
Automated Refutation with Monte Carlo Search
of Graph Theory Conjectures on the Maximum

Laplacian Eigenvalue

Liora Taieb, Milo Roucairol, Tristan Cazenave⋆ and Ararat Harutyunyan

LAMSADE, Université Paris Dauphine - PSL, CNRS, Paris, France

Abstract. We address the problem of automatic refutation of spectral
graph theory conjectures with Monte Carlo methods. Usual ways are
testing conjectures on an exhaustive database of graphs below a certain
size, local search algorithms, or, more recently, deep reinforcement learn-
ing. We expand on previous works by finding smaller (and often sparser)
counter-examples to spectral graph theory conjectures in seconds when it
takes minutes or hours with other methods. We apply search algorithms
(including state-of-the-art Monte Carlo Searches) to 68 automated con-
jectures already addressed by the deep cross-entropy method. In addition
to the ones already disproved by deep cross-entropy, we refute 2 open
conjectures until now. We highlight the efficiency of Monte Carlo Search
algorithms compared to a state-of-the-art neural approach, and the ad-
vantages of the constructive method. Monte Carlo search can be used to
automatically refute conjectures that are experimentally generated.

Keywords: Monte Carlo Search; Spectral Graph Theory; Conjecture; Refuta-
tion

1 Introduction

Finding potential counterexamples to a graph theory conjecture can be a tire-

some task. The search space of graphs of order n consists of at least 2(
n
2)

n! non
isomorphic graphs, with n! being the maximal cardinality of a graph isomor-
phism class. Thus the search space’s size is expanded in doubly exponential
fashion when exploring multiple graph sizes when there is no prior intuition on
the likely size of a counter-example.

This article expands the work of Roucairol and Cazenave [30, 31], who were
the first to use Monte Carlo Search methods to build counter-examples of spec-
tral graph theory conjectures, in which they showed the effectiveness of the
approach against neural state-of-the-art methods. Few works have been devoted
to evaluating Monte Carlo search algorithms for combinatorial graph problems.
Cazenave et al. applied it to graph coloring [10], investigated before them only

⋆ Corresponding Author. Email: tristan.cazenave@lamsade.dauphine.fr

2 Taieb et al.

by Edelkamp et al. [17], both works being competitive with state-of-the-art SAT
solvers.

Our focus in this paper is once again on spectral graph theory conjectures,
as they are well-suited for automated refutation. Here, we focus on conjectures
involving the maximum Laplacian eigenvalue of a graph. The property of a
spectral theory conjecture can straightforwardly be translated into an evaluation
function whose set of images is large and continuous, which usually provides a
good assessment of the quality of the states evaluated. Many available software
and libraries of various computer languages carry out eigenvalue calculations
quickly.

The paper is organized as follows. In Sect. 2, we describe previous work in
the refutation of graph theory conjectures and we focus on Monte Carlo search.
In Sect. 3, we present the problem and the methodology used to explore the
problem space. Finally, in Sect. 4 and 5, we present and discuss our results on
multiple conjectures.

2 Refutation of Graph Theory Conjectures

2.1 State Of The Art

Graph conjectures are propositions on graph classes (any graph, trees, K-free...)
that are thought to be true and are awaiting proof or a refutation. Many math-
ematicians have put forward spectral graph theory conjectures still open to this
day [24]. Automated softwares for creating conjectures emerged at the rise of
powerful computers in the 80s, including Ingrid [13], GRAPH [11], Graffiti [12]
and AutoGraphiX [20]. Thanks to them, plenty of such conjectures are available
and still open [4].

Graffiti uses known theorems to create and refine many conjectures in the
form of inequalities between graph invariants. It then tests these conjectures on
a database of graphs and discards the falsified ones. Its database is built by
an exhaustive generation of graphs smaller than a threshold size. The system
later checks if the inequalities are not implied by already known theorems and
conjectures, including those it has created itself. If a conjecture passes these
tests, it is proposed to graph theorists. ”Written on the wall” [1] collects almost
1000 conjectures from Graffiti, along with the discussions of many renowned
graph theorists. The efficiency of Graffiti’s refutation process is strongly limited
by the quality of the database, in other words its completeness and the maximal
size of generated graphs.

AutoGraphiX uses local search to create - and also refute - some conjec-
tures. The program uses a heuristic, the Variable Neighborhood Search (VNS)
to identify extremal graphs and suggest conjectures based on their structure.
Local search is faster than a naive exhaustive generation as it introduces con-
straints to reduce the search space, and has been used several times to solve
combinatorial graph problems [21, 26, 23].

Automated Refutation with Monte Carlo Search 3

Lately, machine and deep learning tackled combinatorial problems over graphs
[22]. Wagner’s deep reinforcement learning technique [33] is a pioneering refuta-
tion method of graph theory conjectures. It has been reworked in [3] and used
for research in Turán theory in [26], Ramsey theory in [18] and spectral graph
theory in [2], disproving open conjectures in [33, 18, 2]. This program learns a
policy of graph generation using a deep cross entropy. It trains a neural network
to output a policy on the next edge to add to a graph. This way, it creates
a batch of full graphs from which the network learns by minimizing the cross-
entropy with the distribution of the best graphs of the batch. Wagner’s method
intrinsically understands the structure of the best graphs. But it can take hours
or days, and it is limited to the study of fixed sizes of graphs.

2.2 Monte Carlo Search

Monte Carlo Tree Search (MCTS) is a family of algorithms that combine tree
search and reinforcement learning using playouts and heuristics [6]. The search
space (and not the search states) is represented by a tree, where the nodes are
the partial constructions, the edges are the next possible moves and the leaves
are terminal states. It performs numerous simulations and stores the statistics
of actions and their resulting evaluations to make more educated choices in each
iteration. Constraints on legal moves delimit the possible extent of the search
space.

Monte Carlo search algorithms were proven to be powerful in puzzles and
optimization problems, with recent successes like AlphaGo [32]. They often excel
in games [27, 7] and non-games applications including biology [28, 16], logistics
[14, 15] and many more [6]. These algorithms have the advantage of only needing
an evaluation function for the final state of the space they explore.

The efficiency of MCTS comes from its incremental construction of graphs,
which can produce large solutions. It is similar to local search in that it improves
the construction by moving towards the best neighboring solutions. As a local
search and reinforcement learning method, MCTS can fall into a local optima if
the evaluation score is too noisy, but decisions based on reinforcement learning
help balance this limitation. Some of them such as Nested Rollout Policy Adapta-
tion learn a general policy that serves as a playout guiding heuristic, in line with
the principle of the deep cross entropy, without being limited by a fixed graph
size.

MCTS is efficient in solving optimization problems where the score function
and the legal moves are relatively inexpensive to compute, as these calcula-
tions will be made many times during the simulations. The difficulty with these
methods lies in the choice of an efficient exploration of the search space, and
the formalization of an objective yet feasible evaluation function. For NP-hard
problems, it is possible to bias the search [9, 10].

4 Taieb et al.

3 Problem and Methodology

The conjectures we study come from [5] and involve the largest eigenvalue µ of
the Laplacian matrix of graphs (degree matrix minus adjacency matrix). They
were created automatically similarly to Graffiti with a database of 273,214 con-
nected graphs with up to 9 vertices, enhanced by a few special graphs. We focus
on the 68 conjectures attempted by Al-Yakoob et al. with the deep cross entropy
method [2]. All conjectures are presented in the appendix, their order comes from
[2], different from the order [5]. They are of the form

µ ⩽ max
vi

f (di,mi) (1) or µ ⩽ max
vi∼vj

f (di,mi, dj ,mj) (2)

where vi is any vertex of G, di is the degree of this vertex and mi is the average of
the degrees of vi’s neighbors, and f is some function involving these parameters.
vi ∼ vj denotes two adjacent vertices.

The evaluation function naturally is µ - the value on the right of the inequal-
ity, either µ−max

vi

f (di,mi) or µ−max
vi∼vj

f (di,mi, dj ,mj). To avoid floating point

errors when calculating eigenvalues, we force the result to be greater than 0.0001
for the graph to be considered a counter-example (it is more than enough for
graphs of size 20 as the floating point error is at most in the x−9 range). The
conjectures apply to any graph, therefore we begin with the naive approach of
not restraining the legal moves. Following the work of Roucairol and Cazenave
[30], we then narrow the legal moves to create only trees, as the search space is
way smaller and trees are more likely to converge toward extreme graphs with
extreme properties.

We apply 3 Monte Carlo search algorithms to the problem as well as the
Greedy Best-First Search algorithm, the evolutionary algorithm Covariance Matrix
Adaptation - Evolutionary Strategy and an Iterated Local Search. Their pseudo-
codes are presented in the appendix.

– Nested Monte Carlo Search (NMCS) [7] uses nested levels of playouts with
random playouts at the base level. At each recursion level, each legal move
is assigned a score from the results of the lower level NMCS starting from
the move, and the best move is selected this way.

– Nested Rollout Policy Adaptation (NRPA) [29] is similar to a NMCS, but
learns a policy with nested levels of best sequences. At the lowest level, it
becomes a playout with the learned policy.

– Generalized Rapid Action Value Estimation (GRAVE) [8] uses the All Moves
As First (AMAF) heuristic to update move statistics, taking into account
all the moves that were played in the playout and not only the first one. It
incorporates statistics from a higher reference state in the tree, which is the
closest ancestor state that has more playouts than a given constant.

– Greedy Best-First Search (GBFS) is a simple and deterministic greedy algo-
rithm opening the best state from a list, evaluating the children of this state,
and inserting these children back in the list according to their evaluation.

Automated Refutation with Monte Carlo Search 5

– Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES) [19] is an
evolutionary method that samples children from the multivariate Gaussian
distribution of the best parents, with the aim of producing even better chil-
dren. By definition, it understands the structures of best graphs to which it
applies mutations.

– Iterated Local Search (ILS) [25] repeatedly applies local search on perturbed
solutions.

4 Results

The data and code that support the findings of this study are openly available
and will be disclosed after acceptation to ensure anonymity of the submission.

The experiments were made with Rust 2024.1, on an Intel Core i7-1365U
5.2GHz using a single core. Each algorithm has been allocated a maximum of 1
minute per conjecture and each algorithm has been ran several times. The then
unrefuted conjectures have been alloted additional time, between 15 minutes and
1 hour. The terminal state of the algorithms and playouts occurs when the graph
reaches 20 vertices, as it is the fixed size studied with the deep cross entropy. We
also tried various terminal sizes between 15 and 50. We present in Table 1 the
results of the algorithms, only for the refuted conjectures for the sake of clarity.

– NCMS, NRPA and GRAVE were ran with and without a heuristic on the
choice of the next move in playouts.

– Only NMCS, NRPA, GRAVE and GBFS were restricted to trees.
– NMCS and NRPA used at most a level of 3 as it is generally not recom-

mended to use one above 3.
– GRAVE used a reference of 50 as in the original article [8].
– CMA-ES used a λ of 5, 10 or 15.
– Several variations of ILS were tried, inspired from the work in [25].
– CMA-ES and ILS were tried on solutions of size 20.

The deep cross entropy in [2] disproved 25 conjectures mostly with graphs
of size 20, up to size 24. 5 more conjectures were refuted in the article using an
exhaustive research on subquartic graphs (graph with degree at most 4) of size
14 at most. As shown in Table 1, our algorithms combined were able to refute
29 conjectures : the 25 refuted by the deep cross entropy, 2 that were still open
(Conjectures 45 and 48, see Figure 1a and Figure 1b) and 2 (out of 5) that were
refuted by a subquartic graph.

These conjectures are not a combinatorial optimization benchmark for algo-
rithms, the point of Table 1 is to highlight which algorithms succeed and which
fail. As such, in Table 1 the refutation times are rounded to the nearest second
because the precise comparison between algorithms is not the focus, especially
when the previous state of the art is measured in hours [2, 33]. For example,
two algorithms refuting a conjecture in less than 10 seconds can be considered
equivalent, as they both refute it in times equivalent for a human, there is no
need to refute conjectures faster than they are found.

6 Taieb et al.

By aggregating the results of 1-minute runs, NMCS outperforms the deep
cross entropy and refutes 28 conjectures, NRPA refutes 26, GRAVE refutes 26
and GBFS refutes 16. ILS and CMA-ES refute no conjectures. The best num-
ber of disproved conjectures obtained without restart, leaving only 1 minute by
conjecture, is 23 conjectures for NMCS, NRPA and GRAVE, achieved when we
restrict the search space to trees and use a level of 3 for NMCS and NRPA. with
the same constraints applied to exploration of the entire search space, NMCS
and GRAVE produced a maximum of 17 refuted conjectures, NRPA produced
at most 4.

Parallelized restarts of MCTS methods are strongly advised given the differ-
ence between the total number of conjectures refuted and the one of the best
run of each algorithm. Our experiments show that applying a heuristic to moves
during the playouts systematically increases the number of refuted conjectures
compared with non-heuristic applications of the algorithms, although the re-
futed conjectures are not always the same. The same goes when searching for
trees rather than any graphs. It is truly a cost-effective variation that should be
tried first.

Increasing the level of NRPA and NMCS yields more refutation, but not
every conjectures can be refuted with a higher level. Conjecture 28 was refuted
by NRPA only with a level of 2 or lower. Likewise, Conjecture 48 can be disproved
by NMCS only with a level of 2 or lower, because NMCS with a level of 3 starts
evaluating graphs at size 4. All other conjectures have been refuted with a level
of 3. We do not advise to go higher than a level of 3, as the trade-off between
detailed exploration and computational power requirements is profitable. As for
the terminal size of graphs, trying different ones is good practice; most of the
conjectures were refuted with a size of 20, but not all, as Conjecture 62 with
GRAVE was refuted only with a size of 50 when restricting the search space to
trees.

It is interesting to note that GRAVE is the only algorithm that found a
counter-example for Conjecture 51. NRPA favors patterns and NMCS succeeds
more where the solutions are more chaotic. GRAVE can be described as a mix
of the two (not in terms of algorithm, but policy learning behavior), and it is
illustrated by the structure of the counter-example found (see Figure 2b). Fur-
thermore, NMCS yields smaller counter-examples than NRPA, itself producing
smaller results than GRAVE. NRPA and GRAVE execute a repetitive strategy
usually leading to larger graphs. Given that the counter-examples that are not
trees found by NMCS and GRAVE have very little structure, 1 minute may not
be enough for NRPA to produce solutions, explaining the discrepancy in results
between the algorithms when they are not limited to the search for trees.

Among the 11 conjectures disproved by MCTS but not GBFS, the latter is
only able to refute 1 more conjecture with a 5-minute run, and 3 more with
15 minutes of allotted time. Conjecture 50 was refuted only by NMCS during
a 1-hour run with a terminal size of 15, raising the total number of conjectures
disproved by the algorithm to 28. As shown in Figure 2a, the counter-example is
very structured but small, perhaps too small for NRPA and GRAVE to find it.

Automated Refutation with Monte Carlo Search 7

We tried several 1-hour runs of NMCS with heuristic, NRPA and GBFS, both
for any graphs and for trees, on the 3 remaining conjectures already refuted
by subquartic graphs, without results. Moreover, NMCS, NRPA, GRAVE, and
GBFS were not able to refute unproved conjectures with a 15-minute alloted
time on terminal size 15, 20 and 50. However the bounds of those conjectures
are often reached during exploration.

(a) Edges : 0-1, 0-4, 0-5,
0-8, 0-10, 0-11, 0-12, 1-2,
1-3, 1-6, 1-7, 1-9, 1-13

(b) Edges : 0-1, 0-2

Fig. 1: A counter-example of Conjecture 45 (left) and Conjectures 48, 57 and 61
(right)

5 Discussion

All conjectures previously refuted with the deep cross entropy have been dis-
proved very quickly by the Monte Carlo algorithms, especially NMCS and GRAVE.
The difference of results between MCTS and GBFS highlights MCTS superior
exploration capabilities. This study provides evidence that MCTS discovers po-
tentially desirable structures much sooner than deep neural reinforcement learn-
ing and outperforms both the deep cross entropy and more naive local searches.
MCTS strength comes from the gradual building of graphs coupled with smart
detection of a search branch quality. It gives them an advantage to find counter-
examples of any (reasonable) sizes, especially smaller and typically less dense
counter-examples. An extreme illustration of this is Figure 1b, the very small
path of 3 vertices, that refutes Conjectures 48, 57 and 61, one of which was still
open. The simplicity of the counter-example exhibits a serious limitation of the
exhaustive generation used to test to conjectures in [5]. But it is a very simple
graph, directly and naturally found by MCTS algorithms.

The 4 subquartic graphs presented in [2] that were able to refute Conjectures
2, 17, and 32 are very specific. MCTS is capable of generating specific graphs,
such as the one in Figure 3a, which presents an almost windmill1 graph as a

1 A windmill is an undirected graph constructed for k ⩽ 2 and n ⩽ 2 by joining n
copies of the complete graph Kk at a shared universal vertex.

8 Taieb et al.

(a) Edges : 0-1, 0-9,
1-2, 1-8, 2-3, 2-7, 2-9,
3-4, 3-6, 3-8, 4-5, 4-7,
5-6, 6-7, 7-8, 8-9

(b) Edges : 0-1, 0-2, 0-3, 0-
4, 0-5, 0-6, 0-7, 0-8, 0-9, 0-
10, 0-11, 0-12, 0-14, 0-15, 0-
16, 0-17, 1-2, 1-9, 1-17, 2-3,
2-5, 3-4, 4-10, 5-6, 5-7, 6-7,
6-8, 7-8, 7-10, 8-9, 9-10, 11-
12, 11-13, 12-14, 14-15, 15-
16, 16-17

Fig. 2: A counter-example of Conjecture 50 (left) and Conjecture 51 (right)

(a) Edges : 0-1, 0-2, 0-3, 0-4, 0-5, 0-6, 0-7, 0-8, 0-9,
0-10, 0-11, 0-12, 0-13, 0-14, 0-15, 0-16, 0-17, 0-18,
0-19, 2-3, 4-5, 6-7, 8-9, 10-11, 12-13, 14-15, 16-17,
18-19

Fig. 3: A counter-example of Conjecture 65

Automated Refutation with Monte Carlo Search 9

Table 1: Time in seconds to obtain a refutation with each algorithm (maximum
of 1 minute per conjecture).

NMCS NRPA GRAVE GBFS CMA-ES ILS

Conj. Time Graph type Time G. type Time G. type Time G. type

3 0 tree 50 tree 0 tree 0 any - -
15 0 tree 0 tree 7 tree 1 any - -
28 0 tree 0 tree - - 0 any - -
29 0 tree 0 tree 0 tree - - - -
31 0 tree 1 tree 0 tree 25 any - -
36 0 tree 0 tree 0 tree - - - -

43 any
41 3 any 14 tree 7 any - - - -
43 0 tree 0 tree 0 tree 0 any - -

2 any 1 any
45 0 tree 3 tree - - - - - -
48 0 tree 0 tree 0 tree 0 tree - -

0 any 0 any 0 any 0 any
49 0 tree 0 tree 0 tree 0 any - -

7 any 3 any
50 422a any - - - - - - - -
51 - - - - 5 any - - - -
52 0 tree 0 tree 0 tree 0 any - -

1 any 0 any
53 0 tree 0 tree 0 tree 0 any - -

1 any 0 any
54 0 tree 0 tree 0 tree - - - -

1 any 0 any
55 0 tree 0 tree 0 tree - - - -

3 any 0 any
57 0 tree 0 tree 0 tree 0 tree - -

1 any 0 any 0 any 0 any
58 0 tree 0 tree 0 tree 0 any - -

3 any 43 any 4 any
59 1 tree 0 tree 0 tree - - - -

11 any 19 any
60 1 tree 2 tree 0 tree - - - -

1 any 25 any
61 0 tree 0 tree 0 tree 0 tree - -

1 any 0 any 0 any 0 any
62 1 tree 0 tree 0 tree - - - -

2 any 4 any
63 0 tree 0 tree 0 tree 0 any - -

23 any
64 1 tree 2 tree 0 tree 0 any - -
65 0 tree 0 tree 0 tree - - - -

1 any 0 any
66 48 tree - - 1 tree 0 any - -
67 1 tree 3 tree 0 tree - - - -
68 0 tree 0 tree 0 tree 0 any - -

1 any 4 any 0 any

Table 2: The G. type column defines the types of graphs we used in our searches,
”any” means there was no restriction on the graph built, ”tree” means the graph
was built as a tree. aThose results were obtained by NMCS while testing 1-hour
runs per conjecture for Conjecture 2, 17, 32 and 50, the 4 conjectures refuted by
subquartic graphs but not MCTS.

10 Taieb et al.

counter-example to Conjecture 36, and the one in Figure 2a, which presents a
”shoelace” graph as a counter-example to Conjecture 50. The fact that MCTS
failed to produce counter-examples for Conjectures 2, 17, and 32 even after
hour-long runs highlights the lack of guarantee in finding an optimal result.
The bound of those conjectures are reached by our algorithms, but we believe
this limitation is due to the high granularity of the score functions. We tried to
remove arbitrarily one or two edges of the subquartic counter-examples in [2]
and spotted significantly lower scores when doing so, so much that no conjecture
was refuted anymore. This is a general limitation of optimization methods.

CMA-ES and ILS have not been restricted to build trees, which may explain
the poor results we obtained for them. Both methods start with a preconstructed
graph. CMA-ES is the closest algorithm to the deep cross entropy, and also the
hardest to train. We believe it got lost in the granularity of the score functions.
ILS seems too naive to yield results.

6 Conclusion

The Monte Carlo approach performs well in many fields, and their versatility
can effectively be applied to conjecture refutation in graph theory as well. We
have shown that Monte Carlo search rapidly outperforms its rivals in refuting
spectral graph theory conjectures. Its biased searches and machine learning allow
for quick and effortless research among many sizes of graphs. Roucairol and
Cazenave [30] have shown that Monte Carlo methods can rapidly produce large
counter-examples. Here, the methods yield smaller counter-examples than the
state-of-the-art deep cross entropy method. It also refutes open conjectures which
were not refuted by other methods.

Here, we only used Monte Carlo methods, as the conjectures we studied call
for computationally inexpensive calculations, still on a par with what is done
today. These methods are adaptable and can very well be combined with diverse
heuristics to boost results. Monte Carlo search should be investigated further
for more complex combinatorial graph problems.

References

1. Latest version of ”written on the wall” (2012), accessed:
https://independencenumber.wordpress.com/wp-content/uploads/2012/08/wow-
july2004.pdf

2. Al-Yakoob, S., Ghebleh, M., Kanso, A., Stevanovic, D.: Reinforcement learn-
ing for graph theory, i. reimplementation of wagner’s approach. arXiv preprint
arXiv:2403.18429 (2024)

3. Angileri, F., Lombardi, G., Fois, A., Faraone, R., Metta, C., Salvi, M., Morandin,
F.: A systematization of the wagner framework: Graph theory conjectures and
reinforcement learning. arXiv preprint arXiv:2406.12667 (2024)

4. Aouchiche, M., Hansen, P.: A survey of automated conjectures in spectral graph
theory. Linear algebra and its applications 432(9), 2293–2322 (2010)

Automated Refutation with Monte Carlo Search 11

5. Brankov, V., Hansen, P., Stevanović, D.: Automated conjectures on upper bounds
for the largest laplacian eigenvalue of graphs. Linear algebra and its applications
414(2-3), 407–424 (2006)

6. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Colton, S.: A survey of monte carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in Games 4(1), 1–43 (2012)

7. Cazenave, T.: Nested monte-carlo search. In: Twenty-First International Joint Con-
ference on Artificial Intelligence (June 2009)

8. Cazenave, T.: Generalized rapid action value estimation. In: 24th International
Conference on Artificial Intelligence. pp. 754–760 (2015)

9. Cazenave, T.: Nested rollout policy adaptation with selective policies. In: Cazenave,
T., Winands, M.H.M., Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J.
(eds.) CGW/GIGA-2016. Communications in Computer and Information Science
(CCIS), vol. 705, pp. 44–56. Springer, Cham (2017)

10. Cazenave, T., Negrevergne, B., Sikora, F.: Monte carlo graph coloring. In: Monte
Carlo Search: First Workshop, MCS 2020, Held in Conjunction with IJCAI 2020,
Virtual Event, January 7, 2021, Proceedings 1. pp. 100–115. Springer International
Publishing (2021)

11. Cvetković, D., Simić, S.: Graph theoretical results obtained by the support of the
expert system” graph”. Bulletin (Académie serbe des sciences et des arts. Classe des
sciences mathématiques et naturelles. Sciences mathématiques) pp. 19–41 (1994)

12. DeLaVina, E.: Some history of the development of graffiti. In: DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. vol. 69, p. 81 (2005)

13. Dutton, R.D., Brigham, R.C., Gomez, F.: Ingrid: A graph invariant manipulator.
Journal of symbolic computation 7(2), 163–177 (1989)

14. Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., Lawo, M.: Monte-
carlo tree search for logistics. In: Commercial Transport: Proceedings of the 2nd
Interdisciplinary Conference on Production Logistics and Traffic 2015, pp. 427–440.
Springer International Publishing (2016)

15. Edelkamp, S., Greulich, C.: Solving physical traveling salesman problems with
policy adaptation. In: 2014 IEEE Conference on Computational Intelligence and
Games. pp. 1–8. IEEE (2014)

16. Edelkamp, S., Tang, Z.: Monte-carlo tree search for the multiple sequence alignment
problem. In: Proceedings of the International Symposium on Combinatorial Search.
vol. 6, pp. 9–17 (2015)

17. Edelkamp, S., Externest, E., Kühl, S., Kuske, S.: Solving graph optimization prob-
lems in a framework for monte-carlo search. In: Tenth Annual Symposium on
Combinatorial Search (2017)

18. Ghebleh, M., Al-Yakoob, S., Kanso, A., Stevanović, D.: Reinforcement learning for
graph theory, ii. small ramsey numbers. arXiv preprint arXiv:2403.20055 (2024)

19. Hansen, N.: The cma evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772 (2016)

20. Hansen, P., Caporossi, G.: Autographix: An automated system for finding conjec-
tures in graph theory. Electronic Notes in Discrete Mathematics 5, 158–161 (2000)

21. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39(4), 345–351 (1987)

22. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-
mization algorithms over graphs. Advances in Neural Information Processing Sys-
tems 30 (2017)

23. Lidický, B., McKinley, G., Pfender, F.: Small ramsey numbers for books, wheels,
and generalizations. arXiv preprint arXiv:2407.07285 (2024)

12 Taieb et al.

24. Liu, L., Ning, B.: Unsolved problems in spectral graph theory. arXiv preprint
arXiv:2305.10290 (2023)

25. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: Framework and
applications. In: Handbook of metaheuristics, pp. 129–168 (2019)

26. Mehrabian, A., Anand, A., Kim, H., Sonnerat, N., Balog, M., Comanici, G., Wag-
ner, A.Z.: Finding increasingly large extremal graphs with alphazero and tabu
search. arXiv preprint arXiv:2311.03583 (2023)

27. Méhat, J., Cazenave, T.: Combining uct and nested monte carlo search for single-
player general game playing. IEEE Transactions on Computational Intelligence
and AI in Games 2(4), 271–277 (2010)

28. Portela, F.: An unexpectedly effective monte carlo technique for the rna inverse
folding problem. BioRxiv p. 345587 (2018)

29. Rosin, C.D.: Nested rollout policy adaptation for monte carlo tree search. In: Ijcai.
vol. 2011, pp. 649–654 (July 2011)

30. Roucairol, M., Cazenave, T.: Refutation of spectral graph theory conjectures with
monte carlo search. In: International Computing and Combinatorics Conference.
pp. 162–176. Springer International Publishing (2022)

31. Roucairol, M., Cazenave, T.: Refutation of spectral graph theory conjectures with
search algorithms (2024), https://arxiv.org/abs/2409.18626

32. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Hassabis, D.: Mastering the game of go with deep neural networks and tree search.
Nature 529(7587), 484–489 (2016)

33. Wagner, A.Z.: Constructions in combinatorics via neural networks. arXiv preprint
arXiv:2104.14516 (2021)

Automated Refutation with Monte Carlo Search 13

7 Appendices

A Algorithms

Algorithm 1 The NMCS algorithm.

function NMCS(current-state, level)
if level = 0 then

ply ← 0
seq ← {}
while current-state is not terminal do

move← randomChoice(LegalMovescurrent-state)
current-state← play(current-state,move)
seq[ply]← move
ply+ = 1

end while
return score(current-state), seq

else
best-score← −∞
best-seq ← []
ply ← 0
while current-state is not terminal do

for each move in Mcurrent-state do
next-state← play(current-state,move)
(score, seq)←NMCS(next-state, level − 1)
if score ≥ best-score then

best-score← score
best-sequence[ply..]← move+ seq

end if
end for
next-move← best-sequence[ply]
ply ← ply + 1
current-state← play(current-state, next-move)

end while
return (best-score, best-sequence)

end if
end function

14 Taieb et al.

Algorithm 2 The NRPA algorithm.

function NRPA(policy, level)
if level = 0 then

current-state← root()
ply ← 0
seq ← {}
while current-state is not terminal do

move← softmaxChoice(LegalMovescurrent-state, policy)
current-state← play(current-state,move)
seq[ply]← move
ply+ = 1

end while
return score (current-state, seq)

else
best-score← −∞
for N iterations do

(result, new)← NRPA(policy, level − 1)
if result ≥ best-score then

best-score← result
seq ← new

end if
pol← Adapt(pol, seq)

end for
return (best-score, seq)

end if
end function

function Adapt(policy, level)
node← root()
pol′ ← pol
for ply = 0 TO seq − 1 do

pol′[(node, seq[ply])] += Alpha
z ← Sum([exp(pol[(node,m)]) for m in Mnode])
for each move in Mnode do

pol′[(node,move)] -= Alpha·exp(pol[(node,move)])
z

end for
node← play(node, seq[ply])

end for
return pol′

end function

Automated Refutation with Monte Carlo Search 15

Algorithm 3 The GRAVE algorithm.

Input: N tree-walks, initial state s0, reference state constant ref
Output: A search tree

1: Initialize an empty transposition table
2: for i = 1 to N do
3: s← s0, S ← {s}, sref ← s
4: while s is not a leaf state and is not simulatable do
5: if n(s) > ref then
6: sref ← s
7: end if
8: for each a ∈ s.children do
9: β ← sref.pAMAF

sref.pAMAF+s.p+bias×sref.pAMAF×s.p

10: grave← (1− β)× s.mean + β × sref.AMAF
11: end for
12: Select a← argmax{GRAVE(s, a) | a ∈ s.children}
13: Transition to the new state resulting from action a, S ← S ∪ {s}
14: end while
15: Sample a new action a from the available moves of s
16: Add the state resulting from action a as a child node of s
17: while s is not a terminal state do
18: Sample a from the available moves of s based on the default policy
19: Transition to the new state resulting from action a
20: end while
21: score ← evaluate(s)
22: for each s ∈ S do
23: Update s with score
24: end for
25: end for

16 Taieb et al.

Algorithm 4 The GBFS algorithm.

1: function GBFS(ini-state, max-iter)
2: open-states← [ini-state]
3: state← ini-state
4: iter ← 0
5: best-state← ini-state
6: best-score← score(ini-state)
7: while not optimal(state) and open-states ̸= [] and iter < max-iter do
8: iter ← iter + 1
9: state← pop(open-states, 0)
10: for each move in LegalMovesstate do
11: new-state← play(state, move)
12: score← score(new-state)
13: insert(open-states, score, new-state)
14: if score ≥ best-score then
15: best-state← state
16: best-score← score
17: end if
18: end for
19: end while
20: return best-state
21: end function

Automated Refutation with Monte Carlo Search 17

Algorithm 5 The CMA-ES algorithm.

1: Initialization:
2: Number of generations N , number of parents λ.
3: for each graph size n do
4: Load graphs from previous iterations (curriculum) and select the best parents.
5: if the number of parents is insufficient then
6: Create additional parents randomly.
7: end if
8: while N is not reached do
9: Encode the graphs of the parents as vectors.
10: Calculate the mean µ and the covariance matriX Σ of the encoded vectors.
11: Write Σ = A⊤A using SVD.
12: Generate vectors Y = AX + µ where X ∼ N (0, In2).
13: Construct the graphs of the children from the vectors Y .
14: for each generated child do
15: Calculate the score of the child.
16: if the score of the child is higher than the previous best score then
17: Update the best graphs and the best score.
18: else if the score of the child is equal to the previous best score then
19: if the child is not isomorphic to a previously found graph then
20: Add the child to the best graphs.
21: end if
22: end if
23: end for
24: Select the best candidates among the parents and children to form the next

generation.
25: end while
26: Increment n, record the best scores and graphs.
27: end for

18 Taieb et al.

B Conjectures

The upper bounds of the 68 conjectures that were attempted in this paper.
The largest eigenvalue µ of the laplacian matrix of some graph must exceed the
bound to refute the conjecture. O means the conjecture is still open to this day,
X means it has been refuted.

1. O maxv∈V

√
4dS

v

mv

2. X maxv∈V
2m2

v

dv

3. X maxv∈V
m2

v

dv
+mv

4. O maxv∈V
2d2

v

mv

5. O maxv∈V
d2
v

mv
+mv

6. O maxv∈V

√
m2

v + 3d2v

7. O maxv∈V
d2
v

mv
+ dv

8. O maxv∈V

√
dv (mv + 3dv)

9. O maxv∈V
mv+3dv

2

10. O maxv∈V

√
dv (dv + 3mv

11. O maxv∈V
2m3

v

d2
v

12. O maxv∈V

√
2m2

v + 2d2v

13. O maxv∈V
2m4

v

d3
3

14. O maxv∈V
2d3

v

m2
v

15. X maxv∈V

√
4m3

v

dv

16. O maxv∈V
2d4

v

m3
v

17. X maxv∈V
4
√
5d4v + 11m4

v

18. O maxv∈V

√
2m3

v

dv
+ 2d2v

19. O maxv∈V
4
√
4d4v + 12dvm3

v

20. O maxv∈V

√
7d2

v+9m2
v

2

21. O maxv∈V

√
d3
v

mv
+ 3m2

v

22. O maxv∈V
4
√
2d4v + 14d2vm

2
v

23. O maxv∈V

√
d2v + 3dvmv

24. O maxv∈V
4
√
6d4v + 10m4

v

25. O maxv∈V
4
√
3d4v + 13d2vm

2
v

26. O maxv∈V

√
5d2

v+11dvmv

2

27. O maxv∈V

√
3d2

v+5dvmv

2

28. X maxv∈V

√
2m4

v

d2
v

+ 2dvmv

29. X maxv∈V

√
m2

v +
3m3

v

dv

Automated Refutation with Monte Carlo Search 19

30. O maxv∈V
m3

v

d2
v
+

d2
v

mv

31. X maxv∈V
4m2

v

mv+dv

32. X maxv∈V

√
m3

v(mv+3dv)

dv

33. O maxvi∼vj 2 (di + dj)− (mi +mj)

34. O maxvi∼vj

2(d2
i+d2

j)
di+dj

35. O maxvi∼vj

2(d2
i+d2

j)
mi+mj

36. X maxvi∼vj

2(m2
i+m2

j)
di+dj

37. O maxvi∼vj

√
2
(
d2i + d2j

)
38. O maxvi∼vj 2 +

√
2 (di − 1)

2
+ 2 (dj − 1)

2

39. O maxvi∼vj 2 +
√
2
(
d2i + d2j

)
− 4 (mi +mj) + 4

40. O maxvi∼vj 2 +

√
2
(
(mi − 1)

2
+ (mj − 1)

2
)
+
(
d2i + d2j

)
− (dimi + djmj)

41. X maxvi∼vj 2 + (mi +mj)− (di + dj) +
√
2
(
d2i + d2j

)
− 4 (mi +mj) + 4

42. O maxvi∼vj

√
d2i + d2j + 2mimj

43. X maxvi∼vj 2 +
√
3
(
m2

i +m2
j

)
− 2mimj − 4 (di + dj) + 4

44. O maxvi∼vj 2 +

√
2
(
(di − 1)

2
+ (dj − 1)

2
+mimj − didj

)
45. X maxvi∼vj 2 +

√
(di − dj)

2
+ 2 (dimi + djmj)− 4 (mi +mj) + 4

46. O maxvi∼vj 2 +
√
2
(
d2i + d2j

)
− 16

didj

mi+mj
+ 4

47. O maxvi∼vj

2(d2
i+d2

j)−(mi−mj)
2

di+dj

48. X maxvi∼vj

2(d2
i+d2

j)
2+

√
2(d2

i+d2
j)−4(mi+mj)+4

49. X maxvi∼vj 2 +
√
2
(
m2

i +m2
j

)
+ (di − dj)

2 − 4 (di + dj) + 4

50. X maxvi∼vj 2
d2
i+d2

j+mimj−didj

di+dj

51. X maxvi∼vj 2 (mi +mj)− 4
mimj

di+dj

52. X maxvi∼vj 2 +

√√
8
(
m4

i +m4
j

)
− 8

(
d2i + d2j

)
+ 4− 4 (di + dj) + 6

53. X maxvi∼vj 2 +

√√
8
(
m4

i +m4
j

)
− 8 (dimi + djmj) + 4− 4 (di + dj) + 6

54. X maxvi∼vj 2+
√
2
(
m2

i +m2
j

)
+ (dimi + djmj)−

(
d2i + d2j

)
− 4 (di + dj) + 4

55. X maxvi∼vj 2 +
√
3
(
m2

i +m2
j

)
−

(
d2i + d2j

)
− 4 (mi +mj) + 4

56. O maxvi∼vj
(d2

i+d2
j)(mi+mj)

2didj

20 Taieb et al.

57. X maxvi∼vj 2 +

√
2
(
m2

i +m2
j

)
− 8

d2
i+d2

j

mi+mj
+ 4

58. X maxvi∼vj 2 +
√
2
(
m2

i +mimj +m2
j

)
− (dimi + djmj)− 4 (di + dj) + 4

59. X maxvi∼vj

2(m2
i+mimj+m2

j)−(d
2
i+d2

j)
mi+mj

60. X maxvi∼vj 2 +
√
2
(
m2

i +mimj +m2
j

)
−
(
d2i + d2j

)
− 4 (di + dj) + 4

61. X maxvi∼vj

2(m2
i+m2

j)
2+

√
2((di−1)2+(dj−1)2)

62. X maxvi∼vj 2 +
√
m2

i + 4mimj +m2
j − 2didj − 4 (di + dj) + 4

63. X maxvi∼vj di + dj +mi +mj − 4
didj

mi+mj

64. X maxvi∼vj
mimj(di+dj)

didj

65. X maxvi∼vj
(mi+mj)(dimi+djmj)

2mimj

66. X maxvi∼vj
m2

i+4mimj+m2
j−(dimi+djmj)

di+dj

67. X maxvi∼vj
(mi+mj)(dimi+djjmj)

2didj

68. X maxvi∼vj 2 +
√

(mi −mj)
2
+ 4didj − 4 (mi +mj) + 4

C Counter-examples

Some counter-examples for each of the 29 refuted conjectures.

(a) Conjectures 3, 28
and 31

(b) Conjecture 15 (c) Conjecture 29 (d) Conjecture 36

Fig. 4: Conjectures 3, 15, 28, 31, 29, and 36

Automated Refutation with Monte Carlo Search 21

(a) Conjectures 36,
43, 49, 55, 58, 59, 60,
63, 66 and 67

(b) Conjecture 41 (c) Conjecture 41
(tree)

(d) Conjecture 43

Fig. 5: Conjectures 36, 41, 41 (tree), 43, 45 and others

(a) Conjecture 45 (b) Conjectures
48, 57 and 61

(c) Conjectures
49

(d) Conjecture 50

Fig. 6: Conjectures 45, 48, 57, 61, 49, and 50

(a) Conjecture 51 (b) Conjectures
52, 53, 62

(c) Conjecture 54 (d) Conjectures 58

Fig. 7: Conjectures 51, 52, 53, 62, 54, and 58

22 Taieb et al.

(a) Conjecture 58
(bigger)

(b) Conjecture 60 (c) Conjectures 63 (d) Conjectures 63
(bigger)

Fig. 8: Conjectures 58 (bigger), 60, 63 and 63 (bigger)

(a) Conjecture 64 (b) Conjectures 64
(tree)

(c) Conjecture 65 (d) Conjecture 65
(tree)

Fig. 9: Conjectures 64, 64 (tree), 65, and 65 (tree)

(a) Conjectures 66 (b) Conjectures
68

Fig. 10: Conjectures 66 and 68

