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Abstract—Evaluating machine-learning models in critical-care
settings is particularly challenging. The lack of sufficient data for
rare but clinically important cases can lead to unreliable model
performance. Clinicians often require specific patient scenarios to
assess the robustness of machine learning methods. However, it is
difficult to manually construct such patient profiles. Generating
patient data for some conditions presents a promising alternative.
Therefore, conditional generation methods are needed to create
realistic synthetic data that aligns with clinician-defined criteria.
To address this challenge, we introduce a novel interactive
generative framework that allows clinicians to specify desired
patient characteristics and generate synthetic data accordingly.
In this paper, we focus on the problem of generating synthetic
data for electronic health records (EHR), especially for patients
on mechanical ventilation and ECMO where the data is limited.
We propose a novel interactive tool InterGenEHR that leverages
the generative model with arbitrary conditioning to generate
synthetic data conditioned on clinician-specified features. We
evaluate our proposed interactive framework using numerical
metrics of synthetic data quality and clinically meaningful
assessments based on clinician feedback. We also provide a
web application that allows clinicians to interactively generate
synthetic data based on their requirements and evaluate via
clinicians. In summary, we provide an effective tool for validating
machine learning methods using clinician feedback tailored to
individual patient scenarios.
Project Website: https://panxulab.github.io/InterGenEHR

Index Terms—Generative models, human in the loop, electronic
health record, mechanical ventilation and ECMO

I. INTRODUCTION

Machine learning (ML) models are increasingly being de-
ployed in critical-care settings, where they are expected to
support clinical decision-making [10, 16]. A key enabler of
these models is the widespread availability of electronic health
record (EHR) data, which captures rich, time-resolved infor-
mation about patient physiology, interventions, and outcomes.
EHRs have been used extensively to develop ML models
for outcome prediction, early warning systems, and treatment
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recommendations [2, 11]. However, despite their promise, the
evaluation and deployment of these models remain difficult
due to challenges such as data heterogeneity, distributional
shifts across institutions, and the lack of prospective validation.
It is crucial to ensure that these models can generalize well to
a wide range of patient conditions, especially in high-stakes
environments like the ICU.

The training and evaluation datasets often fail to represent
the full range of clinical scenarios that clinicians encounter,
which makes it challenging to accurately assess model per-
formance and reliability. This is especially problematic when
clinicians seek to evaluate the generalization and robustness of
machine learning models on specific patients with rare or high-
risk conditions. However, these patient types are often under-
represented or entirely missing from existing EHR datasets. To
address this limitation, it is crucial to generate synthetic patient
data based on partial clinical features specified by clinicians.
This capability would allow for more targeted evaluation of
model behavior in clinically meaningful but underrepresented
scenarios. A particularly pressing example of this challenge
arises in the treatment of critically ill patients supported by me-
chanical ventilation and venovenous extracorporeal membrane
oxygenation (VV-ECMO), where data is especially limited and
have high bias. These limitations are especially problematic
given the complexity and risk associated with managing such
patients. Mechanical ventilation provides essential respiratory
support by ensuring adequate oxygenation and carbon dioxide
removal when spontaneous breathing is insufficient [1], yet
inappropriate ventilator settings can cause ventilator-induced
lung injury, increasing morbidity and mortality [6]. VV-ECMO
adds another layer of complexity, carrying risks such as hemol-
ysis, major bleeding, and thromboembolism. Its successful use
requires careful coordination with ventilator management and
precisely timed weaning strategies.

In this study, we leverage EHR data from patients under-
going mechanical ventilation and ECMO support to address



these critical limitations. We address this gap by introducing
an interactive generative framework that allows clinicians to
define desired patient characteristics and receive synthetic
data with these constraints. The framework InterGenEHR
adapts the generative model with arbitrary conditioning [15] to
EHR data by conditioning generation while integrating human
feedback to make the synthetic data clinically meaningful.

Our interactive tool conditions generation on clinician-
specified features such as PaO2/FiO2 ratio, ventilator compli-
ance trajectory, or ECMO sweep gas settings. To realize arbi-
trary conditioning, we use the Posterior Matching Variational
Autoencoder (PMVAE), which learns and performs a mapping
from partially observed clinical states to the VAE latent space,
ensuring the synthetic data reflects the specified constraints. By
incorporating clinician feedback into the generative process,
the framework produces synthetic data that is both realistic
and tailored to specific scenarios, supporting targeted clinical
research and decision making.

We evaluate our approach on a dataset of patients receiving
mechanical ventilation and ECMO support. The framework is
assessed with quantitative metrics for data fidelity, clinically
meaningful scenarios, and an interactive web application that
allows clinicians to generate patient-specific profiles. The main
contributions of this work are as follows:
• We introduce a novel interactive generative framework In-

terGenEHR that allows clinicians to specify desired patient
characteristics and generate synthetic data accordingly. Our
proposed tool can adapt to various arbitrary conditioning
generative models and provides a user-friendly web applica-
tion that allows clinicians to interactively generate synthetic
data based on their requirements for designing patient sce-
narios. We discuss our interactive tool in Section II.

• We validate our proposed tool on a dataset of patients
receiving mechanical ventilation and ECMO support. We
evaluate the fidelity of the generated data, which shows that
we can achieve competitive generation quality compared
with more advanced traditional generative models. We also
demonstrate the ability of our framework given the clini-
cian’s desired features. We discuss the details in Section IV.

• We also demonstrate the effectiveness of our approach in
clinically meaningful scenarios. We validate the physics-
based constraints in the dataset and show that we can
directly integrate these constraints via our tool. We also
show that our framework can effectively incorporate clinical
feedback and be used in various clinical scenarios. We
provide the detailed results and analysis in Section V.

II. METHODS

A. Our Framework

As illustrated in Figure 1, our proposed framework Inter-
GenEHR leverages a generative model with arbitrary condi-
tioning to create synthetic clinical data within an interactive
web application designed for clinician engagement. The pro-
cess begins with a clinical dataset that is used to train the
generative model, enabling it to produce realistic synthetic data
based on the input features. This synthetic data is then made

accessible through the web application, where clinicians can
review, validate, and provide feedback. The feedback collected
from clinicians via the web app is systematically fed back into
the generative model, allowing for the synthetic data with the
clinician-given input features.

Dataset Generative 
Model

ClinicianWeb 
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Feedback Feedback

GenerateGenerate
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Fig. 1. Overview of our framework InterGenEHR. The clinical dataset
trains the generative model to produce synthetic data, which is accessed
and validated by clinicians through a web application. Clinician feedback is
then used during inference via the generative model, enabling it to generate
synthetic data based on clinically meaningful input features.

B. Generative Models Used in InterGenEHR

In this section, we discuss what type of generative models
is suitable for our InterGenEHR framework. In particular, we
first introduce the concept of arbitrary conditioning and then
use PMVAE as an example to combine with our framework.

1) Arbitrary Conditioning: In this section, we discuss
the concept of arbitrary conditioning in the context of our
proposed clinical setting. In the InterGenEHR framework,
clinicians specify a subset of variables and ask the model to
infer the remaining features. This is not a standard conditional
generation problem, where the model is trained to generate
data conditioned on a fixed set of variables. Instead, the condi-
tioning set can vary widely based on clinician input, requiring
a more flexible approach. This requires the generative model
to be able to generate the data based on arbitrary conditioning
sets. We follow [15] to formulate arbitrary conditioning in our
clinical use case.

An arbitrary conditioning generative model can model the
conditional dependencies between the input features. Several
works [3, 14, 15] explored such models, which can be fully
leveraged in our framework. In the context of our clinical
use case, we denote the patient data samples as x having
d features, which represent the health states of the patients.
We denote the observed features, which are specified by the
clinicians, as o ⊂ {1, . . . , d}. The remaining unobserved fea-
tures that need to be generated are denoted as u ⊂ {1, . . . , d}.
We aim to leverage arbitrary conditional generative models to
model p(xu|xo) for all possible subsets of observed features
from the clinicians and unobserved features that need to be
imputed.

2) PMVAE: We use PMVAE [15] as a representative ex-
ample to be incorporated to our InterGenEHR framework.

a) Variational Autoencoder: VAEs [7] are a founda-
tional class of generative models that enable the modeling of
complex data distributions through a structured latent space.
We have the following formula in data likelihood p(x) =∫
p(x|z)p(z) dz, where z represents a latent variable with a

lower dimensionality than the observed data x, and p(z) is the



prior distribution over the latent variables. In our setting, x
aggregates heterogeneous variables such as the vital signs and
laboratory results, which represent the patients’ health states.

The training of VAEs involves optimizing the marginal log-
likelihood log p(x) which is intractable due to the integral
over z. To address this, VAEs employ variational inference
by introducing an approximate posterior qψ(z|x), known as
the encoder, and maximize the evidence lower bound (ELBO)
of the data likelihood: log p(x) ≥ Ez∼qψ(·|x)[log pϕ(x|z)] −
KL(qψ(z|x) ∥ p(z)), where pϕ(x|z) represents the decoder,
modeling the conditional likelihood of the data given latent
variables. Both the encoder qψ(z|x) and decoder pϕ(x|z) are
typically implemented as neural networks.

b) Posterior Matching: Posterior Matching [15] is a flex-
ible framework that enhances VAEs for arbitrary conditional
distribution estimation, modeling the conditional distribution
p(xu|xo) for non-overlapping subsets of observed features xo
and unobserved features xu, where o, u ⊂ {1, . . . , d}. By
approximating the partially observed posterior p(z|xo) in the
VAE’s latent space, Posterior Matching enables conditional
inference without modifying the underlying VAE architecture.

The true partially observed posterior is defined as:
p(z|xo) = Exu∼p(·|xo)[qψ(z|xo,xu)], where qψ(z|xo,xu) =
qψ(z|x) is the VAE’s encoder with parameters ψ. Since
computing this expectation is intractable due to the un-
known p(xu|xo), a neural network approximates the pos-
terior as qθ(z|xo), parameterized by θ. The training ob-
jective minimizes the expected negative log-likelihood:
Exu∼p(·|xo)[Ez∼qψ(·|xo,xu)[− log qθ(z|xo)]]. In practice, the
expectation is approximated using a single sample xo from
the training data and a single sample z ∼ qψ(·|x), yielding
the loss: LPM(x, o, θ, ψ) = −Ez∼qψ(·|x)[log qθ(z|xo)], where
o represents randomly sampled observed feature indices. The
input xo is typically a full data vector x with unobserved
features masked.

In our implementation, we train the VAE encoder ψ and the
posterior matching encoder θ concurrently. During training, we
optimize a combined objective consisting of the ELBO and the
posterior matching loss LPM.

C. Interactive Tool

In this section, we introduce the interactive tool illustrated
in Figure 2. This tool is a web application designed to allow
clinicians to generate synthetic EHR data interactively based
on input features they specify. Users begin by selecting a
unique Clinical Sequence Number (CSN), which identifies an
individual patient, and a corresponding time point representing
a single observation within that patient’s clinical timeline.

The interface then presents a modifiable set of physiological
features associated with the selected time point. Users can
choose a feature (e.g., bicarb (HCO3)), adjust its value
via a numeric input box or slider, and submit the change.
Upon modification, the tool leverages the generative model
with arbitrary conditioning to reconstruct the complete clinical
state conditioned on the altered input.

The resulting output is visualized using side-by-side bar
charts under the “Reconstructed Output” section. Each chart
compares the original input values (i.e., the patient’s observed
data at the selected time point) with the reconstructed values
inferred by the model. This allows clinicians to visually
assess how the change in one variable may influence related
physiological indicators, such as pulse and temperature.

Fig. 2. Interactive Tool. Clinicians select a CSN and time point, then
modify physiological states with the tool displaying updated output values
and comparative bar plots of original versus modified states to support clinical
decision-making.

D. Extension to Other Scenarios

We currently focus on the VV-ECMO setting and demon-
strate the tool on a VV-ECMO cohort using PMVAE. Im-
portantly, the framework itself is model-agnostic and can
accommodate a variety of arbitrary-conditioning generative
models as well as different clinical scenarios. For the arbitrary
conditioning component, alternative backbones from the liter-
ature [3, 14, 15] can be substituted. As an illustration of this
flexibility, we also report results using Variational Autoencoder
with Arbitrary Conditioning (VAEAC) [3]. Extending our
framework to new cohorts is straightforward. For instance,
our framework can be adapted to the sepsis patient samples.
Clinicians follow the same procedure as the VV-ECOM to
design and generate the special cases in sepsis scenarios.
Likewise, the method generalizes naturally to other high-
dimensional EHR settings, where generative models have been
shown to scale to hundreds or even thousands of input features
by capturing complex dependencies.

III. EXPERIMENTS DESIGN

A. Dataset

We collected data from 184 adult patients who under-
went venovenous extracorporeal membrane oxygenation (VV-
ECMO) at Emory University Hospital between 2015 and 2021.
The dataset includes patients with documented VV-ECMO
cannulation, including recorded initiation and removal dates,
as well as hospital outcomes (in-hospital mortality or discharge



status). We selected patients with vital signs, laboratory values,
and ventilation settings recorded at 4-hour intervals, result-
ing in 184 patients with 15,191 total timesteps. The dataset
comprises 41 features representing the patient’s physiological
state, categorized into four types: vital signs, ventilation set-
tings/measures, laboratory tests, and sedation scores. Follow-
ing the procedure outlined by [12], each patient’s data were
segmented into non-overlapping 4-hour intervals. Within each
interval, physiological measurements and laboratory variables
were aggregated by calculating the median value, thereby
minimizing the influence of transient fluctuations and measure-
ment noise. To address missing values, we initially employed
forward-filling to propagate the most recent valid measurement
forward in time for each patient. Subsequently, any residual
missing data were imputed using the population median for the
respective variables. This comprehensive imputation method
ensured the completeness and consistency of the dataset for
further analysis.

B. Baselines

Our proposed framework targets to generate patient syn-
thetic data based on the clinician’s input features. Due to the
uniqueness of this application, existing generative models are
not explicitly designed for this use case. To evaluate our frame-
work fairly, we designed a comparative study using general-
purpose generative models commonly used for structured, tab-
ular time-series data. We use the PMVAE[15] and VAEAC[3]
as the generative model in our porposed framework. We denote
them as the InterGenEHR-PMVAE and InterGenEHR-VAEAC
respectively. We compare our framework against several rep-
resentative generative models for tabular data, including VAE-
based, GAN-based, and diffusion-based approaches.

We include the vanilla VAE [7] as a fundamental latent-
variable model that optimizes a likelihood-based objective
with a simple prior, serving as a baseline for evaluating
the benefits of our InterGenEHR. CTGAN[17] represents the
GAN-based methods, offering strong performance on tabular
data via its conditional generator and training mechanisms
tailored to mixed data types. TabDDPM[9] is included as
a recent diffusion-based model that applies noise-based for-
ward–reverse training to learn complex data distributions.
TabSyn[4] is a VAE-Diffusion hybrid generative model which
provides advanced tabular synthetic data.

This diverse set of baselines allows us to assess the ef-
fectiveness of our proposed framework in comparison to
well-established and state-of-the-art generative paradigms. All
models are trained and evaluated under the same experimental
settings, ensuring a fair and consistent comparison.

IV. VALIDATION ON SYNTHETIC DATA

In this section, we evaluate our proposed interactive tool.
The evaluation focuses on three primary objectives: (1) assess-
ing the fidelity of the synthetic data generated by the tool, (2)
generating synthetic data from perturbed datasets compared
to traditional generative models, and (3) evaluating its data
imputation capabilities. We demonstrate that our proposed

interactive tool achieves fidelity comparable to synthetic data
produced by traditional generative models and showcases its
performance in data imputation and perturbation handling to
highlight its capability for arbitrary conditioning.

A. Evaluation on Synthetic Quality

We evaluated the quality of synthetic data generated by
baselines with Maximum Mean Discrepancy (MMD), Root
Mean Square Percentage Error (RMSPE), and Mean Absolute
Percentage Error (MAPE). These metrics assess the similarity
between synthetic and real datasets by examining statistical
distributions and feature correlations.

The evaluation of our proposed framework compared to
the following generative models: VAE [7], CTGAN [17],
TabDDPM [9] and TabSyn[18]. We split our dataset into the
train/validation/test sets with 80%, 10% and 10% respectively.
We conducted the analysis on a dataset with 41 variables
denoted as K variables, comprising 1000 synthetic samples
denoted M and 1115 real samples from the test set denoted
as N . The metrics were computed as follows. All the synthetic
data is generated from noise. We would like to compare the
synthetic quality of these methods.

For each variable k = 1, . . . ,K, we calculated the
mean values of the synthetic and real datasets and de-
noted as µ̂(k)syn = 1/M

∑M
i=1 x

(k)
i,syn and µ̂(k)real =

1/N
∑N
i=1 x

(k)
i,real. The evaluation metrics were then de-

fined as: MMD = max1≤k≤K
∣∣µ̂(k)

syn − µ̂
(k)
real

∣∣, RMSPE =

100

√
1/K

∑K
k=1

[
(µ̂

(k)
syn − µ̂

(k)
real)/µ̂

(k)
real

]2
and MAPE =

100/K
∑K
k=1

∣∣(µ̂(k)
syn − µ̂

(k)
real)/µ̂

(k)
real

∣∣, where the M is the
number of training samples and the N is the number of
synthetic samples, K is the number of the features. Results are
summarized in Table I, highlighting the performance of each
method in generating synthetic data that closely resembles the
real clinical dataset. In Table I, it shows that our proposed
framework InterGenEHR-PMVAE and InterGenEHR-VAEAC
can achieve a similar performance compared with an advanced
generative model in generating quality for synthetic data
generated from the noise.

TABLE I
FIDELITY OF SYNTHETIC DATA

MMD ↓ RMSPE ↓ MAPE ↓

InterGenEHR-PMVAE 0.44 10.07 5.93
InterGenEHR-VAEAC 1.01 25.23 17.23

VAE 0.41 8.57 4.02
CTGAN 0.67 20.76 13.49

TabDDPM 0.32 10.58 5.15
TabSyn 0.15 8.78 4.60

B. Evaluation on the perturbed dataset.

In this experiment, we assess the robustness and stability
of our proposed InterGenEHR-PMVAE and InterGenEHR-
VAEAC, in comparison to the baseline method VAE, under
perturbations in the clinical dataset. The perturbations in the



training data simulate clinician feedback by modifying the
features of health states based on existing patient data.

Using our interactive tool described in Section II-C, clin-
icians can select specific patients (via CSN) and timesteps,
then perturb the data to achieve a targeted health state. For
instance, a clinician might adjust a patient’s mean arterial
pressure (e.g., map cuff) to simulate a hypertensive crisis.
Unlike traditional generative models, which struggle to in-
corporate such perturbations as they do not explicitly model
conditional dependencies, our framework leverages arbitrary
conditioning to capture these perturbed features as observed
inputs, enabling more accurate synthetic data generation. The
quality of synthetic samples is quantified using a statistical
distance measure, including the MMD, RMSPE, and MAPE.

The results in Table II show that InterGenEHR-PMVAE can
achieve competitive results compared with the VAE baseline
and InterGenEHR-VAEAC is better than the VAE in MMD.
These findings demonstrate that our tools, InterGenEHR-
PMVAE and InterGenEHR-VAEAC, enable clinicians to de-
sign and explore specific patient scenarios effectively, sup-
porting clinical research and decision-making by generating
realistic synthetic data under controlled perturbations.

TABLE II
DATA PERTURBATION

MMD ↓ RMSPE ↓ MAPE ↓

InterGenEHR-PMVAE 0.37 3.91 2.11
InterGenEHR-VAEAC 0.10 3.76 2.34

VAE 0.33 3.92 2.21

C. Evaluation on Data Imputation

We further evaluate the effectiveness of our approach on
a downstream task–data imputation. In this task, the frame-
work generates synthetic patient data conditioned on observed
features xo, aiming to reconstruct the missing features xu.
Effective imputation indicates the model’s ability to generate
reliable data given partial observations.

In this experiment, we follow the same data splitting pro-
cedure as described in Section IV-A. We train each generative
model using the training subset. Then, we simulate partially
observed features, representing features specified by clinicians,
by randomly masking clinical features in the test subset, and
then generate the remaining unobserved features by the trained
generative model. We set the mask ratio to be 50%.

Each model attempts to reconstruct the missing features
conditioned on the observed data. We quantify reconstruction
performance using the mean squared error (MSE) and neg-
ative log likelihood (NLL), which measures the discrepancy
between the generated values and the true values in the test
set. Lower MSE and NLL indicate better imputation quality.

Results are summarized in Table III, clearly demonstrating
that our InterGenEHR-PMVAE and InterGenEHR-VAEAC
achieve significantly lower MSE compared to the baseline
method VAE. And InterGenEHR-VAEAC has the lowest neag-
tive log likelihood among these methods. We conclude that

the posterior matching, which explicitly models the condi-
tional distribution during training, substantially improves the
accuracy and reliability of imputed features. Such improve-
ments can notably enhance the quality of downstream clinical
decision-making and predictive modeling tasks, as we will
show in the next section, affirming the practical utility of our
proposed framework.

TABLE III
DATA IMPUTATION

MSE ↓ NLL ↓

InterGenEHR-PMVAE 0.22 0.91
InterGenEHR-VAEAC 0.23 0.12

VAE 0.94 1.76

TABLE IV
EVALUATION ON SUBSET

MSE ↓ NLL ↓

InterGenEHR-PMVAE 0.20 1.26
InterGenEHR-VAEAC 0.52 0.51

VAE 0.90 1.79

V. VALIDATION ON CLINICALLY MEANINGFUL
SCENARIOS

In this section, we evaluate our proposed interactive tool’s
ability to generate synthetic data with high clinical fidelity. The
evaluation focuses on three primary objectives: (1) assessing
the tool’s ability to generate synthetic data that adheres to
clinical constraints, (2) evaluating its performance of synthetic
data generation conditioned on a curated subset of features
of clinical interest, and (3) determining the utility of the
generated synthetic data in a downstream machine learning
task–mortality prediction. We demonstrate that our proposed
interactive tool produces high fidelity synthetic data that sat-
isfies clinical constraints, conditioned on the subset of critical
features, and ensures reliable downstream task performance.

A. Evaluation of Clinically-Constrained Data Generation

In this section, we evaluate whether the proposed interac-
tive tool can generate clinically meaningful synthetic data.
Traditional generative models typically produce synthetic data
without incorporating constraints from clinicians, which often
results in data lacking clinical relevance. Another challenge is
that certain clinical constraints, for example, the physiological
equation for pH, are expected to be captured by the generative
model when learning the data distribution.

However, such constraints may not hold in the synthetic data
due to noise induced by data preprocessing and inadequate
learning of generative models. To address the above issue,
our proposed framework allows clinicians to directly specify
constraints, forcing the constraints to be held in the generated
synthetic data. To demonstrate this advantage, we compare
our framework with traditional generative models by evalu-
ating their ability to produce clinically valid synthetic data.
The evaluation metric, mean absolute error (MAE), measures
how well the generated features satisfy those prior clinical
constraints, which are essential to ensure clinical plausibility.

Based on previous studies in the literature, we identify the
following three constraints. The first equation is the Hender-
son–Hasselbalch equation [8]:

pH = 6.1 + log
(
hco3/(0.03× pco2)

)
. (1)



TABLE V
MAE FOR CLINICAL CONSTRAINTS

pH MAE↓ Base Excess MAE ↓ spo2 MAE ↓

VAE 0.04 4.09 3.15
CTGAN 0.10 5.88 3.56

TabDDPM 0.03 4.18 2.15
TabSyn 0.03 4.03 2.27

InterGenEHR-PMVAE 0.00 0.00 0.00
InterGenEHR-VAEAC 0.00 0.00 0.00

Real Data 0.04 4.54 2.63

Secondly, [5] showed that another equation holds:

base excess = 0.9287× hco3 + 13.77× pH − 124.58. (2)

Finally, we also have the Severinghaus equation, showing O2

is binding to hemoglobin [13]:

spo2 =
(
23400/(pao23 + 150× pao2) + 1

)−1
. (3)

We calculate the MSE to evaluation the deviation of the gen-
erated value from the value calculated by the above equations
to assess how baseline methods obey these constraints.

Table V shows that traditional generative models frequently
violate these constraints, producing unrealistic samples. In
this task, we observe that even real data does not strictly
follow the constraints, and traditional generative models also
exhibit deviations. This is because noise is introduced during
data preprocessing, which contributes to these violations. Such
violations can lead to inaccurate predictions in downstream
tasks, highlighting the importance of constraint-aware data
generation in clinical applications. Our proposed method can
achieve exactly 0 MSE, because these constraints are forced
to be held when specifying the conditions. We also show
in Table VI that our framework InterGenEHR can generate
synthetic data with comparable level of deviation to the real
data when only one of those constraints is forced to be held.

TABLE VI
MAE FOR CLINICAL CONSTRAINTS

pH MAE ↓ Base Excess MAE ↓ spo2 MAE ↓

InterGenEHR-PMVAE pH 0 4.56 2.60
InterGenEHR-PMVAE Base Excess 0.04 0 2.61

InterGenEHR-PMVAE spo2 0.04 4.01 0
InterGenEHR-VAEAC pH 0.00 4.02 2.60

InterGenEHR-VAEAC Base Excess 0.01 0.00 2.59
InterGenEHR-VAEAC spo2 0.01 4.03 0.00

B. Subset for Evaluation: Clinically Salient Features

In this section, we evaluate the model’s performance on
a subset of clinically important features identified through
consultation with domain experts. Specifically, we worked
with clinicians to select 14 key variables that are considered
critical for the management of VV-ECMO patients. These
features serve as either conditioning inputs or targets to be
generated by the model, depending on the experimental setup.
Focusing on this subset allows us to simulate scenarios where
clinicians are particularly interested in the model’s ability to

accurately handle or generate clinically relevant data. The
selected features are grouped into three primary categories.

(1) Oxygenation-related features are crucial indicators of
a patient’s oxygenation status: pf_sp, spo2, pao2, and
sao2. (2) Ventilation-related features provide insights on
respiratory mechanics and acid-base balance: base_excess,
paco2, hco3, and ph. (3) Other markers of inter-
est (including Hemolysis) cover various laboratory values
indicating other physiological processes, such as hemoly-
sis or organ function. These features are: hemoglobin,
platelets, creatinine, lactate_dehydrogenase
and bilirubin_total.

Then, we evaluate our proposed tool and compare it with
VAE on the data imputation in this subset. We follow the same
settings in Section IV-C, with the above-mentioned features
unmasked and remaining features masked. We summarized the
results in Table IV, which shows that InterGenEHR-PMVAE
and InterGenEHR-VAEAC outperform VAE on generating
high-fidelity synthetic data. InterGenEHR-PMVAE performs
well in MSE and is not as good as InterGenEHR-VAEAC
in NLL. It validates that our tool is capable of generating
clinically meaningful data when conditioned on the subset of
features identified as important by clinicians.

C. Utility-Downstream Task: Mortality Prediction

In this section, we evaluate the utility of the generated
synthetic data by assessing its performance in a downstream
task, predicting in-hospital mortality.

For our VV-ECMO dataset, we have time series data for
each patient and a corresponding in-hospital mortality out-
come. We preprocess the dataset by selecting the 24 hours
prior to the final recorded timestep, which corresponds to
the last six timesteps of patient data. These six timesteps are
concatenated into a single feature vector. In this setting, we use
145 patients for training, 18 for validation, and 18 for testing.
With 41 features per timestep, the concatenated patient vector
contains 246 features in total. During training, we include the
mortality label as an additional feature. We train the generative
model on the processed data and generate synthetic samples
to evaluate performance on downstream tasks.

After we get the synthetic data from the generative model,
we employ the “train on synthetic, test on real” (TSTR)
paradigm to evaluate the quality of the synthetic data generated
by VAE and our InterGenEHR-PMVAE and InterGenEHR-
VAEAC. A mortality classifier was trained on the synthetic
datasets by an MLP and evaluated on the real VV-ECMO
dataset. We also train a mortality classifier on the real data
as the base metric to evaluate these generative models.

We evaluated model performance using the Area Under
the Receiver Operating Characteristic Curve (AUROC) and
accuracy, both are commonly used metrics for assessing bi-
nary classification models. To quantify the discrepancy, we
calculated the difference between the AUROC score of a
classifier trained on real data and that trained on synthetic
data, with a smaller difference indicating higher utility of the
synthetic data. We also demonstrate the accuracy to show the



performance. For our proposed framework, we generate the
synthetic data based on random masks.

Results are presented in Table VII, where differences in
AUROC values reflect the effectiveness of each method. Our
proposed InterGenEHR-PMVAE and InterGenEHR-VAEAC,
conditioned on the given observed features, demonstrates
smaller discrepancies and higher accuracy than the VAE
model. InterGenEHR-VAEAC outperforms other methods in
AUROC. This suggests that our model can generate clinically
meaningful synthetic data when conditioned on clinically
relevant features identified by clinicians.

TABLE VII
UTILITY EVALUATION (REAL-SYNTHETIC)

Method AUROC ↑ Difference ↓ Accuracy↑

InterGenEHR-PMVAE 0.78 0.17 0.89
InterGenEHR-VAEAC 0.86 0.09 0.89

VAE 0.77 0.19 0.83
Real Data 0.95 0.00 0.89

VI. CONCLUSION

In this paper, we propose a novel interactive generative
framework that enables clinicians to specify desired patient
characteristics for synthetic data generation. Our approach is
model-agnostic and adaptable to various conditioning gener-
ative models, demonstrated using InterGenEHR-PMVAE and
InterGenEHR-VAEAC. The accompanying user-friendly web
application allows clinicians to intuitively interact with the
system and generate synthetic patient data tailored to specific
clinical needs. We validated the framework using a dataset of
patients receiving mechanical ventilation and ECMO support.
Our results show that the generated data maintains high fidelity
and quality. Finally, we demonstrated the framework’s utility
in clinically meaningful use cases. This work bridges the gap
between advanced generative models and clinical practice.
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