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Abstract

This paper makes a step towards modeling the modality discrepancy in the cross-
spectral re-identification task. Based on the Lambertain model, we observe that the
non-linear modality discrepancy mainly comes from diverse linear transformations
acting on the surface of different materials. From this view, we unify all data
augmentation strategies for cross-spectral re-identification by mimicking such
local linear transformations and categorizing them into moderate transformation
and radical transformation. By extending the observation, we propose a Random
Linear Enhancement (RLE) strategy which includes Moderate Random Linear
Enhancement (MRLE) and Radical Random Linear Enhancement (RRLE) to
push the boundaries of both types of transformation. Moderate Random Linear
Enhancement is designed to provide diverse image transformations that satisfy the
original linear correlations under constrained conditions, whereas Radical Random
Linear Enhancement seeks to generate local linear transformations directly without
relying on external information. The experimental results not only demonstrate
the superiority and effectiveness of RLE but also confirm its great potential as a
general-purpose data augmentation for cross-spectral re-identification. The code is
available at https://github.com/stone96123/RLE.

1 Introduction

Identity recognition has attracted intensive attention in the last few years due to its wide applications
in surveillance systems [1, 2, 3, 4]. Since silicon-based digital cameras are naturally sensitive to near-
infrared (NIR), most cameras provide infrared (IR) images instead of visible (VIS) images for better
visual quality under poor illumination conditions. In practice, this puts the re-identification (Re-ID)
problem in a cross-spectral setting and requires the approaches to properly handle both the intra-class
variance and the more significant modality discrepancies between cross-spectral images [5, 6, 7].
Encouraged by the great success of single-modality re-identification, substantial research efforts
in cross-spectral re-identification attempt to transform the cross-spectral re-identification challenge
into a single-modality learning task. To achieve this goal, previous efforts utilize DNN-based image
processing such as Generative Adversarial Networks (GANs) [8], to construct the translation from one
spectrum to another. These methods [9, 10] generally provide good visual effects and adjustability.
However, the limited visual quality of the generated images and the lack of large-scale databases
providing cross-spectral image pairs make GAN training challenging, thus limiting the performance
of these methods. Another mainstream strategy focuses on the channel difference between infrared
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images [11, 12]. Methods such as grayscale transformation and random channel selection attempt
to use image transformation strategies to mimic the transformation between cross-spectral images,
thereby pushing the network to adapt to such a transformation. While these methods make sense and
decrease the modality discrepancy, lacking the modeling of cross-spectral transformation, they usually
tend to pursue the similarity in human visual perception rather than real cross-spectral transformation.
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Figure 1: Illustration of the cross-spectral transformation.
G refers to the green channel of the visible image. Un-
der the same illumination, the cross-spectral transformation
could be described as a linear transformation in a material-
similar surface. Still, in the whole image level, the transfor-
mation is nonlinear due to the diversity of materials. Since
the Re-ID image pairs are not well aligned, we select the
cross-spectral image pairs from [13].

In this paper, we attempt to explore
the possibility of modeling the multi-
spectral transformation to provide
more interpretability, and thus further
push the boundary of cross-spectral
Re-ID approaches. Based on the Lam-
bertian reflection model [14, 15, 16],
we find that the illuminations of the
same region in VIS and NIR photos
should be able to be described us-
ing a simple linear model, as long as
the region is composed of one con-
sistent material (details are discussed
in Sec. 3). This is illustrated in Fig-
ure 1. Here, we use paired VIS-NIR
images from the dataset in [13]. For
the red and yellow regions in the mid-
dle of the image, with a simple linear
model, we can accurately predict the
pixel values of the NIR image based
on the VIS image, as long as the re-
gion only has one material. Although the linear transformation exists at the pixel level of cross-spectral
image pairs, the material’s reflection function determines the linear factor. It means that the linear
factor is inconsistent across different surfaces, resulting in an image-level non-linear transformation.
In Section 3, we analyze and visualize the result to confirm whether the different linear factors on
different surfaces are the main culprit that induces the modality discrepancy in the cross-spectral
images. It is interesting to find that the modality discrepancy occurs when using variable linear factors
among different patches in the image.

The above observation provides us with a fresh perspective on the cross-spectral Re-ID task. Em-
pirically, adopting observation in image generation seems to be the most intuitive way. As long as
we are able to identify regions’ materials with their visible or infrared input and calculate the linear
coefficients to transform the input image from one spectrum to another, the modality discrepancy
would be easy to bridge. Unfortunately, the correlation between visible or infrared input and regional
materials is quite limited, which also confines generative strategies in this task to a clear upper bound.
Besides exposing the bottleneck of the generative strategy, the observation also provides a unified
perspective to rethink the augmentation strategies within this topic. From this perspective, we dis-
cover that data augmentation for cross-spectral re-identification is formed to achieve non-linear
transformations with different distinct local linear factors, thus encouraging the network to be
robust to such a transformation. Therefore, under this view, we can easily categorize all the data
augmentation strategies designed for cross-spectral re-identification into moderate transformation and
radical transformation based on the extent of changes to images. We assign moderate transformation
as a strategy that can still keep the original linear correlation after the transformation. Generally,
achieving moderate transformation may require precise material labels on each pixel. However,
with benefits from the diversity of different channels in visible images, we can obtain a moderate
transformation by a linear calculation based on the original image channels. Methods like channel
exchange and grayscale transformation are both special cases under moderate transformation. Within
the unified formulation of moderate transformation, in this paper, we further provide a more general
moderate transformation as Moderate Random Linear Enhancement (MRLE), which aims to use an
unfixed mixing of different channels to provide more diverse augmentation results. In contrast to
moderate transformations, radical transformations attempt to apply linear transformations to randomly
selected local areas. Compared to moderate transformations, which have a limited transformation
space and are only effective on multi-channel visible images, radical transformations can produce a
more diverse range of results even on single-channel infrared images. However, due to the lack of
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constraints, these transformations often introduce additional noise into the original image. Methods
such as random erasing [17] and channel random erasing [11] can be considered special cases of
radical transformation where the linear factor is set to 0. Similarly, based on the above perspective, we
also provide a Radical Random Linear Enhancement strategy, that yields competitive augmentation
results by directly applying linear transformations to randomly selected local areas.

In summary, our contributions are threefold:

• As an effort to model the transformation behind the modality discrepancy in the cross-
spectral Re-ID task, we discover that the cross-spectral modality discrepancy mainly comes
from different local linear transformations caused by the diversity of materials. Based on
this observation, we further categorize the cross-spectral data augmentation strategies into
moderate and radical transformations under a unified perspective.

• By extending the observation, we propose a Random Linear Enhancement (RLE) strategy,
which includes Moderate Random Linear Enhancement (MRLE) and Radical Random
Linear Enhancement (RRLE). The RLE effectively takes advantage of the aforementioned
unified perspective and embeds it in a controllable linear transformation.

• Extensive experiments on cross-spectral re-identification datasets demonstrate the effective-
ness and superior ability of the proposed RLE, which can boost performance under various
scenarios.

2 Related Works

Cross-spectral re-identification is a challenging task due to the significant modality discrepancy. Two
typical frameworks have been proposed to solve such a challenging task. The first one is feature-level
learning [18, 19, 20, 21, 22], which aims to bridge the modality gap through well-designed loss
functions and end-to-end training. Such a strategy works well in both supervised, semi-supervised,
and unsupervised [23] cross-spectral re-identification tasks due to the great power of deep learning.
However, these approaches usually do not use any real physics models, making it not uncommon
for them to make strange mistakes. To make things worse, due to the high complexity and lack
of interpretability, the models are hard to adjust or improve. The other mainstream method to
solve cross-spectral re-identification is the image-level strategy, which aims to construct an efficient
transformation between different spectrums. Under this condition, the cross-modality discrepancy is
considered an individual problem alongside the Re-ID problem. D2RL [5] makes the first attempt
by using variational autoencoders (VAE) for style disentanglement and generates synthesis images
from one spectrum to another. AlignGan improves this framework by proposing a unified GAN
framework with efficient constraints. Although playing a min-max game between the complex
generator and discriminator offers visually impressive results, the generated images are still far from
photorealistic, and in turn, limit the final performance. Therefore, these methods were subsequently
superseded by lighter-weight modality generate strategies. This improvement suggests that cross-
spectral transformations may not be as complicated as previously envisaged. X-modality [24] designs
a lightweight network to learn an intermediate mediator from visible images, while MMN [25]
improves it by extending an infrared side. Recently, CAJ [11] and CAJ+ [12] directly removed
the extra generator and utilized several types of grayscale images as an assistant for training which
also achieves satisfying performance. Although recent methods have made some progress in this
topic, due to the lack of analysis and modeling for cross-spectral transformation, the methods tend
to pursue the similarity of transformation in human visual perception rather than real cross-spectral
transformation.

3 Reflection Prior for Cross-Spectral Images

VIS-NIR matching is a longstanding computer vision problem that has been explored for decades [26,
27]. One of the main challenges is to formulate and thus alleviate the modality discrepancy. Using
the Lambertian model to analyze the digital image from multi-sensor cameras is widely applied in
some pioneer works [15, 28]. With a light source emitting photons across different wavelengths λ,
the response of each pixel (x, y) in the camera sensors can be formulated as:

ρj(x, y) = σ(x, y)

∫
λj

Ej(λ, x, y)S(λ, x, y)Qj(λ)dλ, (1)
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Figure 2: Example images from the VIS-NIR scene dataset [13]. After we divide the visible image
into the red, green, and blue channels and form chromaticity band ratios from these three spectra and
the NIR image, it is clear that the ratio for pixels from the surface with high material-similarity is
nearly constant.
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Figure 3: A example about how modality discrepancy occurs. Feature space visualization of 100
randomly selected images with (dot) and without (fork) the local linear transformation on the original
image. (a)∼(b): The same linear factor takes effect on the whole image bringing limited modality
discrepancy. (c): Variable linear factors take effect on different parts showing a huge modality
discrepancy. The ’cross’ and ’dot’ marks indicate the samples from the original one and the generated
one respectively.

where λ is the wavelength, as well as E(λ) and S(λ) denote the spectral power distribution (SPD)
of incident light and surface spectral reflectance. Q(λ) is the spectral sensitivity of the camera
sensor. j = {R,G,B,N} indicates the channel (spectrum). σ(x, y) is the Lambertian reflection
term which is a constant factor and can be calculated by the dot product of the surface normal with
the illumination direction.

Following Eq. (1), we leverage a mild assumption to derive a representation between the SPD of
the light source and incident light. Generally, we could describe the SPD of the light source by a
relative spectral power distribution F (λ, x, y) together with a variable ω that reflects the illumination
intensity. We assume that the SPD of incident light in the whole image keeps the same relative
spectral power distribution as the light source. Then we could formulate the E(λ, x, y) as:

Ej(λ, x, y) = βj(x, y)ωjFj(λ), (2)

where β is a parameter to reflect the ratio of intensity between the incident light and the light source.
Then from Eq. (1) and Eq. (2), if we now consider the images under different spectra, such as G
channel images and NIR images, it is clear that the transformation of G-NIR could be described as:

ρN (x, y)

ρG(x, y)
=

ωNβN (x, y)
∫
λN

FN (λ)S(λ, x, y)QN (λ)dλ

ωGβG(x, y)
∫
λG

FG(λ)S(λ, x, y)QG(λ)dλ
. (3)

Under an ideal condition, β is supposed to be a high-order term determined by the distance between
the light source and the surface [29]. Now, we could utilize this approximation and regard β as a
constant under the same light source to get a simplified expression:

ρN (x, y)

ρG(x, y)
=

ωNM(x, y,N)

ωGM(x, y,G)
. (4)
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Figure 4: The motivation of RLE. Herein, we construct an ideal person with only two different
surfaces and ignore the background. (a): As demonstrated above, to obtain a spectral-invariant feature
representation, the network should be robust to such a transformation that takes effect upon definite
surfaces by definite linear factors. (b): An ideal data augmentation strategy that takes effect upon
definite surfaces by random linear factors. However, this method needs a hard-achieved extra material-
aware network for segmentation. (c): The idea of RRLE. By taking effect upon random surfaces
by random linear factors, the RRLE encourages the network to be robust to a linear transformation
anywhere in the image. Under this condition, the cross-spectral transformation can be considered as
an easy state of RRLE space.

Since F (λ), Q(λ), and S(λ) are three inner functions depending on the SPD of the light source,
the sensitivity of the camera sensor, and the reflection function of the surface material, we replace
the Riemann integral with a function M(x, y, j). In addition, ωN

ωG
could be considered as a constant

factor in two determined spectra. From this representation, one could observe that the cross-spectral
transformation is a linear transformation in those regions of the same material and under the same
illumination condition, as shown in Figure 1. If we further extend it to the entire image, the factor is
only influenced by S(λ, x, y) which is determined by the material.

To verify whether the above equation could be used in various real-world scenarios, we used the
paired VIS-NIR scene image dataset introduced by [13]. In Figure 2, we form chromaticity band
ratios between three VIS spectra and NIR spectrum at each pixel and use the color to reflect the ratio.
We discovered that the ratio is nearly constant within a region with a consistent material, which holds
across R, G, B, and NIR spectra.

After observing the above linear transformation, we further explore whether the variable linear factor
in different surfaces is the main culprit that induced the modality gap in such an application. Due to
the lack of material labels that are available to guide sample generation, we uniformly segmented
100 randomly selected images into six parts from the top to the bottom and multiplied each part by a
linear factor. Then, we send the new images and original images into an ImageNet [30] pre-trained
Resnet-50 [26]. Although not so well-aligned, benefiting from the body structure prior from head to
toe, we still find that the modality discrepancy occurs when suffering from variable linear factors.

4 Random Linear Enhancement

From the above observation, we can unify all data augmentation strategies for cross-spectral re-
identification as mimicking such a local linear transformation, thereby encouraging the network to
be robust to transformation, as shown in Figure 4 (a). Based on this perspective, by considering the
influence on the original image, the data augmentation strategies can easily be categorized into two
types: moderate transformation and radical transformation. By extending the observation, this paper
pushes the boundary of both types by proposing a Random Linear Enhancement strategy (RLE).

4.1 Moderate Random Linear Enhancement

As mentioned before, we assign moderate transformation as a strategy that maintains the original
linear correlation after the transformation. Benefiting from the difference between different channels
(R, G, B) in visible images, we can obtain a moderate transformation without precise material labels.
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From this view, the processing of moderate transformation can be unified as:

Imt = λrIr + λgIg + λbIb,

s.t. λr + λg + λb = 1,
(5)

where the Imt indicates the transformed image, as well as Ir, Ig, and Ib refer to the red, green, and
blue channels of the visible image, respectively. Here, λr, λg , and λb are hyper-parameters to control
the mixing percentage. It is evident from Eq. (5) that random channel selection corresponds to the
specific cases where the parameters λr, λg , and λb are specified as [1, 0, 0], [0, 1, 0], or [0, 0, 1]. Also,
the grayscale transformation is the specific cases where the parameters λr, λg, and λb are specified
as [0.299, 0.587, 0.114].

It is apparent that previous strategies exhibited significant limitations in their parameter settings,
leading to highly restricted augmentation results. Therefore, we attempt to relax the settings of λr,
λg, and λb and propose a Moderate Random Linear Enhancement (MRLE). Generally, sampling
from a uniform distribution to determine the values of three hyper-parameters is identified as the
simplest and most efficient approach. However, while a uniform distribution uniformly covers the
entire feasible transformation domain, in practice, those samples at the boundaries always contribute
more to learning decision boundaries. Consequently, we employ a U-shaped beta distribution
instead of a uniform distribution for hyper-parameter sampling. This not only maintains the feasible
transformation domain but also enhances the sampling probability of boundary samples. In general,
the formulation of MRLE can be given as follows:

Imt = λrIr + λgIg + λbIb,

with λr, λg, λb ∼ Beta(βm, βm),

s.t. λr + λg + λb = 1.

(6)

Herein, βm is the hyper-parameter to control the shape of the beta distribution.

4.2 Radical Random Linear Enhancement

Although MRLE can provide diverse transformation results that obey the original linear correlation
in the image, it can only take effect on the multi-channel visible image and shows quite limited
transformation space. The ideal data augmentation appears to be using random linear factors on
different surfaces as shown in Figure 4 (b). However, this approach heavily relies on pixel-level
material labels, which are hard to obtain. Therefore, achieving such a local linear transformation
without adequate material labels may inevitably involve some risk-taking. To achieve this goal, as
shown in Figure 4 (c), we propose the Radical Random Linear Enhancement (RRLE) that randomly
selects several image patches and multiplies them with a variable linear parameter to directly mimic the
local linear transformation. Under the RRLE, the cross-spectral transformation could be considered
as a sub-state of the whole state space.

Concretely, for an input image I , the RRLE randomly selects a rectangle region Iselect following the
same setting of random erasing [17] and multiplies it with a linear factor α. In case it may exceed the
upper bound, we calculate the maximum feasible linear factor in Irle as αmax. The linear factor α
is calculated by multiplying αmax and a random factor fg between 0 to 1. Typically, small linear
factors may not be sufficient to effectively provide enough variation in the original image2. Therefore,
a U-shaped Beta distribution is utilized for fg to obtain and provide high-quality training samples. In
general, the formulation of RRLE can be given as follows:

Irt = αIselect,

with α = αmaxfg,

and fg ∼ Beta(βr, βr).

(7)

Herein, Irt indicates the transformed selected region. βr refers to the hyper-parameter to control the
shape of the beta distribution.

Furthermore, following the setting of random erasing, we set smin and smax to control the area
of the selected region, while setting rmin and rmax to adjust the aspect ratio. Unlike most data
augmentation strategies that take effect on the image only once, the RRLE will be repeated several

2Visualization results are provided in the appendix.
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times to obtain a higher modality discrepancy. Since the repeat will bring extra noise, we set a
memory matrix M to store the cumulative changes at each pixel. We set a tmin to terminate the
RRLE when min(M) < tmin. To better explain the processing, we provide detailed procedure of
RRLE in the appendix.

5 Experiments

5.1 Datasets and Implementation details

We conduct experiments on two publicly available visible-infrared person re-identification datasets
SYSU-MM01 [31] and RegDB [32].

SYSU-MM01 is a large-scale dataset captured by four visible cameras and two infrared cameras in
both indoor and outdoor environments. The training set contains 395 identities with 22, 258 visible
images and 11, 909 infrared images, while the testing set includes 96 identities with 3, 803 infrared
images as the query. This dataset contains two different search modes, the all-search mode and the
indoor-search mode. In the all-search mode, the gallery images are from all the visible cameras. For
the indoor-search mode, the source of the gallery set excludes two outdoor cameras.

RegDB dataset is collected by two aligned cameras, one for visible and the other for far-infrared
(thermal). It contains 412 identities, each with 10 visible images and 10 infrared images. Following
the evaluation protocol of previous works [33, 34], we choose half of the identities at random for
training and the other half for testing. The results are the average of 10 repeating.

We follow the evaluation settings in existing VI-ReID methods [11, 1, 12] and adopt the Cumulative
Matching Characteristic (CMC), mean Average Precision (mAP) and mean Inverse Negative Penalty
(mINP) as evaluation metrics.

5.2 Implementation details

We use Pytorch to implement our method and finish all the experiments on a single RTX 3090 GPU.
The mini-batch size is set to 48. For each mini-batch, we randomly select 4 identities, each with
6 visible images and 6 infrared images. We select the ResNet-50-based PCB [35] with the global
branch as the baseline, which is a widely used fine-grid part feature learning framework in both
Re-ID and visible-infrared Re-ID [25, 18]. We also divide the first convolutional layer to tackle the
two modalities’ input as usual [36, 37]. We resize all of the images to 384 × 192 and use random
flipping as basic data augmentation. The initial learning rate is set to 0.1, and decayed by 0.1 and
0.01 at 20, and 50 epochs. Following previous works[38, 11, 39], we apply a warm-up strategy in
the first 10 epochs. To better verify the ability of the proposed data augmentation strategy, we just
use the basic softmax cross-entropy loss and triplet loss during the training without adding any extra
constraints to solve the modality discrepancy.

5.3 Ablation Study

In this section, we conduct empirical experiments to show the performance under different data aug-
mentation strategies. Since we have categorized all data augmentation strategies for cross-spectrum
re-identification into moderate transformations and radical transformations, we have conducted
relevant discussions on these two aspects and mixed transformations.

Moderate transformation. Here, we evaluate the influence of the performance with different
moderate transformation strategies and show the quantitative results in Table 1. In particular, we
compare the proposed MRLE with the widely used grayscale transformation (’Gray’) and random
channel selection (’RC’). In previous works [11, 12], the ’Gray’ and ’RC’ are usually used together
to obtain more diverse results. Therefore, we also give the result under both ’Gray’ and ’RC’.

Compared to the baseline, every moderate transformation yielded positive gains showing the effective-
ness of moderate transformation. However, although methods such as ’RC’ and ’Gray’ do simulate
cross-spectrum transformations to a degree, their restricted transformation spaces result in smaller
performance enhancements compared to MRLE. By fully exploring the feasible transformation space,
MRLE managed to surpass the limits of earlier moderate transformation strategies, achieving a
significant increase in performance in all metrics.

7



Table 1: Ablation study of different data augmentation strategies on the cross-spectral re-identification
task. ’Gray’ denotes the grayscale transformation, ’RC’ refers to the random channel selection.
’MRLE’ indicates the moderate random linear enhancement. ’RE’ refers to the random erasing, and
’RRLE’ means the radical random linear enhancement.

Setting All Search Indoor Search
R-1 R-5 R-10 R-20 mAP mINP R-1 R-5 R-10 R-20 mAP mINP

Moderate Transformation
Baseline 64.5 88.1 94.2 98.1 62.9 50.4 70.0 91.7 96.6 99.1 75.1 71.1
Baseline+Gray 66.7 89.4 95.2 98.7 64.2 50.8 72.0 93.9 97.8 99.6 77.1 73.0
Baseline+RC 68.3 90.6 95.6 98.6 65.3 51.9 72.7 93.9 97.6 99.7 77.7 73.7
Baseline+RC+Gray 68.6 90.7 96.0 98.8 64.9 52.3 74.3 94.1 98.1 99.6 78.8 75.1
Baseline+MRLE 70.2 91.6 96.5 99.0 67.0 53.5 75.5 95.2 98.2 99.7 79.7 75.9
Radical Transformation
Baseline+RE 71.0 91.4 96.3 99.1 69.5 57.4 78.5 95.8 98.7 99.8 82.1 78.4
Baseline+RRLE 72.0 92.4 97.2 99.4 69.1 56.3 77.0 96.4 99.1 99.9 81.4 77.7
Baseline+RE+RRLE 74.2 93.0 97.4 99.5 71.8 60.4 81.7 96.7 99.1 99.9 84.5 81.2
Mixed Transformation
Baseline+CAJ [11] 73.5 92.9 97.4 99.4 69.4 55.4 80.7 96.1 98.6 99.8 83.5 79.8
Baseline+RLE+RE 75.4 93.5 97.7 99.6 72.4 60.9 84.7 97.9 99.3 99.9 87.0 83.7

Radical transformation. Besides the moderate transformation, we also provide a detailed empirical
study of the radical transformation including random erasing (’RE’) and RRLE in Table 1. We can
observe that due to a more flexible transformation space, radical transformations reach an even better
performance than the best moderate transformation MRLE.

Although ’RE’ can be considered a special case of RRLE with a linear factor of 0, RRLE encourages
images to undergo more transformations while preventing the loss of information. Therefore, RRLE
and RE tend towards different valuation perspectives and can be used together. As shown in Table 1,
the peak performance under radical transformation is reached when combining both ’RE’ and RRLE.

Mixed transformation. Given that moderate and radical transformations do not conflict formally,
they can be combined during the training. Accordingly, we present the performances under a
mixed transformation in Table 1. The results indicate that moderate transformations and radical
transformations can be used simultaneously and lead to significant performance improvements. Also,
for better comparison, we add the recently proposed mixed transformation CAJ which combines the
grayscale transformation and random erasing strategy. It is shown that the proposed RLE also works
better than the CAJ in cross-spectral re-identification task.

5.4 Comparison with State-of-the-Arts

In Table 2, we combine the ’RLE+RE’ with a basic framework and evaluate it against the previously
reported state-of-the-art methods on the SYSU-MM01 and RegDB. Compared to previous works,
it is worth noticing that the basic network doesn’t have any extra modules or constraints to cope
with the modality discrepancy in cross-spectral re-id. Just combining the basic network with the
’RLE+RE’ can achieve comparable performance with state-of-the-art methods, which indicates the
great adaptability of RLE in the cross-spectral re-id task.

5.5 Discussion

Hyper-parameter settings of RLE. RLE contains several hyper-parameters to ensure its effective-
ness, such as the βm in Eq. (6), as well as the βr and tmin in Eq. (7). Therefore, this part evaluates
the performance under different hyper-parameter settings and shows the results in Table 3.

Compared to a uniform distribution, sampling from a U-shape beta distribution performs better in
MRLE. The optimal reach when βm is set to 0.3. For RRLE, as a radical transformation, the boundary
is more sensitive. Over-transformation may easily destroy the original image. In this framework,
peak performance is achieved when βr = 0.4 and tmin = 0.1.

Applicability of RLE for other methods. Besides the basic framework employed above, we also
explored the integration of the proposed RLE strategy with the current state-of-the-art method to
evaluate its extensive adaptability in cross-spectral re-identification tasks.
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Table 2: Comparisons between the proposed method and some state-of-the-art methods on the SYSU-
MM01 and RegDB datasets.

Methods
SYSU-MM01 RegDB

All Search Indoor Search VIS to IR IR to VIS
R-1 R-10 mAP R-1 R-10 mAP R-1 R-10 mAP R-1 R-10 mAP

BDTR[40] 17.0 55.4 19.7 - - - 33.6 58.6 32.8 32.9 58.5 32.0
D2RL[5] 28.9 70.6 29.2 - - - 43.4 66.1 44.1 - - -
Hi-CMD[41] 34.9 77.6 35.9 - - - 70.9 86.4 66.0 - - -
AlignGAN[10] 42.4 85.0 40.7 45.9 87.6 54.3 57.9 - 53.6 56.3 - 53.4
DDAG[36] 54.8 90.4 53.0 61.0 94.1 68.0 69.3 86.2 63.5 68.1 85.2 61.8
LbA[42] 55.4 - 54.1 58.5 - 66.3 74.2 - 67.6 67.5 - 72.4
NFS[43] 56.9 91.3 55.5 62.8 96.5 69.8 80.5 91.6 72.1 78.0 90.5 69.8
CM-NAS[44] 60.8 92.1 58.9 68.0 94.8 52.4 82.8 95.1 79.3 81.7 94.1 77.6
MCLNet[37] 65.4 93.3 62.0 72.6 97.0 76.6 80.3 92.7 73.1 75.9 90.9 69.5
FMCNet[45] 66.3 - 62.5 68.2 - 74.1 89.1 - 84.4 88.4 - 83.9
SMCL[46] 67.4 92.9 61.8 68.8 96.6 75.6 83.9 - 79.8 83.1 - 78.6
DART[20] 68.7 96.4 66.3 72.5 97.8 78.2 83.6 - 75.7 82.0 - 73.8
CAJ[11] 69.9 95.7 66.9 76.3 97.9 80.4 85.0 95.5 79.1 84.8 95.3 77.8
MPANet[47] 70.6 96.2 68.2 76.7 98.2 81.0 82.8 - 80.7 83.7 - 80.9
MMN [25] 70.6 96.2 66.9 76.2 97.2 79.6 91.6 97.7 84.1 87.5 96.0 80.5
MAUM [48] 71.7 - 68.8 77.0 - 81.9 87.9 - - 87.0 - 84.3
CAJ+ [12] 71.5 96.2 68.2 78.4 98.4 82.0 85.7 95.5 79.7 84.9 95.9 78.6
DEEN [39] 74.7 97.6 71.8 80.3 99.0 83.3 91.1 97.8 85.1 89.5 96.8 83.4
Ours 75.4 97.7 72.4 84.7 99.3 87.0 92.8 97.9 88.6 91.0 97.5 86.6

Table 3: Hyper-parameter settings of RLE. The optimal performance reaches when βm, βr, and tmin

is set to 0.3, 0.4, and 0.1 respectively.

(a) Performance under different
βm. Compared to the uniform dis-
tribution, a U-shaped beta distribu-
tion works better in MRLE.

βm R-1 mAP mINP
1.0 67.9 65.3 52.2
0.5 67.8 65.1 51.8
0.4 68.3 65.6 52.3
0.3 70.2 67.0 53.5
0.2 67.9 66.0 52.6

(b) Performance under different
βr . Compared to the uniform dis-
tribution, a U-shaped beta distribu-
tion works better in MRLE.

βr R-1 mAP mINP
0.5 72.5 70.7 59.3
0.4 74.2 71.8 60.4
0.3 73.2 71.3 60.2
0.2 73.7 71.7 60.2

(c) Performance under different
tmin. Using too small tmin will
introduce excessive noise and lead
to performance degradation.

tmin R-1 mAP mINP
0.3 72.9 70.9 58.2
0.2 73.8 71.3 59.0
0.1 74.2 71.8 60.4
0.01 73.8 71.7 59.8
0.001 73.6 71.3 59.5

Table 4: Applicability of our opposed RLE to other
methods on the SYSU-MM01 dataset.

Setting
All Search Indoor Search

R-1 mAP R-1 mAP
DEEN [39] 74.7 71.8 80.3 83.3
+Ours 76.2 (+1.5) 73.0 (+1.2) 83.2 (+2.9) 85.3 (+2.0)

ViT-B [49] 66.0 63.1 69.9 75.1
+Ours 70.2(+4.2) 66.7(+3.6) 71.9(+2.0) 76.4(+1.3)

Herein, we add the RLE in the open-sourced
method DEEN [39] and show the result in Ta-
ble 4. Specifically, since the DEEN already con-
tains the random grayscale and random erasing
for data augmentation, we remove the random
grayscale and add the RLE. Although the DEEN
already contains strong augmentations, adding
RLE can also bring a performance gain. Beyond
the CNN models, we also investigated whether
RLE could be applied to a ViT-based structure.
Since there is no open-source ViT model for cross-spectral re-id, we use the vanilla ViT-B with
random erasing augmentation as the basic framework in this part. From Table 4, we can observe
that RLE can still work well in a ViT structure. To ensure the generalization ability of RLE, when
applying it to other methods, we keep the same hyperparameters setting of RLE with the previous
experiments. Therefore, better performance may be achieved on specific methods by fine-tuning the
hyperparameters.

Visualization results of RLE. To gain a deeper understanding of RLE processing, we visualize the
RLE augmented images from both the visible and infrared sides in Figure 5. It can be seen that
MRLE provides an efficient way to provide diverse transformations from multi-spectral images to
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Figure 5: Visualization results of RLE. Since the MRLE can not take effect on the infrared images, we
use ’∼’ instead. Meanwhile, Both MRLE and RRLE are used with a certain probability. Therefore,
all of the augmentation images above are potential results.

single-spectral images, while the RRLE gets rid of the dependence on the multiple spectral images
and makes such a linear transformation directly on the local part. In general, adding such a random
linear transformation in the local area of the images largely breaks the color information of the image
while preserving the semantic.

6 Limitations and Broader Impact

Based on the specific observation in the cross-spectral re-identification, the proposed RLE may not
be as general as a data augmentation strategy like random flipping. Whether breaking the modality-
similarity between the image pairs could make sense in other computer vision tasks still needs to be
evaluated. Meanwhile, under extremely bad weather, such as heavy rain, fog, or limited illumination,
the Lambertain model may not work well. So, whether RLE can still perform well in these complex
weather is ambiguous. On the other hand, the RegDB and SYSU-MM01 datasets are limited in
scale and environment. Although the proposed RLE shows a strong ability to boost the methods
in both two datasets, the performance of RLE in an open-world scenario has not yet been verified.
Nevertheless, we still believe that the proposed RLE can boost the research of image generation and
data augmentation on more general cross-spectral scenarios.

7 Conclusion

This paper provides a unified perspective on data augmentation strategies for cross-spectral re-
identification. We observe the non-linear modality discrepancy mainly comes from the diverse linear
transformation taking effect on different material surfaces; all data augmentation strategies for cross-
spectral re-identification aim to simulate this kind of transformation. By extending the observation,
we introduce a more general augmentation Random Linear Enhancement (RLE), further pushing
the boundary of moderate transformation by Moderate Random Linear Enhancement (MRLE) and
radical transformation by Radical Random Linear Enhancement (RRLE). Experimental results show
that RLE is effective and applicable in cross-spectral re-identification tasks.

Acknowledgements. This work was supported by the National Key R&D Program of China
(No.2022ZD0118202), the National Science Fund for Distinguished Young Scholars (No.62025603),
the National Natural Science Foundation of China (No.U21B2037, No. U22B2051, No. 62176222,
No. 62176223,No. 62176226, No. 62072386, No. 62072387, No. 62072389, No. 62002305, and
No. 62272401), and the Natural Science Foundation of Fujian Province of China (No.2021J01002,
No.2022J06001).

10



References
[1] Mang Ye, Jianbing Shen, Gaojie Lin, Tao Xiang, Ling Shao, and Steven CH Hoi. Deep learning for person

re-identification: A survey and outlook. IEEE transactions on pattern analysis and machine intelligence,
44(6):2872–2893, 2021.

[2] Lei Tan, Pingyang Dai, Rongrong Ji, and Yongjian Wu. Dynamic prototype mask for occluded person
re-identification. In Proceedings of the 30th ACM international conference on multimedia, pages 531–540,
2022.

[3] Yunpeng Gong, Liqing Huang, and Lifei Chen. Person re-identification method based on color attack and
joint defence. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 4313–4322, 2022.

[4] Lei Tan, Pingyang Dai, Jie Chen, Liujuan Cao, Yongjian Wu, and Rongrong Ji. Partformer: Awak-
ening latent diverse representation from vision transformer for object re-identification. arXiv preprint
arXiv:2408.16684, 2024.

[5] Zhixiang Wang, Zheng Wang, Yinqiang Zheng, Yung-Yu Chuang, and Shin’ichi Satoh. Learning to reduce
dual-level discrepancy for infrared-visible person re-identification. In Proceedings of the CVPR, pages
618–626, 2019.

[6] Mouxing Yang, Zhenyu Huang, and Xi Peng. Robust object re-identification with coupled noisy labels.
International Journal of Computer Vision, pages 1–19, 2024.

[7] Yunpeng Gong et al. Cross-modality perturbation synergy attack for person re-identification. arXiv preprint
arXiv:2401.10090, 2024.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of the NeurIPS, pages
2672–2680, 2014.

[9] Guanshuo Wang, Yufeng Yuan, Xiong Chen, Jiwei Li, and Xi Zhou. Learning discriminative features with
multiple granularities for person re-identification. In Proceedings of the ACM MM, pages 274–282, 2018.

[10] Guan’an Wang, Tianzhu Zhang, Jian Cheng, Si Liu, Yang Yang, and Zengguang Hou. Rgb-infrared
cross-modality person re-identification via joint pixel and feature alignment. In Proceedings of the ICCV,
pages 3623–3632, 2019.

[11] Mang Ye, Weijian Ruan, Bo Du, and Mike Zheng Shou. Channel augmented joint learning for visible-
infrared recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 13567–13576, 2021.

[12] Mang Ye, Zesen Wu, Cuiqun Chen, and Bo Du. Channel augmentation for visible-infrared re-identification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[13] Matthew Brown and Sabine Süsstrunk. Multi-spectral sift for scene category recognition. In Proceedings
of the CVPR, pages 177–184. IEEE, 2011.

[14] Berthold Horn, Berthold Klaus, and Paul Horn. Robot vision. MIT press, 1986.

[15] Graham D Finlayson, Steven D Hordley, Cheng Lu, and Mark S Drew. On the removal of shadows from
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1):59–68, 2005.

[16] Lei Tan, Yukang Zhang, Shengmei Shen, Yan Wang, Pingyang Dai, Xianming Lin, Yongjian Wu, and
Rongrong Ji. Exploring invariant representation for visible-infrared person re-identification. arXiv preprint
arXiv:2302.00884, 2023.

[17] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation.
In Proceedings of the AAAI, 2020.

[18] Yukang Zhang, Yan Yan, Jie Li, and Hanzi Wang. Mrcn: a novel modality restitution and compensation
network for visible-infrared person re-identification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 3498–3506, 2023.

[19] Lei Tan, Pingyang Dai, Qixiang Ye, Mingliang Xu, Yongjian Wu, and Rongrong Ji. Spectral aware softmax
for visible-infrared person re-identification. arXiv preprint arXiv:2302.01512, 2023.

11



[20] Mouxing Yang, Zhenyu Huang, Peng Hu, Taihao Li, Jiancheng Lv, and Xi Peng. Learning with twin
noisy labels for visible-infrared person re-identification. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 14308–14317, 2022.

[21] Jiangming Shi, Yachao Zhang, Xiangbo Yin, Yuan Xie, Zhizhong Zhang, Jianping Fan, Zhongchao Shi,
and Yanyun Qu. Dual pseudo-labels interactive self-training for semi-supervised visible-infrared person
re-identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
11218–11228, 2023.

[22] Jiangming Shi, Xiangbo Yin, Yeyun Chen, Yachao Zhang, Zhizhong Zhang, Yuan Xie, and Yanyun Qu.
Multi-memory matching for unsupervised visible-infrared person re-identification. In European Conference
on Computer Vision, pages 456–474. Springer, 2024.

[23] Jiangming Shi, Xiangbo Yin, Yaoxing Wang, Xiaofeng Liu, Yuan Xie, and Yanyun Qu. Progressive
contrastive learning with multi-prototype for unsupervised visible-infrared person re-identification. arXiv
preprint arXiv:2402.19026, 2024.

[24] Diangang Li, Xing Wei, Xiaopeng Hong, and Yihong Gong. Infrared-visible cross-modal person re-
identification with an x modality. In Proceedings of the AAAI, pages 4610–4617, 2020.

[25] Yukang Zhang, Yan Yan, Yang Lu, and Hanzi Wang. Towards a unified middle modality learning for
visible-infrared person re-identification. In Proceedings of the 29th ACM International Conference on
Multimedia, pages 788–796, 2021.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the CVPR, pages 770–778, 2016.

[27] Chunlei Peng, Xinbo Gao, Nannan Wang, and Jie Li. Graphical representation for heterogeneous face
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2):301–312, 2016.

[28] Jie Chen, Dong Yi, Jimei Yang, Guoying Zhao, Stan Z Li, and Matti Pietikainen. Learning mappings for
face synthesis from near infrared to visual light images. In Proceedings of the CVPR, pages 156–163,
2009.

[29] Bui Tuong Phong. Illumination for computer generated pictures. Communications of the ACM, 18(6):311–
317, 1975.

[30] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of the CVPR, pages 248–255, 2009.

[31] Ancong Wu, Wei-Shi Zheng, Hong-Xing Yu, Shaogang Gong, and Jianhuang Lai. Rgb-infrared cross-
modality person re-identification. In Proceedings of the ICCV, pages 5380–5389, 2017.

[32] Dat Tien Nguyen, Hyung Gil Hong, Ki Wan Kim, and Kang Ryoung Park. Person recognition system
based on a combination of body images from visible light and thermal cameras. Sensors, 17(3):605, 2017.

[33] Mang Ye, Xiangyuan Lan, Jiawei Li, and Pong C Yuen. Hierarchical discriminative learning for visible
thermal person re-identification. In Proceedings of the AAAI, 2018.

[34] Mang Ye, Xiangyuan Lan, Qingming Leng, and Jianbing Shen. Cross-modality person re-identification via
modality-aware collaborative ensemble learning. IEEE Transactions on Image Processing, 2020.

[35] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin Wang. Beyond part models: Person retrieval with
refined part pooling (and a strong convolutional baseline). In Proceedings of the ECCV, pages 480–496,
2018.

[36] Mang Ye, Jianbing Shen, David J Crandall, Ling Shao, and Jiebo Luo. Dynamic dual-attentive aggregation
learning for visible-infrared person re-identification. In Proceedings of the ECCV, 2020.

[37] Xin Hao, Sanyuan Zhao, Mang Ye, and Jianbing Shen. Cross-modality person re-identification via modality
confusion and center aggregation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 16403–16412, 2021.

[38] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei Jiang. Bag of tricks and a strong baseline for
deep person re-identification. In Proceedings of the CVPR Workshops, June 2019.

[39] Yukang Zhang and Hanzi Wang. Diverse embedding expansion network and low-light cross-modality
benchmark for visible-infrared person re-identification. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2153–2162, 2023.

12



[40] Mang Ye, Zheng Wang, Xiangyuan Lan, and Pong C Yuen. Visible thermal person re-identification via
dual-constrained top-ranking. In Proceedings of the IJCAI, pages 1092–1099, 2018.

[41] Seokeon Choi, Sumin Lee, Youngeun Kim, Taekyung Kim, and Changick Kim. Hi-cmd: Hierarchical
cross-modality disentanglement for visible-infrared person re-identification. In Proceedings of the CVPR,
pages 10257–10266, 2020.

[42] Hyunjong Park, Sanghoon Lee, Junghyup Lee, and Bumsub Ham. Learning by aligning: Visible-infrared
person re-identification using cross-modal correspondences. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 12046–12055, 2021.

[43] Yehansen Chen, Lin Wan, Zhihang Li, Qianyan Jing, and Zongyuan Sun. Neural feature search for
rgb-infrared person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 587–597, 2021.

[44] Chaoyou Fu, Yibo Hu, Xiang Wu, Hailin Shi, Tao Mei, and Ran He. Cm-nas: Cross-modality neural archi-
tecture search for visible-infrared person re-identification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 11823–11832, 2021.

[45] Qiang Zhang, Changzhou Lai, Jianan Liu, Nianchang Huang, and Jungong Han. Fmcnet: Feature-level
modality compensation for visible-infrared person re-identification. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 7349–7358, 2022.

[46] Ziyu Wei, Xi Yang, Nannan Wang, and Xinbo Gao. Syncretic modality collaborative learning for visible
infrared person re-identification. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 225–234, 2021.

[47] Qiong Wu, Pingyang Dai, Jie Chen, Chia-Wen Lin, Yongjian Wu, Feiyue Huang, Bineng Zhong, and
Rongrong Ji. Discover cross-modality nuances for visible-infrared person re-identification. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4330–4339, 2021.

[48] Jialun Liu, Yifan Sun, Feng Zhu, Hongbin Pei, Yi Yang, and Wenhui Li. Learning memory-augmented
unidirectional metrics for cross-modality person re-identification. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 19366–19375, 2022.

[49] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

13



A Appendix / supplemental material

A.1 Additional Explanation of Radical Random Linear Enhancement

Algorithm 1: Radical Random Linear Enhancement
Input: I: Input image; C, H and W : Image channel and size; p: Probability of the LTG; smin

and smax: Area of the selected region; rmin and rmax: Aspect of the selected region;
tmin: Terminate the LTG;

Output: Enhanced image I∗

Initialization: p1 ← Rand(0, 1);
if p1 ≥ p then

I∗ ← I;
return I∗;

else
M = Ones(C,H,W );
while True do

Sr ←Rand(smin, smax)×W ×H;
rr ←Rand(rmin, rmax);
Hr ←

√
Sr × rr; Wr ← Sr

rr
;

xr ←Rand(0,W ); yr ←Rand(0, H);
if xr +Wr ≤W and yr +Hr ≤ H then

Iselect ← (C, xr, yr, xr +Wr, yr +Hr);
Mselect ← (C, xr, yr, xr +Wr, yr +Hr);
for i← 0 to C do

αmax ← 1
max(Iselect)

;
α← αmax × fg;
I(Ic)← α× Ic;
M(Mc)← α×Mc;

end
end
if min(M) ≤ tmin then

I∗ ← I;
Return I∗

end
end

end

In Radical Random Linear Enhancement (RRLE), we use a U-shape beta distribution instead of the uniform
distribution to generate the linear factor. Here, we show an example of modality discrepancy under different
linear factors. Following the above setting, we uniformly segmented 100 randomly selected images into six
parts from the top to the bottom and multiplied each part by a linear factor. Then, we send the new images and
original images into an ImageNet [30] pre-trained Resnet-50 [26] and visualization of the feature space. As
shown in Figure. 6, when using a small linear factor may not be enough to bring a significant modality gap.
Thus, we use a U-shaped beta distribution to drive more dramatic changes in the linear factors.

Meanwhile, in this section, we provide a detailed presentation of the RRLE, including a detailed procedure of
the RRLE in Alg. 1.

14



× 1.5

× 0.5

× 1.5

× 0.5

× 1.5

× 0.5

× 1.1

× 0.9

× 1.1

× 0.9

× 1.1

× 0.9

Figure 6: A example of modality discrepancy. The dot and forks refer to the sample with and
without linear transformation. Clearly, Small linear factors may not be so efficient in generating
images with a significant modality gap in the training stage.
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methods do not provide error bars either.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: This paper has provided sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper meets the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: This paper has no societal impact to the best of our knowledge.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks since it does not release data or models that have risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: This paper has properly cited the original paper that produced the code package or
dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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