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Abstract

Randomized controlled trials (RCTs) often exhibit limited inferential efficiency
in estimating treatment effects due to small sample sizes. In recent years, the
combination of external controls has gained increasing attention as a means of
improving the efficiency of RCTs. However, external controls are not always
comparable to RCTs, and direct borrowing without careful evaluation can introduce
substantial bias and reduce the efficiency of treatment effect estimation. In this
paper, we propose a novel influence-based adaptive sample borrowing approach that
effectively quantifies the “comparability” of each sample in the external controls
using influence function theory. Given a selected set of borrowed external controls,
we further derive a semiparametric efficient estimator under an exchangeability
assumption. Recognizing that the exchangeability assumption may not hold for all
possible borrowing sets, we conduct a detailed analysis of the asymptotic bias and
variance of the proposed estimator under violations of exchangeability. Building on
this bias-variance trade-off, we further develop a data-driven approach to select the
optimal subset of external controls for borrowing. Extensive simulations and real-
world applications demonstrate that the proposed approach significantly enhances
treatment effect estimation efficiency in RCTs, outperforming existing approaches.

1 Introduction

Randomized controlled trials (RCTs) are regarded as the gold standard for estimating treatment
effects, as randomization effectively eliminates confounding bias [1, 2, 3]. However, their infer-
ential efficiency is often limited by small sample sizes, due to high costs and lengthy recruitment
periods [4, 5, 6, 7]. To address this challenge, there has been growing interest in novel clinical trial
designs that leverage external real-world datasets containing only control arms, referred to as external
controls, to improve treatment effect estimation in RCTs. For example, in digital marketing, platforms
may combine small-scale A/B test data with historical single-arm user behavior logs to enhance infer-
ence [8]. In medical research, oncology trials often incorporate historical control data to strengthen
causal conclusions [9]. Similarly, rare disease studies frequently augment small randomized trials
with matched external controls from disease registries to improve statistical power [10].

To fully exploit external controls, most studies rely on the exchangeability assumption, which
posits that the distribution of potential outcomes under control remains invariant between RCTs
and external controls when conditioned on baseline covariates [11, 12, 13, 14, 15]. However, the
exchangeability assumption requires that individuals in both RCTs and external controls follow the
same pattern between the covariates and the potential outcome under control, which may be less
plausible in real-world applications due to individual heterogeneity [16, 17, 18]. In practice, external
controls usually have significantly larger sample sizes than RCTs and often exhibit greater individual
heterogeneity [13, 14, 19]. When some individuals in the external controls display patterns that differ
from those in the RCTs, the exchangeability assumption is violated and leads to biased conclusions.
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In this paper, we aim to improve treatment effect estimation in RCTs by adaptively borrowing
external controls without relying on the exchangeability assumption. The key lies in (a) measuring
the “comparability” of each sample in the external controls for treatment effect estimation, thereby
distinguishing between comparable and non-comparable samples, and (b) defining and identifying
the optimal set of comparable samples.

For the first goal (a), we propose an influence-based adaptive sample borrowing approach. Specifically,
We employ the influence function [20, 21] to quantify how each external control sample perturbs
the outcome model fitted on the RCT’s control group, yielding influence scores that reflect the
comparability of each sample in external controls. Intuitively, a sample with a smaller influence score
has less impact on the outcome model in the RCT and is therefore considered more comparable.
Including such samples in the RCT can effectively increase the control group’s sample size without
introducing bias. In contrast, a higher influence score suggests that including the sample would
substantially affect the outcome model, thereby introducing bias into the treatment effect estimation.
Using ranked influence scores, we construct nested candidate subsets of external control samples.

For the second goal (b), we begin by deriving the semiparametric efficient estimator [22] that combines
RCT data with an arbitrary candidate set of external control samples under the exchangeability
assumption. Such an estimator minimizes the asymptotic variance among all regular estimators
and is often considered optimal [23, 24] under the given assumptions. We establish the consistency
and asymptotic normality of the proposed estimator. Then, recognizing that the exchangeability
assumption may not hold for all candidate external control samples, we analyze the asymptotic bias
and variance of the proposed estimator under violations of exchangeability. Finally, to determine the
optimal external control samples for treatment effect estimation, we propose a data-driven approach
that minimizes the estimator’s mean squared error. The main contributions are summarized as follows.

• We reveal the limitations of existing approaches for estimating treatment effects by combining
RCT data with external controls.

• We propose an influence-based sample borrowing approach, which can effectively quantify the
comparability of each sample in the external controls.

• We develop a data-driven approach to select the optimal subset of external control samples based
on the MSE of the proposed estimator.

• We conduct extensive experiments on both simulated and real-world datasets, demonstrating that
the proposed approach outperforms the existing baseline approaches.

2 Related Work
There has been an increasing amount of research in settings where RCT data are augmented with
external controls to improve efficiency in estimating treatment effects since [25], termed external
control, historical control, or history borrowing in related literature. Under the exchangeability
assumption (or its analog) for the potential outcome under control, several approaches [11, 13, 26]
have been proposed to estimate treatment effects in RCTs using external controls. However, the
exchangeability assumption may be less plausible in practice due to individual heterogeneity. As
a result, combining the RCT data and external controls directly will lead to bias. To address the
issue, various methods have been developed, including matching and bias adjustment [27], power
priors [28], meta-analytic predictive priors [29], and conformal prediction [30]. More recently,
a state-of-the-art approach proposed by [16] revealed the limitations of previous approaches and
developed an adaptive lasso-based borrowing approach, which borrows a comparable subset of
external controls through bias penalization. Unlike these studies, we propose a novel influence-based
sample borrowing approach that utilizes influence functions to quantify the perturbation effect of
each external control sample on the outcome model in the RCT controls. This enables the derivation
of individual-level influence scores that capture the compatibility of external controls. Also, we
develop approaches for borrowing the optimal subset of external controls. In this sense, our approach
complements existing methodologies.

Beyond combining RCT data with external control data, there are many other settings for data
combination [14, 15, 31, 32, 33]. For example, one can combine RCT (or experimental) data with
external data that contain only covariates [34, 35]. In such settings, the goal is typically to generalize
the causal effect from the RCT to the external population, rather than to improve causal effect
estimation within the RCT itself. Another common setting involves combining RCT data with
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confounded observational data that suffer from unobserved confounders [36, 37]. In addition, several
studies have combined multiple datasets for causal inference [15, 38, 39]. When combining multiple
datasets, it is important not only to consider which identifiability assumptions to adopt in order to
improve causal effect estimation, but also to address how to preserve privacy. Unlike these studies
that either use the entire external dataset or do not use external data at all, our method performs
individual-level selection of external data.

3 Preliminaries

Let X ∈ X ⊂ Rp denote the observed pre-treatment covariates and Y ∈ Y ⊂ R the outcome of
interest. The binary treatment indicator is A ∈ {0, 1}, where A = 1 indicates treatment and A = 0
indicates control. Under the potential outcomes framework [40, 41], each individual has two potential
outcomes Y (0) and Y (1), corresponding to control and treatment, respectively. We maintain the
stable unit treatment value assumption [42], the observed outcome is Y = (1−A)Y (0) +AY (1).

Suppose we have access to RCT data and external control data (external controls) containing only
control samples. The RCT data and external controls are denoted by

{Xi, Ai, Yi, Ri = 1, i ∈ E} and {Xj , Aj = 0, Yj , Rj = 0, j ∈ O},
where R is a data source indicator: R = 1 corresponds to the RCT data E and R = 0 to the
external controls O. Let NE and NO denote the sample sizes of the RCT data and external controls,
respectively. Let P(· | R = 1) and P(· | R = 0) represent the population distributions of the RCT
data and external controls, respectively, and let E denote the expectation under P.

The causal estimand of interest is the average treatment effect (ATE) in the RCT population, which is
defined as τ = E[Y (1)− Y (0) | R = 1]. For identification, we invoke the common assumption in
the causal inference [43, 44].

Assumption 1 (Strong Ignorability for RCT Data) (a) A ⊥⊥ {Y (0), Y (1)} | (X,R = 1); (b)
0 < e1(x) ≜ P(A = 1 | X = x,R = 1) < 1 for all x, where e1(x) is the propensity score.

Assumption 1(a) suggests that given the covariates X , treatment A is independent of the potential
outcome Y (a). This implies that confounding between A and Y can be eliminated by conditioning
on X . Assumption 1(b) ensures that individuals with X = x have a positive probability of receiving
treatment. Assumption 1 is inherently satisfied in RCTs due to the randomization mechanism. Under
Assumption 1, τ can be identified based only on the RCT data,

τ = E[µ1(X)− µ0(X) | R = 1],

where µa(X) = E[Y | X,A = a,R = 1] for a = 0, 1, are the outcome models in the RCT data.

When only RCT data are available, the semiparametric efficient estimator of τ under Assumption 1 is

τ̂aipw =
1

NE

∑
i∈E

Ai{Yi − µ̂1(Xi)}
ê1(Xi)

− (1−Ai){Yi − µ̂0(Xi)}
1− ê1(Xi)

+ {µ̂1(Xi)− µ̂0(Xi)},

where µ̂0(x), µ̂1(x), and ê1(x) are estimates of µ0(x), µ1(x), and e1(x), respectively. This is
the classical augmented inverse probability weighting (AIPW) estimator, widely studied in prior
work [45, 46, 47, 48, 49]. The estimator τ̂aipw serves as an asymptotically unbiased benchmark for τ .
Nevertheless, estimating τ using only the RCT data often lacks efficiency due to small sample sizes,
resulting from high costs, long recruitment periods, and ethical or feasibility constraints. This paper
aims to improve the estimation efficiency of τ by fully leveraging external controls.

4 Motivation

To leverage external controls, most studies [11, 12, 14] rely on the exchangeability assumption [50].

Assumption 2 (Exchangeability) R ⊥⊥ Y (0) | X in P.

Assumption 2 states that the conditional mean of Y (0) is identical between the RCT data and external
controls, i.e., E[Y (0) | X = x,R = 0] = E[Y (0) | X = x,R = 1]. This establishes a connection
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(a) (b)

Figure 1: Borrowing behavior comparison of different approaches in a synthetic example. (a) The
borrowed samples of the adaptive lasso-based borrowing approach [16]. (b) The borrowed samples
of the proposed influence-based borrowing approach. The influence-based approach identifies a set
of samples with highly comparable. Details of the synthetic example can be found in Section 7.

between RCT data and external controls. Under this assumption, we can use the entire external
controls to improve the treatment effect estimation in RCTs [13, 51].

However, the exchangeability assumption is usually implausible in practice due to individual het-
erogeneity. Thus, directly integrating external controls without proper scrutiny can lead to biased
estimates. To mitigate this issue, a state-of-the-art approach has been proposed by Gao et al.
(2025) [16] to find the optimal subset of external controls for integration to improve treatment effect
estimation in RCTs. In this section, we provide a brief overview of this approach and analyze its
limitations, thereby motivating this work.

Specifically, Gao et al. (2025) [16] introduced a vector of bias parameter b0 = (b1,0, . . . , bNO,0
) for all

j ∈ O, where bj,0 = E(Yj | Xj , R = 0)−E(Yj | Xj , Aj = 0, R = 1) := µ0,O(Xj)−µ0(Xj). The
bias parameter b0 quantifies the difference in conditional mean outcomes between external controls
and RCT’s controls. The authors treated external control samples with zero bias as “comparable”
and aimed to identify such unbiased samples from the pool of external controls. Specifically, let
b̂j,0 = µ̂0,O(Xj)− µ̂0(Xj) be a consistent estimator for bj,0 and let b̂ = (b̂1,0, ..., b̂NO,0

) be an initial
estimator for b0. Then, they obtained an sparse estimator of b0 via optimizing the adaptive lasso loss:

b̃ = argmin
b

(b̂− b)TΣ̂−1
b (b̂− b) + λ

∑
j∈O

|bj,0|
|b̂j,0|ν

 , (1)

where Σ̂b is the variance estimate of b̂, (λ, ν) are two tuning parameters. Finally, they borrowed
external control samples with estimated zero bias.

To better understand the borrowing behavior of the adaptive lasso-based approach, we conduct a
simulation using a simple synthetic dataset (see Section 7 for details). As shown in Figure 1(a), where
green points denote the external control samples borrowed by the adaptive lasso-based approach, we
observe that this approach exhibits several limitations:

• Suboptimal comparability: As shown in Figure 1(a), the samples (marked in green) borrowed
by the adaptive lasso-based approach may exhibit patterns that differ substantially from those in
the RCT’s controls, resulting in suboptimal comparability. Intuitively, the adaptive lasso-based
approach borrows samples with small values of b(x) := µ0,O(x)− µ0(x), where b(x) represents
an average discrepancy that overlooks individual-level heterogeneity in the neighborhood of x.
Consequently, the approach may include samples with high variability (even picking out several
outliers), simply because their mean outcomes are close to those in RCT’s controls.

• Sensitivity to outliers: The final estimator b̃ heavily depends on the estimate of µ̂0,O(x), which
is learned using all samples from the external controls. When outliers are present in the external
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controls, the estimate of µ̂0,O(x) may become biased, introducing estimation errors for individual
samples and exacerbating non-comparability issues.

These limitations greatly hinder the effective use of external controls, limiting their potential to
improve the efficiency of treatment effect estimation in RCTs. Thus, developing an improved data
borrowing methodology is essential.

5 Adaptive Sample Borrowing via Influence Function

In this section, we propose a novel influence-based borrowing approach designed to more effectively
incorporate external controls, thereby enhancing the efficiency of treatment effect estimation.

The key lies in how to measure the comparability of each external control sample to the RCT’s controls.
We formalize this problem by asking the counterfactual: how do the parameters of the outcome model
of the RCT’s controls change if we add an external control sample? If the model parameters show
minimal change, the sample can be considered comparable and suitable for borrowing.

Denote C = {Xi, Ai = 0, Yi, Ri = 1, i ∈ E} as the RCT’s controls, and NC is the sample size.
Given RCT’s controls {Zi = (Xi, Yi), Zi ∈ C}. To train the model µ̂0 (parameterized by θ),
we learn the model parameters by the empirical risk minimizer, θ̂ def

= argminθ∈Θ

∑
Zi∈C L(Zi; θ)

where L(Zi; θ) = (Yi − µ̂0(Xi; θ))
2 that is twice-differentiable and convex in θ, and λ > 0

controls regularization strength. For an added external control sample z = (x, y), we denote the
modified parameters as θ̂+z , which is obtained by retraining the model after adding z as θ̂+z

def
=

argminθ∈Θ

∑
Zi∈C∪z L(Zi; θ). Then, we can obtain the influence score of the external control

sample z on loss over RCT’s controls,

IF loss(z)
def
=

∑
Zi∈C

|L(Zi, θ̂+z)− L(Zi, θ̂)|, (2)

The influence score IF loss(z) measures the actual influence of z. A large value of IF loss indicates
that z has a significant impact on the model µ̂0.

However, retraining the model for each added z is prohibitively slow and expensive. Fortunately,
instead of retraining the model, the influence function gives an approximation of how much the model
changes when external control samples are added to the RCT data [52]. The main idea behind the
influence function is to weight the external control sample z by infinitesimal steps ϵ to produce new
model parameters θ̂ϵ,z

def
= argminθ∈Θ N−1

C
∑

Zi∈C L(Zi, θ) + ϵL(z, θ). A classic result [21, 52]
tells us that the influence of upweighting z on the parameters θ̂ is given by

Iparams(z)
def
=

dθ̂ϵ,z
dϵ

∣∣∣∣∣
ϵ=0

= −H−1

θ̂
∇θL(z, θ̂), (3)

where Hθ̂

def
= N−1

C
∑

Zi∈C ∇2
θ̂
L(Zi, θ̂) is the Hessian matrix. Then, the influence of adding an

external control sample z on the prediction loss of a single sample Zi ∈ C can be expressed in a
closed-form expression by applying the chain rule, as follows,

Iloss(z, Zi)
def
=

dL(Zi, θ̂ϵ,z)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θL(Zi, θ̂)
⊤ dθ̂ϵ,z

dϵ

∣∣∣∣∣
ϵ=0

= −∇θL(Zi, θ̂)
⊤H−1

θ̂
∇θL(z, θ̂).

(4)
According to Eq. (4), Iloss(z, Zi) is equivalent to “the first-order derivatives of the model parameters θ̂
at Zi” multiplied by “the parameter change when we add the external control sample z”. Furthermore,
we can quantify the total influence of an external control sample z on the entire RCT’s controls as the
influence score, which is given as,

IF loss(z) ≈
∑
Zi∈C

∣∣∣∇θL(Zi, θ̂)
⊤H−1

θ̂
∇θL(z, θ̂)

∣∣∣ (5)

For all external control samples {Zj = (Xj , Yj), j ∈ O}, we can calculate the influence score set
{IF loss(Zj), j ∈ O} according to Eq. (5). The influence scores measure the comparability of each
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external control sample. The proposed adaptive data-borrowing method is based on the influence
scores and consists of two main steps:

Step 1. Based on the ranking of influence scores, we construct a series of nested subsets of external
controls, where each subset comprises the top-K most comparable samples (i.e., the top-K samples
with the smallest influence scores).

Step 2. Find the optimal K that minimizes the mean square error (MSE) of the estimator based on
the RCT data and the selected top-K external controls. This method will be detailed in Section 6.

Unlike the adaptive lasso-based approach, the influence-based approach does not rely on modeling
µ0,O(x). In addition, it is noteworthy that the influence score is defined at the individual level, and
the influence score for each point is unaffected by other points in the external controls. As a result, it
is robust to outliers in external controls. As shown in Figure 1(b), the proposed method effectively
selects the top-K points (in red) that are close to the RCT controls, while remaining robust to outliers
in the external controls.

6 Improved Estimation by Leveraging of Borrowed External Controls

In this section, based on the ranking of influence scores, our goal is to select the optimal subset of
external controls that minimizes the mean squared error (MSE) of the proposed estimator.

Let S ⊆ O be a subset of O borrowed by the influence function, and NS is the sample size. For ease
of presentation, we denote PS as the combined population that PS(· | R = 1) and PS(· | R = 0)
denote the distributions of RCT data and borrowed external controls. The expectation operator of PS
is denoted by ES . For clarity, we summarize the nuisance parameters in Table 1 that are utilized in
the following theory analysis, and all of them can be identified from the observed data.

In subsection 6.1, we construct the estimator of τ by combining the RCT data E and the borrowed
set S, under the weaker version of Assumption 2 (Assumption 3 below). In subsection 6.2, we first
analyze the bias and variance of the estimator under the violation of Assumption 3, and then select
the optimal K that minimizes the corresponding MSE.

6.1 Fused Estimator Based on Exchangeability for Borrowed External Controls

To fully utilize the borrowed data, we aim to derive the semiparametric efficient estimator of τ , which
is regarded as optimal since it achieves the semiparametric efficiency bound—yielding the smallest
asymptotic variance under standard regularity conditions [22, 23]. To construct the semiparametric
efficient estimator, we typically first derive the efficient influence function and the semiparametric
efficiency bound based on the available data and assumptions.

Assumption 3 (Exchangeability for Borrowed External Controls) R ⊥⊥ Y (0) | X in PS .

Assumption 3 is analogous to, but weaker than, Assumption 2, differing only by replacing P with
PS . This implies that the outcome regression functions for Y (0) given covariates are the same in E
and S, that is, ES [Y (0) | X,R = 1] = ES [Y (0) | X,R = 0]. Assumption 3 is plausible when S is
appropriately selected by the influence function. As shown in Figure 1(b), the RCT controls (blue
points) and the selected external controls (red points) are close, and follow a similar distribution,
supporting the plausibility of Assumption 3.

Lemma 1 Under Assumptions 1 and 3, the efficient influence function of τ is

ϕ =
π(X)

q

{
RA(Y −m1(X))

eS(X)
− (1−A)(Y −m0(X))

1− eS(X)

}
+

R

q
{m1(X)−m0(X)− τ},

where eS(X), π(X), m1(X), and m0(X) are defined in Table 1 and q = PS(R = 1). The associated
semiparametric efficiency bound for τ is Var(ϕ).

Lemma 1 presents the efficient influence function of τ under Assumptions 1–3. Based on it, we can
construct the estimator of τ as follows

τ̂S =
1

NE +NS

∑
i∈E∪S

π̂(Xi)

q

{
RiAi(Yi − m̂1(Xi))

êS(Xi)
− (1−Ai)(Yi − m̂0(Xi))

1− êS(Xi)

}
+
Ri

q
{m̂1(Xi)−m̂0(Xi)}.
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Table 1: Nuisance parameters in τ̂aipw and τ̂S .
Nuisance parameters Description
e1(X) = P(A = 1 | X,R = 1) = PS(A = 1 | X,R = 1), propensity score in E
µa(X) = E(Y | X,A = a,R = 1) = ES(Y | X,A = a,R = 1) outcome regression function in E
π(X) = PS(R = 1 | X) sampling score in E ∪ S
eS(X) = PS(A = 1 | X) = e1(X)π(X), propensity score in E ∪ S
ma(X) = ES [Y | X,A = a], outcome regression function in E ∪ S

Note that by definition, µ1(X) = m1(X) but µ0(X) ̸= m0(X).

where π̂(x), ê1(x), m̂a(x) are estimates of π(x), e1(x),ma(x) for a = 0, 1, and êS(x) = ê1(x)π̂(x).

Lemma 2 Under Assumptions 1 and 3, if ||ê1(x)− e1(x)||2 · ||m̂a(x)−ma(x)||2 = oP(n
−1/2) and

||π̂(x)− π(x)||2 · ||m̂a(x)−ma(x)||2 = oP(n
−1/2) for all x ∈ X and a ∈ {0, 1}, then τ̂S satisfies

√
NE +NS(τ̂S − τ)

d−→ N (0, σ2), where σ2 is the semiparametric efficiency bound of τ , and d−→
means convergence in distribution.

Lemma 2 establishes the consistency and asymptotic normality of the estimator τ̂S . In addition, it
shows that τ̂S is semiparametric efficient, provided that the nuisance parameters are estimated at a
convergence rate faster than n−1/4. These conditions are common in causal inference and are easily
satisfied using a variety of flexible machine learning methods [53].

6.2 Find the Optimal Borrowed Set

In Section 6.1, given a borrowed set S, we construct the semiparametric efficient estimator τ̂S by
combining data from E and S. However, the proposed estimator τ̂S relies on the key Assumption 3,
which may not hold for all choices of S.

When Assumption 3 is violated, τ̂S is no longer a consistent estimator of τ and yields a bias.
Intuitively, selecting S involves a bias-variance trade-off: increasing the sample size in S tends to
reduce variance but may also introduce “non-comparable” samples, thereby increasing bias. The
proposed approach is based on the bias-variance analysis of τ̂S .

Theorem 1 (Bias-Variance Analysis) Under Assumption 1 only, if ||ê1(x)− e1(x)||2 · ||m̂a(x)−
ma(x)||2 = oP(n

−1/2) and ||π̂(x)− π(x)||2 · ||m̂a(x)−ma(x)||2 = oP(n
−1/2) for all x ∈ X and

a ∈ {0, 1}, then τ̂S satisfies
√
NE +NS{τ̂S − τ − bias(τ̂S)}

d−→ N (0, σ2), where σ2 = Var(ϕ), ϕ
is defined in Proposition 1, and bias(τ̂S) = ES [Rq {µ0(X)−m0(X)}].

Theorem 1 extends Lemma 2 by allowing Assumption 3 to be violated. When Assumption 3 holds, the
bias term vanishes, and Theorem 1 reduces to Lemma 2, with the asymptotic variance σ2 achieving
the semiparametric efficiency bound for τ under Assumptions 1–3. In contrast, when Assumption 3
is violated, bias arises and is proportional to the expectation of µ0(X)−m0(X), and the asymptotic
variance σ2 retains the same form but is no longer the semiparametric efficiency bound.

Based on Theorem 1, we propose to select the optimal S that minimizes the MSE of τ̂S from
the candidate sets when Assumption 3 is violated. Specifically, the MSE of the estimator τ̂S is
MSE(τ̂S) = bias2(τ̂S) + var(τ̂S). We estimate the bias using τ̂S − τ̂aipw and estimate the variance
using the sample variance of ϕ̂, where ϕ̂ is the estimate of ϕ obtained by substituting the nuisance
parameters with their estimated values. Our goal is to find the optimal subset S defined by

S∗ = arg min
Sk∈S

MSE(τ̂Sk
),

where S = {Sk : k = 1, ..., NO}, Sk denotes a subset of external controls corresponding to the top-k
smallest influence scores, NO is the sample size of external controls.

Importantly, the proposed selection strategy for S∗ does not rely on Assumption 2 or 3, nor does it
impose any restrictions on the distribution of the external controls. Therefore, our method exhibits
high applicability across a variety of settings. RCT data typically have relatively small sample
sizes, as their collection is often time-consuming and costly, and further limited by the inclusion
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criteria set by the experimenter [54]. In comparison, external controls are observational, more
readily available, and often drawn from larger and more diverse sources, exhibiting greater individual
heterogeneity [13, 19, 55]. As a result, it is inevitable that some individuals (or outliers) in the
external controls will exhibit patterns that differ significantly from those of the RCT controls. In this
case, the adaptive lasso-based approach can only achieve sub-optimal performance (as discussed in
Section 4), whereas our proposed method can effectively accommodate such scenarios.

7 A Synthetic Example

To better analyze the borrowing behavior of the proposed influence-based borrowing approach, we
first compare it with the adaptive lasso-based borrowing approach [16] on a simple synthetic dataset.

Yrt = 2Xrt + ϵrt, Yec = −1 + 2.5Xec + ϵec,

where Xrt, Xec ∼ U(0, 2), and ϵrt ∼ N(0, 0.22), ϵec ∼ N(0, 0.52). The Xrt, Xec is the 1-dimensional
covariates. And the external controls contain five outlier samples.

As shown in Figure 1, the adaptive lasso-based approach proposed by [16] achieves only suboptimal
comparability and is sensitive to outliers. This suggests that relying solely on the conditional
mean difference may not be an optimal strategy for identifying comparable samples. In contrast,
the proposed influence-based borrowing approach achieves better performance by employing the
influence function theory to quantify the comparability of each external control.

8 Experiments

To demonstrate the effectiveness of the proposed approaches, we conduct experiments on three
datasets, including two synthetic datasets and a real-world dataset. Experimental details (e.g.,
parameter settings), are provided in the Appendix C.

8.1 Experimental Setup

Simulation Study. We generate synthetic datasets to mimic both RCTs and external controls, with
each observation characterized by d = 8 dimensional covariates X . The synthetic datasets consist of
NE = 400 samples with Nt = 300 in the treated group and Nc = 100 in the control group, while
the external control dataset includes NO = 800 samples. The treatment assignment A for the RCTs
is completely at random. Following [16], we designed two data-generating mechanisms: a linear
outcome model (denoted as "Linear") and a nonlinear outcome model (denoted as "Nonlinear").

As outlined in Table 2, for the “Linear” mechanism, we simulate the RCTs baseline covariates
Xrt ∼ N(µ1, σ

2
1) and the external controls baseline covariates Xec ∼ N(µ2, σ

2
2). Here, µ1 ̸= µ2,

with |µ2 − µ1| quantifying the magnitude of covariate shift between the two groups. The standard
deviation σ2 > σ1 reflects greater heterogeneity in the external controls compared to the RCTs.
We initially set µ1 = 0, σ1 = 1 and µ2 = 0.1, σ2 = 2. The coefficient ∆β1 ∼ U([0.8, 1.2]d)
characterizes the structural differences in outcome models between the external controls and the RCTs.
δ and T constitute the effect of concurrency bias, in which Ti, i ∈ O, is simulated by taking values
of (0, 1, 2) with probability 1/3 and δ represents the level of inconcurrency, where we set δ = 0.1.
Similarly, for the “Nonlinear” mechanism, X̃rt ∼ N[−2,2](µ1, σ

2
1) and X̃ec ∼ N[−4,4](µ2, σ

2
2), both

follow a truncated normal distribution. The ∆β2 characterizes the structural differences and δ̃
represents the level of inconcurrency. We set ∆β2 ∼ U([0.8, 1.2]d) and δ̃ = 1.0.

Table 2: Simulation settings: model choices (linear and nonlinear).

generate mechanism parameters

Linear Yrt = βT
1 Xrt +AαT

1 (1, Xrt) + ϵrt,
Yec = (β1 ·∆β1)

TXec + δ · T + ϵec,
β1 ∼ U([−1, 1]d), ϵrt ∼ N(0, 1.02)

ϵec ∼ N(0, 1.52)

Nonlinear Yrt = a · exp{βT
2 X̃rt +AαT

2 (1, X̃rt)}+ ϵ̃rt,

Yec = a · exp{(β2 ·∆β2)
T X̃ec}+ δ̃ · T + ϵ̃ec,

β2 ∼ U([−1, 1]d), ϵ̃rt ∼ N(0, 1.02)
ϵ̃ec ∼ N(0, 2.02)
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Real-Data Application. In addition to synthetic datasets, we also utilize two real-world datasets from
the National Supported Work (NSW) program (RCTs) [56] and the Population Survey of Income
Dynamics (PSID) (external controls) [57]2. The NSW dataset consists of NE = 345 samples with
Nt = 185 in the treated group and 260 in the control group, where we randomly selected Nc = 80
samples as the control group, while the PSID dataset includes NO = 123 samples. The NSW program
investigates whether providing intensive job training and supported work experience could improve
employment outcomes for economically disadvantaged populations. This dataset contains a treatment
indicator (i.e., the training program, A: 1 for treated, 0 otherwise), demographic covariates ( age,
education years, race indicators), Socioeconomic variables (marital status, education attainment), and
earnings (1974, 1975, and 1978 outcomes). We take the earnings in 1978 as the interesting outcome
Y . The external control dataset, PSID, is used for external comparison with the NSW dataset, which
includes the same 10 columns as the NSW dataset, with all observations representing untreated
individuals (A = 0 for all individuals).

Baselines and Evaluation metrics. We compare our proposed influence-based approach (τ̂if) with
the following baselines in the above datasets. (a) the augmented inverse probability weighting (AIPW)
estimator without borrowing (τ̂aipw) [58] (based only on the RCT data); (b) the AIPW estimator with
full borrowing (τ̂full) [13]. (c) the AIPW estimator with adaptive lasso-based borrowing approach
(τ̂lasso) [16]. We report three evaluation metrics, including standard deviation (std), bias, and mean
squared errors (MSE), with detailed definitions provided in Section 6.2.

8.2 Results

The adaptive lasso-based approach assesses the comparability of external control samples based on the
magnitude of bias b, where a smaller bias indicates stronger comparability, and vice versa. In contrast,
the influence-based approach evaluates comparability using influence scores, with smaller scores
reflecting stronger comparability. By ranking bias b, we can identify the Top-K most comparable
external control samples borrowed by the adaptive lasso-based approach. Similarly, by ranking
influence scores, we can identify the Top-K most comparable external control samples borrowed by
the proposed influence-based approach.

(a) Linear (Synthetic Data) (b) Nonlinear (Synthetic Data) (c) NSW & PSID (Real-World Data)

Figure 2: Comparison of performance of different approaches at different Top-K.

Sample Borrowing Behavior Analysis. Figure 2 presents the changes in MSE when borrowing
different Top-K samples. First, we can find that the full borrowing approach τ̂full is invariant across
Top-K. It has a larger MSE than other approaches as it integrates the biased external controls for
estimation. Second, the proposed τ̂if consistently achieves a lower MSE than the adaptive lasso-based
approach τ̂lasso. This is attributed to the better comparability of the external control samples borrowed
by the proposed approach. Third, increasing Top-K leads to an initial decrease (or flattening) in
MSE, followed by an upward trend, which indicates that our approach effectively prioritizes the more
comparable external control samples, compared to the adaptive lasso-based approach.

Performance Comparison. To thoroughly evaluate the validity of the proposed approach, we
present detailed experimental results in Table 3, including estimated standard deviations and biases
across different Top-K values. We can find the following conclusion. First, due to the biases of the
external controls, the full borrowing estimator τ̂full is significantly different from τ̂aipw, leading to

2This data is available at https://users.nber.org/~rdehejia/nswdata2.html
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Table 3: Comparison of our approach (τ̂if), τ̂aipw, τ̂full and τ̂lasso on three datasets, with standard
deviation (std) and |bias| as evaluation metrics.

Linear Top-K=10 Top-K=50 Top-K=100 Top-K=150 Top-K=200 Top-K=250 Top-K=300
std |bias| std |bias| std |bias| std |bias| std |bias| std. |bias| std |bias|

τ̂aipw 0.1075 - 0.1075 - 0.1075 - 0.1075 - 0.1075 - 0.1075 - 0.1075 -
τ̂full 0.0912 0.0951 0.0912 0.0951 0.0912 0.0951 0.0912 0.0951 0.0912 0.0951 0.0912 0.0951 0.0912 0.0951
τ̂lasso 0.0994 0.0082 0.1032 0.0964 0.1031 0.0965 0.1022 0.0698 0.1039 0.0851 0.1023 0.0665 0.1006 0.0784
τ̂if 0.0963 0.0005 0.0902 0.0075 0.0841 0.0185 0.0819 0.0240 0.0808 0.0307 0.0807 0.0252 0.0808 0.0251

Nonlinear Top-K=10 Top-K=50 Top-K=100 Top-K=150 Top-K=200 Top-K=250 Top-K=300
std |bias| std |bias| std |bias| std |bias| std |bias| std |bias| std |bias|

τ̂aipw 0.2232 - 0.2232 - 0.2232 - 0.2232 - 0.2232 - 0.2232 - 0.2232 -
τ̂full 0.1862 0.4492 0.1862 0.4492 0.1862 0.4492 0.1862 0.4492 0.1862 0.4492 0.1862 0.4492 0.1862 0.4492
τ̂lasso 0.2093 0.0130 0.2124 0.0318 0.2218 0.0648 0.2236 0.1192 0.2202 0.1350 0.2270 0.1370 0.2280 0.1709
τ̂if 0.2090 0.0179 0.2117 0.0312 0.2136 0.0459 0.2153 0.0485 0.2165 0.0602 0.2152 0.0595 0.2128 0.1028

NSW & PSID Top-K=10 Top-K=15 Top-K=20 Top-K=25 Top-K=30 Top-K=35 Top-K=40
std |bias| std |bias| std |bias| std |bias| std |bias| std |bias| std |bias|

τ̂aipw 0.0134 - 0.0134 - 0.0134 - 0.0134 - 0.0134 - 0.0134 - 0.0134 -
τ̂full 0.0149 0.0226 0.0149 0.0226 0.0149 0.0226 0.0149 0.0226 0.0149 0.0226 0.0149 0.0226 0.0149 0.0226
τ̂lasso 0.0142 0.0119 0.0144 0.0144 0.0144 0.0152 0.0136 0.0106 0.0140 0.0152 0.0140 0.0174 0.0145 0.0181
τ̂if 0.0131 0.0123 0.0127 0.0063 0.0128 0.0078 0.0130 0.0074 0.0129 0.0026 0.0130 0.0013 0.0132 0.0069

a significantly larger bias. Therefore, we exclude it from further comparisons below. Second, the
proposed τ̂if is closer to the benchmark τ̂aipw with smaller bias compared with all baselines. Third,
the proposed τ̂if has a smaller standard deviation than both τ̂lasso and τ̂aipw. This is attributed to the
high-quality external control samples borrowed by the proposed approach.

(a) Linear, µ2 = 0.2 (b) Linear, µ2 = 0.3 (c) Linear, µ2 = 0.4

Figure 3: Comparison of the performance of different approaches at different covariate shifts.

Sensitivity Analysis. We also conducted experiments to explore the robustness of the τ̂if to different
µ2 (i.e., covariate shift), where we consider µ2 = {0.2, 0.3, 0.4}. As shown in Figure 3, we observe
that: 1) the proposed τ̂if consistently outperforms the adaptive lasso-based approach; 2) as Top-K
increases, MSE tends to decrease and then increase. In addition, we conducted experiments on
different RCT control group sizes. We retain the size of the treatment group, but create different
sub-samples by randomly selecting Ns

c samples from its control group of RCT. In our simulation
study, we consider control group sizes of Ns

c ∈ {70, 80, 90}, while for the real-data application, we
examine a range of Ns

c ∈ {70, 75, 85}. The corresponding results are presented in Appendix B.1.
These results further demonstrate the robustness of the proposed approach τ̂if.

9 Conclusion

In this paper, we first reveal the limitations of existing approaches in borrowing external control sam-
ples for integration in estimating treatment effects. Then, we propose an influence-based borrowing
approach that can overcome these limitations. The proposed approach consists of two key steps:
measuring the “comparability” of each external control sample and identifying the optimal set of
comparable samples. For the first step, we employ the influence function to obtain sample-specific
influence scores. For the second step, we propose a data-driven approach to select the optimal set by
minimizing the estimator’s mean squared error (MSE). A limitation of this work is that computing
the Hessian matrix for the influence function may have a high computational burden for large-scale
models, particularly deep neural networks with millions or even billions of parameters.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: See the abstract and [3-5] paragraphs in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the conclusion (especially the last sentence.)
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: In Section 3 and Section 6.1, we provide a detailed discussion of the adopted
assumptions. Additionally, we present the complete proofs in Appendix A.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 7 and Section 8, we provide a detailed description for the experi-
mental datasets. In addition, we provide the datasets and codes in supplemental material to
ensure easy reproduction of all reported results.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the supplemental material for datasets and codes in a zip file to
ensure easy reproduction of all reported results.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 8 for the detailed description of simulating studies and experimen-
tal details. In Appendix C, we provide the implementation Details. In addition, we provide
the supplemental material for datasets and codes in a zip file to ensure easy reproduction of
all reported results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviations for all experimental results in section 8.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: All experimental results can be easily reproduced on a personal computer.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All experiments are conducted on simulation datasets and publicly available
datasets.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In the first paragraph of Section 1 (Introduction), we outline various potential
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Real-world application is conducted on publicly available datasets.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In Section 8, we provide references for the datasets and the simulation setups
of the data-generating process.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In Section 8, we provide references for the datasets and the simulation setups of
the data-generating process. In addition, we provide the supplemental material for datasets
and codes in a zip file to ensure easy reproduction of all reported results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We don’t use a crowdsourcing service.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is not an important, original, or non-standard component of the core
methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Proofs

Lemma 1. Under Assumptions 1 and 3, the efficient influence function of τ is

ϕ =
π(X)

q

{
RA(Y −m1(X))

eS(X)
− (1−A)(Y −m0(X))

1− eS(X)

}
+

R

q
{m1(X)−m0(X)− τ},

where eS(X), π(X), m1(X), and m0(X) are defined in Table 1 of the main text. The associated
semiparametric efficiency bound for τ is Var(ϕ).

Proof of Lemma 1. Recall that eS(X) = e1(X)π(X), π(X) = PS(R = 1 | X), m1(X) = ES [Y |
X,A = 1], m0(X) = ES [Y | X,A = 0], and e1(X) = P(A = 1 | X,R = 1) = PS(A = 1 |
X,R = 1) is the propensity score in the RCT data.

Let f(x), f(x|r = 1), and f(x|r = 0) represent the density functions of X in the combined data PS ,
RCT data PS(·|R = 1) and selected external data PS(·|R = 0), respectively. Denote f(y0, y1|x) as
the joint distribution of (Y (0), Y (1)) conditional on X = x.

First, we derive the tangent space. The observed data distribution under Assumptions 1 and 3
(R ⊥⊥ (Y (0), Y (1)) | X in PS ) is given as

p(a, x,y, r) = [f(a, y|x)f(x)π(x)]r · [f(a, y|x)f(x)(1− π(x))]1−r

= f(x)×
[
{f1(y|x)e1(x)}a {f0(y|x)(1− e1(x))}1−a

π(x)
]r

[f0(y|x)(1− π(x))]
1−r

where f1(·|x) =
∫
f(y0, ·|x)dy0 and f0(·|x) =

∫
f(·, y1|x)dy1 are the marginal density of Y (1) and

Y (0) given X = x, respectively. Consider a regular parametric submodel indexed by θ given as

p(a, x, y, r; θ) = f(x, θ)×
[
f1(y|x, θ)af0(y|x, θ)1−a

]r × [
e1(x, θ)

a(1− e1(x, θ))
1−aπ(x, θ)

]r
× [f0(y|x, θ)(1− π(x, θ))]

1−r
,

which equals p(a, x, y, r) when θ = θ0. Also, fa(y|x, θ) = fa(y|x, r = 1, θ) = fa(y|x, r = 0, θ)
by Assumption 3. Then, the score function for this submodel is given by

s(a, x, y, r; θ) =
∂ log p(a, x, y, r; θ)

∂θ
= t(x, θ) + ra · s1(y|x, θ) + (1− a) · s0(y|x, θ)

+ r
a− e1(x, θ)

e1(x, θ)(1− e1(x, θ))
ė1(x, θ) +

r − π(x, θ)

π(x, θ)(1− π(x, θ))
π̇(x, θ),

where 
t(x, θ) = ∂f(x, θ)/∂θ

sa(y|x, θ) = ∂ log f1(y|x, θ)/∂θ for a = 0, 1

ė1(x, θ) = ∂e1(x, θ)/∂θ

π̇(x, θ) = ∂π(x, θ)/∂θ

Thus, the tangent space is given as
T = {t(x) + ras1(y|x) + (1− a)s0(y|x)

+ r(a− e1(x)) · b1(x) + (r − π(x)) · b2(x)},
where sa(y|x) satisfies E[sa(Y |X) | X = x] =

∫
sa(y|x)fa(y|x)dy = 0 for a = 0, 1, t(x) satisfies

E[t(X)] =
∫
t(x)f(x)dx = 0, b1(x) and b2(x) are arbitrary square-intergrable measurable function

of x. In addition, sa(y|x) = sa(y|x, r = 1) = sa(y|x, r = 0) according to fa(y|x) = fa(y|x, r =
1) = fa(y|x, r = 0).

Second, we calculate the pathwise derivative of τ . Under the above parametric submodel, the target
estimand τ = τ(θ) can be written as

τ(θ) = E[Y (1)− Y (0) | R = 1]

= ES [Y (1)− Y (0) | R = 1]

=
ES [RY (1)−RY (0)]

PS(R = 1)

=

∫ ∫
π(x, θ)yf1(y|x, θ)f(x, θ)dydx∫

π(x, θ)f(x, θ)dx
−

∫ ∫
π(x, θ)yf0(y|x, θ)f(x, θ)dydx∫

π(x, θ)f(x, θ)dx
.
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By calculation, the pathwise derivative of τ(θ) at θ = θ0 is given as

∂τ(θ)

∂θ

∣∣∣
θ=θ0

=
ES

[
π(X) · ES{Y (1) · s1(Y (1)|X)|X}

]
q

−
ES

[
π(X) · ES{Y (0) · s0(Y (0)|X)|X}

]
q

+
ES

[{
π(X)t(X) + π̇(X)

}
·
{
m1(X)−m0(X)− τ

}]
q

.

Third, we construct the efficient influence function of τ . Let

ϕ =
π(X)

q

[
RA{Y −m1(X)}

eS(X)
− (1−A){Y −m0(X)}

1− eS(X)

]
+

R

q
{m(X)−m0(X)− τ},

where eS(X) = PS(A = 1|X) = PS(A = 1|X,R = 1)PS(R = 1|X) + PS(A = 1|X,R =
0)PS(R = 0|X) = e1(X)π(X), 1− eS(X) = PS(A = 0|X) = (1− e1(X))π(X) + (1− π(X)).

Fourth, we verify that τ is an influence function of τ . This holds if it satisfies the following equation

∂τ(θ)

∂θ

∣∣∣
θ=θ0

= ES [ϕ · s(A,X, Y,R; θ0)], (A.1)

Next, we give a detailed proof of (A.1).

ES [ϕ · s(A,X, Y,R; θ0)] = H1 +H2 +H3,

where

H1 = ES

[{
π(X)

q

RA{Y −m1(X)}
eS(X)

}
· s(A,X, Y,R; θ0)

]
,

= ES

[{
π(X)

q

RA{Y −m1(X)}
eS(X)

}
· s1(Y |X)

]
= ES

[
ES

{
π(X)

q

RA{Y −m1(X)}
eS(X)

· s1(Y |X)
∣∣∣X}]

= ES

[
ES

{
π(X)2

q

e1(X){Y (1)−m1(X)}
eS(X)

· s1(Y (1)|X)
∣∣∣X,G = 1

}]
= ES

[
π(X)

q
ES

{
{Y (1)−m1(X)} · s1(Y (1)|X)

∣∣∣X}]

=
ES

[
π(X) · ES{Y (1) · s1(Y (1)|X)|X}

]
q

= the first term of
∂τ(θ)

∂θ

∣∣∣
θ=θ0

,

H2 = ES

[{
π(X)

q

(1−A){Y −m0(X)}
1− eS(X)

}
· s(A,X, Y,R; θ0)

]
,

= ES

[{
π(X)

q

(1−A){Y −m0(X)}
1− eS(X)

}
· s0(Y |X)

]
= ES

[
π(X)

q

1− eS(X)

1− eS(X)
· ES

{
Y (0) · s0(Y (0)|X)

∣∣∣X}]

=
ES

[
π(X) · ES{Y (0) · s0(Y (0)|X)|X}

]
q

= the second term of
∂τ(θ)

∂θ

∣∣∣
θ=θ0

,
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and

H3 = ES

[{
R

q
{m1(X)−m0(X)− τ}

}
× s(A,X, Y,R; θ0)

]

= ES

[{
R

q
{m1(X)−m0(X)− τ}

}{
t(X) +R

A− e1(X)

e1(X)(1− e1(X))
ė1(X) +

R− π(X)

π(X)(1− π(X))
π̇(X)

}]

= ES

[{
R

q
{m1(X)−m0(X)− τ}

}{
t(X) +

A− e1(X)

e1(X)(1− e1(X))
ė1(X) +

1− π(X)

π(X)(1− π(X))
π̇(X)

}]

= E

[{
π(X)

q
{m1(X)−m0(X)− τ}

}
×
{
t(X) +

1

π(X)
π̇(X)

}]

=
ES

[{
π(X)t(X) + π̇(X)

}{
m1(X)−m0(X)− τ

}]
q

= the third term of
∂τ(θ)

∂θ

∣∣∣
θ=θ0

.

Thus, equation (A.1) holds.

Finally, we show that ϕ is efficient influence function by verifying ϕ ∈ T . Let

t(X) =
π(X)

q
{m1(X)−m0(X)− τ}

s1(Y |X) =
π(X)

q
(Y−m1(X))

eS(X)

s0(Y |X) =
π(X)

q
(Y−m0(X))
1−eS(X)

b2(X) =
m1(X)−m0(X)− τ

1− q
,

then ϕ can be written as

ϕ = t(X) +RAs1(Y |X) + (1−A)s0(Y |X) + (R− π(X))b2(X).

Clearly,
∫
sa(y|x)fa(y|x)dy = 0 for a = 0, 1, and

∫
t(x)f(x)dx = 0, which implies that ϕ ∈ T ,

and thus ϕ is the efficient influence function of τ .

□

Lemma 2. Under Assumptions 1 and 3, if ||ê1(x)− e1(x)||2 · ||m̂a(x)−ma(x)||2 = oP(n
−1/2) and

||π̂(x)− π(x)||2 · ||m̂a(x)−ma(x)||2 = oP(n
−1/2) for all x ∈ X and a ∈ {0, 1}, then τ̂S satisfies

√
NE +NS(τ̂S − τ)

d−→ N (0, σ2), where σ2 is the semiparametric efficiency bound of τ , and d−→
means convergence in distribution.

Proof of Lemma 2. Let Z = (X,A,R, Y ), and denote

ϕ̃(Z;m0,m1, π, e1) =
π(X)

q

[
RA{Y −m1(X)}

eS(X)
− (1−A){Y −m0(X)}

1− eS(X)

]
+

R

q
{m1(X)−m0(X)}

as the non-centralized efficient influence functions of τ , where m0,m1, π, e1 are the nuisance
parameters m0(x),m1(x), π(x), e1(x), respectively. We introduce them for ease of presentation.

Then τ̂ can be written as

τ̂ =
1

NE +NS

∑
i∈E∪S

[ϕ̃1(Z; m̂0, m̂1, π̂, ê1)],
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where (m̂0, m̂1, π̂, ê1) are estimates of (m0,m1, π, e1).

Let n = NE +NS , we decompose τ̂ − τ as

τ̂ − τ = U1n + U2n,

where

U1n =
1

n

∑
i∈E∪S

[ϕ̃(Zi;µ0, µ1, π, e1)− τ ],

U2n =
1

n

∑
i∈E∪S

[ϕ̃(Zi; µ̂0, µ̂1, π̂, ê1)− ϕ̃(Zi;µ0, µ1, π, e1)].

Note that U1n is a sum of n independent variables with zero means, and its variance equals V∗/n,
where V∗ is the semiparametric efficiency bound. By the central limit theorem, we have

√
nU1n

d−→ N(0,V∗),

where d−→ denotes convergence in distribution. Thus, it suffices to show that U2n = oP(n
−1/2). U2n

can be be further decomposed as

U2n = U2n − ES [U2n] + ES [U2n].

By a Taylor expansion for E[U2n] yields that

ES [U2n] = ES [ϕ̃(Z; m̂0, m̂1, π̂, ê1)− ϕ̃(Z;m0,m1, π, e1)]

= ∂[m̂0−m0,m̂1−m1,π̂−π,ê1−e1]ES [ϕ̃(Z;m0,m1, π, e1)]

+
1

2
∂2
[m̂0−m0,m̂1−m1,π̂−π,ê1−e1]

ES [ϕ̃(Z;m0,m1, π, e1)]

+ · · ·

The first-order term

∂[m̂0−m0,m̂1−m1,π̂−π,ê1−e1]ES [ϕ̃(Z;m0,m1, π, e1)]

= ES

[
−1

q

{
R− π(X)(1−A)

1− eS(X)

}
(m̂0(X)−m0(X))

]
+ES

[
1

q

{
R− π(X)RA

eS(X)

}
(m̂1(X)−m1(X))

]
+ES

[1
q

{
RA{Y −m1(X)}

eS(X)
+

(1−A){Y −m0(X)}
1− eS(X)

}
(π̂(X)− π(X))

]
−ES

[π(X)

q

{
RA{Y −m1(X)}

eS(X)2
+

(1−A){Y −m0(X)}
{1− eS(X)}2

}
× e1(X)(π̂(X)− π(X))

]
−ES

[π(X)

q

{
RA{Y −m1(X)}

eS(X)2
+

(1−A){Y −m0(X)}
{1− eS(X)}2

}
× π(X)(ê1(X)− e1(X))

]
= 0.

where the last equation follows from ES [A|X] = eS(X), ES [π(X)A | X] = π(X)e1(X),
E[RA(Y −m1(X))|X] = 0, and E[(1−A)(Y −m0(X))|X] = 0.
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For the second-order term, we get

∂2
[m̂0−m0,m̂1−m1,π̂−π,ê1−e1]

ES [ϕ̃(Z;m0,m1, π, e1)]

= ES

[
1

q

(1−A)

1− eS(X)
(m̂0(X)−m0(X))(π̂(X)− π(X))

]
+ ES

[
1

q

π(X)(1−A)

{1− eS(X)}2
e1(X)(m̂0(X)−m0(X))(π̂(X)− π(X))

]
+ ES

[
1

q

π(X)(1−A)

{1− eS(X)}2
π(X)(m̂0(X)−m0(X))(ê1(X)− e1(X))

]
− ES

[
1

q

RA

eS(X)
(m̂1(X)−m1(X))(π̂(X)− π(X))

]
+ ES

[
1

q

π(X)RA

eS(X)2
e1(X)(m̂1(X)−m1(X))(π̂(X)− π(X))

]
+ ES

[
1

q

π(X)RA

eS(X)2
π(X)(m̂1(X)−m1(X))(ê1(X)− e1(X))

]
+ ES

[
1

q

(1−A)

eS(X)
(π̂(X)− π(X))(m̂0(X)−m0(X))

]
− ES

[
1

q

RA

eS(X)
(π̂(X)− π(X))(m̂1(X)−m1(X))

]
+ ES

[
1

q

(1−A)

{1− eS(X)}2
e1(X)(π̂(X)− π(X))(m̂0(X)−m0(X))

]
+ ES

[
1

q

RA

eS(X)2
e1(X)(π̂(X)− π(X))(m̂1(X)−m1(X))

]
+ ES

[
1

q

(1−A)

{1− eS(X)}2
π(X)(ê1(X)− e1(X))(m̂0(X)−m0(X))

]
+ ES

[
π(X)

q

A

eS(X)2
π(X)(ê1(X)− e1(X))(m̂1(X)−m1(X))

]
= OP

(
||ê1(X)− e1(X)||2 · (∥m̂1(X)−m1(X)||2 + ||m̂0(X)−m0(X)||2)

+ ||π̂(X)− π(X)||2 · (∥m̂1(X)−m1(X)||2 + ||m̂0(X)−m0(X)||2)
)

= oP(n
−1/2),

All higher-order terms can be shown to be dominated by the second-order term. Therefore, ES [U2n] =
oP(n

−1/2). In addition, we get that U2n − ES [U2n] = oP(n
−1/2) by calculating Var{

√
n(U2n −

ES [U2n])} = oP(1). This proves the conclusion.

□

Theorem 1 (Bias-Variance Analysis). Under Assumption 1 only, if ||ê1(x)− e1(x)||2 · ||m̂a(x)−
ma(x)||2 = oP(n

−1/2) and ||π̂(x)− π(x)||2 · ||m̂a(x)−ma(x)||2 = oP(n
−1/2) for all x ∈ X and

a ∈ {0, 1}, then τ̂S satisfies
√
NE +NS{τ̂S − τ − bias(τ̂S)}

d−→ N (0, σ2), where σ2 = Var(ϕ), ϕ
is defined in Proposition 1, and bias(τ̂S) = ES [Rq {m0(X)− µ0(X)}].
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Proof of Theorem 1. By the proof of Proposition 2, if ||ê1(x)− e1(x)||2 · ||m̂a(x)−ma(x)||2 =
oP(n

−1/2) and ||π̂(x)− π(x)||2 · ||m̂a(x)−ma(x)||2 = oP(n
−1/2), we have

τ̂S =
1

NE +NS

∑
i∈E∪S

π(Xi)

q

[
RiAi(Yi −m1(Xi))

eS(Xi)
− (1−Ai)(Yi −m0(Xi))

1− eS(Xi)

]
+

1

NE +NS

∑
i∈E∪S

Ri

q
{m1(Xi)−m0(Xi)}+ oP(n

−1/2).

Note that by definition, µ1(X) = m1(X) but µ0(X) ̸= m0(X). Then, under Assumption 1,

τ = E
[
R

q
{µ1(X)− µ0(X)}

]
= E

[
R

q
{m1(X)− µ0(X)}

]
= ES

[
R

q
{m1(X)− µ0(X)}

]
.

The bias of τ̂S is

ES

[
π(Xi)

q

{
RiAi(Yi −m1(Xi))

eS(Xi)
− (1−Ai)(Yi −m0(Xi))

1− eS(Xi)

}
+

Ri

q
{m1(Xi)−m0(Xi)}

]
− τ

= ES

[
R

q
{m1(X)−m0(X)}

]
− ES

[
R

q
{m1(X)− µ0(X)}

]
= ES

[
R

q
{µ0(X)−m0(X)}

]
.

Therefore,√
NE +NS{τ̂S − τ − bias(τ̂S)}

=
1√

NE +NS

∑
i∈E∪S

π(Xi)

q

[
RiAi(Yi −m1(Xi))

eS(Xi)
− (1−Ai)(Yi −m0(Xi))

1− eS(Xi)

]
+

1√
NE +NS

∑
i∈E∪S

[
Ri

q
{m1(Xi)−m0(Xi)} − ES [

Ri

q
{m1(Xi)−m0(Xi)}]

]
+ oP(1).

This implies the conclusion by central limit theorem.

□
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B Additional Experimental Results

B.1 Sensitivity Analysis on Control-n

To further demonstrate the robustness of the proposed approach τ̂if. We consider different control
group sizes in RCT, in the simulation study, we consider control group sizes of Ns

c ∈ {70, 80, 90}
for “Linear” and “Nonlinear”, while for the real-data application, we examine a range of Ns

c ∈
{70, 75, 85}. The results is shown in the Figure A1, A2 and A3.

(a) Linear, Control-n = 70 (b) Linear, Control-n = 80 (c) Linear, Control-n = 90

Figure A1: Comparison of the performance of different approaches in “Linear” at different Ns
c .

(a) Nonlinear, Control-n = 70 (b) Nonlinear, Control-n = 80 (c) Nonlinear, Control-n = 90

Figure A2: Comparison of the performance of different approaches in “Nonlinear” at different Ns
c .

(a) NSW & PSID, Control-n = 70 (b) NSW & PSID, Control-n = 75 (c) NSW & PSID, Control-n = 85

Figure A3: Comparison of the performance of different approaches in real-data at different Ns
c .

B.2 Sensitivity Analysis on Covariate Shift

To further demonstrate the robustness of the proposed approach τ̂if. We consider different degrees of
covariate shift µ2 = {0.2, 0.3, 0.4} in “Nonlinear” as shown in Figure A4.
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(a) Nonlinear, µ2 = 0.2 (b) Nonlinear, µ2 = 0.3 (c) Nonlinear, µ2 = 0.4

Figure A4: Comparison of the performance of different approaches in “Nonlinear” at different µ2.

C Implementation Details

For real-world data, we train the outcome model of the RCT data or external control through Multi-
Layer Perceptron (MLP). In the estimation phase, the outcome regression µ̂0, µ̂1, and m̂0, µ̂0,O are
modeled using a Multi-Layer Perceptron (MLP), while both the propensity score and selection score
are estimated via logistic regression. As shown in Table A1, it presents the hyperparameter space for
outcome regression µ̂0, µ̂1, and m̂0, µ̂0,O in both simulated and real-world datasets.

Table A1: Implementation Details

Hyperparameter µ̂0 µ̂1 m̂0 µ̂0,O

Learning rate 0.0005 0.0005 0.0005 0.0005

Batch size 32 32 32 32

Architecture 1 hidden layers [16] 2 hidden layers [16,8] 2 hidden layers [16,8] 2 hidden layers [16,8]

Optimizer Adam Adam Adam Adam

Early stopping patience 20 20 20 20

Activation function (all layers) ReLU ReLU ReLU ReLU
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