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Abstract
We study the linear bandit problem that accounts
for partially observable features. Without proper
handling, unobserved features can lead to linear
regret in the decision horizon T , as their influence
on rewards is unknown. To tackle this challenge,
we propose a novel theoretical framework and an
algorithm with sublinear regret guarantees. The
core of our algorithm consists of: (i) feature aug-
mentation, by appending basis vectors that are or-
thogonal to the row space of the observed features;
and (ii) the introduction of a doubly robust esti-
mator. Our approach achieves a regret bound of
Õ(
√
(d+ dh)T ), where d denotes the dimension

of the observed features, and dh represents the
number of nonzero coefficients in the parameter
associated with the reward component projected
onto the subspace orthogonal to the row space
spanned by the observed features. Notably, our al-
gorithm requires no prior knowledge of the unob-
served feature space, which may expand as more
features become hidden. Numerical experiments
confirm that our algorithm outperforms both non-
contextual multi-armed bandits and linear bandit
algorithms depending solely on observed features.

1. Introduction
We consider a linear bandit problem where the learning
agent has access to only a subset of the features, while the
reward is determined using the complete set of features,
including both observed and unobserved elements. Conven-
tional linear bandit problems rely on the assumption that
the rewards are linear to only observed features, without
accounting for the potential presence of unobserved features.
However, in many real-world applications, rewards are often
affected by the unobserved—hence latent—features that are
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not observable to the agent. For example, in online adver-
tising without personalization—i.e., when serving general
users—each advertisement is associated not only with ob-
servable features such as its category, format, or display
time, but also with unobservable factors such as emotional
appeal, creative design quality, and brand familiarity. These
latent factors influence users’ click-through rates, yet they
are not directly quantifiable. Similarly, in clinical trials,
treatment outcomes depend not only on observable features
like dosage and formulation, but also on unobserved fac-
tors such as manufacturing variability and potential side
effect risks. Hence, accurately incorporating latent features
is essential for providing precise recommendations.

To address latent features, Park & Faradonbeh (2022; 2024);
Kim et al. (2023a); Zeng et al. (2025) typically assume that
the true features follow a specific distribution, such as a
Gaussian distribution. Establishing a regret bound sublinear
in the decision horizon without such structural assumptions
on the latent features remains a significant challenge and
has not been accomplished yet. Key challenges in the bandit
problem with partially observable features arise from the
complete lack of information on the latent features. Indeed,
we do not even know whether an agent observes features
partially nor whether we should use the latent features. We
tackle these challenges by proposing a novel linear bandit
algorithm that is agnostic to partially observability. Despite
having no knowledge of the unobserved features, our algo-
rithm achieves a tighter regret bound than both linear bandit
algorithms that consider only observed features and multi-
armed bandit (MAB) algorithms that ignore features entirely.
For brevity, we will refer to linear bandit algorithms relying
solely on observed features as “OLB algorithms” henceforth.
Specifically, our proposed algorithm achieves a

√
T -rate re-

gret bound, without requiring any prior knowledge of the
unobserved features, where T is the decision horizon.

The key idea of our proposed algorithm can be summarized
as the following two procedures: (i) reconstructing feature
vectors via feature augmentation to capture the influence
of unobserved features on rewards, and (ii) introducing a
novel doubly robust estimator to mitigate information loss
due to unobservability. For (i), we decompose the reward
into two additive components: one projected onto the row
space spanned by the observed features, and the other onto
its orthogonal complement. The former term maximally
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captures the effect of observed features, while the latter
minimizes the impact of unobserved features. We then
augment observed features with an orthonormal basis from
the complementary space, which is orthogonal to the row
space of observed features. This formulation enables us
to reformulate the problem within a conventional linear
bandit framework, where the reward function is defined as
a dot product of the augmented features and an unknown
parameter, without any additional additive term.

However, since these augmented features are not identical
to the unobserved features, potential estimation error may
arise due to information loss. To mitigate such errors, we
leverage (ii) a doubly robust estimator, which is widely
used in the statistical literature for its robustness to errors
caused by missing data. These two approaches allow our
algorithm to compensate for missing information due to
partial observability, improving both estimation accuracy
and adaptability to the environment.

Our main contributions are summarized as follows:

• We propose a linear bandit problem with partially ob-
servable features. Our problem setting is more general
and challenging than those in the existing literature
on linear bandits with latent features, which often rely
on specific structural assumptions governing the re-
lationship between observed and latent features. In
contrast, our approach assumes no additional structure
for the unobserved features beyond the linearity of the
reward function, which is commonly adopted in the
linear bandit literature (Section 3).

• We introduce a novel estimation strategy by (i) aug-
menting the features that maximally captures the effect
of reward projected onto the observed features, while
minimizing the impact of unobserved features (Sec-
tion 4), and (ii) constructing a doubly robust (DR)
estimator that mitigates errors from unobserved fea-
tures. By integrating augmented features with the DR
estimator, we guarantee a t−1/2 convergence rate on
the rewards for all arms in each round t (Theorem 2).

• We propose an algorithm named Robust to Latent Fea-
tures (RoLF) for general linear bandit framework with
latent features (Algorithm 1). The algorithm achieves a
regret bound of Õ(

√
(d+ dh)T )

1 (Theorem 3), where
dh is the number of nonzero elements in the parameter
to capture the part of the reward projected onto the
orthogonal complement of the row space of observed
features (Section 4.2). RoLF requires no prior knowl-
edge or modeling of unobserved features yet, to the
best of our knowledge, achieves a sharper regret bound
than OLB and MAB algorithms, as well as existing

1Õ(·) is the Big-O notation omitting logarithmic factors.

methods accounting for partial observability or model
misspecification within the linear bandit framework.

• Our numerical experiments confirm that our algorithm
consistently outperforms OLB (Li et al., 2010; Agrawal
& Goyal, 2013; Kim & Paik, 2019) and MAB (Latti-
more & Szepesvári, 2020) algorithms, validating both
its practicality and theoretical guarantees (Section 6).

2. Related Works
While our setting appears similar to prior works on bandit
problems with (i) model misspecification and (ii) partial
observability, it differs from both lines of research in several
aspects, including the nature of the unobserved features and
the strategies used to address the problem.

First, our problem setting is more general and challeng-
ing than misspecified linear bandit problems, where the
reward model deviates from the true reward due to non-
linearity (Lattimore & Szepesvári, 2020) or additive devia-
tion terms (Ghosh et al., 2017; Bogunovic et al., 2021; He
et al., 2022). While prior works incorporate cumulative mis-
specification error into the regret bound, we obtain a regret
bound that remains unaffected by such deviations. In particu-
lar, Ghosh et al. (2017) employ hypothesis testing for model
selection and obtain regret bound of O(K

√
T log T ) under

high misspecification. In contrast, our algorithm achieves
O(
√
(d+ dh)T log T ) regret without such tests, while han-

dling partial observability in a unified framework.

Second, in bandit problems with partially observable fea-
tures, prior works often rely on structural assumptions.
For example, Park & Faradonbeh (2022; 2024); Kim et al.
(2023a) assume the true features are drawn from a Gaussian
distribution, while Zeng et al. (2025) model them as evolv-
ing according to a linear dynamical system with additive
Gaussian noise, where observed features are generated via
a known linear mapping, also corrupted by Gaussian noise.
These methods typically aim to recover the true features—
via decoders (Park & Faradonbeh, 2022; 2024), Bayesian
oracles (Kim et al., 2023a), or Kalman filtering (Zeng et al.,
2025). In contrast, our approach makes no structural as-
sumptions about the relationship between observed and un-
observed features and does not attempt to recover the latter.
Instead, we mitigate the information loss from partial ob-
servability by projecting the latent part of the reward using
only the observed features. A more detailed and comprehen-
sive literature review is provided in Appendix A.

3. Preliminaries
3.1. Notation

For any n ∈ N, let [n] denote the set {1, 2, . . . , n}. For a
vector v, we denote its L1, L2 and supremum norm by ∥v∥1,
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∥v∥2, and ∥v∥∞, respectively. The L2-norm weighted by
a positive definite matrix D is denoted by ∥v∥D. For two
vectors v1 and v2, the inner product is defined as the dot
product, i.e., ⟨v1,v2⟩ := v⊤

1 v2, and we use both notations
interchangeably. For a matrix M, its minimum and max-
imum eigenvalue are denoted by λmin(M) and λmax(M),
respectively. We let R(M) denote the row space of M, i.e.,
a subspace spanned by the rows of M.

3.2. Problem Formulation

In this section, we outline our problem setting and introduce
several key assumptions. Each arm a ∈ [K] is associated
with a true feature vector za ∈ Rdz that determines the
rewards. However, the agent can observe only a subset of
its elements, with the others remaining unobserved. Specifi-
cally, za is defined as follows:

za :=
[
x(1)
a , · · · , x(d)

a , u(1)
a , · · · , u(du)

a

]⊤
. (1)

For clarity, we highlight the observed components in blue
and the unobserved components in red. Note that the dimen-
sions of the latent feature vector, du = dz − d, and the true
feature vector, dz , are both unknown to the agent. As a result,
the agent is unaware of how many features—if any—are
unobserved, or even whether partial observability exists at
all. This lack of structural information presents a funda-
mental challenge, as it prevents the agent from explicitly
modeling or compensating for the unobserved components
when selecting an appropriate learning strategy.

It is worth noting that the setting with fixed observed fea-
tures2 includes linear bandits with misspecification error
(Ghosh et al., 2017; Bogunovic et al., 2021; He et al., 2022)
as special cases. In Appendix D, we present a setting with
varying observed features and an algorithm that achieves√
T -rate regret bound. Moreover, if latent features were

allowed to change arbitrarily over time, the problem would
become non-learnable and thus ill-posed. Consequently,
assuming fixed features is both natural and well-justified
(see Table 1 for comparisons).

The reward associated with each arm is defined as the dot
product of its true features za and an unknown parameter
θ⋆ ∈ Rdz , given by

ya,t = ⟨za,θ⋆⟩+ ϵt ∀a ∈ [K]. (2)

Here, ϵt, represents a random noise term that captures the
inherent stochasticity in the reward generation process. We
provide an assumption on ϵt, following the assumption com-
monly adopted in bandit problems.

2This assumption is standard in linear bandits with model mis-
specification (Ghosh et al., 2017; Lattimore et al., 2020), which is
a special case of our partially observable feature setting.

Table 1. Summary of problem settings covered in this paper and
the corresponding results. Note that if latent features arbitrarily
change over time, the problem itself would become non-learnable,
making the problem ill-posed (see Appendix D for details).

Observed
Features

Unobserved
Features Learnable? Results

Fixed Fixed Yes Theorem 3
Varying Fixed Yes Theorem 6
Varying Varying No -

Assumption 1 (Sub-Gaussian noise). Let {Ft}t∈[T ] denote
history at round t, represented by a filtration of sigma al-
gebras. The reward noise ϵt is assumed to be a σ-sub-
Gaussian random variable conditioned on Ft. Formally, for
all λ ∈ R,

E[exp(λϵt)|Ft−1] ≤ exp

(
λ2σ2

2

)
.

It follows that E[ϵt |Ft−1] = 0, and E[ya,t |Ft−1] =
⟨za,θ⋆⟩ under this assumption. For brevity, we use Et−1[·]
to denote E[·|Ft−1] henceforth. Given that ϵt is sampled
after each action is observed, ϵt is Ft-measurable. To elimi-
nate issues of scale for analysis, we assume that the expected
reward |⟨za,θ⋆⟩| ≤ 1 for all a ∈ [K], and we do not assume
any bound on the norm of za for all a ∈ [K].

Let a⋆ := argmaxa∈[K]⟨za,θ⋆⟩ denote the optimal action,
considering both observed and latent features, and at denote
an action chosen in round t. The theoretical performance of
our algorithm is evaluated through cumulative regret, which
measures the total expected difference between the reward
of the optimal action and the reward of the chosen action:

Reg(T ) = E

[
T∑

t=1

⟨za⋆
− zat

,θ⋆⟩

]
.

Considering the composition of za defined in Eq. (1), we
can decompose the parameter as θ⋆ = [(θ(o)

⋆ )⊤, (θ(u)
⋆ )⊤]⊤,

where θ(o)
⋆ ∈ Rd and θ(u)

⋆ ∈ Rdu are the parameters for
observed and latent features, respectively. Adopting this
decomposition of θ⋆, the reward yat,t defined in Eq. (2) can
be decomposed into the following three terms:

yat,t = ⟨xat ,θ
(o)
⋆ ⟩+ ϵt + ⟨uat ,θ

(u)
⋆ ⟩. (3)

The last term of Eq. (3) corresponds to the inaccessible
portion of the reward. This reward model is equivalent to
that imposed in the linear bandits with misspecification er-
ror (Lattimore et al., 2020). While the regret bound in Latti-
more et al. (2020) includes misspecification error that grows
linearly in decision horizon, our proposed method (Sec-
tion 4) addresses this misspecification error and achieves a
regret bound that is sublinear in the decision horizon.
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Before presenting our method and algorithm, we first es-
tablish a lower bound for the regret incurred by algorithms
that disregard the unobserved portion of rewards. Specif-
ically, the following theorem establishes a lower bound
for two OLB algorithms: OFUL (Abbasi-yadkori et al.,
2011) and LinTS (Agrawal & Goyal, 2013).

Theorem 1 (Regret lower bound of OFUL and LinTS ignor-
ing latent features). Under partial observability, there exists
a problem instance where both OFUL and LinTS suffer from
cumulative expected regret that grows linearly with T due
to their disregard for the unobserved components.

Sketch of proof. Consider a linear bandit problem with an
action set A := {1, 2}, where the true feature set is de-
fined as Z := {[1, 3]⊤, [2, 19/4]⊤} ⊂ R2 and arm 2 is
the optimal action. The latent portion of each reward is
“large”, in the sense that there exists a constant C > 0 such
that |⟨uat

,θ(u)
⋆ ⟩| = |Et−1[yat,t] − ⟨xat

,θ(o)
⋆ ⟩| > C, fol-

lowing the decomposition described in Eq. (3). Under this
setup, the estimator based solely on observed features is not
consistent, and the OFUL and LinTS select the suboptimal
arm with probability Θ(1). Consequently, the regret grows
linearly in T in both cases.

Theorem 1 implies that neglecting the latent portion of the
reward in decision-making could result in a failure in the
learning process of the agent. The comprehensive proof
is deferred to Appendix E.1. While Theorem 1 focuses
on OFUL and LinTS, which are known to achieve the most
efficient regret bounds for UCB and Thompson Sampling-
based policies within the linear bandit framework, we prove
an algorithm-agnostic lower bound using different analysis
(see Appendix F for details).

4. Robust Estimation for Partially Observable
Features

4.1. Feature Vector Augmentation with Orthogonal
Projection

In the linear bandit framework, accurate estimation of the
unknown reward parameter θ⋆ contributes to optimal deci-
sion making. However, in our problem setting, the learner
lacks access to the latent reward component—namely, the
last term in Eq. (3). Consequently, without any specific treat-
ment to compensate for the absence of θ(u)

⋆ , the agent fails
to accurately estimate θ⋆, resulting in ineffective learning,
as demonstrated in in Theorem 1.

That said, minimizing regret—that is, selecting the optimal
arm—does not require recovering the true reward parameter
θ⋆ entirely; rather, it suffices to estimate the K expected
rewards {z⊤a θ⋆ : a ∈ [K]}. A straightforward approach is
to ignore the features altogether and apply MAB algorithms
such as UCB1 (Auer et al., 2002), which are known to achieve

a regret bound of Õ(
√
KT ). However, these algorithms

tend to incur higher regret than those leveraging features,
particularly when the number of arms is significantly larger
than the dimension of the feature vectors, i.e., K ≫ dz .

To tackle this dilemma, we propose a unified approach
to handle all cases of partially observable features and
efficiently estimate the expected rewards. Let X :=
(x1, . . . ,xK) ∈ Rd×K represent a matrix that concate-
nates the observed part of the true features, and U :=

(u
(u)
1 , . . . ,u

(u)
K ) ∈ Rdu×K represent the matrix that con-

catenates the latent complements of the true features for
each arm. We assume a set of K vectors {x1, . . . ,xK}
spans Rd, without loss of generality.3 We define PX :=
X⊤(XX⊤)−1X as the projection matrix onto the row space
of X, denoted by R(X). Then the vector of rewards for all
arms, Yt = (y1,t, . . . , yK,t)

⊤, is now decomposed as:

Yt =
(
X⊤θ(o)

⋆ +U⊤θ(u)
⋆

)
+ ϵt1K

= PX

(
X⊤θ(o)

⋆ +U⊤θ(u)
⋆

)
+ (IK −PX)

(
X⊤θ(o)

⋆ +U⊤θ(u)
⋆

)
+ ϵt1K

= X⊤
(
θ(o)
⋆ + (XX⊤)−1XU⊤θ(u)

⋆

)
+ (IK −PX)U⊤θ(u)

⋆ + ϵt1K , (4)

where the first term corresponds to the reward projected
onto R(X); while the second term is the projected re-
wards onto R(X)⊥, the subspace of RK perpendicular
to R(X). We write the projected parameter as µ

(o)
⋆ :=

θ(o)
⋆ + (XX⊤)−1XU⊤θ(u)

⋆ .

To handle the second term in Eq. (4), we consider a set of
row vector basis {b⊤

1 , . . . ,b
⊤
K−d} ∈ R(X)⊥, where bi ∈

RK for i ∈ [K − d]. Given the set, there exist coefficients
µ
(u)
⋆,1 , . . . , µ

(u)
⋆,K−d ∈ R to express the reward projection as:

(IK −PX)U⊤θ(u)
⋆ =

K−d∑
i=1

µ
(u)
⋆,i bi. (5)

We denote the number of nonzero coefficients:

dh(b
⊤
1 , . . . ,b

⊤
K−d) := |{i ∈ [K − d] : µ

(u)
⋆,i ̸= 0}|. (6)

Note that dh = 0 for any basis {b⊤
1 , . . . ,b

⊤
K−d} when the

latent feature space is completely included in the observed
feature space, i.e., R(U) ⊆ R(X). In this case, (IK −
PX)U⊤ = 0K×du , which means that the projected rewards
onto R(X)⊥ can be linearly expressed by the observed
features. If R(U) ⊇ R(X), on the other hand, then dh =
K − d for any basis {b⊤

1 , . . . ,b
⊤
K−d}.

3When d > K, we can apply singular value decomposition on
X to reduce the feature dimension to d̄ ≤ K with R(X) = d̄.
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Figure 1. Illustration comparing OLB algorithms and our approach
in estimating rewards of K = 3 arms. OLB algorithms find es-
timates within R(X) thus accumulating errors from unobserved
features. However, our approach utilizes projection of the latent

reward, b⊤θ̂
(u)

t , onto the orthogonal complement of R(X), en-
abling reward estimation in RK . Note that θ̂t is the estimator of
the parameter for observed features.

q1

q3

Et−1[Y]

R(X) q2

X⊤θ̂t

(a) OLB algorithms: Estima-
tion confined to R(X)

q1

q3

Et−1[Y]

q2R(X)

b⊤θ̂
(u)
t

X⊤θ̂t

(b) Ours: Projection onto or-
thogonal complement

In the other cases, the quantity dh depends on the choice
of the basis {b⊤

1 , . . . ,b
⊤
K−d}, and tends to be smaller

when a larger portion of R(U) can be expressed within
R(X). For any choice of the basis, our algorithm achieves
Õ(
√
(d+ dh)T ) regret without prior knowledge of dh,

which does not exceed Õ(
√
KT ) regret bound achieved

by MAB algorithms ignoring features. Further details are
provided in Section 5.2.

Let us define µ⋆ as [(µ
(o)
⋆ )⊤, (µ

(u)
⋆ )⊤]⊤ ∈ RK , where

µ
(u)
⋆ = [µ

(u)
⋆,1 , . . . , µ

(u)
⋆,K−d]

⊤, then the reward for each
a ∈ [K] can be modified as follows:

ya,t = e⊤a Y

= e⊤a [X
⊤ b1 · · ·bK−d]µ⋆ + ϵt

= [xa e⊤a b1 · · · e⊤a bK−d]µ⋆ + ϵt.

(7)

The decomposition in Eq. (7) implies that Eq. (4) takes the
form Yt = [X⊤ b1 · · ·bK−d]µ⋆ + ϵt1K . Note that ea ∈
RK is a Euclidean basis, with elements all zero except for 1
in the a-th coordinate. With this modification, the rewards
are now represented as a linear function of the augmented
feature vectors: x̃a := [x⊤

a e⊤a b1 · · · e⊤a bK−d]
⊤ ∈ RK ,

without any misspecification error. A toy example illustrat-
ing our strategy is shown in Figure 1.

The dimension of the augmented feature vectors {x̃a : a ∈
[K]} is K ≥ d. While applying SupLinUCB (Chu et al.,
2011) yields Õ(

√
dT ) regret bound, it is known to lack

practicality as it computes log T distinct batches and esti-
mators requiring the knowledge of T and, more critically,
discards a significant portion of samples in each parame-
ter update. We present an efficient algorithm that employs
the doubly robust ridge estimator and achieves Õ(

√
KT )

regret bound (see Appendix C). However, when K > d and
du = 0, the regret is high compared to the linear bandits

with conventional features. To address this challenge, we
propose a novel estimation strategy in the following section
that eliminates the dependence on K in the regret bound.

4.2. Doubly Robust Lasso Estimator

In Eq. (7), the parameter µ⋆ is sparse, with its sparsity
depending on the dimension of the subspace that captures
the inaccessible portion of the reward—dh defined in Eq. (6).
Recall that µ(u)

⋆ contains the coefficients used to express the
projection of the reward, as represented in Eq. (5), and that
only dh basis vectors are required to express this projection.
Therefore, µ(u)

⋆ contains at most dh nonzero entries.

Let µ̌L
t denote the Lasso estimator of µ⋆ using the aug-

mented feature vectors, defined as follows:

µ̌L
t := argmin

µ

t∑
τ=1

(yaτ ,τ − x̃⊤
aτ
µ)2

+ 2σ̃maxσ

√
2pt log

2Kt2

δ
∥µ∥1,

(8)

where p is the coupling probability used to define the multi-
nomial distribution for pseudo-action sampling (as defined
in Eq. (9)), and δ is the confidence parameter of the algo-
rithm. Note that σ̃2

max := maxa∈[K] e
⊤
a (
∑

a∈[K] x̃ax̃
⊤
a )ea,

i.e., the largest diagonal entry of the Gram matrix con-
structed from the augmented feature vectors x̃a over A.

For the estimator in Eq. (8) to correctly identify the zero
entries in µ⋆, the compatibility condition is required to be
satisfied (van de Geer & Bühlmann, 2009). Although the
compatibility condition does not, in general, require a pos-
itive minimum eigenvalue, in our setting the Gram matrix
λmin(t

−1
∑t

s=1 x̃as x̃
⊤
as
) has a strictly positive minimum

eigenvalue. Therefore, the compatibility condition is im-
plied without any additional assumption. However, ensuring
a sufficiently large minimum eigenvalue typically requires
collecting a large number of exploration samples, which in
turn increases regret. Achieving this with fewer exploration
samples remains a key challenge in bandit literature, as the
minimum eigenvalue affects the convergence rate of the
estimator and, consequently, the regret bound (Soare et al.,
2014; Kim et al., 2021).

We introduce a doubly robust (DR) estimator that employs
the Gram matrix constructed from the augmented feature
vectors over the entire action space,

∑t
s=1

∑K
a=1 x̃ax̃

⊤
a , in-

stead of the Gram matrix based only on the vectors chosen
at each round, i.e.,

∑t
s=1 x̃as x̃

⊤
as

. The DR estimation origi-
nates from the statistical literature on missing data (Bang &
Robins, 2005), where “doubly robust” refers to estimators
that remain consistent if either the imputation model or the
observation probability model is correctly specified (Kim
et al., 2021). In the bandit setting, at each decision round
t ∈ [T ], only the reward corresponding to the selected arm
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is observed, while the K−1 unselected rewards are missing.
Hence, DR estimation imputes these K−1 missing rewards
and incorporates the associated feature vectors into the es-
timation process. Since the observation probabilities are
determined by the policy—which is known to the learner—
the DR estimator remains robust to errors in the reward
estimation. While Kim & Paik (2019) proposed a DR Lasso
estimator under IID features satisfying the compatibility
condition, we propose a novel DR Lasso estimator that does
not rely on such assumptions.

We improve the DR estimation by incorporating resampling
and coupling methods. For each t, let Et ⊆ [t] denote the set
of exploration rounds such that for any τ ∈ Et, the action
aτ is sampled uniformly over [K]. The set Et is constructed
recursively. Starting with E0 = ∅, we define

Et =

Et−1 ∪ {t} if |Et| ≤ Ce log
2Kt2

δ
,

Et−1 otherwise.

Here, Ce is defined as (8K)3σ̃−2
minσ̃

2
max(1 − p)−2, where

σ̃2
min := λmin(

∑
a∈[K] x̃ax̃

⊤
a ) denotes the minimum eigen-

value of the augmented Gram matrix over A.

At each round t, when t /∈ Et, the algorithm selects an action
at according to an ϵt-greedy policy. Then, a pseudo-action
ãt is generated from a multinomial distribution:

ϕat,t := P(ãt = at | at) = p,

ϕk,t := P(ãt = k | at) =
1− p

K − 1
,

(9)

for all k ∈ [K] \ {at}, where p ∈ (1/2, 1) is the coupling
probability specified by the algorithm. To couple the poli-
cies for the actual action at and the pseudo-action ãt, we
repeatedly resample both of them until they match.

When the DR estimation is applied under the ϵt-greedy
policy, the pseudo-reward (Eq. (10)) involves inverse proba-
bility term ϵ−1

t :=
√
t, which can cause its variance to grow

unbounded over time. To mitigate this issue, we propose a
resampling and coupling strategy: by coupling the ϵt-greedy
policy with the multinomial distribution Eq. (9), we ensure
that each inverse probability weight ϕ−1

a,t , for a ∈ [K], re-
mains bounded by O(K). This coupling yields a lower
bound on the observation probability, thereby reducing the
variance of the DR pseudo-rewards (Eq. (10)).

Moreover, one can show that the resampling succeeds with
high probability for each round. Let Mt denote an event that
the pseudo-action ãt matches the chosen action at within
a specified number of resamples. For a given δ′ ∈ (0, 1),
we set the maximum number of resamples to ρt := log((t+
1)2/δ′)/ log(1/p), then Mt occurs with probability at least
1 − δ′/(t + 1)2. This resampling allows the algorithm to
further explore the action space in order to balance regret
minimization with accurate reward estimation.

With the pseudo-actions coupled with the actual actions,
we construct unbiased pseudo-rewards for all a ∈ [K] as
follows:

ỹa,t := x̃⊤
a µ̌

L
t +

I(ãt = a)

ϕa,t

(
ya,t − x̃⊤

a µ̌
L
t

)
, (10)

where µ̌L
t is the imputation estimator that fills in the missing

rewards of unselected arms in round t, as defined in Eq. (8)

For a ̸= ãt, i.e., an arm that is not selected in the round t,
we impute the missing rewards using x̃⊤

k µ̌
L
t . For a = ãt, on

the other hand, the term I(ãt = a)ya,t/ϕa,t calibrates the
predicted reward to ensure the unbiasedness of the pseudo-
rewards for all arms. Given that Eãt

[I(ãt = a)] = P(ãt =
a) = ϕa,t, taking the expectation over ãt on both sides
of Eq. (10) gives Eãt

[ỹa,t] = Et−1[ya,t] = x̃⊤
a µ⋆ for all

a ∈ [K]. Although the estimate x̃⊤
a µ̌t may have a large

error, it is multiplied by the mean-zero random variable
(1 − I(ãt = a)/ϕa,t), which makes the resulting pseudo-
rewards defined in Eq. (10) robust to errors of x̃⊤

a µ̌t. The
pseudo-rewards can only be computed—and thus can only
be used—when the pseudo-action ãt matches the actual
action at, that is, when the event Mt occurs. Since Mt

occurs with high probability, we are able to compute pseudo-
rewards for almost all rounds.

Incorporating the pseudo-rewards, ỹa,t, into estimation, we
define our DR Lasso estimator as follows:

µ̂L
t := argmin

µ

t∑
τ=1

I(Mτ )
∑

a∈[K]

(
ỹa,τ − x̃⊤

a µ
)2

+
4σσ̃max

p

√
2t log

2Kt2

δ
∥µ∥1,

(11)

and the following theorem provides a theoretical guarantee
that this estimator converges to the across all arms after a
sufficient number of exploration rounds.

Theorem 2 (Consistency of the DR Lasso estimator). Let
dh denote the dimension of the projected latent rewards
defined in Eq. (6). Then for all round t such that t ≥ |Et|,
with probability at least 1− 2δ/t2,

max
a∈[K]

|x̃⊤
a (µ̂

L
t − µ⋆)| ≤

8σσ̃max

pσ̃min

√
2(d+ dh)

t
log

2Kt2

δ
.

Although the DR Lasso estimator leverages K-dimensional
feature vectors, its error bound depends only logarithmi-
cally on K. Such fast convergence is typically achieved
under classical regularity conditions, including the compat-
ibility condition and the restrictive minimum eigenvalue
condition (van de Geer & Bühlmann, 2009; Bühlmann
& van de Geer, 2011). Existing Lasso-based bandit ap-
proaches (Kim & Paik, 2019; Bastani & Bayati, 2020; Oh
et al., 2021; Ariu et al., 2022; Chakraborty et al., 2023;
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Algorithm 1 Robust to Latent Feature (RoLF)

1: INPUT: Observed features {xa : a ∈ [K]}, coupling
probability p ∈ (1/2, 1), confidence parameter δ > 0.

2: Initialize µ̂0 = 0K , exploration phase E0 = ∅, and
exploration factor Ce := (8K)3σ̃−2

minσ̃
2
max(1− p)−2.

3: Find orthogonal basis {b⊤
1 , . . . ,b

⊤
K−d} ⊆ R(X)⊥ and

construct {x̃a : a ∈ [K]}.
4: for t = 1, . . . , T do
5: if |Et| ≤ Ce log(2Kt2/δ) then
6: Randomly sample ât uniformly over [K] and Et =

Et−1 ∪ {t}.
7: else
8: Compute ât := argmaxa∈[K] x̃

⊤
a µ̂

L
t−1.

9: end if
10: while ãt ̸= at and count ≤ ρt do
11: Sample at with P(at = ât) = 1 − (t−1/2) and

P(at = k) = t−1/2/(K − 1), ∀k ̸= ât.
12: Sample ãt according to Eq. (9).
13: count = count + 1.
14: end while
15: Play at and observe yat,t.
16: if ãt ̸= at then
17: Set µ̂L

t := µ̂L
t−1.

18: else
19: Update µ̂L

t following Eq. (11) with ỹa,t and update
µ̌L

t following Eq. (8).
20: end if
21: end for

Lee et al., 2025) generally impose these conditions di-
rectly on the feature vectors. In contrast, our approach
does not require such assumptions, as the augmented fea-
tures are orthogonal vectors lying in R(X)⊥. Moreover,
their average Gram matrix satisfies λmin(

∑
a∈[K] x̃ax̃

⊤
a ) ≥

min{1, λmin(
∑

a∈[K] xax
⊤
a )}. Thus, the convergence rate

scales only as
√
logK with respect to K.

The consistency is proved by bounding the two components
of the error in the pseudo-rewards defined in Eq. (10): (i)
the noise of the reward and (ii) the error of the imputation
estimator µ̌t. Since (i) is sub-Gaussian, it can be bounded
using martingale concentration inequalities. For (ii), the im-
putation error x̃⊤

a (µ̌
L
t −µ⋆) is multiplied by the mean-zero

random variable (1− I(ãt = a)/ϕa,t) and thus the magni-
tude of the error can be bounded by ∥µ̌L

t − µ⋆∥1/
√
t. The

complete proof is deferred to Appendix E.2.

5. Proposed Algorithm and Regret Analysis
5.1. Robust to Latent Features (RoLF) Algorithm

In this section, we present our algorithm RoLF in Algo-
rithm 1. In the initialization step, given the observed fea-
tures, our algorithm constructs a set of orthogonal basis
vectors {b⊤

1 , . . . ,b
⊤
K−d} ⊆ R(X)⊥ to augment each ob-

Table 2. An overview of regret bound range of our algorithm, RoLF,
depending on dh ∈ [0,K − d], the number of nonzero elements
to effectively capture the unobserved part of reward projected
onto R(X)⊥. Note that Õ denotes the big-O notation omitting
logarithm factors.

Feature space Regret bound

span(observed) ⊇ span(latent) Õ(
√
dT )

span(observed) ⊆ span(latent) Õ(
√
KT )

otherwise Õ(
√
(d+ dh)T )

served feature vector. The algorithm first selects a candidate
action ât—either uniformly at random or based on the es-
timated reward—and then resamples at and ãt until they
match or the maximum number of trials allowed for each
round, ρt := log((t+ 1)2/δ′)/ log(1/p), is reached. Once
the resampling phase ends, the agent selects at and the cor-
responding reward yat,t is observed. If ãt and at match
within ρt, then both the imputation and the main estimators
are updated; otherwise, neither is updated.

Our proposed algorithm does not require knowledge of the
dimension of the unobserved features du, nor the dimension
of the reward component projected onto the orthogonal
complement of R(X)⊥. Although we present the algorithm
for fixed feature vectors, the algorithm is also applicable
to time-varying feature vectors. In such cases, we estimate
the bias caused by unobserved features by augmenting the
standard basis. For further details, refer to Appendix D.

5.2. Regret Analysis

Theorem 3 (Regret bound for Lasso RoLF). Let dh denote
the number of nonzero coefficients in the representation of
the projected latent reward as defined in Eq. (6). Then for
any δ ∈ (0, 1) and p ∈ (1/2, 1), with probability at least
1− 6δ, the cumulative regret of the proposed algorithm is
bounded by

Reg(T ) ≤ 83K3(1− p)−2 log
2KT 2

δ

+
4
√
T

K − 1

log((T + 1)2/δ)

log(1/p)
+ 4

√
2T log

2

δ

+ 4δ +
16σσ̃max

pσ̃min

√
2(d+ dh)T log

2KT 2

δ
.

To the best of our knowledge, Theorem 3 provides the first
regret bound that converges faster than Õ(

√
KT ), specif-

ically for algorithms that account for unobserved features
without relying on any structural assumptions. Assuming
∥x̃a∥∞ ≤ 1 (instead of ∥x̃a∥2 ≤ 1), σ̃2

min and σ̃2
max are

constant independent of d or K. Note that the number of
rounds required for the exploration phase is O(K3 logKT ),
which grows only logarithmic with the time horizon T . The
factor K3 is irreducible, as the algorithm must estimate

7
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all K biases from the missing features. By employing the
Gram matrix of the augmented feature vectors over the
action space A,

∑K
a=1 x̃ax̃

⊤
a , in combination with DR esti-

mation, we reduce the required exploration phase time from
O(K4 logKT ) to O(K3 logKT ), thereby improving the
sample complexity by a factor of K.

As demonstrated in Theorem 2, the last term on the right-
hand side of the regret bound is proportional to

√
d+ dh

rather than
√
K, resulting in an overall regret bound of

O(
√
(d+ dh)T logKT ). The specific value of dh depends

on the relationship between R(X) and R(U), as discussed
in Section 4.1. Table 2 summarizes how the regret bound
varies under different relationships between these subspaces.
The formal proof of Theorem 3 is deferred to Appendix E.3.

6. Numerical Experiments
6.1. Experimental Setup

In this experiment, we simulate and compare our algo-
rithms, Algorithm 1 and Algorithm 2 (Appendix C), with
baseline OLB algorithms: LinUCB (Li et al., 2010) and
LinTS (Agrawal & Goyal, 2013). These algorithms adopt
UCB and Thompson sampling strategies, respectively, as-
suming a linear reward model based on observed features.
We also include DRLasso (Kim & Paik, 2019) since our
algorithm employs DR estimation with Lasso estimator, and
UCB(δ) (Lattimore & Szepesvári, 2020), an MAB algo-
rithm that ignores features, to assess the effectiveness of
using feature information, even under partial observability.

To provide comprehensive results, we consider two scenar-
ios: one with partial observability and one without. For
each scenario, we conduct experiments under three cases,
classified by the relationship between the row spaces of the
observed and unobserved features, R(X) and R(U), which
determines the value of dh: (i) Case 1, the general case
where neither R(X) nor R(U) fully contains the other; (ii)
Case 2, R(U) ⊆ R(X), where the row space spanned by the
unobserved features lies entirely within that spanned by the
observed features, thus dh = 0; (iii) Case 3, R(X) ⊆ R(U),
where the row space spanned by the observed feature space
is fully contained within that spanned by the unobserved
features, implying dh = K − d. Note that in Scenario 2,
Case 3 is excluded because R(U) = ∅ implies R(X) = ∅,
which violates our problem setup.

In the simulation, after construction of the true features
za ∈ Rdz and observed features xa ∈ Rd, we apply singu-
lar value decomposition (SVD) to the observed feature ma-
trix X to derive orthogonal basis vectors {b⊤

1 , . . . ,b
⊤
K−d}

orthogonal to R(X). These vectors are then concatenated
with X to form the augmented feature matrix. The reward
parameter θ⋆ ∈ Rdz is sampled from Unif(−1/2, 1/2),
and the rewards are generated following Eq. (2). For the

hyperparamters in our algorithms, the coupling probabil-
ity p and the confidence parameter δ, are set to 0.6 and
10−4, respectively. The total decision horizon is T = 1200.
Throughout the experiments, we fix the number of arms at
K = 30 and the dimension of the true features at dz = 35,
ensuring dz ≥ d to cover both scenarios. Further details on
the experimental setup are provided in Appendix B.

6.2. Experimental Results

6.2.1. SCENARIO 1

In this scenario, d is set to ⌊dz/2⌋, so that the agent observes
only about half of the full feature dimension. From Figure 2,
we observe that the baseline OLB algorithms—LinUCB,
LinTS, and DRLasso—perform worse than our algorithms
in terms of both the level and robustness of cumulative re-
gret. This tendency is consistently observed across all three
cases, implying that linear bandit algorithms fail to identify
the optimal arm when relying solely on observed features in
environments with unobserved components, since the algo-
rithms cannot capture the portion of the reward attributed
to the unobserved features. However, our algorithms show
almost the same performance regardless of the relationship
between R(X) and R(U), indicating the robustness to vari-
ations in feature observability structure.

Note that for all cases our algorithms—RoLF-Lasso (Algo-
rithm 1) and RoLF-Ridge (Algorithm 2)—exhibit a sharp
decline in the growth rate of cumulative regret after a cer-
tain number of rounds. This behavior is primarily due to the
forced-exploration phase built into the algorithms, which
ensures sufficient coverage of the action space in the early
stages. Following this phase, the resampling and coupling
strategies further enhance the efficiency of the DR estima-
tion, leading to slower regret accumulation over time. This
pattern is commonly shown from experimental results of
other bandit algorithms employing the forced-exploration
strategy (Goldenshluger & Zeevi, 2013; Hao et al., 2020;
Chakraborty et al., 2023).

Furthermore, in Case 2 (Figure 2(d)), the cumulative regret
grows more slowly than in other cases. This behavior is
explained by the relationship R(U) ⊆ R(X), implying the
reward components projected onto R(X)⊥ can be fully ex-
pressed by the observed features. Hence, the augmented
features fully capture the underlying reward structure, en-
abling faster convergence relative to the other scenarios.

6.2.2. SCENARIO 2

In Scenario 2, we set d = dz = 2K, implying that no latent
features remain and allowing us to evaluate our algorithms
under the condition d > K. As discussed in Section 4.1,
we apply SVD to reduce the dimensionality of the observed
features before constructing the augmented feature set. Fig-
ure 3 shows that our algorithms perform well even without
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(d) Case 2 (R(U) ⊆ R(X))
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Figure 2. Cumulative regrets of the algorithms with partial observability (Scenario 1).
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(a) Case 1 (General Case)
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(b) Case 2 (R(U) ⊆ R(X))

Figure 3. Cumulative regrets of the algorithms without partial observability (Scenario 2).

unobserved features, both in terms of the level and robust-
ness of the cumulative regret. Moreover, by incorporating
dimensionality reduction, our algorithms remain effective
even when the feature matrix is not full rank. Lastly, similar
to Figure 2, cumulative regret in Case 2 converges slightly
more slowly than in Case 1.

Meanwhile, the baseline OLB algorithms continue to strug-
gle in identifying the optimal arm throughout the horizon.
For LinUCB and LinTS, this behavior may be attributed
to the curse of dimensionality, where regret scales linearly
with the feature dimension d—a well-known limitations
of linear bandit algorithms (Oswal et al., 2020; Tran et al.,
2024). Additionally, since the true rewards are bounded
by 1, the resulting small reward gaps between arms may
further hinder the identification of the optimal arm. In the
case of DRLasso, the similar behavior arises from the fixed
feature setting: the algorithm uses an “averaged” context
vector across the action space at each round for parameter
estimation. Consequently, under the fixed feature setting,
this strategy becomes effectively equivalent to using a sin-
gle fixed vector throughout the entire learning horizon, thus
limiting the expressiveness of the estimation.

7. Conclusion
In this work, we addressed a problem with partially ob-
servable features within the linear bandit framework. We
showed that conventional algorithms ignoring unobserved
features may suffer linear regret due to information loss,
and introduced RoLF, a novel algorithm that accounts for
latent features using only observed data without requiring
prior knowledge. Our algorithm has achieved a tighter re-
gret bound than existing methods, and this improvement is
supported by our numerical experiments.

For the future work, from the perspective that our feature
augmentation strategy reformulates the problem as another
linear bandit problem without model misspecification, ex-
tending this approach to other reward models, e.g., gen-
eralized linear models, would be an interesting direction.
Additionally, although we assumed the latent reward com-
ponent to be linear in the unobserved features, we can relax
such assumption by viewing the latent reward component as
an exogenous factor that interferes with the learning process.
This perspective allows for modeling the latent reward using
a general function class without structural assumptions.
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A. Related Works
In bandit problems, the learning agent learns only from the outcomes of chosen actions, leaving unchosen alternatives
unknown (Robbins, 1952). This constraint requires a balance between exploring new actions and exploiting actions learned
to be good, known as the exploration-exploitation tradeoff. Efficiently managing this tradeoff is crucial for guiding the agent
towards the optimal policy. To address this, algorithms based on optimism in the face of uncertainty (Lai & Robbins, 1985)
employ the Upper Confidence Bound (UCB) strategy, which encourages the learner to select actions with the highest sum of
estimated reward and uncertainty. This approach adaptively balances exploration and exploitation, and has been widely
used and studied in the context of linear bandits (Abe & Long, 1999; Auer, 2002; Dani et al., 2008; Rusmevichientong &
Tsitsiklis, 2010). Notable examples include LinUCB (Li et al., 2010; Chu et al., 2011) and OFUL (Abbasi-yadkori et al.,
2011), known for their practicality and performance guarantees. However, existing approaches differ from ours in two key
aspects: (i) they assume that the learning agent can observe the entire feature vector related to the reward, and (ii) their
algorithms have regret that scales linearly with the dimension of the observed feature vector, i.e., Õ(d

√
T ).

In contrast, we develop an algorithm that achieves a sublinear regret bound by employing the doubly robust (DR) technique,
thereby avoiding the linear dependence on the dimension of the feature vectors. The DR estimation in the framework of
linear contextual bandits is first introduced by Kim & Paik (2019) and Dimakopoulou et al. (2019), and subsequent studies
improve the regret bound in this problem setting by a factor of

√
d (Kim et al., 2021; 2023b). A recent application (Kim

et al., 2023c) achieves a regret bound of order O(
√
dT log T ) under IID features over rounds. However, the extension

to non-stochastic or non-IID features remains an open question. To address this issue, we develop a novel analysis that
applies the DR estimation to non-stochastic features, achieving a regret bound sublinear with respect to the dimension of the
augmented feature vectors. Furthermore, we extend DR estimation to handle sparse parameters, thereby further improving
the regret bound to be sublinear with respect to the reduced dimension.

Our problem is more general and challenging than misspecified linear bandits, where the assumed reward model fails to
accurately reflect the true reward, such as when the true reward function is non-linear (Lattimore & Szepesvári, 2020), or
a deviation term is added to the reward model (Ghosh et al., 2017; Bogunovic et al., 2021; He et al., 2022). While our
work assumes that the misspecified (or inaccessible) portion of the reward is linearly related to certain unobserved features,
misspecified linear bandit problems can be reformulated as a special case of our framework. While the regret bounds
in Lattimore & Szepesvári (2020), Bogunovic et al. (2021) and He et al. (2022) incorporate the sum of misspecification
errors that may accumulate over the decision horizon, our work establishes a regret bound that is sublinear in the decision
horizon T , not affected by misspecification errors. Ghosh et al. (2017) proposed a hypothesis test to decide between
using linear bandits or MAB, demonstrating an O(K

√
T log T ) regret bound when the total misspecification error exceeds

Ω(d
√
T ). In contrast, our algorithm achieves an O(

√
(d+ dh)T log T ) regret bound without requiring hypothesis tests for

misspecification or partial observability.

Last but not least, our problem appears similar to other literature addressing bandit problems with partially observable
features (Tennenholtz et al., 2021; Park & Faradonbeh, 2022; 2024; Kim et al., 2023a; Zeng et al., 2025). In particular,Park &
Faradonbeh (2022; 2024); Kim et al. (2023a) assume that the true features follow a specific distribution, typically Gaussian.
Zeng et al. (2025) further assume that the true features evolve according to a linear dynamical system with additive Gaussian
noise. Park & Faradonbeh (2022; 2024) and Zeng et al. (2025) construct the observed features as emissions from the true
features via a known linear mapping, also corrupted by additive Gaussian noise, whereas Kim et al. (2023a) first corrupt the
true features with Gaussian noise and then generate the observed features by masking elements of the corrupted features
following an unknown Bernoulli distribution. In addition, all of these approaches aim to recover the true features: Park
& Faradonbeh (2022; 2024) introduce a known decoder mapping from the observed features to the corresponding latent
features; Kim et al. (2023a) leverage a Bayesian oracle strategy for estimation; and Zeng et al. (2025) estimate the true
features using a Kalman filter. In contrast, our setting imposes no structural assumptions on either the observed or latent
features, making the problem more general and challenging than those addressed in the indicated works. Furthermore, our
approach does not attempt to recover any information related to latent features. Instead, we compensate for the lack of
reward information due to unobserved features, in the sense that we project the inaccessible portion of the reward onto the
orthogonal complement of the row space spanned by the observed feature vectors.

On the other hand, Tennenholtz et al. (2021) assume that partially observed features are available as an offline dataset, and
leverage the dataset to recover up to L dimensions of the d-dimensional true features, where L ≤ d is the dimension of the
partially observed features. This setting is different from ours in which partial observability arises naturally and no offline
access is available. In their framework, the correlation between the observed and unobserved features is used to model the
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relationship between the estimator based on the observed features and that based on the true features, which requires further
estimation of the unknown correlation. In contrast, our method is agnostic to such correlation, which makes our approach
more practical. Moreover, we exploit the observed features via feature augmentation and DR estimation, resulting in faster
regret convergence compared to their UCB-based approach.

B. Detailed Experimental Setup
For both scenarios, the features—including the true features za, observed features xa, and unobserved features ua—are
constructed differently based on the relationship between the row space spanned by the observed features, R(X), and that
spanned by the unobserved features, R(U). In Case 1, the general case, the true features za for each arm a ∈ [K] are
sampled from N (0, Idz

), and the observed features xa are obtained by truncating the first d elements of za, following the
definition given in Eq. (1).

In Cases 2 and 3, on the other hand, the features are generated in a way to explicitly reflect the inclusion relationship
between R(X) and R(U). Particularly, in Case 2, where R(U) ⊆ R(X), the observed features xa, are sampled from
N (0, Id) for each a ∈ [K]. Then, we generate a coefficient matrix Cu ∈ Rdu×d, where each element is sampled from
Unif(−1, 1), and construct ua by computing ua = Cuxa. This construction ensures that R(U) lies within R(X). In Case
3, where R(X) ⊆ R(U), we reverse the process by sampling ua ∼ N (0, Idu

), generating Cx ∈ Rd×du from Unif(−1, 1),
and setting xa = Cxua, thereby ensuring R(X) ⊆ R(U). In both Case 2 and Case 3, the true features za are formed by
concatenating xa and ua.

After construction of the features, the orthogonal basis vectors {b⊤
1 , . . . ,b

⊤
K−d} are derived via singular value decomposition

(SVD) on the observed feature matrix X, ensuring orthogonality to R(X) These basis vectors are linearly concatenated
to X to form the augmented feature matrix. The reward parameter θ⋆ ∈ Rdz is sampled from the uniform distribution
Unif(−1/2, 1/2), and the rewards are generated via dot products following the definition Eq. (2). We set the coupling
probability p, a hyperparameter used in the sampling distribution of ãt, is set to 0.6 (see Eq. (9)). The confidence parameter
δ, which is also a hyperparameter, is set to 10−4, and the total decision horizon is T = 1200.

Throughout the experiments, we fix the number of arms as K = 30 and the dimensionality of the true features dz = 35.
Furthermore, to accommodate both partial and full observability, we set dz ≥ d. Specifically, in Scenario 1, d is set to
⌊dz/2⌋ = 17, indicating that only about half of the full feature space is observable to the agent. In Scenario 2, on the
other hand, we set d = 2K = 60 and dz = d, implying that latent features are absent. The setup of the second scenario
also allows us to evaluate our algorithm under the condition where d > K. For each of the three structural cases (i.e., the
relationships between R(X) and R(U)) considered under both scenarios, we conduct five independent trials using different
random seeds. The results are presented in terms of the sample mean and one standard deviation of the cumulative regret.

C. Robust to Latent Feature Algorithm with Ridge Estimator
Our Doubly robust (DR) ridge estimator is defined as follows:

µ̂R
t :=

 t∑
τ=1

I(Mτ )
∑

a∈[K]

x̃ax̃
⊤
a + IK

−1 t∑
τ=1

I(Mτ )
∑

a∈[K]

x̃aỹa,τ

 , (12)

where ỹa,τ is the DR pseudo reward:

ỹa,t := x̃⊤
a µ̌

R
t +

I(ãt = a)

ϕa,t

(
ya,t − x̃⊤

a µ̌
R
t

)
,

and the imputation estimator µ̌R
t is defined as

µ̌R
t :=

(
t∑

τ=1

x̃aτ
x̃⊤
aτ

+ pIK

)−1( t∑
τ=1

x̃aτ
yaτ ,τ

)
. (13)

The following theorem shows that this Ridge estimator is consistent, meaning it converges to the true parameter µ⋆ with
high probability as the agent interacts with the environment.
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Algorithm 2 Robust to Latent Feature with Ridge Estimator (RoLF-Ridge)

1: INPUT: Observed features {xa : a ∈ [K]}, coupling probability p ∈ (1/2, 1), confidence parameter δ > 0.
2: Initialize µ̂0 = 0K , exploration phase Et = ∅ and exploration factor Ce := 32(1− p)−2K2.
3: Find orthogonal basis {b⊤

1 , . . . ,b
⊤
K−d} ⊆ R(X)⊥ and construct {x̃a : a ∈ [K]}.

4: for t = 1, . . . , T do
5: if |Et| ≤ Ce log(2Kt2/δ) then
6: Randomly sample at uniformly over [K] and Et = Et−1 ∪ {t}.
7: else
8: Compute ât := argmaxa∈[K] x̃

⊤
a µ̂

R
t−1.

9: end if
10: while ãt ̸= at and count ≤ ρt do
11: Sample at with P(at = ât) = 1− (t−1/2) and P(at = k) = t−1/2/(K − 1), ∀k ̸= ât.
12: Sample ãt according to Eq. (9).
13: count = count + 1.
14: end while
15: Play at and observe yat,t.
16: if ãt ̸= at then
17: Set µ̂R

t := µ̂R
t−1.

18: else
19: Update µ̂R

t following Eq. (12) with ỹa,t and update µ̌R
t following Eq. (13).

20: end if
21: end for

Theorem 4 (Consistency of the DR Ridge estimator). For each t, let Et ⊆ [t] denote an exploration phase such that for
τ ∈ Et the action aτ is sampled uniformly over [K]. Assume that ∥µ⋆∥∞ ≤ 1 and ∥x̃a∥∞ ≤ 1 for all a ∈ [K]. Then for all
round t such that |Et| ≥ 32(1− p)−2K2 log(2Kt2/δ), with probability at least 1− 3δ,

max
a∈[K]

|x̃⊤
a (µ̂

R
t − µ⋆)| ≤

2√
t

(
σ

p

√
K log

t+ 1

δ
+

√
K

)
.

With |Et| = O(K2 logKt) number of exploration, the DR Ridge estimator achieves O(
√
K/t) convergence rate over all

K rewards. This is possible because the DR pseudo-rewards defined in Eq. (10) impute the missing rewards for all arms
a ∈ [K] using x̃⊤

a µ̌t, based on the samples collected during the exploration phase, Et. With this convergence guarantee, we
establish a regret bound for RoLF-Ridge, which is the adaptation of Algorithm 1 using the Ridge estimator.

Theorem 5 (Regret bound for Ridge RoLF). Suppose ∥µ⋆∥∞ ≤ 1 and ∥za∥∞ ≤ 1 for all a ∈ [K]. For δ ∈ (0, 1), with
probability at least 1− 4δ, the cumulative regret of the proposed algorithm using DR Ridge estimator is bounded by

Reg(T ) ≤ 32K2

(1− p)2
log

2dT 2

δ
+ 4

√
2T log

2

δ
+

4
√
T

K − 1
+ 4δ + 8

√
KT

(
σ

p

√
log

t+ 1

δ
+ 1

)
.

The first and second terms come from the distribution of at which is a combination of the 1 − t−1/2-greedy policy and
resampling up to ρt := log((t + 1)2/δ)/ log(1/p) trials. The third term is determined by the size of the exploration set,
Et, while the last term arises from the estimation error bounded by the DR estimator as described in Theorem 4. The
hyperparameter p ∈ (1/2, 1) balances the size of the exploration set in the third term and the estimation error in the last
term. Overall, the regret is O(

√
KT log T ), which shows a significant improvement compared to the regret lower bound

in Theorem 1 for any linear bandit algorithms that do not account for unobserved features and unobserved rewards.

D. A Modified Algorithm for Time-Varying Observed Features
In this section, we define the problem of linear bandits with partially observable features under the setting where the observed
features vary over time, describe our proposed method, and provide theoretical guarantees.
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D.1. Problem Formulation

Let x1,t, . . . ,xK,t denote the observed features and u1, . . . ,uK denote the unobserved features. Now the observed features
arbitrary changes over t but the unobserved features are fixed over time. When the algorithms selects an arm at, the reward
is

yat,t = ⟨xat,t,θ
(o)
⋆ ⟩+ ⟨uat

,θ(u)
⋆ ⟩+ ϵt,

where the ϵt is the Sub-Gaussian noise that follows Assumption 1. The expected reward of each arm is sta over time, where
MAB algorithms without using features are applicable to achieve Õ(

√
KT ) regret bound. When the observed features vary

over time, the expected reward of each arm E[yat
, t] = ⟨xat,t,θ

(o)
⋆ ⟩+ ⟨uat

,θ(u)
⋆ ⟩ also arbitrarily changes over time and

MAB algorithms suffer regret linear in T . To our knowledge, there is no other work that address this challenging setting.

D.2. Proposed Method: Orthogonal Basis Augmentation

We address the problem by augmenting standard basis e1, . . . , eK in RK to estimate bias caused by the unobserved features.
Let x̃a,t := e⊤a [Xt e1 · · · eK ] ∈ Rd+K and let ∆a := ⟨ua, θ

(u)
⋆ ⟩ denote the bias stems from the latent features. Then,

ya,t = ⟨x⊤
a,tθ

(o)
⋆ ⟩+ ⟨u⊤

a,tθ
(u)
⋆ ⟩+ ϵa,t

= ⟨e⊤a [Xte1 · · · eK ], [θ(o)
⋆ ∆1 · · ·∆K ]⟩+ ϵa,t.

Therefore, applying the RoLF-Ridge algorithm to the new features x̃a,t := e⊤a [Xte1 · · · eK ] yields the following regret
bound.

Theorem 6 (Regret bound for Ridge-RoLF-V with time varying observed features). If observed features are vary over
time, for δ ∈ (0, 1), with probability at least 1− 4δ, the cumulative regret of the proposed algorithm Ridge-RoLF-V using
DR Ridge estimator is bounded by

Reg(T ) ≤4δ +
2
√
T

d+K − 1
+

32(K + d)2

(1− p)2
log

2(K + d)T 2

δ
+ 8
√
(d+K)T

(
σ

p

√
log

T 2

δ
+ 1

)
.

The proof is similar to that in Theorem 5 and we omit the proof. The rate of the regret bound is Õ(
√
(d+K)T ) and, to our

knowledge, this is the first sublinear regret bound for the partially observable linear bandits (as well as misspecified linear
bandits) with arbitral time-varying observed features.

E. Missing Proofs
E.1. Proof of Theorem 1

Throughout this paper, we consider a bandit problem where the agent observes only a subset of the reward-generating feature
vector and cannot access or estimate the unobserved portion. If the agent uses online decision-making algorithms that rely
solely on observed features, as defined in Definition 1, the resulting issue can be interpreted as a model misspecification.
Therefore, in this theorem, we present a problem instance where “misspecified” algorithms, considering only observed
features, may incur regret that grows linearly in T .

Following the statement of Theorem 1, we assume that d = du = 1, which means dz = 2. Given the true feature set
Z = {[1, 3]⊤, [2, 19/4]⊤}, let the first element of each vector is observed to the agent; while the second element remains
unobserved. This results in x1 = x1 = 1, x2 = x2 = 2, u1 = u1 = 3 and u2 = u2 = 19/4. We set the true parameter as
θ⋆ ∈ R2 = [2,−1]⊤, meaning θ(o)

⋆ = θ
(o)
⋆ = 2 and θ(u)

⋆ = θ
(u)
⋆ = −1. Using the reward function from Section 3.2 and

considering Assumption 1, the expected reward for each arm is given by

γi := E[yi] = z⊤i θ⋆ = xiθ
(o)
⋆ + uiθ

(u)
⋆ ∀ i ∈ {1, 2}.

Plugging the values in, the true mean reward for each arm is directly computed as γ1 = 2− 3 = −1 and γ2 = 4− 19/4 =
−3/4, which satisfies the assumption that its absolute value does not exceed 1 (Section 3.2), and since γ1 < γ2, the arm 2 is
the optimal action.
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For brevity, we denote the latent reward components as g1 := u1θ
(u)
⋆ and g2 := u2θ

(u)
⋆ , yielding that g1 = −3 and

g2 = −19/4. Note that since γ2 ̸= 2γ1 and |gi| ≥ 3 > 0 for all i ∈ {1, 2}, thus our problem setup satisfies the “large
deviation” criterion in Definition 1 and Theorem 2 of Ghosh et al. (2017), by letting l = 3 and β = 0. Consequently, by
applying the theorem, it follows that using OFUL in this problem instance results in linear regret with respect to T , i.e., Ω(T ).
Inspired by this theorem, we demonstrate that LinTS encounters the same issue.

For each round t ∈ [T ], LinTS estimates the true parameter using the ridge estimator, given by:

θ̂t = (X⊤
t Xt + λId)

−1(X⊤
t Yt)

= (X⊤
t Xt + λId)

−1(X⊤
t (Xtθ

(o)
⋆ + gt + ϵt))

= θ(o)
⋆ − λV−1

t θ(o)
⋆ +V−1

t X⊤
t gt +V−1

t X⊤
t ϵt,

(14)

where Xt := (x⊤
a1
, . . . ,x⊤

at
) ∈ Rt×d is a matrix containing features chosen up to round t, Yt := (ya1 , . . . , yat) ∈ Rt

is a vector of observed rewards, and ϵt := (ϵ1, . . . , ϵt) ∈ Rt contains noise attached to each reward. Unlike a typical
ridge estimator, here the term gt := (ga1

, . . . , gat
) ∈ Rt, the vector containing the latent portion of observed rewards is

introduced due to model misspecification. Note that Vt := (X⊤
t Xt + λId) ≻ 0.

For this problem instance, since d = 1, Eq. (14) is equivalent to:

θ̂t = θ
(o)
⋆ − θ

(o)
⋆∑t

τ=1 x
2
aτ

+ 1
+

∑t
τ=1 xaτ

gaτ∑t
τ=1 x

2
aτ

+ 1
+

∑t
τ=1 xaτ

ϵτ∑t
τ=1 x

2
aτ

+ 1
,

where we assume λ = 1. Note also that we denote θ̂t and θ(o)
⋆ by θ̂t and θ

(o)
⋆ , respectively, since both are scalars. Hence,

the estimation error is computed as:

θ̂t − θ
(o)
⋆ = − θ

(o)
⋆∑t

τ=1 x
2
aτ

+ 1
+

∑t
τ=1 xaτ gaτ∑t
τ=1 x

2
aτ

+ 1
+

∑t
τ=1 xaτ ϵτ∑t

τ=1 x
2
aτ

+ 1
. (15)

Let N1 and N2 denote the number of times arms 1 and 2 have been played up to round t, respectively. This implies that
N1 +N2 = t. Then, for the numerator of the second term, since

t∑
τ=1

xaτ
gaτ

= (g1 + · · ·+ g1︸ ︷︷ ︸
N1

+2g2 + · · ·+ 2g2︸ ︷︷ ︸
N2

) = g1N1 + 2g2N2,

we can observe that

t∑
τ=1

xaτ gaτ = g1N1 + 2g2N2

≥ gN1 + 2gN2

= gN1 + 2g(t−N1)

= 2gt− gN1

≥ gt (∵ N1 ≤ t)

= −19

4
t,

where g = min{g1, g2} = −19/4, which implies that
∑t

τ=1 xaτ
gaτ

= Θ(t). For the denominator,
∑t

τ=1 x
2
aτ

+ 1, as it
grows at a rate of O(t), implying that the second term of the right-hand side in Eq. (15) is Θ(1), and that θ̂t is not consistent
since it does not converge to θ

(o)
⋆ as t → ∞.

For arm 2, which is optimal, to be selected in round t + 1 under LinTS, the condition x2θ̃t ≥ x1θ̃t must hold, where
θ̃t ∼ N

(
θ̂t,

v2∑t
τ=1 x2

aτ
+1

)
. Given the assumptions that x1 = 1 and x2 = 2, arm 2 is selected whenever θ̃t ≥ 0. Thus, for

arm 1 to be chosen, we require θ̃t < 0. We will show that the probability of θ̃t < 0 does not diminish sufficiently to be
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ignored even the agent plays sufficiently large amount of time. To clarify, let us define two events Eθ̃ := {θ̃t ≥ 0} and
Eθ̂ := {θ̂t ≥ 0}. We revisit Eq. (14) as follows:

θ̂t =
θ
(o)
⋆

∑t
τ=1 x

2
aτ∑t

τ=1 x
2
aτ

+ 1
+

∑t
τ=1 xaτ

gaτ∑t
τ=1 x

2
aτ

+ 1
+

∑t
τ=1 xaτ

ϵτ∑t
τ=1 x

2
aτ

+ 1

≤ θ
(o)
⋆ +

g1N1 + 2g2N2

N1 + 4N2 + 1
+

∑t
τ=1 xaτ

ϵτ
N1 + 4N2 + 1

(∵ θ
(o)
⋆ > 0)

≤ θ
(o)
⋆ +

g1N1 + 2g2N2

N1 + 4N2 + 1
+

maxa∈{1,2} xa

N1 + 4N2 + 1

t∑
τ=1

ϵτ

= θ
(o)
⋆ +

g1N1 + 2g2N2

N1 + 4N2 + 1
+

2

N1 + 4N2 + 1

t∑
τ=1

ϵτ , (16)

where for the second term of Eq. (16), for t ≥ 19,

g1N1 + 2g2N2

N1 + 4N2 + 1
=

−3N1 − 19
2 N2

N1 + 4N2 + 1

≤
− 19

8 (N1 + 4N2)

N1 + 4N2 + 1

= −19

8
+

19/8

t+ 3N2 + 1

≤ −19

8
+

19

8t
,

which is upper bounded by −9/4. This bound is followed by:

θ̂t ≤ θ
(o)
⋆ +

g1N1 + 2g2N2

N1 + 4N2 + 1
+

2

N1 + 4N2 + 1

t∑
τ=1

ϵτ

≤ 2− 9

4
+

2

t+ 3N2 + 1

t∑
τ=1

ϵτ

= −1

4
+

2

t+ 3N2 + 1

t∑
τ=1

ϵτ

≤ −1

4
+

2

t

t∑
τ=1

ϵτ .

(17)

Thus, we have the following:

P(θ̂t > 0) ≤ P

(
−1

4
+

2

t

t∑
τ=1

ϵτ > 0

)
= P

(
2

t

t∑
τ=1

ϵτ >
1

4

)
.

Since ϵτ is an IID sub-Gaussian random variable for all τ ∈ [t], by applying Hoeffding inequality we obtain:

P(θ̂t > 0) ≤ exp

(
− t

128σ2

)
.

Given this, we now bound the probability of the event Eθ̃:

P(Eθ̃) = P(Eθ̃ ∩ Eθ̂) + P(Eθ̃ ∩ Ec
θ̂
)

= P(Eθ̃ | Eθ̂) · P(Eθ̂) + P(Eθ̃ | Ec
θ̂
) · P(Ec

θ̂
)

= P(θ̃t ≥ 0 | θ̂t ≥ 0) · P(θ̂t ≥ 0) + P(θ̃t ≥ 0 | θ̂t < 0) · P(θ̂t < 0)

≤ exp

(
− t

128σ2

)
+ P(θ̃t ≥ 0 | θ̂t < 0). (18)
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Since the second term of Eq. (18) is calculated under a Gaussian distribution, which does not exceed 1/2 for all t ∈ [T ],

P(Ec
θ̃
) ≥ 1

2
− exp

(
− t

128σ2

)
.

Note that the total decision horizon T > 256σ2 log(1/δ′). For any t > 128σ2 log(1/δ′), we have P(Ec
θ̃
) ≥ 1/2− δ′. This

implies that for the rounds more than T/2, the suboptimal arm is expected to be played at least (1/2− δ′)T/2 times for any
δ′ ∈ (0, 1/2), thus incurring

E[RegLinTS(T )] ≥ (γ2 − γ1)

(
1

2
− δ′

)
T

2
=

1

4

(
1

2
− δ′

)
T

2
.

For OFUL, we also present another analysis that requires no assumption such that the suboptimal arm is played for initial t
rounds, which is taken in Theorem 2 of Ghosh et al. (2017). The optimal arm, arm 2, is selected when

x2θ̂t +
x2√

1 +
∑t−1

τ=1 x
2
aτ

> x1θ̂t +
x1√

1 +
∑t−1

τ=1 x
2
aτ

, (19)

where θ̂t is the same ridge estimator as in LinTS. The inequality Eq. (19) is equivalent to θ̂t > (1 +
∑t−1

τ=1 x
2
aτ
)−1/2, which

implies θ̂t > 1/
√
2t. By Eq. (17),

P
(
θ̂t >

1√
2t

)
≤ P

(
−1

4
+

2

t

t∑
τ=1

ϵτ >
1√
2t

)

= P

(
2

t

t∑
τ=1

ϵτ >
1√
2t

+
1

4

)

≤ P

(
2

t

t∑
τ=1

ϵτ >
1

4

)
≤ exp

(
− t

128σ2

)
.

Thus, for t ≥ 128σ2 log(2), the probability of selecting arm 2 is less than 1/2 and for T > 256σ2 log(2),

E[RegOFUL(T )] ≥ (γ2 − γ1) ·
1

2
· T
2

=
T

16
,

and the algorithm suffers expected regret linear in T .

E.2. Proof of Theorem 2

Let Vt :=
∑t

τ=1

∑
a∈[K] x̃ax̃

⊤
a . Then

max
a∈[K]

|x̃⊤
a (µ̂

L
t − µ⋆)| ≤

√∑
a∈[K]

|x̃⊤
a (µ̂

L
t − µ⋆)|2 = t−1/2∥µ̂L

t − µ⋆∥Vt
.

To use Lemma 3, we prove a bound for ∥
∑t

τ=1

∑
a∈[K]

(
ỹa,τ − x̃⊤

a µt

)
x̃a∥∞. By definition of ỹa,τ ,∥∥∥∥∥∥

t∑
τ=1

∑
a∈[K]

(
ỹa,τ − x̃⊤

a µ⋆

)
x̃a

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

(
1− I(ãτ = a)

ϕa,τ

)
x̃ax̃

⊤
a

(
µ̌L

t − µ⋆

)
+

I(ãτ = a)

ϕa,τ

(
ya,τ − x̃⊤

a µ⋆

)
x̃a

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

(
1− I(ãτ = a)

ϕa,τ

)
x̃ax̃

⊤
a

(
µ̌L

t − µ⋆

)∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

I(ãτ = a)

ϕa,τ

(
ya,τ − x̃⊤

a µ⋆

)
x̃a

∥∥∥∥∥∥
∞

.
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With probability at least 1− δ, the event Mτ happens for all τ ≥ 1 and we obtain a pair of matching sample ãτ and aτ .
Thus, the second term is equal to,∥∥∥∥∥∥

t∑
τ=1

∑
a∈[K]

I(ãτ = a)

ϕa,τ

(
ya,τ − x̃⊤

a µ⋆

)
x̃a

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
t∑

τ=1

∑
a∈[K]

I(aτ = a)

ϕa,τ

(
ya,τ − x̃⊤

a µ⋆

)
x̃a

∥∥∥∥∥∥
∞

=
1

p

∥∥∥∥∥
t∑

τ=1

ϵa,τ x̃aτ

∥∥∥∥∥
∞

.

Because ∥v∥∞ = maxi∈[d] |e⊤i v| for any v ∈ Rd,

1

p

∥∥∥∥∥
t∑

τ=1

ϵa,τ x̃aτ

∥∥∥∥∥
∞

=
1

p
max
a∈[K]

∣∣∣∣∣
t∑

τ=1

ϵa,τe
⊤
a x̃aτ

∣∣∣∣∣ .
Applying Lemma 1, with probability at least 1− δ/t2,

max
a∈[K]

∣∣∣∣∣
t∑

τ=1

ϵa,τe
⊤
a x̃aτ

∣∣∣∣∣ ≤ max
a∈[K]

σ

√√√√2
t∑

τ=1

(e⊤a x̃aτ
)
2
log

2Kt2

δ

= max
a∈[K]

σ

√√√√2e⊤a

(
t∑

τ=1

x̃aτ
x̃⊤
aτ

)
ea log

2Kt2

δ

≤ max
a∈[K]

σ

√
2e⊤a (Vt) ea log

2Kt2

δ

= σσ̃max

√
2t log

2Kt2

δ
,

where the last equality follows by the definition σ̃2
max = maxa∈[K] e

⊤
a (
∑

a∈[K] x̃ax̃
⊤
a )ea. Thus,

1

p

∥∥∥∥∥
t∑

τ=1

ϵa,τ x̃aτ

∥∥∥∥∥
∞

≤ σσ̃max

p

√
2t log

2Kt2

δ
. (20)

Let At :=
∑t

τ=1

∑
a∈[K] I(ãτ = a)ϕ−1

a,τ x̃ax̃
⊤
a . Then the first term,∥∥∥∥∥∥

t∑
τ=1

∑
a∈[K]

(
1− I(ãτ = a)

ϕa,τ

)
x̃ax̃

⊤
a

(
µ̌L

t − µ⋆

)∥∥∥∥∥∥
∞

=
∥∥(Vt −At)

(
µ̌L

t − µ⋆

)∥∥
∞ . (21)

Since ∥v∥∞ = maxi∈[d] |e⊤i v| for any v ∈ Rd,∥∥(Vt −At)
(
µ̌L

t − µ⋆

)∥∥
∞ = max

a∈[K]
|e⊤a (Vt −At)

(
µ̌L

t − µ⋆

)
|

≤ max
a∈[K]

∥∥∥e⊤a (Vt −At)A
−1/2
t

∥∥∥
2

∥∥µ̌L
t − µ⋆

∥∥
At

.

Because µ̌L
t is a minimizer of Eq. (8), by Lemma 3 and Eq. (20),

∥∥µ̌L
t − µ⋆

∥∥
At

≤ 4σσ̃max

√
2t(d+ dh) log(2Kt2/δ)

pλmin (At)
.

By Corollary 1, with ϵ ∈ (0, 1) to be determined later, for t ≥ 8ϵ−2(1 − p)−2K2 log(2Kt2/δ), with probability at least
1− δ/t2, ∥∥∥IK −V

−1/2
t AtV

−1/2
t

∥∥∥
2
≤ ϵ. (22)
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Eq. (22) implies (1− ϵ)IK ⪯ V
−1/2
t AtV

−1/2
t and (1− ϵ)Vt ⪯ At. Thus,

∥∥µ̌L
t − µ⋆

∥∥
At

≤ 4σσ̃max

p

√
2t(d+ dh) log(2Kt2/δ)

(1− ϵ)λmin (Vt)
=

4σσ̃max

pσ̃min

√
2(d+ dh) log(2Kt2/δ)

1− ϵ
,

and Eq. (21) is bounded by,

∥∥(Vt −At)
(
µ̌L

t − µ⋆

)∥∥
∞ ≤ max

i∈[K]

∥∥∥e⊤i (Vt −At)A
−1/2
t

∥∥∥
2

4σσ̃max

pσ̃min

√
2(d+ dh) log(2Kt2/δ)

1− ϵ

≤ max
i∈[K]

∥∥∥e⊤i (Vt −At)V
−1/2
t

∥∥∥
2

4σσ̃max

p(1− ϵ)σ̃min

√
2(d+ dh) log

2Kt2

δ
.

(23)

By Eq. (22),

max
i∈[K]

∥∥∥e⊤i (Vt −At)V
−1/2
t

∥∥∥
2
= max

i∈[K]

∥∥∥e⊤i V1/2
t V

−1/2
t (Vt −At)V

−1/2
t

∥∥∥
2

≤ σ̃max

√
t
∥∥∥IK −V

−1/2
t AtV

−1/2
t

∥∥∥
2

≤ σ̃max

√
tϵ.

Thus, ∥∥(Vt −At)
(
µ̌L

t − µ⋆

)∥∥
∞ ≤ 4ϵσσ̃2

max

p(1− ϵ)σ̃min

√
2t(d+ dh) log

2Kt2

δ
.

Setting ϵ = K−1/2σ̃minσ̃
−1
max/8 gives 1− ϵ ≥ 1/2 and

∥∥(Vt −At)
(
µ̌L

t − µ⋆

)∥∥
∞ ≤ σσ̃max

p

√
2t
d+ dh
K

log
2Kt2

δ

≤ σσ̃max

p

√
2t log

2Kt2

δ
.

Now we conclude that for t ≥ 83K3σ̃−2
minσ̃

2
max(1− p)−2 log(2Kt2/δ)∥∥∥∥∥∥

t∑
τ=1

∑
a∈[K]

(ỹa,τ − x̃⊤
a µt)x̃a

∥∥∥∥∥∥
∞

≤ σσ̃max

p

√
2t log

2Kt2

δ
,

and by Lemma 3,

∥µ̂L
t − µ⋆∥Vt

≤ 8σσ̃max

√
2t(d+ dh) log(2Kt2/δ)

pλmin (Vt)
=

8σσ̃max

pσ̃min

√
2(d+ dh) log

2Kt2

δ
,

which completes the proof.

E.3. Proof of Theorem 3

Because the regret is bounded by 2 and the number of rounds for the exploration phase is at most |ET | ≤ 83K3(1 −
p)−2 log(2KT 2/δ).

Reg(T ) ≤ 83K3(1− p)−2 log
2KT 2

δ
+

∑
t∈[T ]\ET

Et−1[y⋆,t]− Et−1[yat,t]

=83K3(1− p)−2 log
2KT 2

δ
+

∑
t∈[T ]\ET

{I (at = ât) (Et−1[y⋆,t]− Et−1[yat,t])}

+
∑

t∈[T ]\ET

{I (at ̸= ât) (Et−1[y⋆,t]− Et−1[yat,t])} .
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By Theorem 2, on the event {at = ât},

Et−1[y⋆,t]− Et−1[yat,t] = x̃⊤
a⋆
µ⋆ − x̃⊤

ât
µ⋆

≤ 2 max
a∈[K]

∣∣∣x̃⊤
a

(
µ⋆ − µ̂L

t−1

)∣∣∣+ x̃⊤
a⋆
µ̂L

t−1 − x̃⊤
ât
µ̂L

t−1

≤ 2 max
a∈[K]

∣∣∣x̃⊤
a

(
µ⋆ − µ̂L

t−1

)∣∣∣
≤ 16σσ̃max

pσ̃min

√
2(d+ dh)

t
log

2Kt2

δ
,

with probability at least 1− 5δ/t2 for each t ∈ [T ] \ ET . Summing over t gives,

∑
t∈[T ]\ET

{I (at = ât) (Et−1[y⋆,t]− Et−1[yat,t])} ≤ 16σσ̃max

pσ̃min

√
2(d+ dh)T log

2KT 2

δ
.

By Lemma 5 and the Hoeffding bound, with probability at least 1− δ∑
t∈[T ]\ET

{I (at ̸= ât) (Et−1[y⋆,t]− Et−1[yat,t])}

≤ 2

∑
t∈[T ]

I (at ̸= ât)− P (at ̸= ât) + P (at ̸= ât)


≤ 4

√
2T log

2

δ
+

4p
√
T

K − 1
+ 4δ.

Then with probability at least 1− 6δ,

Reg(T ) ≤ 83K3(1− p)−2 log
2KT 2

δ
+

4
√
T

K − 1

log((T + 1)2/δ)

log(1/p)

+ 4

√
2T log

2

δ
+ 4δ +

16σσ̃max

pσ̃min

√
2(d+ dh)T log

2KT 2

δ
,

which concludes the proof.

E.4. Proof of Theorem 4

Let Ṽt :=
∑t

τ=1 I(Mτ )
∑

a∈[K] x̃ax̃
⊤
a + IK and Vt :=

∑t
τ=1

∑
a∈[K] x̃ax̃

⊤
a + IK . By definition of µ̂R

t ,

x̃⊤
a (µ̂

R
t − µ⋆) = x̃⊤

a Ṽ
−1
t


t∑

τ=1

I(Mτ )
∑

a∈[K]

x̃a

(
ỹa,τ − x̃⊤

a µ⋆

)
− µ⋆

 .

By definition of the pseudo-rewards,

ỹa,τ − x̃⊤
a µ⋆ =

(
1− I(ãτ = a)

ϕa,t

)
x̃⊤
a

(
µ̌R

t − µ⋆

)
+

I(ãτ = a)

ϕa,τ
ϵa,τ .

Let Ãt :=
∑t

τ=1 I(Mτ )
∑

a∈[K]
I(ãτ=a)
ϕa,t

x̃ax̃
⊤
a + IK and At :=

∑t
τ=1

∑
a∈[K]

I(ãτ=a)
ϕa,t

x̃ax̃
⊤
a + IK Then,

x̃⊤
a (µ̂

R
t − µ⋆) = x̃⊤

a Ṽ
−1
t

(Ṽt − Ãt

) (
µ̌R

t − µ⋆

)
+

t∑
τ=1

I(Mτ )
∑

a∈[K]

I(ãτ = a)

ϕa,τ
x̃aϵa,τ − µ⋆

 .
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By definition of the imputation estimator µ̌t,

µ̌R
t − µ⋆ =

(
t∑

τ=1

x̃aτ x̃
⊤
aτ

+ pIK

)−1( t∑
τ=1

x̃aτ ϵaτ ,τ − pµ⋆

)

=

(
t∑

τ=1

1

ϕaτ ,τ
x̃aτ

x̃⊤
aτ

+ IK

)−1( t∑
τ=1

1

ϕaτ ,τ
x̃aτ

ϵaτ ,τ − µ⋆

)

=

 t∑
τ=1

∑
a∈[K]

I(ãτ = a)

ϕa,τ
x̃aτ x̃

⊤
aτ

+ IK

−1(
t∑

τ=1

1

p
x̃aτ ϵaτ ,τ − µ⋆

)
,

where the second equality holds because ϕaτ ,τ = p. Under the coupling event ∩t
τ=1Mτ ,

t∑
τ=1

I(Mτ )
∑

a∈[K]

I(ãτ = a)

ϕa,t
x̃ax̃

⊤
a + IK =

t∑
τ=1

∑
a∈[K]

I(ãτ = a)

ϕa,t
x̃ax̃

⊤
a + IK

:=At,

and

x̃⊤
a (µ̂

R
t − µ⋆) =x̃⊤

a V
−1
t

{
(Vt −At)A

−1
t

(
t∑

τ=1

1

p
x̃aτ ϵaτ ,τ − µ⋆

)
+

t∑
τ=1

ϵaτ

ϕaτ ,τ
x̃aτ − µ⋆

}

=x̃⊤
a V

−1
t

{
(Vt −At)A

−1
t + IK

}( t∑
τ=1

1

p
x̃aτ

ϵaτ ,τ − µ⋆

)

=x̃⊤
a V

−1/2
t

(
V

1/2
t A−1

t V
1/2
t

)
V

−1/2
t

(
t∑

τ=1

1

p
x̃aτ ϵaτ ,τ − µ⋆

)
.

Taking absolute value on both sides, by Cauchy-Schwarz inequality,

max
a∈[K]

|x̃⊤
a (µ̂

R
t − µ⋆)| ≤ max

a∈[K]
∥x̃a∥V−1

t
∥V1/2

t A−1
t V

1/2
t ∥2

∥∥∥∥∥
t∑

τ=1

1

p
x̃aτ ϵaτ ,τ − µ⋆

∥∥∥∥∥
V−1

t

.

By Corollary which implies IK −V
−1/2
t AtV

−1/2
t ⪯ ϵIK . Rearraging the terms,

V
1/2
t A−1

t V
1/2
t ⪯ (1− ϵ)−1IK .

Thus,

max
a∈[K]

|x̃⊤
a (µ̂

R
t − µ⋆)| ≤

maxa∈[K] ∥x̃a∥V−1
t

1− ϵ

∥∥∥∥∥
t∑

τ=1

1

p
x̃aτ

ϵaτ ,τ − µ⋆

∥∥∥∥∥
V−1

t

≤
maxa∈[K] ∥x̃a∥V−1

t

1− ϵ

1

p

∥∥∥∥∥
t∑

τ=1

x̃aτ
ϵaτ ,τ

∥∥∥∥∥
V−1

t

+ ∥µ⋆∥V−1
t

 .

Note that the matrix Vt is deterministic. By Lemma 9 in (Abbasi-yadkori et al., 2011), with probability at least 1− δ,∥∥∥∥∥
t∑

τ=1

x̃aτ ϵaτ ,τ

∥∥∥∥∥
V−1

t

≤

∥∥∥∥∥
t∑

τ=1

x̃aτ ϵaτ ,τ

∥∥∥∥∥
(
∑t

τ=1 x̃aτ x̃
⊤
aτ

+IK)
−1

≤ σ

√
2 log

det(
∑t

τ=1 x̃aτ
x̃⊤
aτ

+ IK)1/2

δ

≤ σ

√
log

det(
∑t

τ=1 x̃aτ
x̃⊤
aτ

+ IK)

δ
,
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for all t ≥ 1. Because

det

(
t∑

τ=1

x̃aτ x̃
⊤
aτ

+ IK

)
≤

Tr
(∑t

τ=1 x̃aτ
x̃⊤
aτ

)
+K

K


K

≤
{
tmaxa∈[K] ∥x̃aτ

∥2 +K

K

}K

≤ {t+ 1}K ,

where the last inequality holds by ∥x̃aτ ∥2 ≤
√
K∥x̃aτ ∥∞ ≤ K. Thus,∥∥∥∥∥

t∑
τ=1

x̃aτ
ϵaτ ,τ

∥∥∥∥∥
V−1

t

≤ σ

√
K log

t+ 1

δ
,

which proves,

max
a∈[K]

|x̃⊤
a (µ̂

R
t − µ⋆)| ≤

maxa∈[K] ∥x̃a∥V−1
t

1− ϵ

(
σ

p

√
K log

t+ 1

δ
+ ∥µ⋆∥V−1

t

)

≤ 1√
t
· 1

1− ϵ

(
σ

p

√
K log

t+ 1

δ
+ ∥µ⋆∥V−1

t

)
.

Because ∥µ⋆∥V−1
t

≤ ∥µ⋆∥2 ≤
√
K, setting ϵ = 1/2 completes the proof.

E.5. Proof of Theorem 5

Because the regret is bounded by 1 and the number of rounds for the exploration phase is at most |ET | ≤ 32(1 −
p)−2K2 log(2dT 2/δ).

Reg(T ) ≤ 32(1− p)−2K2 log
2dT 2

δ
+

∑
t∈[T ]\ET

Et−1[y⋆,t]− Et−1[yat,t]

=32(1− p)−2K2 log
2dT 2

δ
+

∑
t∈[T ]\ET

{I (at = ât) (Et−1[y⋆,t]− Et−1[yat,t])}

+
∑

t∈[T ]\ET

{I (at ̸= ât) (Et−1[y⋆,t]− Et−1[yat,t])} .

On the event {at = ât},

Et−1[y⋆,t]− Et−1[yat,t] =x̃⊤
a⋆
µ⋆ − x̃⊤

ât
µ⋆

≤ 2 max
a∈[K]

∣∣∣x̃⊤
a

(
µ⋆ − µ̂R

t−1

)∣∣∣+ x̃⊤
a⋆
µ̂R

t−1 − x̃⊤
ât
µ̂R

t−1

≤ 2 max
a∈[K]

∣∣∣x̃⊤
a

(
µ⋆ − µ̂R

t−1

)∣∣∣
≤ 4√

t

(
σ

p

√
K log

2t2

δ
+

√
K

)
,

with probability at least 1− 3δ/t, by Theorem 4. Summing over t gives, (with probability at least 1− 3δ),

∑
t∈[T ]\ET

{I (at = ât) (Et−1[y⋆,t]− Et−1[yat,t])} ≤ 8
√
KT

(
σ

p

√
log

2T 2

δ
+ 1

)
.
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By Lemma 5 and the Hoeffding bound, with probability at least 1− δ∑
t∈[T ]\ET

{I (at ̸= ât) (Et−1[y⋆,t]− Et−1[yat,t])}

≤ 2

∑
t∈[T ]

I (at ̸= ât)− P (at ̸= ât) + P (at ̸= ât)


≤ 4

√
2T log

2

δ
+

4
√
T

K − 1
+ 4δ.

Then the cumulative regret,

Reg(T ) ≤ 32K2

(1− p)2
log

2dT 2

δ
+ 4

√
2T log

2

δ
+

4
√
T

K − 1
+ 4δ + 8

√
KT

(
σ

p

√
log

t+ 1

δ
+ 1

)
,

which completes the proof.

F. Algorithm-Agnostic Lower Bound of Regret Ignoring Unobserved Features
In this section, extending our argument in Theorem 1, we show that there exists a problem instance where linear bandit
algorithms relying solely on observed features can incur regret that grows linearly in T . We begin by formally defining such
algorithms.

Definition 1 (Policy dependent on observed features). For each t ∈ [T ], let πt : Rd × Rt−1 → [0, 1], be a policy that maps
an observed feature vector x ∈ {xa : a ∈ [K]}, given past reward observation {yas,s : s ∈ [t − 1]}, to a probability of
selection. Then the policy πt is dependent only on observed features if, for any ya1,1, . . . , yat−1,t−1, it holds that x1 = x2

implies πt(x1|ya1,1, . . . , yat−1,t−1) = πt(x2|ya1,1, . . . , yat−1,t−1).

For instance, the UCB and Thompson sampling-based policies for linear bandits (with observed features), considered
in Theorem 1, satisfy Definition 1, as they assign the same selection probability as long as the observed features are the same.
In contrast, the policy in the MAB algorithms (that disregard observed features) may assign different selection probability
although the observed features are equal and is not dependent on the observed features. In the theorem below, we particularly
provide a lower bound for algorithms that employ policies that are dependent on the observed features.

Theorem 7 (Regret Lower Bound under Policies Dependent on Observed Features). For any algorithm Π := (π1, . . . , πT )
that consists of policies {πt : t ∈ [T ]} that are dependent on observed features, there exists a set of features {z1, . . . , zK}
and a parameter θ⋆ ∈ Rdz such that the cumulative regret

RegΠ(T, θ⋆, z1, . . . , zK) ≥ T

6
.

Proof. We start the proof by providing a detailed account of the scenario described in the theorem. Without loss of generality,
we consider the case where K = 3. As stated in the theorem, a⋆ represents the index of the optimal action when considering
the entire reward, including both observed and latent components. In contrast, ao denotes the index of the optimal action
when considering only the observed components. We introduce an additional notation, a′, which refers to an action whose
observed features are identical to those of a⋆, but with a distinct latent component. Specifically, this implies that a′ ̸= a⋆
and za′ ̸= za⋆

, but xa′ = xa⋆
. By definition of the policy πt that depends on the observed features, πt(xa⋆

) = πt(xa′) and
the probability of selecting an optimal arm is πt(xa⋆

) ≤ 1/2.

Taking this scenario into account, the observed part of the features associated with a⋆, a′, and ao are defined as follows:

xa⋆
:=

[
−1

2
, . . . ,−1

2

]⊤
,xa′ :=

[
−1

2
, . . . ,−1

2

]⊤
,xao

:=

[
1

2
, . . . ,

1

2

]⊤
.

Additionally, we define the unobserved feature vectors for actions a⋆, a′, and ao as follows:

ua⋆ := [1, . . . , 1]
⊤
,ua′ := [−1, . . . ,−1]

⊤
,uao := [−1, . . . ,−1, 1, . . . , 1]

⊤
,
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where in uao
, the number of 1’s and -1’s are equal. This ensures that the scenario aligns with the assumption imposed on the

feature vectors throughout this paper. We further define the true parameter as follows:

θ⋆ :=

[
1

3d
, . . . ,

1

3d
,

2

3du
, . . . ,

2

3du

]⊤
∈ Rdz ,

thus it follows that θ(o)
⋆ = [1/3d, . . . , 1/3d]⊤ ∈ Rd and θ(u)

⋆ = [2/3du, . . . , 2/3du]
⊤ ∈ Rdu . Note that it is straightforward

to verify that |⟨za,θ⋆⟩| ≤ 1, thereby satisfying the assumption on the mean reward (Section 3.2). With this established, we
can also observe that the expected reward for the three actions are defined as:

⟨za⋆
,θ⋆⟩ = ⟨xa⋆

,θ(o)
⋆ ⟩+ ⟨ua⋆

,θ(u)
⋆ ⟩ = −1

6
+

2

3
=

1

2
,

⟨za′ ,θ⋆⟩ = ⟨xa′ ,θ(o)
⋆ ⟩+ ⟨ua′ ,θ(u)

⋆ ⟩ = −1

6
− 2

3
= −5

6
,

⟨zao
,θ⋆⟩ = ⟨xao

,θ(o)
⋆ ⟩+ ⟨uao

,θ(u)
⋆ ⟩ = 1

6
+ 0 =

1

6
,

respectively, and it is straightforward to verify that ⟨za⋆
,θ⋆⟩−⟨zao

,θ⋆⟩ = 2/3 > 0 and that ⟨za⋆
,θ⋆⟩−⟨za′ ,θ⋆⟩ = 4/3 > 0,

which confirms that a⋆ is optimal when considering the full feature set.

At each round t ∈ [T ], for any policy πt satisfying Definition 1, we have πt(xa⋆ |ya1,1, . . . , yat−1,t−1) =
πt(xa′ |ya1,1, . . . , yat−1,t−1). This implies P(at = a⋆ = P(at = a′) and

P(at = a⋆) = 1− P(at = a′)− P(at = ao) ≤ 1− P(at = a′) = 1− P(at = a⋆),

and the probability of selecting an optimal arm cannot exceed 1/2. Thus, the expected regret,

RegΠ(T, θ⋆, za⋆
, za′ , zao

) ≥
(1
2
− 1

6

) T∑
t=1

P(at ̸= a⋆) ≥
T

6
,

which completes the proof.

G. Technical Lemmas
Lemma 1. (Exponential martingale inequality) If a martingale (Xt; t ≥ 0), adapted to filtration Ft, satisfies
E[exp(λXt)|Ft−1] ≤ exp(λ2σ2

t /2) for some constant σt, for all t, then for any a ≥ 0,

P (|XT −X0| ≥ a) ≤ 2 exp

(
− a2

2
∑T

t=1 σ
2
t

)
.

Thus, with probability at least 1− δ,

|XT −X0| ≤

√√√√2

T∑
t=1

σ2
t log

2

δ
.

G.1. A Hoeffding bound for Matrices

Lemma 2. Let {Mτ : τ ∈ [t]} be a Rd×d-valued stochastic process adapted to the filtration {Fτ : τ ∈ [t]}, i.e., Mτ is Fτ -
measurable for τ ∈ [t]. Suppose that the matrix Mτ is symmetric and the eigenvalues of the difference Mτ − E[Mτ |Fτ−1]
lie in [−b, b] for some b > 0. Then for x > 0,

P

(∥∥∥∥∥
t∑

τ=1

Mτ − E[Mτ |Fτ−1]

∥∥∥∥∥
2

≥ x

)
≤ 2d exp

(
− x2

2tb2

)
.
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Proof. The proof is an adapted version of Hoeffding’s inequality for matrix stochastic process with the argument of (Tropp,
2012). Let Dτ := Mτ − E[Mτ |Fτ−1]. Then, for x > 0,

P

(∥∥∥∥∥
t∑

τ=1

Dτ

∥∥∥∥∥
2

≥ x

)
≤ P

(
λmax

(
t∑

τ=1

Dτ

)
≥ x

)
+ P

(
λmax

(
−

t∑
τ=1

Dτ

)
≥ x

)
.

We bound the first term and the second term is bounded with similar arguement. For any v > 0,

P

(
λmax

(
t∑

τ=1

Dτ

)
≥ x

)
≤ P

(
exp

{
vλmax

(
t∑

τ=1

Dτ

)}
≥ evx

)
≤ e−vxE

[
exp

{
vλmax

(
t∑

τ=1

Dτ

)}]
.

Since
∑t

τ=1 Dτ is a real symmetric matrix,

exp

{
vλmax

(
t∑

τ=1

Dτ

)}
=λmax

{
exp

(
v

t∑
τ=1

Dτ

)}
≤ Tr

{
exp

(
v

t∑
τ=1

Dτ

)}
,

where the last inequality holds since exp(v
∑t

τ=1 Dτ ) has nonnegative eigenvalues. Taking expectation on both side gives,

E

[
exp

{
vλmax

(
t∑

τ=1

Dτ

)}]
≤ E

[
Tr

{
exp

(
v

t∑
τ=1

Dτ

)}]

= TrE

[
exp

(
v

t∑
τ=1

Dτ

)]

= TrE

[
exp

(
v

t−1∑
τ=1

Dτ + log exp(vDt)

)]
.

By Lieb’s theorem (Tropp, 2015) the mapping D 7→ exp(H+ logD) is concave on positive symmetric matrices for any
symmetric positive definite H . By Jensen’s inequality,

TrE

[
exp

(
v

t−1∑
τ=1

Dτ + log exp(vDt)

)]
≤ TrE

[
exp

(
v

t−1∑
τ=1

Dτ + logE [ exp(vDt)| Ft−1]

)]
. (24)

By Hoeffding’s lemma,

evx ≤ b− x

2b
e−vb +

x+ b

2b
evb,

for all x ∈ [−b, b]. Because the eigenvalue of Dτ lies in [−b, b], we have

E [ exp(vDt)| Ft−1] ⪯ E
[
e−vb

2b
(bId −Dt) +

evb

2b
(Dt + bId)

∣∣∣∣Ft−1

]
=

e−vb + evb

2
Id

⪯ exp(
v2b2

2
)Id.
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Now we recursively upper bound Eq. (24) as follows:

E

[
exp

{
vλmax

(
t∑

τ=1

Dτ

)}]
≤ TrE

[
exp

(
v

t−1∑
τ=1

Dτ + logE [ exp(vDt)| Ft−1]

)]

≤ TrE

[
exp

(
v

t−1∑
τ=1

Dτ + (
v2b2

2
)Id

)]

≤ TrE

[
exp

(
v

t−2∑
τ=1

Dτ + (
v2b2

2
)Id + logE [ exp(vDt−1)| Ft−2]

)]

≤ TrE

[
exp

(
v

t−2∑
τ=1

Dτ + (
2v2b2

2
)Id

)]
...
...

≤ Tr exp
(
(
tv2b2

2
)Id

)
= exp

(
tv2b2

2

)
Tr (Id)

= d exp

(
tv2b2

2

)
.

Thus we have

P

(
λmax

(
t∑

τ=1

Dτ

)
≥ x

)
≤ d exp

(
−vx+

tv2b2

2

)
.

Minimizing over v > 0 gives v = x/(tb2) and

P

(
λmax

(
t∑

τ=1

Dτ

)
≥ x

)
≤ d exp

(
− x2

2tb2

)
,

which proves the lemma.

G.2. A Bound for the Gram Matrix

The Hoeffding bound for matrices (Lemma 2) implies the following bound for the two Gram matrices At :=
∑t

τ=1 x̃aτ x̃
⊤
aτ

and Vt :=
∑t

τ=1

∑
a∈[K] x̃ax̃

⊤
a

Corollary 1. For any ϵ ∈ (0, 1) and t ≥ 8ϵ−2(1− p)−2K2 log 2Kt2

δ , with probability at least 1− δ/t2,∥∥∥IK −V
−1/2
t AtV

−1/2
t

∥∥∥
2
≤ ϵ.

Proof. Note that

V
−1/2
t AtV

−1/2
t − IK = V

−1/2
t


t∑

τ=1

∑
a∈[K]

(
I(ãτ = a)

ϕa,τ
− 1

)
x̃ax̃

⊤
a

V
−1/2
t ,

and the martingale difference matrix for each τ ∈ [t],∥∥∥∥∥∥
∑

a∈[K]

(
I(ãτ = a)

ϕa,τ
− 1

)
V

−1/2
t x̃ax̃

⊤
a V

−1/2
t

∥∥∥∥∥∥
2

≤
(
K − 1

1− p
+K − 2

)
max
a∈[K]

∥∥∥V−1/2
t x̃ax̃

⊤
a V

−1/2
t

∥∥∥
2

≤ 2K

1− p
max
a∈[K]

∥x̃a∥2V−1
t

≤ 2K

1− p
· 1
t
. (25)
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Note that the last inequality (Eq. (25)) holds by Sherman-Morrison formula. By Hoeffding bound for matrix (Lemma 2), for
x > 0, it holds that:

P
(∥∥∥V−1/2

t AtV
−1/2
t − IK

∥∥∥
2
> x

)
≤ 2K exp

(
− (1− p)2tx2

8K2

)
.

Setting x = ϵ ∈ (0, 1) which will be determined later, for t ≥ 8ϵ−2(1− p)−2K2 log 2Kt2

δ with probability at least 1− δ/t2,∥∥∥IK −V
−1/2
t AtV

−1/2
t

∥∥∥
2
≤ ϵ.

G.3. An error bound for the Lasso estimator

Lemma 3 (An error bound for the Lasso estimator with unrestricted minimum eigenvalue). Let {xτ}τ∈[t] denote the
covariates in [−1, 1]d and yτ = x⊤

τ w̄ + eτ for some w̄ ∈ Rd and eτ ∈ R. For λ > 0, let

ŵt = argmin
w

t∑
τ=1

(
yτ − x⊤

τ w
)2

+ λ∥w∥1.

Let S̄ := {i ∈ [d] : w̄(i) ̸= 0} and Σt :=
∑t

τ=1 xτx
⊤
τ . Suppose Σt has positive minimum eigenvalue and

∥
∑t

τ=1 eτxτ∥∞ ≤ λ/2. Then,

∥ŵt − w̄∥Σt ≤
2λ
√

|S̄|√
λmin (Σt)

.

Proof. The proof is similar to that of Lemma B.4 in (Kim et al., 2024), but we provide a new proof for the (unrestricted)
minimum eigenvalue condition. Let X⊤

t := (x1, . . . ,xt) ∈ [−1, 1]d×t and e⊤t := (e1, . . . , et) ∈ Rt. We write Xt(j) and
ŵt(j) as the j-th column of Xt and j-th entry of ŵt, respectively. By definition of ŵt,

∥Xt (w̄ − ŵt) + et∥22 + λ∥ŵt∥1 ≤ ∥e(j)t ∥22 + λ∥w̄∥1,

which implies

∥Xt (w̄ − ŵt) ∥22 + λ∥ŵt∥1 ≤ 2 (ŵt − w̄)
⊤
X⊤

t et + λ∥w̄∥1
≤ 2∥ŵt − w̄∥1∥X⊤

t et∥∞ + λ∥w̄∥1
≤ λ∥ŵt − w̄∥1 + λ∥w̄∥1,

where the last inequality uses the bound on λ. On the left hand side, by triangle inequality,

∥ŵt∥1 =
∑
i∈S̄

|ŵt(i)|+
∑

i∈[d]\S̄

|ŵt(i)|

≥
∑
i∈S̄

|ŵt(i)| −
∑
i∈S⋆

|ŵt(i)− w̄(i)|+
∑

i∈[d]\S̄

|w̄(i)|

=∥w̄∥1 −
∑
i∈S̄

|ŵt(i)− w̄(i)|+
∑

i∈[d]\S̄

|ŵt(i)|,

and for the right-hand side,
∥ŵt − w̄∥1 =

∑
i∈S̄

|ŵt(i)− w̄(i)|+
∑

i∈[d]\S̄

|ŵt(i)|.

Plugging in both sides and rearranging the terms,

∥Xt (w̄ − ŵt) ∥22 ≤ 2λ
∑
i∈S̄

|ŵt(i)− w̄(i)|. (26)
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Because X⊤
t Xt is positive definite,

∥Xt (w̄ − ŵt) ∥22 ≥λmin(X
⊤
t Xt)

∑
i∈S̄

|ŵt(i)− w̄(i)|2

≥λmin(X
⊤
t Xt)

|S̄|

∑
i∈S̄

|ŵt(i)− w̄(i)|

2

,

where the last inequality holds by Cauchy-Schwarz inequality. Plugging in Eq. (26) gives,

∥Xt (w̄ − ŵt) ∥22 ≤2λ
∑
i∈S̄

|ŵt(i)− w̄(i)|

≤2λ

√
|S̄|

λmin(Σt)
∥Xt (w̄ − ŵt) ∥2

≤ 2λ2|S̄|
λmin(Σt)

+
1

2
∥Xt (w̄ − ŵt) ∥22,

where the last inequality uses ab ≤ a2/2 + b2/2. Rearranging the terms,

∥Xt (w̄ − ŵt) ∥22 ≤ 4λ2|S̄|
λmin(Σt)

,

which proves the result.

G.4. Eigenvalue bounds for the Gram matrix.

Lemma 4. For a ∈ [K], let x̃a := [x⊤
a , e

⊤
a p1, · · · , e⊤a pK−d]

⊤ ∈ Rd denote augmented features. Then, an eigenvalue of∑
a∈[K] x̃ax̃

⊤
a is in the following intervalmin

λmin

∑
a∈[k]

xax
⊤
a

 , 1

 ,max

λmax

 ∑
a∈[K]

xax
⊤
a

 , 1


 .

Proof. Let P := (p1, . . . ,pK−d) ∈ RK×(K−d). Because the columns in P are orthogonal each other and to x1, . . . ,xK ,

∑
a∈[K]

x̃ax̃
⊤
a =

[ ∑
a∈[K] xax

⊤
a

∑
a∈[K] xae

⊤
a P∑

a∈[K] P
⊤eax

⊤
a P⊤P

]

=

[ ∑
a∈[K] xax

⊤
a

∑
a∈[K] xae

⊤
a P∑

a∈[K] P
⊤eax

⊤
a IK−d

]
=

[ ∑
a∈[K] xax

⊤
a

∑
a∈[K] Xeae

⊤
a P∑

a∈[K] P
⊤eae

⊤
a X IK−d

]
=

[∑
a∈[K] xax

⊤
a XP

P⊤X⊤ IK−d

]
=

[∑
a∈[K] xax

⊤
a O

O IK−d

]
.

Thus, for any λ ∈ R, det(
∑

a∈[K] x̃ax̃
⊤
a − λIK) = det(

∑
a∈[K] xax

⊤
a − λId)(1− λ)K−d. Solving det(

∑
a∈[K] xax

⊤
a −

λId)(1− λ)K−d = 0 gives the eigenvalues and the lemma is proved.
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G.5. A Bound for the Probability of Exploration

Lemma 5. For each t, let ât = argmaxa∈[K] x̃
⊤
a µ̂t denote the maximizing action based on the estimator µ̂t. Then the

action at chosen by the resampling scheme in Algorithm 1 and Algorithm 2 satisfies,

T∑
t=1

P(at ̸= ât) ≤
2
√
T

(K − 1)
+ 2δ.

Proof. Since the algorithm resampling at most ρt times, for a fixed t ∈ [T ],

P(at ̸= ât) = P ({ãt = at} ∩ {at ̸= ât}) + P ({ãt ̸= at} ∩ {at ̸= ât})
≤ P ({ãt = at} ∩ {at ̸= ât}) + P(ãt ̸= at)

= P ({ãt = at} ∩ {at = k}) + P(ãt ̸= at)︸ ︷︷ ︸
Failure of resampling

for k ̸= ât, (27)

where P(at = k) = t−1/2/(K − 1) and P(ãt = at) = p, defined by Algorithm 1 and Eq. (9), respectively. For the first
term in Eq. (27), by union bound it holds that:

P ({ãt = at} ∩ {at = k}) = P

(
ρt⋃

m=1

{Resampling success at trial m} ∩ {at = k}

)

≤
ρt∑

m=1

P ({Resampling success at trial m} ∩ {at = k}) ,

≤ P(at = k)

=
1√

t(K − 1)
.

which, combined with Eq. (27), results in:

P(at ̸= ât) ≤
1√

t(K − 1)
+ P(Resampling failure)

By the definition of ρt, the probability that the resampling fails is bounded by δ/(t+ 1)2. Thus, the probability of the event
{at ̸= ât} is

P(at ̸= ât) ≤
1√

t(K − 1)
+

δ

(t+ 1)2

Summing up over t ∈ [T ] completes the proof.
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