MNIST and testing on bg and bg-rand MNIST report the similar re-

sults, although in a few conditionals, S1C1-SNN and CSNN perform better than

deep CovDenseSNN, by and large the deep CovDenseSNN behaves better than

the other two networks. Because the SNNs in S1C1-SNN and CSNN are fully

connected, and the SNN in our proposed framework has more complex structure

and different connection types (excitatory and inhibitory mechanisms), although

they are trained via supervised learning rules the Tempotron.

As for training on noisy datasets (bg and bg-rand MNIST), the perfor-

mance gap between the deep CovDenseSNN and the other two models is large.

From Table 2, we can see that when the training size is limited, the deep Cov-

DenseSNN achieves significant better accuracies than S1C1-SNN and CSNN.

For example, the accuracy from deep CovDenseSNN is 52.0% when adopting

500 bg MNIST training samples and testing on basic MNIST, meanwhile the
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figures from the S1C1-SNN and CSNN are just 45.0% and 43.0%, respectively.

Furthermore, the gap is closing with the increase of training samples. When

training set is bg MNIST, these three models nearly behave the same. When

the training set is bg-rand MNIST, the deep CovDenseSNN still perform ro-

bustly and better than them. This is due to that the encoding mechanisms of

the S1C1-SNN and CSNN are just temporal encoding rules, compared to rate

based encoding rules of deep CovDenseSNN model, they are poor in noisy en-

vironments. Another important reason why the proposed framework behaves

better is that its structure is more reasonable and deeper than S1C1-SNN and

CSNN. These results also mean that the proper and deep structure is better

than shallow one as mentioned in the aforementioned section. And all test ac-

curacies from the cases trained on noisy datasets (bg and bg-rand MNIST) are

still low except the results from using their corresponding test sets.

From the above experimental results, we observe that although other net-

works such as S1C1-SNN and CSNN are hierarchical systems and they adopt

supervised learning rules to train the classifier, they are still shallow frameworks

and their classification performance lies on various factors. The proposed deep

CovDenseSNN network can behave better in spite of that training a network

via unsupervised learning rules, the deep structure could enhance the feature

extraction ability of the networks. Additionally, the encoding rules of the deep

CovDenseSNN (one-to-many rated encoding) are more suitable than one-to-one

temporal encoding in deep structures, especially when the training set is noisy.

With the advantages of more powerful structures and encoding mechanisms, the

deep CovDenseSNN is a more powerful in feature extractor than the other two

hierarchical models. Furthermore, the proposed framework is trained by the

unsupervised learning rule STDP, which is more biologically plausible.

2.4. Classification Performance Comparison with Other Models

The presented deep CovDenseSNN network achieves good classification on

the MNIST and its variations with the partial CNN made of hierarchical struc-

tures and the SNN trained by unsupervised learning rules. A comparison of

17



Table 3: Comparison of classification accuracy of spiking neural networks on basic MNIST

test set.

Network type Encoding Training rules Training/test Acc (%)

methods samples

S1C1-SNN Yu et al. (2013) Temporal Tempotron (sup.) 500/100 78.0

CSNN Xu et al. (2018) Temporal Tempotron (sup.) 10000/2000 87.0

Spiking RBM Merolla et al. (2011) Rate-based Contrastive divergence (sup.) 60000/10000 89.0

Dendritic Neurons Hussain et al. (2014) Rate-based Morphology learning (sup.) 10000/5000 90.3

Un-stdp Diehl & Cook (2015) Rate-based STDP (unsup.) 40000/8000 90.6

Multi-Net Beyeler et al. (2013) Temporal STDP with calcium (sup.) 2000/1000 91.6

Deep CovDenseSNN Rate-based STDP (unsup.) 500/100 82.0

Deep CovDenseSNN Rate-based STDP (unsup.) 2000/1000 88.0

Deep CovDenseSNN Rate-based STDP (unsup.) 10000/2000 91.4

SNN based cognitive models for benchmark basic MNIST is shown in Table 3.

We compare our deep CovDenseSNN model to some state-of-the-art models:

S1C1-SNN, CSNN, Spiking RBM Merolla et al. (2011), Dendritic Neurons Hus-

sain et al. (2014), Un-stdp Diehl & Cook (2015) and Multi-layer hierarchical

network Beyeler et al. (2013).

Because the scale of SNN is not fixed, the size of each model is various.

The training and test samples are adjusted according to the network capaci-

ty. Table 3 illustrates the details of test accuracies of the basic MNIST from

the different cognitive models. From this table, we observe that when the train-

ing samples are limited (500 training samples), the deep CovDenseSNN achieves

82.0%, whereas S1C1-SNN only achieves 78% under the same experimental con-

ditionals.

As for CSNN and Multi-Net, they all adopt temporal encoding methods

and supervised learning rules. Due to the limit of the network capacity (300

neurons), CSNN only achieves 87.0% on 10000 training-sample datasets. Multi-

Net performs best in all items and gets 91.6% classification with only 2000

training samples.

Other models such as Spiking RBM, Dendritic Neurons and Un-stdp can

achieve 89.0%, 90.3% and 90.6% under the different sizes of training samples,

respectively. The reason why they perform well lies in the fact that they either
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adopt supervised learning rules or employ large number of training samples.

Although the deep CovDenseSNN model cannot get the best performance

(91.4%) compared to result from Multi-Net (91.6%), it can behave well on small-

size training sets. Compared to supervised learning rules adopted by Multi-Net,

deep CovDenseSNN is trained by unsupervised which is widely believed to close

to the nature of neural computation in the brain. And the Multi-Net holds a

large quantity of parameters (71,026 neurons) than deep CovDenseSNN holds

(the maximum 800 neurons, the minimum is 200 neurons), more parameters

means higher cost at computation power, storage, network bandwidth, power

consumption and so on. Besides, the proposed framework can behave better

with the increase of training samples which benefit by the scalability of its

structure.

3. Conclusion

n this paper, our ConvDenseSNN: a hybrid spike-based learning framework

uses a continuous valued CNN for feature extraction and an SNN for classi-

fying is proposed. This recognition model combines feature extraction ability

of CNNs and biological plausibility of SNNs. With the help of the feature ex-

traction, robust encoding mechanisms and unsupervised learning rules (STDP),

this visual system can encode the external stimuli (images) to spatiotemporal

patterns. These advantages also make the whole system become more robust

especially in the noisy environment. We show the performance of the present-

ed network applied to MNIST and its variations is comparable to the other

novel cognitive models: S1C1-SNN, CSNN, spiking RBM, Dendritic Neurons,

Un-stdp and Multi-Net, but computed in a more efficient way. We argue that

the structure and learning methods adopted by deep CovDenseSNN can help

to extract more important features and lead to train a more robust cognitive

model and efficient recognition.

It would also be beneficial for implementations of neuromorphic chips with

the aid of its structure. Furthermore, this work proposes a more biological
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realistic framework which could be applied into pattern recognition tasks such

as image classification, with the hope that this model can help us understand

how the mammalian neocortex is performing computations especially in high-

level vision task.
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