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Abstract
Longitudinal image registration enables studying temporal changes in brain morphology
which is useful in applications where monitoring the growth or atrophy of specific struc-
tures is important. However this task is challenging due to; noise/artifacts in the data
and quantifying small anatomical changes between sequential scans. We propose a novel
longitudinal registration method that models structural changes using temporally param-
eterized neural displacement fields. Specifically, we implement an implicit neural represen-
tation (INR) using a multi-layer perceptron that serves as a continuous coordinate-based
approximation of the deformation field at any time point. In effect, for any N scans of a
particular subject, our model takes as input a 3D spatial coordinate location x, y, z and a
corresponding temporal representation t and learns to describe the continuous morphology
of structures for both observed and unobserved points in time. Furthermore, we leverage
the analytic derivatives of the INR to derive a new regularization function that enforces
monotonic rate of change in the trajectory of the voxels, which is shown to provide more
biologically plausible patterns. We demonstrate the effectiveness of our method on 4D
brain MR registration. Our code is publicly available here.
Keywords: Longitudinal image registration, spatio-temporal regularization, monotonic
regularization, implicit neural representations.

1. Introduction

Deformable image registration (DIR) plays an important role in medical imaging. The
process involves obtaining a spatially plausible transformation that maximizes the similarity
between a fixed and moving image pair. In longitudinal analysis (Hu et al., 2017; Durrleman
et al., 2009, 2013), quantitative assessment of the changes in morphology over time is a key
component in various applications such as; computational anatomy, population analysis, and
disease diagnosis (Breijyeh and Karaman, 2020). For regions of pathological interest, these
morphological features include the shape, volume, boundary, and extension to neighboring
anatomical structures (Yang et al., 2020). Longitudinal image registration (LIR) quantifies
subject-wise anatomical changes by aligning scans over multiple time points. However, LIR
remains challenging due to several factors including; (a) image distortion, artifacts/noise
present in the acquired data (Savitzky et al., 2018; Reuter et al., 2010), (b) LIR involves
registering sequential scans with small anatomical variations which is difficult, (c) some
methods rely on more sampled data per subject than is generally available (Qiu et al.,
2009).
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In this work, we propose a novel method for longitudinal image registration. Our key
contributions include:

• A continuous implicit neural representation with periodic activation function that
robustly models temporal and spatial transformations in longitudinal registration.

• A network that generates neural displacement fields (NDF) parameterized by time on
a continuous scale, allowing interpolation between observed time points and extrapo-
lation beyond the last observed data.

• We introduce a novel longitudinal regularization term and analyze its effect under
different noise levels. We highlight the benefit of this derivation in inferring plausible
longitudinal transforms.

2. Related Work

Tensor-Based-Morphometry(TBM) for Neurodegenerative Diseases: Statistical
measures from tensor based morphometry (TBM) derived from the deformation fields be-
tween two registered images serve as efficient biomarkers used in disease progression analysis.
A prominent application of LIR is in studying Alzheimer’s Disease (AD) (Simpson et al.,
2011; Qiu et al., 2008), a neurodegenerative progressive condition characterized by structural
alterations in vulnerable regions of the brain such as the ventricles, hippocampus, and amyg-
dala (Planche et al., 2022). AD biomarkers indicate this pathology unfolds as a continuous
process over time (Dubois et al., 2016), and magnetic resonance imaging (MRI) modality
is useful for characterizing these changes at a voxel level (Whitwell, 2009). The Jacobian
determinant, |J |, is one of such TBM measures, interpreted as the expansion or contraction
within a localized region -commonly used to assess the progression of AD-related atrophy
(Chung et al., 2001). A |J | value of 1 means no volume change, greater than 1 denotes
expansion and between 0 and 1 is contraction of the local region.

Image Registration: Deep learning image registration methods that make use of con-
volutional neural networks (CNNs) have become ubiquitous (Bai and Hong, 2024; Wu et al.,
2024; Balakrishnan et al., 2019), trained with moving and fixed image pairs, at test time
they simply estimate the deformation field with a feed-forward pass. Despite their advan-
tages these methods posses several constraints that diminish their practical applicability;
(a) they require large training set to be able to generalize to unseen data (Wolterink et al.,
2022), (b) they tend to under-perform on out-of-distribution data, (Vasiliuk et al., 2023),
(c) we pay the cost of having a faster approximation of the deformation field with reduced
accuracy (Hansen and Heinrich, 2021), (d) disease heterogeneity manifests differently across
individuals (Han et al., 2020). LIR methods (Lee et al., 2023; Dong et al., 2021, 2024; Wu
et al., 2024) often rely on these CNN-based architectures that maps between image inten-
sities and a displacement field. Additionally, methods for pairwise image registration using
tools like NiftyReg (Modat et al., 2014) or Advanced Normalization Tools (ANTs) (Avants
et al., 2011) rely on hand-crafted optimization algorithms, unfortunately for longitudinal
analysis these algorithms cannot easily generate displacement fields that are parameterized
by time or work with scans of more than two time points per subject. This limits their prac-
tical ability to interpolate and extrapolate along points on the disease progression curve.
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Implicit Neural Representations: Recent advancement has shown that fully connected
neural networks serve as continuous, memory-efficient implicit representations used to model
shape (Genova et al., 2019b,a), objects (Park et al., 2019; Atzmon and Lipman, 2020) or
scenes (Gropp et al., 2020; Sitzmann et al., 2019). In image registration, INRs optimize a
transformation function that maps each location x in one image to a location in another,
this transformation is implicitly represented in the weights of an MLP and is of the form
Φ(x) = u(x) + x, where x is the input coordinates and u(x) is the predicted displacement
field from the INR (Wolterink et al., 2022; Van Harten et al., 2023; Byra et al., 2023).
Regularization in INRs: Having realistic descriptions of the biological process in neurode-
generative diseases is critical in image analysis. For example, smoothness and monotonicity
are commonly assumed when describing plausible evolution of the pathology of Alzheimer’s
disease (Abi Nader et al., 2020). Relying solely on surrogate measures such as image simi-
larity is insufficient (Rohlfing, 2011), hence to avoid implausible deformations both spatially
and temporally, regularization is generally enforced (Robinson et al., 2018; Metz et al., 2011;
Yigitsoy et al., 2011; Durrleman et al., 2009; Fishbaugh et al., 2011). There is an advantage
in the way INRs compute and represent displacement fields. Unlike other methods where
the field is represented as a fixed discrete grid tied to the resolution of the fixed image,
INRs define the field as a continuous function over space that maps any spatial coordinate
to a displacement field. This means that displacement fields can be defined at arbitrary
resolutions independent of the resolution of the fixed image. Given this representation of
the displacement field and also the added advantage that neural networks are composed of
differentiable operations, we can derive the analytic derivatives of the output transformation
w.r.t the input coordinates. CNN-based methods (Balakrishnan et al., 2019; De Vos et al.,
2019) often approximate this Jacobian matrix using finite difference and then minimize large
gradients for regularization. With INRs, this matrix can be obtained directly, leading to
more accurate gradients compared to numerical approximations (Wolterink et al., 2022). In
our work, we leverage on this property of the INR to enforce regularization.
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Figure 1: Given observed scans (pink arrows), our model represents the deformation field
ϕt as a function (yellow circle). At inference, the model predicts time dependent
fields, ϕt as well as |J | maps for both observed and unobserved time points.
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3. Method

Our proposed method is parameterized as follows; given 3D coordinates w = (x, y, z) and
a corresponding time t (since baseline) as input, we learn a function h(·) that produces
displacement ∆wt, describing the voxel-wise transformation at time t. The baseline image,
defined as the earliest observed scan of a subject, is denoted as I0 and subsequent observed
follow-up scans represented as It. Our goal is to find a transformation ϕt = ∆wt +w such
that each location in an observed follow-up image, It maps to a corresponding location on
the baseline image I0, dependent on t. A basic representation of this backward mapping is
of the form: Ît→0 = It ◦ ϕt and ϕt = Id when t = 0. The coordinates of the image domain
are in the range Ω ⊂ [−1, 1]. Figure 1 illustrates the method.

3.1. Loss Function

Finding ϕt is formulated as an optimization problem where we seek to optimize the param-
eters ψ of an MLP using gradient descent. The general formation of the loss function in
longitudinal image registration is a combination of a similarity metric with spatial and tem-
poral regularization. We introduce a third regularization term to the loss - the monotonic
regularization. Hence the total loss is defined as;

ϕ∗t = λ∥∆w0∥2 +
∑
t∈T

Lsim(I0, Ît→0) + αLspat(ϕt) + βLtemp(ϕt) + γLmono(ϕt) (1)

Where Lsim denotes normalized cross correlation between I0 and Ît→0 for t > 0. Since
ϕt=0 = Id, we directly minimize the L2 norm at t = 0 by computing ∥∆w0∥2 of the dis-
placements. Furthermore, we enforce spatially smooth deformations, Lspat(ϕt) by penalizing
large gradients of the analytically computed matrix defined as;

Lspat(ϕt) =
∑
w∈Ω

(
∂ϕt
∂w

)2

, i.e.,
∂ϕt
∂w

=


∂(ϕt)x
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∂(ϕt)x
∂y

∂(ϕt)x
∂z

∂(ϕt)y
∂x

∂(ϕt)y
∂y

∂(ϕt)y
∂z

∂(ϕt)z
∂x

∂(ϕt)z
∂y
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 (2)

To avoid unrealistic temporal deformations, we compute Ltemp as the summation of
individual analytic temporal derivatives of the displacement field expressed as;

Ltemp(ϕt) =
∑
t∈T

∑
w∈Ω

(
∂ϕt(w)

∂t

)2

(3)

The analytic temporal derivative of the Jacobian determinant is a natural property
derived from the INR and is accessible in the formulation, ∂|J |

∂t . Biologically, we expect
volumetric changes to progress monotonically over time (Abi Nader et al., 2020). This
means that, at each voxel, the sign of ∂|J |

∂t should remain consistent over time, so voxel-
wise volume change does not alternate between shrinking and growing. While therapeutic
intervention may slow down progression, we do not expect a reverse in the trajectory of
the disease (McColgan et al., 2023). Without explicitly enforcing this constraint, noise and
other factors can introduce non-monotonic behavior in the model, disrupting the trajectory
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of individual voxels. To address this, we propose a monotonic regularization term, Lmono,
that penalizes sign change in the temporal derivative of the Jacobian determinant. This loss
term is expressed as:

Lmono(ϕt) = min

(∑
t

max

(
∂|J |
∂t

, 0

)
,
∑
t

max

(
−∂|J |

∂t
, 0

))
, (4)

Equation 4 defines the loss as the sum of all positive and negative contributions to that
derivative, and we minimize the smaller of these contributions to encourage temporal con-
sistency.

4. Experiments and Results

Data and Implementation: Adopted from (Sitzmann et al., 2020), the INR is represented
as a function hψ and is composed of five fully connected layers with sine activation between
each layer. To embed temporal information, we build on architectures that combine scalar
input with a primary network used for other tasks such as template construction (Dalca et al.,
2019), segmentation (Kohl et al., 2018) and hyperparameter tuning (Hoopes et al., 2022).
In our method, we extend the input to the registration function by introducing an auxiliary
network gθ, that maps time to a feature space. This sub-network consists of a single hidden
layer of 10 units and an output layer of 64 units with LeakyReLU as activation function. The
output of gθ is concatenated with each of the hidden layer representations from hψ and used
as input to the next layer. Preliminary studies evaluating different time embeddings is shown
in Appendix A. We demonstrate our method using longitudinal 4D-T1 weighted MRI scans
from ADNI (Petersen et al., 2010) that includes patients with Alzheimer’s disease (AD),
mild cognitive impairment (MCI) and healthy controls (CN). We select 10 from each group
with 3 to 4 scans per subject aged between 65 to 89. For each subject, we perform affine
registration from the follow-up scans to the corresponding baseline using NiftyReg (Modat
et al., 2014), and extract anatomical labels with FreeSurfer (Fischl, 2012). The total time
required to optimize the parameters of the MLP for a single subject (where gradients of all
regularization terms are computed analytically) is approximately 90 minutes on an NVIDIA
RTX A6000 GPU.

4.1. Experiment 1: Generating Temporally parameterized Neural displacement
fields (NDF)

To evaluate the predictive ability of the proposed method, we assess its performance on
both interpolation and extrapolation tasks. Specifically, we evaluate how well the model
interpolates between two observed time points, and extrapolates to future time points. For
this, we consider a subject with scans acquired at 0, 12, 24 and 37 months, representing
different stages on the disease progression curve. In the interpolation experiment, we holdout
the scan at t = 24 months and the model infers the displacement ϕt=24 using the observations
at 0, 12 and 37. Similarly, for the extrapolation experiment, we holdout the data at t = 37
months and the INR predicts time dependent displacement, ϕt=37 with the available data
points. We obtain Dice scores of 0.89 and 0.82 respectively. Figure 2 shows results from both
cases and residual |J | maps. Examples from other subjects is illustrated in Appendix C.
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A key benefit of our method is its ability to predict ϕt at any given time point. In our
experiments, we leverage this capability to encourage more plausible temporal deformations
by adding temporal smoothness to the loss, even at unobserved time points.

lo
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Figure 2: Interpolating and extrapolating Jacobian maps: The residual plot is the difference
in |J | maps when the time point is held out versus when it is used to fit the data.
We provide examples from other subjects in Figure 14.

NiftyReg

Ours

Slice t= 0 months t= 13 months t= 14 months t= 24 months

Figure 3: Comparing |J | maps generated from NiftyReg with our proposed method. Black
circle indicates inconsistent transformation over time. The bright red regions
represents folded voxels.

Image registration is inherently an ill-posed problem, hence multiple plausible solutions
exist. We conduct a sub-experiment comparing the |J | maps generated by our method to
those from NiftyReg (Modat et al., 2014) using an AD subject with observed scans at time
points 0, 13, 14, and 24. Since NiftyReg only supports pairwise registration, we register each
follow-up scan to the baseline image separately. The results are shown in Figure 3. The
|J | maps from NiftyReg shows transformations that are generally consistent with expected
patterns in AD subjects, such as the expansion of ventricles. However, in certain regions
(e.g., areas within the black circle), the transformations appear biologically implausible -
expanding and then contracting over time, with folding of voxels occurring within the region.
This is primarily because temporal dynamics in the longitudinal data is not captured.
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4.2. Experiment 2: Analyzing the effect of the analytic temporal derivative of
the Jacobian determinant w.r.t time - ∂|J |

∂t

The monotonic loss defined in Equation 4 penalizes voxel-wise sign change over time. We
conduct two experiments in this section that illustrates the effect of the proposed regu-
larization. In the first experiment, we optimize our model on two instances; (a) using
the proposed monotonic regularization, (b) without the regularization - Figure 11 in the
Appendix B shows results from different combination of regularization terms; i.e spatial,
temporal and monotonicity regularization and their effect on two metric scores.

Without Monotonic Loss With Monotonic Loss

              Observed Data

Time Time

              Observed Data

Figure 4: Voxel-wise rate of change within the Thalamus over a span of 26.5 months with
and without the monotonic constraint. The black vertical lines are points where
data was observed.

From the two instances above, we obtain the predicted |J | maps at different time points
over the span of two years and compute the voxel wise derivative over time on each structure.
Figure 4 shows the results from both scenarios on the Thalamus of an AD patient. Without
the monotonic loss, we observe erratic fluctuations and biologically implausible rate of change
of approximately 2-5% per month in a span of two years. This is 5 times less with the
monotonic constraint, where an overall rate of atrophy should be between 5-10% within two
years (Hua et al., 2013). Figure 9 in Appendix B compares the transition of this rate of
change on the ventricles in both scenarios. We also see the structure-wise effect as a violin
plot in Figure 10.

Due to very little structural changes that LIR tasks aim to capture, small disruptions such
as noise can have a huge effect on registration. In the second experiment, we evaluate the
effect of monotonic loss on different noise levels. Noise drawn from a Gaussian distribution;
X ∼ N (µ, σ) with a fixed mean of 0 and varying standard deviations of 0.15, 0.2, and
0.25 is added to the data. Each noise instance is ran 3 times and we plot the deviation
to assess variability from random initialization. Figure 5 shows the effect of noise on the
rate of change, ∂|J |

∂t and mean volume change, |J | for three structures with and without
monotonic regularization. With monotonic loss (right plot), at different noise levels the
model is able to predict transformations that are consistent with expected patterns of the
disease, however, this becomes more difficult as we increase the noise level. On the other
hand, without monotonic loss, the result shows high sensitivity to noise and does not show
biologically plausible pattern.
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Without Monotonic Loss With Monotonic Loss
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Figure 5: Effect of Noise; Top:mean |J | plotted over 2 years, Bottom: ∂|J |
∂t for each structure.

4.3. Experiment 3: Progression comparison between AD, MCI and control

In this section, we conduct two experiments to show structural changes on subjects from
the 3 groups. In the first experiment, we compare |J | maps from a single subject per group,
for visualization purpose, we provide results for just five time points in Figure 6 (left).
The Figure shows an accelerated degeneration of anatomical structures (particularly the
ventricles) for both AD and MCI patient while the control subject undergoes changes that
seem more consistent with chronological aging. In the second experiment, we fit 10 different
subjects per group to the INR (one INR for each subject) and compute the mean |J | and
∂|J |
∂t to observe the trajectory of different structures over time across different groups. From

Figure 6 (right), the mean |J | plot (top) suggests an enlargement in the ventricle for both AD
and MCI subjects (which aligns with expected patterns) and little to no structural changes
for the control subjects. However, for the amygdala the average volume change decreases
slightly for the MCI group and appears to have no volume change for AD subjects. Similarly,
the hippocampus shows no average volume change for AD subjects and slight expansion for
MCI subjects. Generally, we expect atrophy in both of these structures, (i.e., mean |J | should
decrease over time). The inconsistency may be due to several factors such as segmentation
error, or the need for structure-wise optimal hyperparameter selection.

5. Discussion and Conclusion

We introduce a novel intra-subject LIR method that implicitly represents a transformation
parameterized by time using an MLP with sine activation function. Our loss function is
composed of three regularization terms; spatial temporal and monotonic regularization. The
gradients in each of these terms are computed analytically, thus preventing approximation
errors from methods like finite differences.

Our experiments demonstrates that our method is able to predict neural displacement
fields and generate |J | maps between and beyond observed time points. This may be useful
in cases where scans are limited, to predict the morphology of structures over time. Further-
more, we introduce a novel regularization constraint, Lmono, that enforces uni-directional
trajectory of voxels over time - thus preventing biologically implausible transformations, and
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Figure 6: Comparing AD, MCI and control subjects. Left: A subsample of predicted |J |
maps overlayed on the baseline images for a single subject in each group. Red
star represents extrapolated points, green represents some interpolated points and
unstared frames are some observed scans for that subject. Right: |J | metrics for
10 subjects in each group on different structures.

we evaluate its sensitivity to noise. Experiment 2 shows that by enforcing this monotonic
constraint, we derive more biologically plausible rate of change that aligns more closely with
the disease pathology (Hua et al., 2013).This work demonstrates an early stage version of our
proposed method, hence predicting the voxel-wise volume change in each group (Figure 6)
shows that our method has the potential to extract reliable volume change measurements
that could serve as biomarkers for longitudinal studies to characterize neurodegenerative dis-
eases (Wijeratne et al., 2023). Furthermore, unlike deep learning-based registration methods,
ours does not rely on large training datasets; instead, it optimizes a separate network for
each subject. While this may be computationally expensive, there are are several advan-
tages of this method, including working with multiple time points with variable intervening
periods. The comparison between Niftyreg and our method highlights the advantage of cap-
turing temporal continuity in longitudinal analysis. Future work will look into amortized
inference and a more efficient initialization method (van Harten et al., 2024) for compu-
tational efficiency. For small structures like the Amygdala and Hippocampus, our model
struggles to accurately characterize the expected morphology in these regions, this may be
due to errors in segmentation or hyperparameter tuning for that specific region- registra-
tion hyperparameters have a huge effect on the predicted deformation field (Hoopes et al.,
2022; Shuaibu and Simpson, 2024; Mok and Chung, 2021). We will explore incorporating
structure specific hyperparameter selection on the dataset. Finally, it would be interesting
to investigate the effect of time parameterization on the main network. While preliminary
studies in Appendix A shows that intermediate concatenation of time with the hidden layers
in the main network broadly captures its effect. As an extension of this work, we plan to
explore alternative parameterization methods such as leveraging a hypernetwork to generate
the parameters of the main network (Ha et al., 2016). Where the input to the hypernetwork
is a continuous time point.
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Appendix A. Integrating Time

TTime

...+ + +

INR (h )

+

Sub-network (g )

TTime

......

INR (h )

+

Sub-network (g )

A. B.

Figure 7: Time is parameterized by a sub-network, gθ, in the A (left) the output of g is
concatenated with each hidden layer of the primary network, hψ. In B (right),
the time embedding from the sub-network is concatenated with the first hidden
layer only. Results from both parameterization is shown below

Slice 0 months 8.5 months 10 months 15 months 26.5 months

B.

A.

Figure 8: Results from parameterizing time using architectures A and B in Figure 6. The
first row (A) is the result obtained when each hidden layer in the main network is
concatenated with the time embedding (Figure 6A), the second row (B) is |J | maps
obtained when only the first hidden layer is concatenated with time embedding.
While the first approach broadly captures the effect of the time embedding, the
second one struggles to learn the effect of the embedding and outputs similar |J |
maps over time. Hence, all experiments carried out employ the first architecture.

Appendix B. Experiments on Monotonicity
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Without Monotonic Loss With Monotonic Loss

t=7

t=12.2

t=24

Figure 9: Comparing rate of change in the ventricles with and without monotonic constraint,
we show results for 3 time points. Right: We observe a smoother transition on
the rate of change with the added regularization. Left: Without this constraint,
we observe discontinuities as a result of the erratic change of voxels trajectories
over time.

Without Monotonic LossWith Monotonic Loss

Figure 10: Proportion distribution of sign consistency for all voxels within a structure. We
observe a multimodal distribution without monotonic regularization.
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Figure 11: Selecting Optimal Regularization Combination: We measure the proportion of
voxel-wise sign consistency within anatomical structures across time as a metric
to quantify monotonicity. This figure shows results from different combination
of regularization terms; i.e., spatial, temporal, and monotonicity regularization,
and their impact on both the Dice score and proportion of monotonicity. To
quantify the effectiveness of this constraint, we introduce a metric that provides
assessment of how well the model adheres to the expected monotonicity in vol-
ume change, measured by the proportion of voxel-wise sign consistency within
structures over time.
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Appendix C. Generating NDF’s
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Figure 12: Predictive ability: Predicting |Jϕt | maps at any time point.
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Predicted   map of an MCI patient for 21 time points

lo
g

Figure 13: Predicted |J | map for an MCI patient. The model observed only three scans. At
time points 0, 12 and 24. The yellow star depicts extrapolated time point and
blue stars are observed time points (the plot is interpreted from left to right, top
to bottom).
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Figure 14: Other examples on interpolation and extrapolation.

19



Shuaibu Gibb Wijeratne Simpson

20


	Introduction
	Related Work
	Method
	Loss Function

	Experiments and Results
	Experiment 1: Generating Temporally parameterized Neural displacement fields (NDF)
	Experiment 2: Analytic temporal derivative of Jacobian determinant w.r.t time - d|J|/dt
	Experiment 3: Progression comparison between AD, MCI and control

	Discussion and Conclusion
	Integrating Time
	Experiments on Monotonicity
	Generating NDF's

