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Abstract

The discovery of neural architectures from scratch is the long-standing goal of
Neural Architecture Search (NAS). Searching over a wide spectrum of neural
architectures can facilitate the discovery of previously unconsidered but well-
performing architectures. In this work, we take a large step towards discovering
neural architectures from scratch by expressing architectures algebraically. This
algebraic view leads to a more general method for designing search spaces, which
allows us to compactly represent search spaces that are 100s of orders of magnitude
larger than common spaces from the literature. Further, we propose a Bayesian
Optimization strategy to efficiently search over such huge spaces, and demonstrate
empirically that both our search space design and our search strategy can be
superior to existing baselines. We open source our algebraic NAS approach and
provide APIs for PyTorch and TensorFlow at https://github.com/automl/
towards_nas_from_scratch.

1 Introduction

Neural Architecture Search (NAS), a field with over 1 000 papers in the last two years [1], is widely
touted to automatically discover novel, well-performing architectural patterns. However, while
state-of-the-art performance has already been demonstrated in hundreds of NAS papers (prominently,
e.g., [2–4]), success in automatically finding truly novel architectural patterns has been very scarce
[5, 6]. There is an accumulating amount of evidence that over-engineered, restrictive search spaces
(e.g., cell-based ones) are major impediments for NAS to discover truly novel architectures [7–9].

In this work, we introduce a general formalism for the representation of hierarchical search spaces,
allowing both for layer diversity and a flexible macro architecture, taking a large step towards
discovering neural architectures from scratch. The key observation is that any neural architecture can
be represented algebraically; e.g., two residual blocks followed by a fully-connected layer in a linear
macro topology can be represented as the algebraic term

Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc) . (1)

We build upon this observation and employ Context-Free Grammars (CFGs) to construct large spaces
of such algebraic architecture terms. Although a particular search space is of course limited in its
overall expressiveness, with this approach, we could effectively represent any neural architecture.

Due to the hierarchical structure of algebraic terms, the number of candidate neural architectures
scales exponentially with the number of hierarchical levels, leading to search spaces 100s of orders of
magnitudes larger than commonly used ones. To search in these huge spaces, we propose an efficient
search strategy, Bayesian Optimization for Algebraic Neural Architecture Terms (BANAT), which
leverages hierarchical information, capturing the topological patterns across the hierarchical levels, in
its tailored kernel design.
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Our contributions are as follows:

• We present an algebraic notion of NAS that views neural architectures as algebraic terms and
propose to design these spaces with CFGs (Sec. 2).

• We propose BANAT, a Bayesian Optimization (BO) strategy that uses a tailored kernel to efficiently
and effectively search over our huge search spaces (Sec. 3).

• We find that search spaces of algebraic architecture terms perform on par or better than common
cell-based spaces on different datasets, show the superiority of BANAT over common baselines,
and demonstrate the importance of incorporating hierarchical information (Sec. 5).

For discussion as well as limitations of our approach and broader impact statement, please refer to
App. A or B, respectively.

2 Algebraic neural architecture search

In this section, we introduce an algebraic notion of Neural Architecture Search (NAS) by representing
neural architectures with algebraic terms and propose to use CFGs to construct them.

Neural architectures as algebraic terms We introduce algebraic architecture terms as a string
representation for neural architectures from a (term) algebra. Formally, an algebra (A,F) consists
of a non-empty set A (universe) and a set of operators f : An → A ∈ F of different arities n ≥ 0
[10]. In our case, A corresponds to the set of all (sub-)architectures and we distinguish between
two types of operators: (i) nullary operators representing primitive computations (e.g., conv() or
fc()) and (ii) k-ary operators with k > 0 representing topological operators (e.g., Linear(·, ·, ·) or
Residual(·, ·, ·)). For sake of notational simplicity, we omit parenthesis for nullary operators (i.e.,
we write conv). Term algebras [11] are a special type of algebra which map an algebraic expression
to its string representation. E.g., we can represent a neural architecture as the algebraic architecture
term ω as shown in Eq. 1. Term algebras also allow for variables xi that are set to terms themselves
that can be re-used across a term. In our case, the intermediate variables xi can therefore share
patterns across the architecture, e.g., a shared cell. For example, we could define the intermediate
variable x1 to map to the residual block in ω from Eq. 1 as follows: ω′ = Linear(x1, x1, fc),
x1 = Residual(conv, id, conv).

Algebraic NAS Consequently, we formulate our algebraic view on NAS, where we search over
algebraic architecture terms ω ∈ Ω representing their associated architectures Φ(ω) as follows:
argminω∈Ω f(Φ(ω)), where f(·) is an error measure that we seek to minimize, e.g., validation error.
Thus, our search problem is to discover algebraic architecture terms ω, which can be part of very
expressive search spaces Ω.

Constructing neural architecture terms with context-free grammars We propose to use Context-
Free Grammars (CFGs) [12] since they can naturally generate (hierarchical) algebraic architecture
terms. Compared to other search space designs, CFGs give us a formally grounded way to naturally
and compactly define very expressive hierarchical search spaces (e.g., see Sec. 5). We can also unify
popular search spaces from the literature with our general search space design in one framework
(App. G) and CFGs provide a simple mechanism to evolve architectures while staying within the
defined search space (Sec. 3).

Formally, a CFG G = ⟨N,Σ, P, S⟩ consists of a finite set of nonterminals N , a finite set of terminals
Σ (with N ∩ Σ = ∅), a finite set of production rules P = {A→ β|A ∈ N, β ∈ (N ∪ Σ)∗}, where
the asterisk ∗ denotes the Kleene star operation [13], and a start symbol S ∈ N . For example,
consider the following CFG in extended Backus-Naur form [14] (see App. D for background):
S ::= Linear(S, S, S) | Residual(S, S, S) | conv | id | fc. Fig. 1 depicts the derivation
of the algebraic architecture term from Eq. 1 and makes the connection to the associated architecture
explicit. The set of all (potentially infinite) algebraic terms generated by a CFG G is the language
L(G), which naturally forms our search space Ω. We can construct very expressive search spaces
(e.g., see Sec. 5) as well as unify popular search spaces from the literature with our search space
design (App. G). However, there is of course no single search space that can construct any neural
architecture. In App. E we further augment the capabilities of CFGs so that we can incorporate
constraints, foster regularity, and handle changes in the spatial resolution (and number of channels).
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Figure 1: Derivations of algebraic terms (left) correspond to edge replacements [15–17] in the associ-
ated neural architecture (right). See App. C for the topological operators and primitive computations.

3 Bayesian Optimization for algebraic neural architecture search

We propose a BO strategy, Bayesian Optimization for Algebraic Neural Architecture Terms (BANAT),
to search efficiently in the huge search spaces spanned by our algebraic architecture terms. Our
search strategy, BANAT combines a Gaussian Process (GP) surrogate model with a tailored kernel
that leverages the hierarchical structure of algebraic neural architecture terms (see below). For a more
detailed explanation of the BO mechanism and our parallelization strategy, please refer to App. H.

Inspired by the state-of-the-art BO approach for NAS [18], we adopt the WL graph kernel [19] in a
GP surrogate, modeling the architectures Φ(ωi) instead of its algebraic neural architecture terms ωi.
However, modeling solely based on the final architecture ignores the useful hierarchical information
inherent in our algebraic representation. Moreover, the large size of the final architectures at the
highest hierarchical level also makes it difficult to use a single WL kernel to capture the more global
topological patterns. Note that our hierarchical construction of neural architectures can be viewed
as a series of gradually unfolding architectures, with the final architecture containing only primitive
computations (see Fig. 1), Thus, we propose a novel hierarchical kernel design which assigns a WL
kernel to each hierarchy and combines them.To this end, we introduce fold operators Fl, that removes
algebraic terms beyond the l-th hierarchical level. E.g., for the algebraic term ω in Eq. 1.

F3(ω) = ω = Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc), (2)
F2(ω) = Linear(Residual, Residual, fc) , F1(ω) = Linear .

Note the similarity to the derivations in Fig. 1. Furthermore note that, in practice, we also add the
corresponding nonterminals to integrate information from our construction process. Consider two
architectures Φ(ωi) and Φ(ωj) with algebraic architecture terms ωi and ωj , respectively, constructed
over a hierarchy of L levels. We then define our hierarchical kernel as follows:

khWL(ωi, ωj) =

L∑
l=2

λl · kWL(Φ(Fl(ωi)),Φ(Fl(ωj))) , (3)

where the weights λl govern the importance of the learned graph information at different hierarchical
levels and can be tuned (along with other hyperparameters of the GP) by maximizing the marginal
likelihood. We omit l = 1 in the additive kernel as F1(ω) does not contain any edge features which
are required to apply our hierarchical WL kernel khWL. Our proposed kernel can efficiently capture
the information in all algebraic term construction levels, which substantially improves its empirical
performance on our search space as demonstrated in Sec. 5.

4 Related work

Previous approaches used, e.g., reinforcement learning [20, 21], evolution [22], gradient descent [23],
or Bayesian Optimization (BO) [18, 24, 25]. To enable the effective use of BO on graph-like inputs
for NAS, previous works have proposed to use a GP with specialized kernels [18, 24], encoding
schemes [25, 26], or graph neural networks as surrogate model [27–29]. Different to prior works,
we explicitly leverage the hierarchical construction of architectures for modeling. Most previous
works focused on finding a shared cell [30] with a fixed macro architecture while only few works
considered more expressive hierarchical [4, 9, 31–36] or grammar-based [37–54] approaches. Similar
to the former, our formalism allows to design search spaces covering a general set of architecture
design choices, but also permits the search for macro architectures with spatial resolution changes and
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multiple branches. Different to the latter grammar-based works we construct entire architectures with
spatial resolution changes across multiple branches, and propose techniques to incorporate constraints
and foster regularity. Please refer to App. I for an extended discussion of related work.

5 Experiments

In this section, we investigate potential benefits of hierarchical search spaces and of our search
strategy, BANAT. More specifically, we address the following questions: Q1 Can hierarchical search
spaces yield on par or superior architectures compared to cell-based search spaces with a limited
number of evaluations?; Q2 Can our search strategy BANAT improve performance over common
baselines?; and Q3 Does leveraging the hierarchical information improve performance? To answer
these questions, we introduce a hierarchical search space (see below) based on the popular NAS-
Bench-201 search space [55] and experimentally answer them in the affirmative. For evaluation,
implementation, and training details as well as further results and analyses, please refer to App. J

Hierarchical NAS-Bench-201 search space We propose a hierarchical variant of the popular
cell-based NAS-Bench-201 search space [55] by adding a hierarchical macro space (i.e., spatial
resolution flow and wiring at the macro-level) and parameterizable convolutional blocks (i.e., choice
of convolutions, activations, and normalizations):

D2 ::= Linear3(D1, D1, D0) | Linear3(D0, D1, D1) | Linear4(D1, D1, D0, D0)

D1 ::= Linear3(C, C, D) | Linear4(C, C, C, D) | Residual3(C, C, D, D)

D0 ::= Linear3(C, C, CL) | Linear4(C, C, C, CL) | Residual3(C, C, CL, CL)
D ::= Linear2(CL, down) | Linear3(CL, CL, down) | Residual2(C, down, down)
C ::= Linear2(CL, CL) | Linear3(CL, CL) | Residual2(CL, CL, CL)

CL ::= Cell(OP, OP, OP, OP, OP, OP)

OP ::= zero | id | BLOCK | avg_pool
BLOCK ::= Linear3(ACT, CONV, NORM)

ACT ::= relu | hardswish | mish
CONV ::= conv1x1 | conv3x3 | dconv3x3
NORM ::= batch | instance | layer .

(4)

See App. C for the terminal vocabulary of topological operators and primitive computations. The
productions with the nonterminals {D2, D1, D0, D} define the spatial resolution flow and together
with {C} define the macro architecture containing possibly multiple branches. The productions
for {CL, OP} construct the NAS-Bench-201 cell and {BLOCK, ACT, CONV, NORM} pa-
rameterize the convolutional block. To ensure that we use the same distribution over the primitive
computations as in NAS-Bench-201, we reweigh the sampling probabilities of the productions gen-
erated by the nonterminal OP, i.e., all production choices have sampling probability of 20%, but
BLOCK has 40%. Note that we omit the stem (i.e., 3x3 convolution followed by batch normal-
ization) and classifier (i.e., batch normalization followed by ReLU, global average pooling, and
fully-connected layer) for simplicity. We implemented the merge operation as element-wise summa-
tion. Different to the cell-based NAS-Bench-201 search space, we exclude degenerated architectures
by introducing a constraint that ensures that each subterm maps the input to the output (i.e., in the
associated computational graph there is at least one path from source to sink).

Our search space consists of ca. 10446 algebraic architecture terms (please refer to App. F on how
to compute the search space size), which is significantly larger than other popular search spaces
from the literature. For comparison, the cell-based NAS-Bench-201 search space is just a minuscule
subspace of size 104.18, where we apply only the blue-colored production rules and replace the CL
nonterminals with a placeholder terminal x1 that will be substituted by the searched, shared cell.

Results Fig. 2 (top) compares the results of the cell-based and hierarchical search space design
using our search strategy BANAT. Results with BANAT are on par on CIFAR-10/100, superior on
ImageNet-16-120, and clearly superior on CIFARTile and AddNIST (answering Q1). We emphasize
that the NAS community has engineered the cell-based search space to achieve strong performance
on those popular image classification datasets for over a decade, making it unsurprising that our
improvements are much larger for the novel datasets. Yet, our best found architecture on ImageNet-
16-120 from the hierarchical search space also achieves an excellent test error of 52.78% with only
0.626MB parameters (App. J.4); this is superior to the state-of-the-art method Shapley-NAS (i.e.,
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Figure 2: We compare cell-based vs. hierarchical search space using BANAT (top) and compare it to
common baselines (bottom). We plot mean and ±1 standard error.
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Figure 3: Mean Kendall’s τ rank correlation with ±1 standard error achieved by a GP with our
hierarchical WL kernel (hWL), (standard) WL kernel (WL), and NASBOT [24].

53.15%) [56] and on par with the optimal architecture of the cell-based NAS-Bench-201 search
space (i.e., 52.69% with 0.866MB). Fig. 2 (bottom) shows that BANAT is superior to common
baselines (answering Q2) and that leveraging hierarchical information clearly improves performance
(answering Q3). The analysis in Fig. 3 shows that incorporating hierarchical information improves
modeling, especially on smaller amounts of training data; this provides (further answering Q3).

6 Conclusion

We introduced very expressive search spaces of algebraic architecture terms constructed with CFGs.
To efficiently search over the huge search spaces, we proposed BANAT. Our experiments indicate that
both our search space design and algorithm can yield strong performance over existing baselines.
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A Discussion and limitations

While our grammar-based construction mechanism is a powerful mechanism to construct huge
hierarchical search space, we can not construct any architecture with our grammar-based construction
approach (Sec. 2 and App. E) since we are limited to context-free languages; e.g., architectures of the
type {anbncn|n ∈ N>0} cannot be generated by CFGs (this can be proven using Odgen’s lemma
[57]). Further, due to the discrete nature of CFGs we can not integrate continuous design choices, e.g.,
dropout probability. Furthermore, our grammar-based mechanism does not (generally) support simple
scalability of discovered neural architectures (e.g., repetition of building blocks) without special
consideration in the search space design. Nevertheless, our search spaces still significantly increase
the expressiveness, including the ability to represent common search spaces from the literature (see
App. G for how we can represent the search spaces of DARTS, Auto-Deeplab, the hierarchical cell
search space of Liu et al. [31], the Mobile-net search space, and the hierarchical random graph
generator search space), as well as allowing search for entire neural architectures, e.g., based around
the popular NAS-Bench-201 search space (Sec. 5). Thus, our search space design can facilitate the
discovery of novel well-performing neural architectures in those huge search spaces of algebraic
architecture terms.

However, there is an inherent trade-off between the expressiveness and the difficulty of search. The
much greater expressiveness facilitates search in a richer set of architectures that may include better
architectures than in more restrictive search spaces, which however need not exist. Besides that, the
(potential) existence of such a well-performing architecture does not lead a search strategy inevitably
discovering it, even with large amounts of compute available. Note that the trade-off manifests itself
also in the acquisition function optimization of our search strategy BANAT.

In addition, a well-performing neural architecture may not work with current training protocols and
hyperparameters due to interaction effects, i.e., training protocols and hyperparameters may be over-
optimized for specific types of neural architectures. To overcome this limitation, one could consider a
joint optimization of neural architectures, training protocols, and hyperparameters. However, this
further fuels the trade-off between expressiveness and the difficulty of search.

B Broader impact

NAS has immense potential to facilitate systematic, automated discovery of high-performing (novel)
architecture designs. However, the restrictive cell-based search spaces most commonly used in NAS
render it impossible to discover truly novel neural architectures. With our general formalism based
on algebraic terms, we hope to provide fertile foundation towards discovering high-performing and
efficient architectures; potentially from scratch. However, search in such huge search spaces is
expensive, particularly in the context of the ongoing detrimental climate crisis. While on the one
hand, the discovered neural architectures, like other AI technologies, could potentially be exploited
to have a negative societal impact; on the other hand, our work could also lead to advances across
scientific disciplines like healthcare and chemistry.

C From terminals to primitive computations and topological operators

Tab. 1 and Fig. 4 describe the primitive computations and topological operators used throughout our
experiments in Sec. 5 and App. J, respectively. Note that by adding more primitive computations
and/or topological operators we could construct even more expressive search spaces.
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Table 1: Primitive computations. "Name" corresponds to the string terminals in our CFGs and
"Function" is the associated implementation of the primitive computation in pseudocode. The
subscripts g, k, s, and p are abbreviations for groups, kernel size, strides, and padding, respectively.
During assembly of neural architectures Φ(ω), we replace string terminals with the associated
primitive computation.

Name Function

avg_pool AvgPoolk=3,s=1,p=1(x)
batch BN(x)
conv1x1 Convk=1,s=1,p=0(x)
conv3x3 Convk=3,s=1,p=1(x)
dconv3x3 Convg=C,k=3,s=1,p=1(x)
down conv3x3s=1(conv3x3s=2(x)) + Convk=1,s=1(AvgPoolk=2,s=2(x))
hardswish Hardswish(x)
id Identitiy(x)
instance IN(x)
layer LN(x)
mish Mish(x)
relu ReLU(x)
zero Zeros(x)

a b

(a) Linear2(a, b).

a b c

(b) Linear3(a, b, c).

a b c d

(c) Linear4(a, b, c, d).

a
b

c

(d) Residual2(a, b, c).

a
c
b d

(e) Residual3(a, b, c, d).

a
b

c
d

e

f

(f) Cell(a, b, c, d, e, f).

Figure 4: Topological operators. Each subfigure makes the connection between the topogolocial
operator and associated computational graph explicit, i.e., the arguments of the graph operators (a, b,
...) are mapped to the respective edges in the computational graph.

D Extended Backus-Naur form

The (extended) Backus-Naur form [14] is a meta-language to describe the syntax of CFGs. We
use meta-rules of the form S ::= α where S ∈ N is a nonterminal and α ∈ (N ∪ Σ)∗ is a
string of nonterminals and/or terminals. We denote nonterminals in UPPER CASE, terminals
corresponding to topological operators in Initial upper case/teletype, and terminals corre-
sponding to primitive computations in lower case/teletype, e.g., S ::= Residual(S, S, id).
To compactly express production rules with the same left-hand side nonterminal, we use the
vertical bar | to indicate a choice of production rules with the same left-hand side, e.g., S ::=
Linear(S, S, S) | Residual(S, S, id) | conv.

E Augmenting the capabilities of context-free grammars

Below we augment the capabilities of CFGs and leverage properties of context-free languages so that
we can incorporate constraints, foster regularity, and handle changes in the spatial resolution (and
number of channels).

Constraints In many search space designs, we want to adhere to some constraints, e.g., to limit the
number of nodes or to ensure that for all architectures in the search space there exists at least one path
from the input to the output. We can simply do so by allowing only the application of production
rules which guarantee compliance to such constraints. For example, to ensure that there is at least

13



one path from the input to the output, it is sufficient to ensure that each derivation connects its input
to the output due to the recursive nature of CFGs. Note that this makes CFGs context-sensitive w.r.t.
those constraints.

To implement the above constraint "only consider valid neural architectures", we note that our search
space design only creates neural architectures where neither the spatial resolution nor the channels
can be mismatched; please refer to Sec. 2 for details. Thus, the only way a neural architecture
can become invalid is through zero operations, which could remove edges from the computational
graph and possibly disassociate the input from the output. Since we recursively assemble neural
architectures, it is sufficient to ensure that the derived algebraic architecture term (i.e., the associated
computational graph) is compliant with the constraint, i.e.,there is at least one path from input to
output. Thus, during sampling (and similarly during evolution), we modify the current production
rule choices when an application of the zero operation would disassociate the input from the output.

Fostering regularity through substitution To implement intermediate variables xi (Sec. 2) we
leverage that context-free languages are closed under substitution: we map terminals, representing the
intermediate variables xi, from one language to algebraic terms of other languages, e.g., a shared cell.
For example, we can split a CFG G, constructing entire algebraic architecture terms, into the CFGs
Gmacro and Gcell for the macro- or cell-level, respectively. Further, we add a single (or multiple)
intermediate terminal(s) x1 to Gmacro which maps to an algebraic term ω1 ∈ L(Gcell), e.g., the
searchable cell. Thus, we effectively search over the macro-level as well as a single, shared cell. Note
that by using a fixed macro architecture (i.e., |L(Gmacro)| = 1), we can represent cell-based search
spaces, e.g., NAS-Bench-201 [55], while also being able to represent more expressive search spaces
(e.g., see Sec. 5). More generally, we could extend this by adding further intermediate terminals which
map to other languages L(Gj), or by adding intermediate terminals to G2 which map to languages
L(Gj ̸=1). In this way, we can effectively foster regularity.

Representing common architecture patterns for object recognition Neural architectures for
object recognition commonly build a hierarchy of features that are gradually downsampled, e.g., by
pooling operations. However, previous works in NAS were either limited to a fixed macro architecture
[30], only allowed for linear macro architectures [4], or required post-sampling testing for resolution
mismatches [9, 58]. While this produced impressive performance on popular benchmarks [2–4], it is
still an open research question whether a different type of macro architecture (e.g., one with multiple
branches) could yield even better performance.

To accommodate flexible macro architectures, we propose to overload the nonterminals. In particular,
the nonterminals indicate how often we apply downsampling operations in the subsequent derivations
of the nonterminal. Consider the production rule D2→ Residual(D1, D2, D1), where Di with
i ∈ {1, 2} are a nonterminals which indicate that i downsampling operations have to be applied
in their subsequent derivations. That is, in both paths of the residual the input features will be
downsampled twice and, consequently, the merging paths will have the same spatial resolution.
Thereby, this mechanism distributes the downsampling operations recursively across the architecture.
For the channels, we adopted the common design to double the number of channels whenever we
halve the spatial resolution in our experiments. Note that we could also handle a varying number of
channels by using, e.g., depthwise concatenation as merge operation.

F Search space size

In this section, we show how to efficiently compute the size of our search spaces constructed by
CFGs. There are two cases to consider: (i) a CFG contains cycles (i.e., part of the derivation can
be repeated infinitely many times) , yielding an open-ended, infinite search space; and (ii) a CFG
contains no cycles, yielding in a finite search space whose size we can compute.

Consider a production A→ Residual(B, B, B) where Residual is a terminal, and A and B are
nonterminals with B→ conv | id. Consequently, there are 23 = 8 possible instances of the residual
block. If we add another production choice for the nonterminal A, e.g., A→ Linear(B, B, B), we
would have 23 + 23 = 16 possible instances. Further, adding a production C → Linear(A, A, A)
would yield a search space size of (23 + 23)3 = 4096.
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Node3 Node4 Node5 Node6
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Figure 5: Visualization of the Darts topological operator.

More generally, we introduce the function PA that returns the set of productions for nonterminal
A ∈ N , and the function µ : P → N that returns all the nonterminals for a production p ∈ P . We
can then recursively compute the size of the search space as follows:

f(A) =
∑
p∈PA

{
1 , µ(p) = ∅,∏
A′∈µ(p)

f(A′) , otherwise . (5)

When a CFG contains some constraint, we ensure to only account for valid architectures (i.e.,
compliant with the constraints) by ignoring productions which would lead to invalid architectures.

G Common search spaces from the literature

In Sec. 5, we demonstrated how to construct the popular NAS-Bench-201 search space within our
algebraic search space design, and below we show how to reconstruct the following popular search
spaces: DARTS search space [23], Auto-DeepLab search space [4], hierarchical cell search space
[31], Mobile-net search space [33], and hierarchical random graph generator search space [9]. For
implementation details we refer to the respective works.

DARTS search space

The DARTS search space [23] consists of a fixed macro architecture and a cell, i.e., a seven node
directed acyclic graph (Darts; see Fig. 5 for the topological operator). We omit the fixed macro
architecture from our search space design for simplicity. Each cell receives the feature maps from the
two preceding cells as input and outputs a single feature map. All intermediate nodes (i.e., Node3,
Node4, Node5, and Node6) is computed based on all of its predecessors. Thus, we can define the
DARTS search space as follows:

DARTS ::= Darts(NODE3, NODE4, NODE5, NODE6)

NODE3 ::= Node3(OP, OP)

NODE4 ::= Node4(OP, OP, OP)

NODE5 ::= Node5(OP, OP, OP, OP)

NODE6 ::= Node6(OP, OP, OP, OP, OP)

OP ::= sep_conv_3x3 | sep_conv_5x5 | dil_conv_3x3 | dil_conv_5x5
| max_pool | avg_pool | id | zero ,

(6)

where the topological operator Node3 receives two inputs, applies the operations separately on them,
and sums them up. Similarly, Node4, Node5, and Node6 apply their operations separately to the
given inputs and sum them up. The topological operator Darts feeds the corresponding feature maps
into each of those topological operators and finally concatenates all intermediate feature maps.

Auto-DeepLab search space

Auto-DeepLab [4] combines a cell-level with a network-level search space to search for segmentation
networks, where the cell is shared across the searched macro architecture, i.e., a twelve step (linear)
path across different spatial resolutions. The cell-level design is adopted from Liu et al. [23] and,
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thus, we can re-use the CFG from Eq. 6. For the network-level, we introduce a constraint that ensures
that the path is of length twelve, i.e., we ensure exactly twelve derivations in our CFG. Further, we
overload the nonterminals so that they correspond to the respective spatial resolution level, e.g., D4
indicates that the original input is downsampled by a factor of four; please refer to Sec. 2 for details
on overloading nonterminals. For the sake of simplicity, we omit the first two layers and atrous spatial
pyramid poolings as they are fixed, and hence define the network-level search space as follows:

D4 ::= Same(CELL, D4) | Down(CELL, D8)

D8 ::= Up(CELL, D4) | Same(CELL, D8) | Down(CELL, D16)

D16 ::= Up(CELL, D8) | Same(CELL, D16) | Down(CELL, D32)

D32 ::= Up(CELL, D16) | Same(CELL, D32) ,

(7)

where the topological operators Up, Same, and Down upsample/halve, do not change/do not change,
or downsample/double the spatial resolution/channels, respectively. The placeholder variable CELL
maps to the shared DARTS cell from the language generated by the CFG from Eq. 6.

Hierarchical cell search space

The hierarchical cell search space [31] consists of a fixed (linear) macro architecture and a hierarchi-
cally assembled cell with three levels which is shared across the macro architecture. Thus, we can
omit the fixed macro architecture from our search space design for simplicity. Their first, second, and
third hierarchical levels correspond to the primitive computations (i.e., id, max_pool, avg_pool,
sep_conv, depth_conv, conv, zero), six densely connected four node directed acyclic graphs
(DAG4), and a densely connected five node directed acyclic graph (DAG5), respectively. The zero
operation could lead to directed acyclic graphs which have fewer nodes. Therefore, we introduce
a constraint enforcing that there are always four (level 2) or five (level 3) nodes for every directed
acyclic graph. Further, since a densely connected five node directed acyclic graph graph has ten
edges, we need to introduce placeholder variables (i.e., M1, ..., M6) to enforce that only six (possibly)
different four node directed acyclic graphs are used, and consequently define a CFG for the third level

LEVEL3 ::= DAG5(LEVEL2, ..., LEVEL2︸ ︷︷ ︸
×10

)

LEVEL2 ::= M1 | M2 | M3 | M4 | M5 | M6 | zero ,

(8)

mapping the placeholder variables M1, ..., M6 to the six lower-level motifs constructed by the first
and second hierarchical level

LEVEL2 ::= DAG4(LEVEL1, ..., LEVEL1)︸ ︷︷ ︸
×6

LEVEL1 ::= id | max_pool | avg_pool | sep_conv | depth_conv | conv | zero .

(9)

Mobile-net search space

Factorized hierarchical search spaces, e.g., the Mobile-net search space [33], allow for layer diversity.
They factorize a (fixed) macro architecture – often based on an already well-performing reference
architecture – into separate blocks (e.g., cells). For the sake of simplicity, we assume here a
three sequential blocks (Block) architecture (Linear). In each of those blocks, we search for the
convolution operations (CONV), kernel sizes (KSIZE), squeeze-and-excitation ratio (SERATIO)
[59], skip connections (SKIP), number of output channels (FSIZE), and number of layers per block
(#LAYERS), where the latter two are discretized using a reference architecture, e.g., MobileNetV2
[60]. Consequently, we can express this search space as follows:

MACRO ::= Linear(BLOCK, BLOCK, BLOCK)

BLOCK ::= Block(CONV, KSIZE, SERATIO, SKIP, FSIZE, #LAYERS)

CONV ::= conv | dconv | mbconv
KSIZE ::= 3 | 5

SERATIO ::= 0 | 0.25
SKIP ::= pooling | id_residual | no_skip
FSIZE ::= 0.75 | 1.0 | 1.25

#LAYERS ::= -1 | 0 | 1 ,

(10)

where conv, donv and mbconv correspond to convolution, depthwise convolution, and mobile
inverted bottleneck convolution [60], respectively.
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Algorithm 1 Bayesian Optimization algorithm [63].
Input: Initial observed data Dt, a black-box objective function f , total number of BO iterations T
Output: The best recommendation about the global optimizer x∗

for t = 1, . . . , T do
Select the next xt+1 by maximizing acquisition function α(x|Dt)
Evaluate the objective function at ft+1 = f(xt+1)
Dt+1 ← Dt ∪ (xt+1, ft+1)
Update the surrogate model with Dt+1

end for

Hierarchical random graph generator search space

The hierarchical random graph generator search space [9] consists of three hierarchical levels of
random graph generators (i.e., Watts-Strogatz [61] and Erdõs-Rényi [62]). We denote with
Watts-Strogatz_i the random graph generated by the Watts-Strogatz model with i nodes. Thus,
we can represent the search space as follows:

TOP ::= Watts-Strogatz_3(K, Pt)(MID, MID, MID) | ...
| Watts-Strogatz_10(K, Pt)(MID, ..., MID︸ ︷︷ ︸

×10

)

MID ::= Erdõs-Rényi_1(Pm)(BOT) | ...
| Erdõs-Rényi_10(Pm)(BOT, ..., BOT︸ ︷︷ ︸

×10

)

BOT ::= Watts-Strogatz_3(K, Pb)(NODE, NODE, NODE) | ...
| Watts-Strogatz_10(K, Pb)(NODE ..., NODE︸ ︷︷ ︸

×10

)

K ::= 2 | 3 | 4 | 5 ,

(11)

where each terminal Pt, Pm, and Pb maps to a continuous number in [0.1, 0.9]1 and the placeholder
variable NODE maps to a primitive computation, e.g., separable convolution. Note that we omit other
hyperparameters, such as stage ratio, channel ratio etc., for simplicity.

H More details on the search strategy

In this section, we provide more details and examples for our search strategy Bayesian Optimization
for Algebraic Neural Architecture Terms (BANAT) presented in Sec. 3.

H.1 Bayesian Optimization

Bayesian Optimization (BO) is a powerful family of search techniques for finding the global optimum
of a black-box objective problem. It is particularly useful when the objective is expensive to evaluate
and thus sample efficiency is highly important [63].

To minimize a black-box objective problem with BO, we first need to build a probabilistic surrogate
to model the objective based on the observed data so far. Based on the surrogate model, we design an
acquisition function to evaluate the utility of potential candidate points by trading off exploitation
(where the posterior mean of the surrogate model is low) and exploration (where the posterior variance
of the surrogate model is high). The next candidate points to evaluate is then selected by maximizing
the acquisition function [64]. The general procedures of BO is summarized in Algorithm 1.

We adopted the widely used acquisition function, expected improvement (EI) [65], in our BO strategy.
EI evaluates the expected amount of improvement of a candidate point x over the minimal value f ′

observed so far. Specifically, denote the improvement function as I(x) = max(0, f ′ − f(x)), the EI

1Theoretically, this is not possible with CFGs. However, we can extend the notion of substitution by
substituting a string representation of a Python (float) variable for the placeholder variables Pt, Pm, and Pb.
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Algorithm 2 Kriging Believer algorithm to select one batch of points.
Input: Observation data Dt, batch size b

Output: The batch points Bt+1 = {x(1)
t+1, . . . ,x

(b)
t+1}

D̃t = Dt ∪ D̃p

for j = 1, . . . , b do
Select the next x(j)

t+1 by maximizing acquisition function α(x|D̃t)

Compute the predictive posterior mean µ(x
(j)
t+1|D̃t)

D̃t ← D̃t ∪ (xt+1, µ(x
(j)
t+1|D̃t))

end for

Algorithm 3 Weisfeiler-Lehman subtree kernel computation [19].
Input: Graphs G1, G2, maximum iterations H
Output: Kernel function value between the graphs
Initialize the feature vectors ϕ(G1) = ϕ0(G1), ϕ(G2) = ϕ0(G2) with the respective counts of
original node labels (i.e., the h = 0 WL features)
for h = 1, . . . H do

Assign a multiset Mh(v) = {lh−1(u)|u ∈ N (v)} to each node v ∈ G, where lh−1 is the node
label function of the h− 1-th WL iteration and N is the node neighbor function

Sort elements in multiset Mh(v) and concatenate them to string sh(v)
Compress each string sh(v) using the hash function f s.t. f(sh(v)) = f(sh(w)) ⇐⇒

sh(v) = sh(u)
Add lh−1 as prefix for sh(v)
Concatenate the WL features ϕh(G1), ϕh(G2) with the respective counts of the new labels:

ϕ(G1) = [ϕ(G1), ϕh(G1)], ϕ(G2) = [ϕ(G2), ϕh(G2)]
Set lh(v) := f(sh(v)) ∀v ∈ G

end for
Compute inner product k = ⟨ϕh(G1), ϕh(G2)⟩ between WL features ϕh(G1), ϕh(G2) in RKHS
H

acquisition function has the form

αEI(x|Dt) = E[I(x)|Dt] =

∫ f ′

−∞
(f ′ − f)N

(
f ;µ(x|Dt), σ

2(x|Dt)
)
df

= (f ′ − f)Φ
(
f ′;µ(x|Dt), σ

2(x|Dt)
)
+ σ2(x|Dt)ϕ(f

′;µ(x|Dt), σ
2(x|Dt)) ,

where µ(x|Dt) and σ2(x|Dt) are the mean and variance of the predictive posterior distribution at a
candidate point x, and ϕ(·) and Φ(·) denote the PDF and CDF of the standard normal distribution,
respectively.

To make use of ample distributed computing resource, we adopted Kriging Believer [66] which uses
the predictive posterior of the surrogate model to assign hallucinated function values {f̃p}p∈{1, ..., P}
to the P candidate points with pending evaluations {x̃p}p∈{1, ..., P} and perform next BO recommen-
dation in the batch by pseudo-augmenting the observation data with D̃p = {(x̃p, f̃p)}p∈{1, ..., P},
namely D̃t = Dt ∪ D̃p. The algorithm of Kriging Believer at one BO iteration to select a batch of
recommended candidate points is summarized in Algorithm 2.

H.2 Weisfeiler-Lehman kernel

Inspired by Ru et al. [18], we adopted the Weisfeiler-Lehman (WL) graph kernel [19] in the GP
surrogate model to handle the graph nature of neural architectures. The basic idea of the WL kernel
is to first compare node labels, and then iteratively aggregate labels of neighboring nodes, compress
them into a new label and compare them. Algorithm 3 summarizes the WL kernel procedure.

Ru et al. [18] identified three reasons for using the WL kernel: (1) it is able to compare labeled and
directed graphs of different sizes, (2) it is expressive, and (3) it is relatively efficient and scalable. Our
search space design can afford a diverse spectrum of neural architectures with very heterogeneous
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(a) F3(ω) = ω = Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc).
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(b) F2(ω) = Linear(Residual, Residual, fc).

Figure 6: Labeled graphs Φ(F2) and Φ(F3) of the folds F2 and F3.

topological structure. Therefore, reason (1) is a very important property of the WL kernel to account
for the diversity of neural architectures. Moreover, if we allow many hierarchical levels, we can
construct very large neural architectures. Therefore, reasons (2) and (3) are essential for accurate and
fast modeling. However, neural architectures in our search spaces may be significantly larger, which
makes it difficult for a single WL kernel to capture the more global topological patterns. Moreover,
modeling solely based on the final neural architecture ignores the useful macro-level information
from earlier hierarchical levels. In our experiments (Sec. 5 and J), we have found stronger neural
architectures by incorporating the hierarchical information in the kernel design, which provides
experimental support for above arguments.

However, modeling solely based on the (standard) WL graph kernel neglects the useful hierarchical
information from our assembly process. Moreover, the large size of neural architectures make it still
challenging to capture the more global topological patterns. We therefore propose to use hierarchical
information through a hierarchy of WL graph kernels that take into account the different granularities
of the architectures and combine them in a weighted sum. To obtain the different granularities, we
use the fold operators Fl that removes algebraic terms beyond the l-th hierarchical level. Thereby, we
obtain the folds

F3(ω) = ω = Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc), (12)
F2(ω) = Linear(Residual, Residual, fc) , F1(ω) = Linear ,

for the algebraic architecture term ω. Note that we ignore the first fold since it does not represent a
labeled DAG. Fig. 6 visualizes the labeled graphs Φ(F2) and Φ(F3) of the folds F2 or F3, respectively.
These graphs can be fed into (standard) WL graph kernels. Therefore, we can construct a hierarchy
of WL graph kernels kWL as follows:

khWL(ωi, ωj) =

L∑
l=2

λl · kWL(Φ(Fl(ωi)),Φ(Fl(ωj))) , (13)

where ωi and ωj are two algebraic architecture terms. Note that λl govern the importance of the
learned graph information across the hierarchical levels and can be optimized through the marginal
likelihood.

H.3 Evolutionary operations in detail

For the evolutionary operations, we adopted ideas from grammar-based genetic programming [67, 68].
In the following, we will show how these evolutionary operations manipulate algebraic terms, e.g.,

Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc) , (14)

from the search space

S ::= Linear(S, S, S) | Residual(S, S, S) | conv | id | fc , (15)

to generate evolved algebraic terms. Fig. 1 shows how we can derive the algebraic term in Eq. 14
from the search space in Eq. 15. For mutation operations, we first randomly pick a subterm of
the algebraic term, e.g., Residual(conv, id, conv). Then, we randomly sample a new subterm
with the same nonterminal symbol S as start symbol, e.g., Linear(conv, id, fc), and replace the
previous subterm, yielding

Linear(Linear(conv, id, fc), Residual(conv, id, conv), fc) . (16)
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For (self-)crossover operations, we swap two subterms, e.g., Residual(conv, id, conv) and
Residual(conv, id, conv) with the same nonterminal S as start symbol, yielding

Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc) . (17)
Note that unlike the commonly used crossover operation, which uses two parents, self-crossover has
only one parent. In future work, we could also add a self-copy operation that copies a subterm to
another part of the algebraic term, explicitly regularizing diversity and thus potentially speeding up
the search.

I Extended related work

Neural Architecture Search Neural Architecture Search (NAS) aims to automatically discover
architectural patterns (or even entire architectures) [69]. Previous approaches, e.g., used reinforcement
learning [20, 21], evolution [22], gradient descent [23], or Bayesian Optimization (BO) [18, 24, 25].
To enable the effective use of BO on graph-like inputs for NAS, previous works have proposed to
use a GP with specialized kernels [18, 24], encoding schemes [25, 26], or graph neural networks as
surrogate model [27–29]. Different to prior works, we explicitly leverage the hierarchical construction
of architectures for modeling.

Searching for novel architectural patterns Previous works mostly focused on finding a shared cell
[30] with a fixed macro architecture while only few works considered more expressive hierarchical
search spaces [4, 31, 33]. The latter works considered hierarchical assembly [31], combination of
a cell- and network-level search space [4, 32], evolution of network topologies [34], factorization
of the search space [33], parameterization of a hierarchy of random graph generators [9], a formal
language over computational graphs [35], or a hierarchical construction of TensorFlow programs
[36]. Similarly, our formalism allows to design search spaces covering a general set of architecture
design choices, but also permits the search for macro architectures with spatial resolution changes
and multiple branches. We also handle spatial resolution changes without requiring post-hoc testing
or resizing of the feature maps unlike prior works [34, 58, 70]. Other works proposed approaches
based on string rewriting systems [37, 38], cellular (or tree-structured) encoding schemes [39–42],
hyperedge replacement graph grammars [43, 44], attribute grammars [45], CFGs [46–53], or And-
Or-grammars [54]. Different to these prior works, we construct entire architectures with spatial
resolution changes across multiple branches, and propose techniques to incorporate constraints and
foster regularity.

Related work beyond NAS Optimizer search is a closely related field to NAS, where we auto-
matically search for an optimizer (i.e., an update function for the weights) instead of an architecture.
Initial works used learnable parametric or non-parametric optimizers. While the former approaches
[71–74] have poor scalability and generality, the latter works overcome those limitations. Bello et al.
[75] searched for an instantiation of hand-crafted patterns via reinforcement learning, while Wang
et al. [76] proposed a tree-structured search space2 and searched for optimizers via a modified Monte
Carlo sampling approach. AutoML-Zero [77] took an even more general approach by searching over
entire machine learning algorithms, including optimizers, from a generic search space built from
basic mathematical operations with an evolutionary algorithm. Chen et al. [78] used RE to discover
optimizers from a generic search space (inspired by AutoML-Zero) for training vision transformers
[79].

Complementary to the above, there is recent interest in automatically synthesizing programs from
domain-specific languages. Gaunt et al. [80] proposed a hand-crafted program template and si-
multaneously optimized the parameters of the differentiable program with gradient descent. The
HOUDINI framework [81] proposed type-directed (top-down) enumeration and evolution approaches
over differentiable functional programs. Shah et al. [82] hierarchically assembled differentiable
programs and used neural networks for the approximation of missing expression in partial programs.
Cui and Zhu [83] treated CFGs stochastically with trainable production rule sampling weights, which
were optimized with a gradient-based approach [23]. However, naïvely applying gradient-based
approaches does not work in our search spaces due to the exponential explosion of supernet weights,
but still renders an interesting direction for future work.

2Note that the tree-structured search space can equivalently be described with a CFG (with a constraint on
the number of maximum depth of the syntax trees).
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Compared to these lines of work, we extended CFGs to handle changes in spatial resolution, promote
regularity, and (compared to most of them) incorporate constraints, the latter two of which could
also be applied in those domains. We also proposed a BO search strategy to search efficiently with a
tailored kernel design to handle the hierarchical nature of the search space (i.e., the architectures).

J Details for Sec. 5

In this section, we provide the evaluation details (App. J.1), implementation details (App. J.2) as
well as training details (App. J.3). We also present further search results and conduct analyses on the
architectures observed during all of our search runs (App. J.4).

J.1 Evaluation details

For all search experiments, we compared the search strategies BANAT, Random Search (RS),
Regularized Evolution (RE) [31, 84], and BANAT (WL) [18]. For implementation details of the
search strategies, please refer to App. J.2. We ran search for a total of 100 evaluations with a random
initial design of 10 on three seeds {777, 888, 999} on the hierarchical NAS-Bench-201 search space
using 8 asynchronous workers each with a single NVIDIA RTX 2080 Ti GPU. In each evaluation, we
fully trained the architectures and recorded their last validation error.

To assess the modeling performance of our surrogate, we compared regression performance of
GPs with different kernels, i.e., our hierarchical WL kernel (hWL), (standard) WL kernel [18], and
NASBOT’s kernel [24]. We also tried the GCN encoding [28] but it could not capture the mapping
from the complex graph space to performance, resulting in constant performance predictions. Further,
note that the adjacency encoding [26] and path encoding [25] cannot be used in our hierarchical
search spaces since the former requires the same amount of nodes across graphs and the latter scales
exponentially in the number of nodes. We ran 20 trials over the seeds {0, 1, ..., 19} and re-used the
data from the search runs. In every trial, we sampled a training and test set of 700 or 500 architecture
and validation error pairs, respectively. We fitted the surrogates with a varying number of training
samples by randomly choosing samples from the training set without replacement, and recorded
Kendall’s τ rank correlation between the predicted and true validation error.

J.2 Implementation details

BANAT & BANAT (WL) The only difference between BANAT and BANAT (WL) is that the
former uses our proposed hierarchy of WL kernels (hWL), whereas the latter only uses a single
WL kernel (WL) for the entire architecture (c.f., [18]). We ran BANAT asynchronously in parallel
throughout our experiments with a batch size of B = 1, i.e., at each BO iteration a single architecture
is proposed for evaluation. For the evolutionary acquisition function optimization, we used a pool size
of P = 200, where the initial population consisted of the current ten best-performing architectures
and the remainder were randomly sampled architectures to encourage exploration in the huge search
spaces. During evolution, the mutation probability was set to pmut = 0.5 and crossover probability
was set to pcross = 0.5. From the crossovers, half of them were self-crossovers of one parent and
the other half were common crossovers between two parents. The tournament selection probability
was set to ptour = 0.2. We evolved the population at least for ten iterations and a maximum of 50
iterations using a early stopping criterion based on the fitness value improvements over the last five
iterations.

Regularized Evolution (RE) RE [31, 84] iteratively mutates the best architectures out of a sample
of the population. We reduced the population size from 50 to 30 to account for fewer evaluations,
and used a sample size of 10. We also ran RE asynchronously for better comparability.

J.3 Training details

Training protocols For training of architectures on CIFAR-10/100 and ImageNet-16-120, we
followed Dong and Yang [55]. We trained architectures with SGD with learning rate of 0.1, Nesterov
momentum of 0.9, weight decay of 0.0005 with cosine annealing [85], and batch size of 256 for 200
epochs. The initial channels were set to 16. For both CIFAR-10 and CIFAR-100, we used random
flip with probability 0.5 followed by a random crop (32x32 with 4 pixel padding) and normalization.
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Table 2: Licenses for the datasets we used in our experiments.
Dataset License URL

CIFAR-10 [87] MIT https://www.cs.toronto.edu/~kriz/cifar.html
CIFAR-100 [87] MIT https://www.cs.toronto.edu/~kriz/cifar.html
ImageNet-16-120 [88] MIT https://patrykchrabaszcz.github.io/Imagenet32/
CIFARTile [86] GNU https://github.com/RobGeada/cvpr-nas-datasets
AddNIST [86] GNU https://github.com/RobGeada/cvpr-nas-datasets

For ImageNet-16-120, we used a 16x16 random crop with 2 pixel padding instead. For training of
architectures on AddNIST and CIFARTile, we followed the training protocol from the CVPR-NAS
2021 competition [86]. We trained architectures with SGD with learning rate of 0.01, momentum of
0.9, and weight decay of 0.0003 with cosine annealing, and batch size of 64 for 64 epochs. We set
the initial channels to 16 and did not apply any further data augmentation.

Dataset details In Tab. 2, we provide the licenses for the datasets used in our experiments. For
training of architectures on CIFAR-10, CIFAR-100 [87], and ImageNet-16-120 [88], we followed
the dataset splits and training protocol of NAS-Bench-201 [55]. For CIFAR-10, we split the original
training set into a new training set with 25k images and validation set with 25k images following [55].
The test set remained unchanged. For evaluation, we trained architectures on both the training and
validation set. For CIFAR-100, the training set remained unchanged, but the test set was partitioned
in a validation set and new test set with each 5K images. For ImageNet-16-120, all splits remained
unchanged. For AddNIST and CIFARTile, we used the training, validation, and test splits as defined
in the CVPR-NAS 2021 competition [86].

J.4 Further search results and analyses

Supplementary to Fig. 2 (top), Fig. 7 compares the cell-based vs. hierarchical NAS-Bench-201 search
space from Section 6.1 using RS, RE, and BANAT (WL). The cell-based search space design shows
on par or stronger performance on all datasets except for CIFARTile for the three search strategies.
In contrast, for our proposed search strategy BANAT we find on par (CIFAR-10/100) or superior
(ImageNet-16-120, CIFARTile, and AddNIST) performance using the hierarchical search space
design. This clearly shows that the increase of the search space does not necessarily yields the
discovery of stronger neural architectures. Further, it exemplifies the importance of a strong search
strategy to search effectively and efficiently in huge hierarchical search spaces (Q2), and provides
further evidence that the incorporation of hierarchical information is a key contributor for search
efficiency (Q3). Based on this, we believe that future work using, e.g., graph neural networks as a
surrogate, may benefit from the incorporation of hierarchical information.

We report the test errors of our best found architectures in Tab. 3. We observe that our search strategy
BANAT finds the strongest performing architectures across all dataset (Q2, Q3). Also note that
we achieve better (validation and) test performance on ImageNet-16-120 on the hierarchical than
the state-of-the-art search strategy on the cell-based NAS-Bench-201 search space (i.e., +0.37%p
compared to Shapley-NAS [56]) (Q1).

Search costs Search time varied across datasets from ca. 0.5 days (CIFAR-10) to ca. 1.8 days
(ImageNet-16-120) using eight asynchronous workers, each with an NVIDIA RTX 2080 Ti GPU, for
ca. 4 to ca. 14.4 GPU days in total.

Is our search strategy BANAT exploring well-performing architectures during search? To
investigate the question, we studied density estimates of the validation error of proposed candidates
for all search strategies across our experiments from Sec. 5. This provides a better view for whether
search strategies are exploring well-performing architectures or wasting computational resources on
low-performing architectures. Fig. 8 shows that our proposed search strategy BANAT explored better
architecture candidates across all the datasets, i.e., it has smaller median validation errors and the
distributions are further shifted towards smaller validation errors than for the other search strategies.
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Figure 7: Cell-based vs. hierarchical search spaces. We plot mean and ±1 standard error of the
validation error on the cell-based (dashed orange) and hierarchical (solid blue) NAS-Bench-201
search space using Random Search (RS) (top), Regularized Evolution (RE) (middle), and BANAT
(WL) (bottom).
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Figure 8: Density estimates for the validation error of all architecture candidates proposed by the
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Figure 9: Validation error over maximal depth of all architecture candidates proposed by the search
strategies (i.e., BANAT, RS, RE, and BANAT (WL)) and across datasets (i.e., CIFAR-10/100,
ImageNet-16-120, CIFARTile, AddNIST) from our experiments in Sec. 5.

What distinguishes top-performing neural architectures from the other ones? To understand
what distinguishes top-performing neural architecture from other ones, we analyze the impact of
maximum depth on performance and the frequency of production rules in the worst-10%, top-10%,
or other neural architectures, respectively. In another analysis, we marginalize out the validation error
of every production rule; thereby relating the contribution of a production rule with the performance
of the architecture. Note, however, that both analyses ignore the topological information, i.e., a
topological operator or primitive computation may have a different effect at different stages of the
architecture.

Fig. 9 shows no particular trend (e.g., more depth yields better performance) across the datasets,
indicating that depth may not be the most important factor for performance in our hierarchical search
space. In contrast, Fig. 10 and Fig. 11 show that particularly macro-level production rules (i.e., for
the nonterminals D2, D1, D0, and D) have a large effect on the performance of an architecture.
Interestingly, we find that that top-performing architectures (almost exclusively) use the topological
operator Residual3 for derivations from the nonterminal D1 across search spaces. This hints that
a residual connection at the macro-level could be a strong topological structure, but remains to be
evaluated for a variety of architectures. Cell-level production choices have less effect on performance.
However, we hypothesize that this may also be due to the neglect of topological information. We
leave further analysis for future work.

What is the impact of flexible parameterization of convolutional blocks? To investigate the
impact of the flexible parameterization of the convolutional blocks (i.e., activation functions, normal-
izations, and type of convolution), we removed the flexible parameterization and allowed only the
same primitive computations as in the cell-based NAS-Bench-201 search space, while still searching
over the macro architecture. More explicitly, we only allow ReLU non-linearity as the activation
function, batch normalization as the normalization, and 1× 1 or 3× 3 convolutions. Fig. 12 shows
that for all datasets except CIFAR-100, flexible parameterization of the convolutional blocks improves
performance of the found architectures. Interestingly, we find an architecture on CIFAR-100, which
achieves 26.24% test error with 1.307MB and 167.172M number of parameters or FLOPs, respec-
tively. This architecture is superior to the optimal architecture in the cell-based NAS-Bench-201
search space. Note that this architecture is also pareto-optimal for test error vs. number of parameters
and test error vs. number of FLOPs.

Test error vs. number of parameters and FLOPs Fig. 13 shows the test error vs. the number
of parameters or FLOPs. Our best found architectures fall well within the parameter and FLOPs
ranges of the cell-based NAS-Bench-201 search space across all datasets, except for the parameters
on CIFAR-10. Note that our best found architecture on ImageNet-16-120 is pareto-optimal for test
error vs. number of parameters and test error vs. number of FLOPs.

Best architectures Below we report the best found architecture per dataset on the hierarchical
NAS-Bench-201 search space (Sec. 5) for each dataset. Fig. 14 provides a graphical summary of the
best architectures. Fig. 15 visualizes the novel and diverse design of the architectures (including stem
and classifier head).
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(a) D2 ::= Linear3(D1, D1, D0) | Linear3(D0, D1, D1) | Linear4(D1, D1, D0, D0).
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(b) D1 ::= Linear3(C, C, D) | Linear4(C, C, C, D) | Residual3(C, C, D, D).
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(c) D0 ::= Linear3(C, C, CL) | Linear4(C, C, C, CL) | Residual3(C, C, CL, CL).
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(d) D ::= Linear2(CL, down) | Linear3(CL, CL, down) | Residual2(C, down, down).
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(e) C ::= Linear2(CL, CL) | Linear3(CL, CL) | Residual2(CL, CL, CL).
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(f) OP ::= zero | id | BLOCK | avg_pool.
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(g) ACT ::= relu | hardswish | mish.
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(h) CONV ::= conv1x1 | conv3x3 | dconv3x3.
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(i) NORM ::= batch | instance | layer.

Figure 10: Comparison of the proportion of production rules in the worst-10% (blue), top-10%
(green) and other (orange) neural architectures from our experiments in Sec. 5.

CIFAR-10 (mean test error 5.65%, #params 2.204MB, FLOPs 127.673M):

Linear4(Residual3(Residual2(Cell(id, zero, Linear1(Linear3(hardswish, conv1x1,
layer)), Linear1(Linear3(hardswish, conv3x3, layer)), zero, Linear1(Linear3(mish,
conv3x3, instance))), Cell(Linear1(Linear3(relu, dconv3x3, layer)), id, avg_pool, Lin-
ear1(Linear3(relu, dconv3x3, layer)), id, zero), Cell(zero, Linear1(Linear3(relu, conv1x1,
layer)), id, Linear1(Linear3(hardswish, conv1x1, instance)), Linear1(Linear3(hardswish,
conv3x3, layer)), Linear1(Linear3(hardswish, dconv3x3, layer)))), Residual2(Cell(id,
zero, Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(mish, conv1x1, layer)),
Linear1(Linear3(hardswish, conv3x3, layer)), zero), Cell(id, zero, id, Linear1(Linear3(relu,
conv3x3, batch)), id, id), Cell(Linear1(Linear3(hardswish, conv3x3, layer)), Lin-
ear1(Linear3(hardswish, conv1x1, layer)), Linear1(Linear3(relu, conv1x1, layer)), Lin-
ear1(Linear3(relu, conv3x3, layer)), zero, id)), Residual2(Cell(Linear1(Linear3(hardswish,
conv1x1, instance)), Linear1(Linear3(hardswish, dconv3x3, batch)), Linear1(Linear3(mish,
dconv3x3, instance)), Linear1(Linear3(relu, conv1x1, batch)), id, id), down, down),
Residual2(Cell(Linear1(Linear3(hardswish, conv1x1, layer)), Linear1(Linear3(hardswish,
dconv3x3, batch)), Linear1(Linear3(relu, conv1x1, batch)), Linear1(Linear3(hardswish,
conv3x3, layer)), id, avg_pool), down, down)), Residual3(Residual2(Cell(id, zero,
Linear1(Linear3(hardswish, conv1x1, layer)), Linear1(Linear3(hardswish, conv3x3,
layer)), id, Linear1(Linear3(mish, conv3x3, instance))), Cell(Linear1(Linear3(relu,
dconv3x3, layer)), id, avg_pool, Linear1(Linear3(relu, dconv3x3, layer)), id, zero),
Cell(zero, Linear1(Linear3(relu, conv1x1, layer)), id, Linear1(Linear3(hardswish, conv1x1,
instance)), Linear1(Linear3(hardswish, conv1x1, layer)), Linear1(Linear3(hardswish,
dconv3x3, layer)))), Residual2(Cell(id, zero, Linear1(Linear3(mish, conv1x1, layer)),
Linear1(Linear3(mish, conv3x3, layer)), Linear1(Linear3(hardswish, dconv3x3,
batch)), zero), Cell(id, zero, id, Linear1(Linear3(relu, conv3x3, batch)), id, id),
Cell(Linear1(Linear3(hardswish, conv3x3, layer)), Linear1(Linear3(hardswish, conv1x1,
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(a) D2 ::= Linear3(D1, D1, D0) | Linear3(D0, D1, D1) | Linear4(D1, D1, D0, D0).
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(b) D1 ::= Linear3(C, C, D) | Linear4(C, C, C, D) | Residual3(C, C, D, D).
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(c) D0 ::= Linear3(C, C, CL) | Linear4(C, C, C, CL) | Residual3(C, C, CL, CL).
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(d) D ::= Linear2(CL, down) | Linear3(CL, CL, down) | Residual2(C, down, down).

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

25

50

75

V
a
l
er

ro
r

[%
]

CIFAR-10

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

50

100

CIFAR-100

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

60

80

100

ImageNet-16-120

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

40

60

CIFARTile

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

10

20

30

AddNIST

(e) C ::= Linear2(CL, CL) | Linear3(CL, CL) | Residual2(CL, CL, CL).
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(f) OP ::= zero | id | BLOCK | avg_pool.
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(g) ACT ::= relu | hardswish | mish.
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(h) CONV ::= conv1x1 | conv3x3 | dconv3x3.
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(i) NORM ::= batch | instance | layer.

Figure 11: Marginalized performance of every production rule in our hierarchical NAS-Bench-201
search space from Sec. 5.
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Figure 12: Impact of flexible parameterization of convolutional blocks in the hierarchical NAS-
Bench-201 search space.
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Figure 13: Test error vs. number of parameters (a) and FLOPs (b) for each architecture candidate in
the cell-based search space (blue dots), the best cell (orange cross), and our best found architecture
(green star).

layer)), Linear1(Linear3(mish, conv1x1, batch)), Linear1(Linear3(relu, conv3x3,
instance)), zero, id)), Residual2(Cell(Linear1(Linear3(relu, conv1x1, batch)), Lin-
ear1(Linear3(hardswish, dconv3x3, batch)), id, Linear1(Linear3(relu, conv1x1, batch)),
id, id), down, down), Residual2(Cell(Linear1(Linear3(hardswish, conv1x1, layer)),
Linear1(Linear3(hardswish, dconv3x3, batch)), Linear1(Linear3(relu, conv1x1, batch)),
Linear1(Linear3(hardswish, conv3x3, layer)), id, avg_pool), down, down)), Lin-
ear3(Residual2(Cell(Linear1(Linear3(hardswish, conv3x3, batch)), Linear1(Linear3(relu,
conv1x1, instance)), Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(relu,
conv1x1, layer)), Linear1(Linear3(relu, conv1x1, layer)), id), Cell(Linear1(Linear3(relu,
conv1x1, batch)), id, id, Linear1(Linear3(relu, conv1x1, layer)), id, id), Cell(id,
Linear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu, conv1x1, instance)), Lin-
ear1(Linear3(relu, conv1x1, layer)), zero, Linear1(Linear3(hardswish, conv3x3, batch)))),
Residual2(Cell(Linear1(Linear3(hardswish, conv3x3, layer)), Linear1(Linear3(relu,
conv3x3, instance)), Linear1(Linear3(mish, conv1x1, layer)), Linear1(Linear3(relu,
conv1x1, layer)), Linear1(Linear3(relu, conv3x3, layer)), id), Cell(Linear1(Linear3(relu,
conv1x1, batch)), id, id, Linear1(Linear3(relu, conv3x3, batch)), id, id), Cell(id,
Linear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu, conv1x1, instance)),
Linear1(Linear3(relu, dconv3x3, layer)), zero, Linear1(Linear3(hardswish, dconv3x3,
layer)))), Cell(Linear1(Linear3(relu, dconv3x3, instance)), zero, zero, id, zero, id)),
Linear4(Residual2(Cell(Linear1(Linear3(hardswish, conv3x3, layer)), Linear1(Linear3(relu,
conv3x3, layer)), Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(relu,
conv1x1, layer)), Linear1(Linear3(relu, conv3x3, layer)), id), Cell(Linear1(Linear3(relu,
conv1x1, batch)), id, id, Linear1(Linear3(relu, conv3x3, batch)), id, id), Cell(id,
Linear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu, conv1x1, instance)), Lin-
ear1(Linear3(relu, conv1x1, layer)), zero, Linear1(Linear3(hardswish, conv3x3, batch)))),
Residual2(Cell(Linear1(Linear3(hardswish, conv3x3, layer)), Linear1(Linear3(relu,
conv3x3, layer)), Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(relu,
conv1x1, layer)), Linear1(Linear3(relu, conv3x3, layer)), id), Cell(Linear1(Linear3(relu,
conv1x1, batch)), id, id, Linear1(Linear3(relu, conv3x3, batch)), id, id), Cell(id,
Linear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu, conv1x1, instance)), Lin-
ear1(Linear3(relu, conv1x1, layer)), zero, Linear1(Linear3(hardswish, conv3x3, layer)))),
Residual2(Cell(Linear1(Linear3(hardswish, conv3x3, layer)), Linear1(Linear3(relu,
conv3x3, layer)), Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(relu, conv1x1,

30



layer)), Linear1(Linear3(relu, conv3x3, layer)), id), Cell(Linear1(Linear3(relu, conv1x1,
batch)), id, id, Linear1(Linear3(relu, conv3x3, batch)), id, id), Cell(id, Linear1(Linear3(relu,
conv1x1, instance)), Linear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu,
conv1x1, layer)), zero, Linear1(Linear3(hardswish, conv3x3, layer)))), Cell(id, Lin-
ear1(Linear3(hardswish, conv1x1, layer)), Linear1(Linear3(mish, conv1x1, batch)), id, zero,
id))) .

CIFAR-100 (mean test error 27.63%, #params 0.962MB, FLOPs 115.243M):

Linear3(Residual3(Linear3(Cell(Linear3(mish, conv3x3, layer), avg_pool, Lin-
ear3(hardswish, conv1x1, instance), zero, Linear3(mish, conv3x3, batch), zero),
Cell(Linear3(hardswish, dconv3x3, batch), zero, Linear3(hardswish, dconv3x3, batch),
Linear3(relu, dconv3x3, batch), id, id), Cell(Linear3(mish, conv3x3, batch), zero, id, zero,
Linear3(hardswish, dconv3x3, batch), id)), Linear2(Cell(id, zero, Linear3(mish, conv3x3,
batch), zero, zero, Linear3(mish, conv1x1, batch)), Cell(zero, zero, zero, id, zero, avg_pool)),
Cell(Linear3(relu, conv3x3, batch), zero, Linear3(hardswish, conv3x3, instance), id, id,
avg_pool), Cell(id, id, zero, zero, id, id)), Residual3(Linear3(Cell(Linear3(mish, conv3x3,
layer), id, Linear3(hardswish, dconv3x3, layer), Linear3(hardswish, dconv3x3, batch),
Linear3(mish, conv3x3, instance), Linear3(mish, conv3x3, batch)), Cell(Linear3(hardswish,
conv1x1, layer), id, Linear3(hardswish, dconv3x3, batch), Linear3(relu, conv3x3,
layer), id, id), Cell(Linear3(relu, conv3x3, instance), zero, id, zero, Linear3(mish,
conv3x3, batch), avg_pool)), Linear3(Cell(zero, id, Linear3(hardswish, conv1x1,
layer), Linear3(mish, conv3x3, instance), Linear3(mish, conv3x3, instance), zero),
Cell(Linear3(hardswish, conv1x1, layer), id, Linear3(hardswish, dconv3x3, batch),
Linear3(relu, conv3x3, batch), id, id), Cell(Linear3(relu, conv3x3, instance), zero,
id, zero, Linear3(mish, conv3x3, layer), avg_pool)), Residual2(Cell(zero, id, zero,
Linear3(mish, conv3x3, layer), avg_pool, Linear3(mish, conv3x3, layer)), down, down),
Residual2(Cell(zero, id, zero, Linear3(mish, conv3x3, batch), avg_pool, Linear3(mish,
conv3x3, layer)), down, down)), Residual3(Linear3(Cell(Linear3(mish, conv3x3, layer), id,
Linear3(hardswish, dconv3x3, layer), Linear3(hardswish, dconv3x3, batch), Linear3(mish,
conv3x3, instance), Linear3(mish, conv3x3, batch)), Cell(Linear3(hardswish, conv1x1,
layer), id, Linear3(hardswish, dconv3x3, batch), Linear3(relu, conv3x3, layer), id, id),
Cell(Linear3(relu, conv3x3, instance), zero, id, zero, Linear3(mish, conv3x3, batch),
avg_pool)), Linear3(Cell(Linear3(mish, conv3x3, batch), id, Linear3(hardswish, conv1x1,
batch), Linear3(mish, conv3x3, instance), Linear3(mish, conv3x3, instance), zero),
Cell(Linear3(hardswish, conv1x1, layer), id, Linear3(hardswish, dconv3x3, batch),
Linear3(hardswish, dconv3x3, batch), id, id), Cell(Linear3(relu, conv3x3, instance),
zero, id, zero, Linear3(mish, conv3x3, layer), avg_pool)), Residual2(Cell(zero, id, zero,
Linear3(mish, conv3x3, layer), avg_pool, Linear3(mish, conv3x3, layer)), down, down),
Residual2(Cell(zero, id, zero, Linear3(mish, conv3x3, batch), avg_pool, Linear3(mish,
conv3x3, layer)), down, down)))

ImageNet-16-120 (mean test error 52.78%, #params 0.626MB, FLOPs 23.771M):

Linear3(Linear4(Residual2(Cell(id, avg_pool, id, id, Linear3(relu, dconv3x3, layer), zero),
Cell(Linear3(hardswish, conv1x1, batch), zero, zero, Linear3(mish, dconv3x3, layer), zero,
zero), Cell(Linear3(relu, dconv3x3, layer), Linear3(mish, dconv3x3, layer), zero, Lin-
ear3(hardswish, conv3x3, layer), Linear3(relu, dconv3x3, instance), Linear3(hardswish,
conv3x3, instance))), Linear2(Cell(zero, Linear3(relu, conv3x3, layer), Linear3(mish,
conv1x1, batch), Linear3(mish, conv1x1, batch), avg_pool, Linear3(relu, conv3x3, layer)),
Cell(id, id, Linear3(mish, conv3x3, layer), Linear3(relu, conv3x3, instance), id, id)), Resid-
ual2(Cell(zero, avg_pool, Linear3(mish, conv1x1, batch), Linear3(mish, conv1x1, layer),
zero, zero), Cell(id, Linear3(relu, dconv3x3, layer), zero, zero, Linear3(relu, dconv3x3,
instance), zero), Cell(id, Linear3(relu, conv3x3, layer), id, zero, zero, id)), Cell(zero,
Linear3(hardswish, conv3x3, layer), avg_pool, zero, Linear3(hardswish, conv1x1, layer),
id)), Residual3(Residual2(Cell(Linear3(relu, conv1x1, instance), Linear3(mish, conv1x1,
layer), Linear3(mish, conv1x1, instance), zero, Linear3(hardswish, dconv3x3, layer), id),
Cell(id, avg_pool, avg_pool, Linear3(relu, conv1x1, instance), id, zero), Cell(avg_pool, Lin-
ear3(mish, conv3x3, instance), Linear3(mish, conv1x1, instance), Linear3(relu, dconv3x3,
batch), id, Linear3(hardswish, conv3x3, instance))), Linear2(Cell(zero, Linear3(relu,
conv3x3, layer), Linear3(mish, conv1x1, batch), Linear3(mish, conv1x1, batch), avg_pool,
Linear3(relu, conv3x3, instance)), Cell(id, zero, Linear3(mish, conv3x3, layer), Lin-
ear3(relu, conv3x3, instance), id, id)), Residual2(Cell(Linear3(mish, conv3x3, layer), Lin-
ear3(mish, conv1x1, batch), id, Linear3(mish, conv1x1, layer), zero, id), down, down), Resid-
ual2(Cell(Linear3(relu, conv3x3, layer), zero, Linear3(relu, dconv3x3, layer), Linear3(mish,
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conv1x1, layer), zero, id), down, down)), Residual3(Residual2(Cell(Linear3(mish, conv1x1,
instance), Linear3(mish, conv1x1, layer), Linear3(mish, conv1x1, instance), avg_pool,
Linear3(hardswish, dconv3x3, layer), id), Cell(id, avg_pool, avg_pool, Linear3(relu,
conv1x1, instance), id, zero), Cell(avg_pool, Linear3(mish, conv3x3, instance), Lin-
ear3(mish, conv1x1, instance), Linear3(relu, dconv3x3, batch), id, Linear3(hardswish,
conv3x3, instance))), Linear2(Cell(zero, Linear3(relu, conv3x3, layer), Linear3(mish,
conv1x1, batch), Linear3(mish, conv1x1, batch), avg_pool, Linear3(relu, conv3x3, layer)),
Cell(id, zero, Linear3(mish, conv3x3, layer), Linear3(relu, conv3x3, instance), id, id)), Resid-
ual2(Cell(Linear3(relu, conv3x3, layer), avg_pool, id, Linear3(mish, conv3x3, instance),
zero, id), down, down), Residual2(Cell(Linear3(relu, conv3x3, layer), zero, Linear3(relu,
dconv3x3, instance), Linear3(mish, conv1x1, layer), zero, id), down, down)))

CIFARTile (mean test error 30.33%, #params 2.356MB, FLOPs 372.114M):

Linear4(Residual3(Residual2(Cell(Linear3(hardswish, conv3x3, instance), id, zero, Lin-
ear3(relu, dconv3x3, instance), Linear3(mish, conv1x1, instance), avg_pool), Cell(avg_pool,
avg_pool, id, zero, Linear3(hardswish, conv3x3, batch), avg_pool), Cell(Linear3(relu,
dconv3x3, instance), zero, id, Linear3(relu, dconv3x3, layer), id, id)), Residual2(Cell(zero,
zero, Linear3(mish, conv1x1, instance), Linear3(mish, conv3x3, batch), zero, id),
Cell(Linear3(mish, conv3x3, instance), zero, Linear3(relu, dconv3x3, batch), id, Lin-
ear3(mish, conv3x3, batch), id), Cell(Linear3(hardswish, dconv3x3, batch), Linear3(relu,
conv3x3, batch), Linear3(relu, conv1x1, batch), zero, Linear3(relu, conv3x3, batch),
id)), Linear2(Cell(Linear3(relu, dconv3x3, layer), Linear3(mish, conv1x1, layer), id,
zero, Linear3(mish, conv3x3, batch), Linear3(relu, dconv3x3, layer)), down), Lin-
ear2(Cell(id, Linear3(hardswish, conv1x1, layer), id, Linear3(relu, conv1x1, instance),
avg_pool, Linear3(relu, conv1x1, layer)), down)), Residual3(Residual2(Cell(id, avg_pool,
avg_pool, Linear3(hardswish, dconv3x3, instance), Linear3(mish, conv1x1, layer), Lin-
ear3(hardswish, dconv3x3, instance)), Cell(id, id, Linear3(relu, dconv3x3, layer), id, id,
zero), Cell(Linear3(relu, conv3x3, layer), id, avg_pool, Linear3(mish, dconv3x3, instance),
Linear3(relu, conv1x1, layer), zero)), Residual2(Cell(Linear3(mish, conv3x3, batch), Lin-
ear3(mish, conv3x3, instance), zero, avg_pool, avg_pool, Linear3(mish, conv1x1, batch)),
Cell(Linear3(mish, conv1x1, batch), Linear3(relu, dconv3x3, layer), zero, id, avg_pool,
avg_pool), Cell(avg_pool, Linear3(hardswish, conv1x1, instance), id, avg_pool, avg_pool,
Linear3(hardswish, conv1x1, instance))), Residual2(Cell(Linear3(relu, dconv3x3, batch),
avg_pool, id, avg_pool, id, zero), down, down), Residual2(Cell(zero, zero, Linear3(relu,
dconv3x3, batch), avg_pool, Linear3(hardswish, conv1x1, instance), avg_pool), down,
down)), Linear4(Linear3(Cell(Linear3(hardswish, conv3x3, batch), Linear3(hardswish,
conv3x3, batch), Linear3(relu, conv1x1, instance), id, Linear3(relu, conv1x1, layer), Lin-
ear3(relu, conv3x3, layer)), Cell(id, Linear3(relu, conv3x3, instance), Linear3(hardswish,
conv1x1, instance), Linear3(relu, conv3x3, layer), avg_pool, Linear3(mish, conv1x1, layer)),
Cell(zero, zero, id, Linear3(relu, conv3x3, batch), id, Linear3(relu, conv1x1, layer))),
Linear3(Cell(Linear3(hardswish, conv3x3, batch), Linear3(hardswish, conv3x3, batch), Lin-
ear3(relu, conv1x1, instance), Linear3(relu, dconv3x3, layer), Linear3(mish, conv1x1, layer),
Linear3(relu, conv3x3, batch)), Cell(id, Linear3(relu, conv3x3, instance), Linear3(hardswish,
conv1x1, instance), Linear3(relu, dconv3x3, instance), avg_pool, Linear3(mish, conv1x1,
layer)), Cell(zero, zero, id, Linear3(relu, conv3x3, batch), id, avg_pool)), Linear3(Cell(id,
id, avg_pool, Linear3(mish, conv1x1, layer), Linear3(mish, conv3x3, batch), zero), Cell(id,
Linear3(relu, conv1x1, batch), avg_pool, Linear3(relu, conv1x1, layer), avg_pool, zero),
Cell(zero, Linear3(relu, conv1x1, batch), Linear3(mish, dconv3x3, batch), Linear3(mish,
conv1x1, batch), id, id)), Cell(id, Linear3(hardswish, conv1x1, layer), zero, id, zero,
id)), Linear3(Linear2(Cell(id, zero, Linear3(mish, dconv3x3, instance), Linear3(mish,
conv3x3, batch), Linear3(mish, dconv3x3, instance), Linear3(relu, conv1x1, instance)),
Cell(Linear3(relu, dconv3x3, instance), avg_pool, Linear3(mish, conv1x1, instance),
Linear3(hardswish, dconv3x3, instance), id, Linear3(hardswish, conv1x1, layer))), Lin-
ear2(Cell(zero, zero, Linear3(mish, dconv3x3, instance), Linear3(relu, conv3x3, instance),
Linear3(hardswish, conv3x3, batch), avg_pool), Cell(id, id, Linear3(hardswish, conv1x1, in-
stance), avg_pool, zero, Linear3(hardswish, conv3x3, batch))), Cell(avg_pool, Linear3(mish,
dconv3x3, layer), zero, avg_pool, avg_pool, zero))) .

AddNIST (mean test error 6.33%, #params 2.853MB, FLOPs 593.856M):

Linear4(Residual3(Linear3(Cell(id, Linear3(hardswish, dconv3x3, batch), Linear3(relu,
conv1x1, layer), Linear3(mish, conv3x3, batch), avg_pool, zero), Cell(zero, zero, avg_pool,
id, avg_pool, Linear3(hardswish, conv1x1, instance)), Cell(Linear3(relu, conv3x3, layer),
id, zero, Linear3(mish, conv3x3, instance), id, avg_pool)), Linear2(Cell(id, Linear3(relu,
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conv3x3, layer), Linear3(relu, conv3x3, layer), Linear3(hardswish, conv3x3, batch), id,
Linear3(relu, conv3x3, layer)), Cell(Linear3(mish, conv3x3, instance), id, Linear3(mish,
conv3x3, batch), id, avg_pool, id)), Linear3(Cell(zero, id, Linear3(relu, dconv3x3, in-
stance), Linear3(relu, dconv3x3, layer), Linear3(relu, dconv3x3, instance), Linear3(mish,
conv3x3, batch)), Cell(Linear3(mish, conv1x1, instance), zero, Linear3(relu, conv3x3,
instance), id, zero, Linear3(relu, conv3x3, batch)), down), Linear3(Cell(zero, avg_pool,
Linear3(hardswish, dconv3x3, layer), Linear3(relu, conv3x3, layer), Linear3(hardswish,
conv1x1, instance), Linear3(hardswish, conv3x3, batch)), Cell(Linear3(hardswish, conv3x3,
batch), Linear3(hardswish, conv1x1, layer), Linear3(mish, conv1x1, batch), id, Lin-
ear3(hardswish, conv3x3, batch), zero), down)), Residual3(Linear2(Cell(Linear3(mish,
conv1x1, layer), avg_pool, Linear3(hardswish, dconv3x3, batch), Linear3(mish, dconv3x3,
batch), id, Linear3(mish, conv3x3, layer)), Cell(zero, Linear3(relu, dconv3x3, layer), Lin-
ear3(hardswish, conv3x3, instance), avg_pool, avg_pool, zero)), Linear3(Cell(Linear3(relu,
conv3x3, batch), id, Linear3(relu, conv3x3, layer), Linear3(mish, conv1x1, instance), id, Lin-
ear3(relu, dconv3x3, batch)), Cell(Linear3(mish, conv3x3, batch), Linear3(mish, conv1x1,
instance), Linear3(mish, conv3x3, instance), zero, Linear3(mish, dconv3x3, layer), Lin-
ear3(relu, conv3x3, batch)), Cell(avg_pool, Linear3(mish, conv1x1, instance), Linear3(relu,
conv3x3, batch), avg_pool, id, Linear3(mish, dconv3x3, batch))), Linear3(Cell(zero,
avg_pool, Linear3(hardswish, dconv3x3, layer), Linear3(relu, conv3x3, batch), Lin-
ear3(hardswish, conv1x1, batch), Linear3(hardswish, conv3x3, batch)), Cell(avg_pool,
Linear3(hardswish, dconv3x3, layer), Linear3(mish, conv1x1, batch), id, Linear3(hardswish,
conv3x3, batch), zero), down), Residual2(Cell(zero, Linear3(mish, conv1x1, instance),
Linear3(hardswish, conv1x1, instance), avg_pool, Linear3(relu, conv1x1, layer), Lin-
ear3(hardswish, dconv3x3, batch)), down, down)), Linear4(Linear2(Cell(Linear3(relu,
conv3x3, instance), id, Linear3(relu, conv3x3, batch), avg_pool, zero, id), Cell(avg_pool,
Linear3(hardswish, conv3x3, layer), avg_pool, Linear3(mish, conv3x3, batch), Lin-
ear3(relu, conv3x3, batch), id)), Linear2(Cell(Linear3(mish, conv1x1, layer), avg_pool,
Linear3(hardswish, dconv3x3, batch), Linear3(mish, dconv3x3, batch), id, Linear3(mish,
conv3x3, layer)), Cell(zero, Linear3(relu, dconv3x3, layer), Linear3(hardswish, conv3x3,
instance), avg_pool, avg_pool, zero)), Linear2(Cell(id, Linear3(relu, conv3x3, instance), Lin-
ear3(relu, conv3x3, layer), Linear3(hardswish, dconv3x3, batch), id, Linear3(relu, conv3x3,
layer)), Cell(Linear3(mish, conv1x1, batch), id, avg_pool, id, avg_pool, id)), Cell(id, Lin-
ear3(relu, conv3x3, layer), Linear3(mish, conv1x1, instance), Linear3(hardswish, conv3x3,
batch), Linear3(mish, dconv3x3, instance), Linear3(hardswish, conv1x1, instance))), Lin-
ear4(Linear2(Cell(Linear3(relu, conv3x3, instance), id, Linear3(relu, conv3x3, batch),
avg_pool, zero, id), Cell(zero, Linear3(relu, conv3x3, batch), avg_pool, Linear3(mish,
conv3x3, batch), Linear3(relu, dconv3x3, instance), id)), Linear3(Cell(Linear3(relu,
conv3x3, batch), id, Linear3(relu, conv3x3, layer), Linear3(mish, conv1x1, layer), id,
Linear3(relu, dconv3x3, instance)), Cell(Linear3(mish, conv3x3, batch), Linear3(mish,
conv1x1, instance), Linear3(hardswish, dconv3x3, instance), zero, Linear3(mish, dconv3x3,
layer), Linear3(relu, conv3x3, batch)), Cell(avg_pool, Linear3(mish, conv1x1, instance), Lin-
ear3(relu, conv3x3, batch), avg_pool, id, Linear3(mish, dconv3x3, batch))), Linear2(Cell(id,
Linear3(relu, conv3x3, layer), Linear3(hardswish, conv3x3, layer), Linear3(hardswish,
dconv3x3, batch), id, Linear3(relu, conv3x3, layer)), Cell(Linear3(mish, conv3x3, batch), id,
avg_pool, id, avg_pool, id)), Cell(id, Linear3(relu, conv3x3, layer), Linear3(mish, conv1x1,
instance), Linear3(hardswish, conv3x3, batch), Linear3(mish, dconv3x3, instance), Lin-
ear3(mish, conv3x3, instance)))) .
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(a) D2 ::= Linear3(D1, D1, D0) | Linear3(D0, D1, D1) | Linear4(D1, D1, D0, D0).
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(b) D1 ::= Linear3(C, C, D) | Linear4(C, C, C, D) | Residual3(C, C, D, D).
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(c) D0 ::= Linear3(C, C, CL) | Linear4(C, C, C, CL) | Residual3(C, C, CL, CL).
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(d) D ::= Linear2(CL, down) | Linear3(CL, CL, down) | Residual2(C, down, down).
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(e) C ::= Linear2(CL, CL) | Linear3(CL, CL) | Residual2(CL, CL, CL).
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(f) OP ::= zero | id | BLOCK | avg_pool.
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(g) ACT ::= relu | hardswish | mish.
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(h) CONV ::= conv1x1 | conv3x3 | dconv3x3.

b
a
tc

h

in
st

a
n
ce

la
y
er

0

50

O
cc

ur
en

ce
s CIFAR-10

b
a
tc

h

in
st

a
n
ce

la
y
er

0

20

CIFAR-100

b
a
tc

h

in
st

a
n
ce

la
y
er

0

20

ImageNet-16-120

b
a
tc

h

in
st

a
n
ce

la
y
er

0

20

CIFARTile

b
a
tc

h

in
st

a
n
ce

la
y
er

0

25

AddNIST

(i) NORM ::= batch | instance | layer.

Figure 14: Summary of the distribution of topological operators and primitive operations of the best
architectures on the hierarchical NAS-Bench-201 search space.
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(a) CIFAR-10.
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(c) ImageNet16-120.
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(d) CIFARTile.
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(e) AddNIST.

Figure 15: Visualization of the best found architectures in our hierarchical NAS-Bench-201 search
space. Abbreviations are defined as follows: ap=avg_pool, ba=batch, c1=conv1x1, c3=conv3x3,
cls=classifier, dc=dconv3x3, ha=hardswish, in=instance, la=layer, mi=mish, re=relu, and stm=stem.
Best viewed with zoom.

40


	Introduction
	Algebraic neural architecture search
	Bayesian Optimization for algebraic neural architecture search
	Related work
	Experiments
	Conclusion
	Discussion and limitations
	Broader impact
	From terminals to primitive computations and topological operators
	Extended Backus-Naur form
	Augmenting the capabilities of context-free grammars
	Search space size
	Common search spaces from the literature
	More details on the search strategy
	Bayesian Optimization
	Weisfeiler-Lehman kernel
	Evolutionary operations in detail

	Extended related work
	Details for Sec. 5
	Evaluation details
	Implementation details
	Training details
	Further search results and analyses


