
Verification of Machine Unlearning is Fragile

Binchi Zhang 1 Zihan Chen 1 Cong Shen 1 Jundong Li 1

Abstract

As privacy concerns escalate in the realm of ma-
chine learning, data owners now have the option
to utilize machine unlearning to remove their
data from machine learning models, following
recent legislation. To enhance transparency in ma-
chine unlearning and avoid potential dishonesty
by model providers, various verification strategies
have been proposed. These strategies enable data
owners to ascertain whether their target data has
been effectively unlearned from the model. How-
ever, our understanding of the safety issues of
machine unlearning verification remains nascent.
In this paper, we explore the novel research ques-
tion of whether model providers can circumvent
verification strategies while retaining the informa-
tion of data supposedly unlearned. Our investi-
gation leads to a pessimistic answer: the verifi-
cation of machine unlearning is fragile. Specifi-
cally, we categorize the current verification strate-
gies regarding potential dishonesty among model
providers into two types. Subsequently, we intro-
duce two novel adversarial unlearning processes
capable of circumventing both types. We vali-
date the efficacy of our methods through theo-
retical analysis and empirical experiments using
real-world datasets. This study highlights the vul-
nerabilities and limitations in machine unlearning
verification, paving the way for further research
into the safety of machine unlearning.

1. Introduction
In the deep learning era, machine learning (ML) has grown
increasingly data-dependent. A significant volume of per-
sonal data has been utilized to train real-world ML sys-
tems. While the plentiful use of personal data has facilitated
the advancement of machine learning, it simultaneously

1University of Virginia, Charlottesville, VA, USA. Correspon-
dence to: Jundong Li <jundong@virginia.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

poses a threat to user privacy and has resulted in severe data
breaches (Nguyen et al., 2022). Consequently, recent regula-
tions and laws (GDPR, 2016; CCPA, 2018) have mandated
a novel form of request: the elimination of personal data
and its impact from a trained ML model, known as machine
unlearning (Cao & Yang, 2015) (MUL). In recent years, a
proliferation of MUL techniques has emerged, employing
various methods to remove certain training data (Nguyen
et al., 2022; Xu et al., 2023).

Despite the success achieved, current MUL techniques are
still a black box for data owners, i.e., data owners cannot
monitor the unlearning process and ascertain whether their
data has been truly unlearned from the model (Eisenhofer
et al., 2022; Xu et al., 2023). For instance, many technology
companies, e.g., Google and Microsoft, provide machine
learning as a service (MLaaS). Under MLaaS, individual
data owners upload personal data to the server. The server
then trains an ML model using the collected dataset and
provides its predictive functionality as a service to the data
owners (Sommer et al., 2022). In particular, data owners
might want their data to be unlearned as long as this service
is no longer required. However, after sending an unlearning
request, data owners will not receive any proof that their
data was indeed unlearned. Without the ability to verify,
data owners have to trust the model provider blindly for
the efficacy and integrity of the unlearning process. On the
other hand, the model provider might deceive data owners
and pretend to have their data unlearned to avoid potential
deterioration of the model utility and extra computational
cost caused by unlearning (Eisenhofer et al., 2022). Other
than MLaaS, similar problems also exist in other domains
involving personal data, e.g., social media and financial sys-
tems. To address the above issue, recent studies have started
exploring the verification strategy for MUL techniques from
different aspects, e.g., injecting backdoor data into the train-
ing set or reproducing the unlearning operations. Regarding
the model provider’s potential dishonesty, a natural question
arises: are current MUL verification strategies ensured to be
safe? Specifically, we aim to study the following research
question:

Can model providers successfully circumvent current
verification strategies with dishonest unlearning?

To answer this question, we systematically investigate the

1

Verification of Machine Unlearning is Fragile

vulnerability of verification methods and obtain a pes-
simistic answer: current MUL verification is fragile, i.e.,
data owners may fail to verify the integrity of the unlearn-
ing process using current MUL verification strategies. To
support our study, we first categorize existing verification
strategies into two types: backdoor verification and repro-
ducing verification. We then propose an adversarial unlearn-
ing process that can successfully circumvent both of them,
i.e., always satisfies these two types of verification but still
preserves the information of unlearned data. During un-
learning, our approach selects the mini-batches excluding
the unlearned data to effectively evade the detection by ex-
isting verification strategies, even with the most stringent
reproducing verification strategy. Meanwhile, the selected
batches are designed to yield model updates akin to those
that would be produced by the unlearned data. By deliber-
ately choosing the retained data that mimics the influence of
the unlearned data in training, the unlearned model yielded
by our adversarial method retains the information from the
unlearned data. In addition, we propose a weaker but more
efficient adversarial unlearning process that can deceive a
subset of reproducing verification by forging the unlearn-
ing processes directly from the original training steps. We
provide theoretical guarantees for the efficacy of our ap-
proaches. Furthermore, we conduct comprehensive empir-
ical experiments to validate the efficacy of our proposed
adversarial unlearning processes on real-world datasets. We
highlight our main contributions as follows:

• We propose two adversarial unlearning methods that can
circumvent both types of current MUL verification strate-
gies (backdoor and reproducing) while preserving the
information of unlearned data.

• We prove the capacity of the proposed adversarial methods
to satisfy the stringent reproducing verification. We also
prove that they can preserve the unlearned model utility
as the original training and improve the efficiency.

• We conduct empirical experiments to verify the efficacy of
our proposed adversarial methods in real-world datasets,
exposing the vulnerability of MUL verification.

2. Related Works
2.1. Machine Unlearning

The goal of MUL is to make a trained ML model forget
some specific training data (Cao & Yang, 2015). A sim-
ple but powerful way of unlearning is to retrain the model
from scratch, which is also called exact unlearning (Cao
& Yang, 2015; Bourtoule et al., 2021; Kim & Woo, 2022;
Chen et al., 2022). In exact unlearning, the unlearned model
is ensured to behave as has never seen the unlearned data,
which satisfies the goal of MUL. Following this path, Cao

& Yang first proposed the retraining-based methodology for
MUL. Follow-up studies (Bourtoule et al., 2021; Kim &
Woo, 2022; Chen et al., 2022) took steps to improve the
efficiency of the retraining framework on the image and
graph data. Despite the efforts to improve efficiency, the
retraining-based framework still has difficulty accommodat-
ing frequent unlearning requests in the real world (Chien
et al., 2023). Due to the large computational cost of exact
unlearning, approximate unlearning was proposed that effi-
ciently updates the original model to estimate the retrained
model (Guo et al., 2020; Ullah et al., 2021; Izzo et al., 2021;
Zhang et al., 2022; Pan et al., 2023; Wu et al., 2023a;b; Che
et al., 2023; Warnecke et al., 2023). A common way to up-
date the original model is to use the influence function (Koh
& Liang, 2017), which can be seen as conducting a single
Newton step (Boyd & Vandenberghe, 2004; Sekhari et al.,
2021; Neel et al., 2021) to the model. In particular, approxi-
mate unlearning can be certified if the distance between the
unlearned model and the retrained model is bounded in the
probability space (Nguyen et al., 2022).

2.2. Verification for Machine Unlearning

Backdoor Verification. Backdoor verification of MUL
requires data owners to actively inject backdoor poisoned
data (e.g., changing the original label to a different one for
misleading) as backdoor triggers (Sommer et al., 2022; Gao
et al., 2022; Guo et al., 2023). In this way, the model trained
on the backdoor data can misclassify the backdoor data as
the modified classes. To verify the integrity of unlearning,
data owners can deliberately request the model provider to
unlearn the backdoor data. If the model provider honestly
unlearns the backdoor data, the predictions are supposed
to be the original label with high confidence (backdoor
data is not triggered); otherwise, the predictions can still be
misled to the poisoned label (backdoor data is triggered). In
addition, Sommer et al. formulated the backdoor verification
as a hypothesis test, enabling a probabilistic guarantee of a
successful verification.

Reproducing Verification. Inspired by verifiable computa-
tion techniques, reproducing verification of MUL requires
the model provider to provide a proof of unlearning (PoUL)
that records the operations for unlearning, and data owners
can reproduce every unlearning step to verify the integrity
of unlearning. Considering that the model provider might
deceive the data owner while conducting exact unlearning,
Thudi et al. first introduced the proof of learning (PoL) tech-
nique to verify the model retraining operation. Although
they showed that the PoL can be forged by model providers,
their forging strategy is not realistic and brings limitations
to understanding the safety of MUL verification. Following
this paradigm, Weng et al. presented a trusted hardware-
empowered PoUL technique with SGX enclave (Costan &
Devadas, 2016). With the trusted hardware, their framework

2

Verification of Machine Unlearning is Fragile

Backdoor

Reproducing

MUL Verification Adversarial Method

Retraining (powerful)

Forging (efficient)

Against

Partly Against

Figure 1. The connection of our threat model and different verifi-
cation strategies. Our retraining method can deceive the backdoor
and reproducing verification, and our forging method can only de-
ceive a subset of reproducing verification but with better efficiency.

provides a better safety guarantee for verifying MUL. Re-
cently, Eisenhofer et al. proposed the first cryptographic
definition of verifiable unlearning and instantiated the PoUL
with SNARKs (Costan & Devadas, 2016) and hash chains.
Their verification framework has a safety guarantee from a
cryptographic perspective.

Comparing different types of verification, backdoor verifica-
tion requires data owners to inject poisoned data beforehand,
while reproducing verification requires model providers to
generate proof for the unlearning operations. In addition,
Xu et al. summarized the current MUL evaluation methods
(mainly for approximate unlearning), e.g., accuracy (Go-
latkar et al., 2020; 2021; Mehta et al., 2022), relearning
time (Kim & Woo, 2022; Chundawat et al., 2023; Tarun
et al., 2023), and membership inference attack (Chen et al.,
2021) as verification strategies. However, even knowing
the evaluation results, data owners still need to compare
the results with the model retrained from scratch (exact
unlearning method), which is unknown to data owners in
practice. More importantly, evaluation methods fail to take
into account the dishonest behaviors of model providers.
Therefore, we do not focus on the safety problem of evalua-
tion in this paper.

3. Threat Model
In our problem, we consider the data owner as a victim
and the model provider as an adversary regarding safety
in MUL verification. First, the model provider trains an
ML model based on a training dataset provided by the data
owners. After the data owners send an unlearning request,
the model provider deceives the data owners that their data
has been unlearned, while the model provider updates the
model with an adversarial unlearning process rather than
normal unlearning methods to preserve the information of
the unlearned data. Next, we introduce the settings of our
adversarial unlearning process from two perspectives: the
adversary’s goal and knowledge.

Adversary’s Goal. The goal of using an adversarial un-
learning process is to preserve the information of unlearned
data during unlearning while satisfying the reproducing and
backdoor verification. Note that the model provider might

cheat the data owner for two benefits, i.e., better model
utility and lower computational cost. Hence, other than
preserving the unlearned data, the adversary’s goal should
also include these benefits.

Adversary’s Knowledge. The model owner has complete
access to the training process, e.g., training data, unlearned
data, and the model.

As a tentative step toward exploring the vulnerability of
MUL verification, we mainly focus on the verification of
exact unlearning, i.e., verifying whether the model provider
honestly retrains the model from scratch. We conclude the
connection between our threat model and different types of
verification strategies for MUL in Figure 1.

4. Methodology
In this section, we introduce our design of an adversar-
ial unlearning process that deceives both the reproducing
verification and the backdoor verification. To satisfy the re-
producing verification, the model provider should provide a
valid Proof of Retraining (PoRT)1. Hence, we first introduce
the notations and background knowledge of PoRT before
proposing our adversarial unlearning process.

4.1. Preliminary

Notation. We denote D as a training dataset with n data
samples and fw as an ML model with w collecting the
learnable parameters. Let A be a learning process that takes
the training set D as input and outputs the optimal w∗ that
minimizes the empirical risk on D. In particular, a learning
process A is used to minimize the empirical loss function

A(D) = argminwL(w,D), (1)

where L(w,D) = 1
|D|

∑
(x,y)∈D l(fw(x), y) is the empiri-

cal risk over D, (x, y) denotes the pair of the input data and
the output label, and l(·) denotes a task-specific loss func-
tion, e.g., cross-entropy loss. We use Du to denote the set
of data to be unlearned. Consequently, the model retrained
from scratch can be obtained by A(D\Du).

Proof of Retraining. In reproducing verification, the
model provider is required to provide a PoRT, and the data
owner or a third-party verifier can reproduce all the retrain-
ing operations in the PoRT to verify the integrity of un-
learning. A prevalent instantiation of PoRT is to record the
trajectory of retraining during the unlearning process (Thudi
et al., 2022; Weng et al., 2022; Eisenhofer et al., 2022),
denoted by Pr = {w(t)

r , d
(t)
r , g

(t)
r }t∈I where w

(t)
r denotes

the intermediate model parameter during retraining and d
(t)
r

1For better clarity, we use the term PoRT to replace the afore-
mentioned PoUL as they are the same under exact unlearning.

3

Verification of Machine Unlearning is Fragile

denotes the data used for deriving w
(t)
r . g

(t)
r denotes the

updating function and I is the set of indices to the inter-
mediate learning steps during retraining (I = {1, 2, . . . , T}
where T is the number of model updating steps). In addition,
a Proof of Training (PoT) can be defined similarly as the
PoRT, i.e., Pt = {w(t), d(t), g(t)}t∈I , while the difference
is that the unlearned data should be involved in the training
but not in the retraining. In this paper, we assume that the
equivalence of adopted models and the models appear on
the PoT (w(T)) and the PoRT (w(T)

r) can be verified, oth-
erwise, reproducing verification will never be possible and
the problem becomes trivial.

Reproducing Verification. We next provide a formal
definition of reproducing verification (Thudi et al., 2022;
Weng et al., 2022; Eisenhofer et al., 2022). As the retrain-
ing process can be divided into iterative steps, the PoRT
can be seen as an ordered set of triplets {w(t)

r , d
(t)
r , g

(t)
r }.

Each triplet describes an iterative operation that updates
the retrained model based on an updating function as
w

(t)
r = g

(t)
r (w

(t−1)
r , d

(t)
r). As an example, we can instanti-

ate the updating function as the commonly used mini-batch
stochastic gradient descent (Goodfellow et al., 2016):

g(t)r (w(t−1)
r , d(t)r) = w(t−1)

r − γ(t)∇L(w(t−1)
r , d(t)r), (2)

where γ(t) denotes the learning rate. We can define a valid
PoRT that can satisfy the reproducing verification as fol-
lows.

Definition 4.1. A valid Proof of Retraining is defined as
Pr = {w(t)

r , d
(t)
r , g

(t)
r }t∈I that satisfies the following two

properties:

1. Reproducible: ∀ t ∈ I , ∥w(t)
r − g

(t)
r (w

(t−1)
r , d

(t)
r)∥ ≤ ε;

2. Removable: ∀ t ∈ I , d(t)r ∩ Dr = ∅.

In the reproducible property, Thudi et al. set ε as a threshold
for error tolerance, allowing the verifier to consider some
numerical imprecision when reproducing the update rule,
and ∥w(t)

r − g
(t)
r (w

(t−1)
r , d

(t)
r)∥ is called the verification

error at step t. In (Weng et al., 2022; Eisenhofer et al.,
2022), the threshold ε can be reduced to an exact 0 with
the help of SNARK (Setty, 2020) and Intel SGX (Costan &
Devadas, 2016). Hence, we consider both the cases of 0 and
ε thresholds.

4.2. First Adversarial Method (Retraining)

We first introduce our adversarial unlearning process against
both reproducing and backdoor verification. Recall that the
adversary’s goal is to satisfy the unlearning verification
while preserving the information of unlearned data. To sat-
isfy the reproducing verification with a 0 verification error

wr
(0)

dr
(1)

gr
(1)(wr

(0), dr
(1))

wr
(1)

(wr
(1), dr

(1), gr
(1))

gr
(T)(wr

(T-1), dr
(T))

dr
(T)

(wr
(T), dr

(T), gr
(T))

wr
(T)

Proof of Retraining:{wr
(t), dr

(t), gr
(t)}

≈ ≈

d(1) d(T)
Unlearn Data

Figure 2. An illustration of the retraining-based adversarial un-
learning framework. The PoRT is generated based on the retraining
process where the mini-batch d

(t)
r ∈ D\Du sampling is guided by

the similarity with d(t) ∈ D in gradient.

for each updating function, the model provider has to fol-
low exactly the retraining process to generate the PoRT,
strictly ensuring the reproducible and removable proper-
ties. However, inspired by recent studies of the possibility
that different training data might lead to a similar gradient
descent step (Shumailov et al., 2021; Thudi et al., 2022),
we can find data in the retained set D\Du that can yield a
similar gradient as the unlearned data. In particular, this
idea is based on the commonly used mini-batch gradient
descent. Under full-batch gradient descent, the gradients in
the original training and the retraining are computed over
the whole D and D\Du. Their difference is deterministic
and cannot be manipulated. In contrast, under mini-batch
gradient descent, the gradients in the original training and
the retraining are computed over random samples in D and
D\Du. With the randomness, it is possible to deliberately
select the samples that induce a similar model update as the
mini-batches in D from D\Du in the retraining. In this way,
the retrained model might still learn from the unlearned data
as the original training, even without explicitly using them.

As discussed above, we convert the problem of the ad-
versarial unlearning process into selecting d

(t)
r ∈ D\Du

that yields similar model updates as d(t) ∈ D. It is evi-
dent that if the original mini-batch contains no unlearned
data d(t) ∩ Du = ∅, we can directly set d(t)r = d(t). If
the original mini-batch contains unlearned data, then our
goal is to find d

(t)
r ∈ D\Du that makes ∇L(w(t−1)

r , d(t))

and ∇L(w(t−1)
r , d

(t)
r) as close as possible. Regarding this

goal, previous studies simply leveraged random sampling
multiple times and chose the one yielding the smallest dis-
tance (Shumailov et al., 2021; Thudi et al., 2022).

d(t)r = argmindi
∥∇L(w(t−1)

r , d(t))−∇L(w(t−1)
r , di)∥, (3)

where i = 1, . . . , s, d1, . . . , ds ∼ D\Du, and we denote the
right-hand side of Equation (3) as Sr(w(t−1)

r ; d(t)). How-
ever, this method is computationally expensive and does not
provide theoretical guarantees. In this paper, we replace the
unlearned data in the original batch: (xu, yu) ∈ d(t) ∩ Du

4

Verification of Machine Unlearning is Fragile

Algorithm 1 Retraining-based Adversarial Unlearning Al-
gorithm

Input: Training data D, unlearned data Du.
Output: Proof of Retraining Pr.
Initialize w

(0)
r and Pr ← ∅.

for t = 1 to T do
Uniform mini-batch sampling d(t) ∈ D.
Choose d

(t)
r ← Sr(w(t−1)

r ; d(t)) or d(t)r ← Sn(d(t)).
w

(t)
r ← g

(t)
r (w

(t−1)
r , d

(t)
r).

Pr ← Pr ∪ (w
(t)
r , d

(t)
r , g

(t)
r).

end for

with its (class-wise) closest neighbor in the retained data:

N (xu, yu) = argmin(x,y)∈D\Du,y=yu
∥x− xu∥. (4)

Consequently, our proposed mini-batch selection method
can be expressed as

Sn(d
(t)) = (d(t)\Du) ∪ {N (x, y)|(x, y) ∈ d(t) ∩ Du}. (5)

It is worth noting that we observe that using Sr
can be better than Sn sometimes in practice, i.e.,
∇L(w(t−1)

r ,Sr(w(t−1)
r ; d(t))) might be closer to

∇L(w(t−1)
r , d(t)) than ∇L(w(t−1)

r ,Sn(w(t−1)
r ; d(t))),

as long as setting a large enough sample size s. However,
our proposed closest neighbor selection is still necessary
as it provides a worst-case upper bound for theoretical
analysis and a more efficient way of adversarial unlearning
when considering real-world threats. Consequently, we
can generate a PoRT based on our adversarial unlearning
process with carefully selected mini-batches. We provide a
clear illustration of our adversarial unlearning framework
in Figure 2. In addition, the detailed algorithm is shown
in Algorithm 1. Specifically, the following properties can
be guaranteed for Algorithm 1.
Proposition 4.2. Algorithm 1 returns a valid Proof of Re-
training under the threshold ε = 0.
Proposition 4.3. Let CD := maxc maxx∈c minz∈c ∥x −
z∥, where c denotes the class in the label domain. For the
continuity of loss functions, we assume (i). ∥∇wl(w,x)∥ ≤
G, (ii). ∥∂

2l(w,x)
∂w∂x ∥ ≤ Lx, and (iii). ∥∇2

wl(w,x)∥ ≤ L.
Let γ(t) = γ ≤ 1

L and m be the size of mini-batches, for
Algorithm 1, we have

ET [∥∇L(w(T)
r ,D)∥2] ≤ L(w(0)

r ,D)− L(w(T)
r ,D)

γT

+
γL

2
(G2 + puB

2) + (1− γL)puGB,

where pu = 1− (1− |Du|
|D|)

m and B = LxCD.

Assumptions (i) and (iii) are the same as in (Ajalloeian
& Stich, 2020), indicating that l(·,x) is L-smooth and G-
Lipschitz continuous. In addition, Assumption (ii) is the

same as in (Thudi et al., 2022), indicating that ∇wl(w, ·) is
Lx-Lipschitz. We provide the proof of Proposition 4.2 and
Proposition 4.3 in Appendix A. Proposition 4.2 ensures that
Algorithm 1 can satisfy the reproducing verification; Propo-
sition 4.3 guarantees that the retraining process can reach a
neighborhood of the optimum over D, i.e., the adversarial
unlearning process can still make the retrained model learn
from Du ⊂ D. Next, regarding the backdoor verification,
if the retrained model reaches the exact optimum over D,
the backdoor poisoned data in the unlearned set can still be
triggered, and the adversarial unlearning process will be rec-
ognized. However, according to Proposition 4.3, the radius
of the neighborhood Lγ

2 (G2 + puB
2) + (1 − γL)puGB

(the distance between the retrained model and the original
optimum) will increase after injecting backdoor data, which
reduces the probability of backdoor data being triggered.
The rationale is that after flipping the label of the backdoor
data xb from yb to y′b, the value of minx∈cy′

b

∥x − xb∥
can increase because xb is actually in the class yb with a
different distribution. Instead of learning the mapping of
backdoor data xb → y′b, our adversarial unlearning pro-
cess uses the data truly from the class y′b to replace each of
the backdoor data. Hence, our unlearned model cannot be
triggered by the backdoor poisoned data.

4.3. Second Adversarial Method (Forging)

Although our first adversarial unlearning method can de-
ceive the verification of MUL while preserving the infor-
mation of unlearned data, the computational overhead of
our method is not better than naive retraining, limiting the
benefits of the model provider earned from the adversar-
ial unlearning process. Hence, we propose another ad-
versarial unlearning process that is more computationally
efficient. As a trade-off, the power of our second adver-
sarial method becomes weaker, i.e., it can only deceive
the reproducing verification under an ε > 0 threshold.
Inspired by (Thudi et al., 2022), if the model provider
records a PoT during the original training, the computa-
tion of generating a PoRT can be reduced by reusing the
PoT. In (Thudi et al., 2022), the model provider can up-
date the PoT using a forging map and obtain a valid PoRT
under the ε-threshold reproducing verification. In particu-
lar, the forging map is to replace the overlapping batches
d(t) ∩ Du ̸= ∅ with a batch d

(t)
r ∈ D\Du that induces a

similar model update as d(t) in each triplet {w(t), d(t), g(t)},
i.e., ∇L(w(t−1), d(t)) ≈ ∇L(w(t−1), d

(t)
r). However, the

forging map is not realistic because it preserves the model
parameters unchanged w

(t)
r = w(t), which can be easily

recognized by the verifier (under multiple verification re-
quests, the verifier will receive PoRTs with the same model
parameters in each time). In this paper, we propose a novel
forging map F : Pt → Pr that directly updates both
the model parameters and the batch data of each triplet in

5

Verification of Machine Unlearning is Fragile

w(0)
d(1)

g(1)(w(0), d(1))

w(1)

(w(1), d(1), g(1))

d(T)

g(T)(w(T-1), d(T))

w(T)

(w(T), d(T), g(T))

wr
(0)

dr
(1)

gr
(1)(wr

(0), dr
(1))

wr
(1)

(wr
(1), dr

(1), gr
(1))

Forge map

gr
(T)(wr

(T-1), dr
(T))

dr
(T)

(wr
(T), dr

(T), gr
(T))

wr
(T)

Proof of Training:

Proof of Retraining:

{w(t), d(t), g(t)}

{wr
(t), dr

(t), gr
(t)}

Figure 3. An illustration of the forging-based adversarial unlearn-
ing framework. Different from the retraining-based adversarial
method, the PoRT here is generated directly from the PoT recorded
in the original training. w(t)

r (with d
(t)
r) is obtained by conducting

the forging map over the PoT instead of using the model updating
function g

(t)
r .

the PoT to generate a valid PoRT instead of retraining. We
formulate our proposed forging map as a triplet-wise updat-
ing function, i.e., for any t ∈ I,

(w(t)
r , d(t)r , g(t)r) = F (t)(w(t), d(t), g(t)). (6)

In this way, each triplet in Pr can be generated separately
based on the corresponding triplet in Pt. Normally, the
model updating function g remains unchanged during the
retraining process, and we mainly focus on updating w(t)

and d(t) with F (t). We divide the updating of w(t) and d(t)

into two cases: excluding unlearned data Ie = {t | d(t) ∩
Du = ∅} and including unlearned data In = {t | d(t) ∩
Du ̸= ∅} (Ie and In are used to denote the index set of the
triplets in different cases). We assume that the number of
unlearned data is far less than the retained data. Next, we
discuss the two cases separately.

(1). For t ∈ Ie, although the data d(t) requires no mod-
ification (we can simply let d(t)r = d(t)), we still need to
slightly alter the model parameters w(t) because otherwise,
the verifier might notice a large proportion of unchanged
models comparing w

(t)
r with w(t). On the other hand, the

majority of triplets should be updated carefully because the
model utility should not decrease very much after multiple
verification requests. Considering both requirements for
efficiency and model utility, we use single-step stochastic
gradient descent (SGD) to update the model parameters in
F (t) and have

w(t)
r = w(t) − γ(t)

r ∇l(fw(t)(x(t)), y(t)), (7)

where (x(t), y(t)) ∼ D\Du is a random sample chosen
from the retained data and γ

(t)
r is a small value to control

the verification error ∥w(t)
r − g

(t)
r (w

(t−1)
r , d

(t)
r)∥ ≤ ε.

Algorithm 2 Forging-based Adversarial Unlearning Algo-
rithm

Input: Training data D, unlearned data Du, closest-
neighbor mapping N : Du → D\Du, Proof of Training
Pt = {w(t), d(t), g(t)}.
Output: Proof of Retraining Pr.
Pr ← ∅.
for t = 1 to T in parallel do

if d(t) ∩ Du = ∅ then
d
(t)
r ← d(t).

w
(t)
r ← w(t) − γ

(t)
r ∇l(fw(t)(x(t)), y(t)).

else
d
(t)
r ← Sn(d(t)).

w
(t)
r ← g(t)(w(t−1), d

(t)
r).

end if
g
(t)
r ← g(t).
Pr ← Pr ∪ (w

(t)
r , d

(t)
r , g

(t)
r).

end for

(2). For t ∈ In, the forging map should remove the un-
learned data from d(t). To reduce the verification error, we
still exploit the same strategy in our first adversarial method
to select the mini-batch d

(t)
r ∈ D\Du with Sn(d(t)) (we do

not use Sr due to the efficiency issue). Consequently, to
update the model parameters in the forging map F (t), we
let

w(t)
r = g(t)(w(t−1),Sn(d(t))). (8)

We conclude our second adversarial unlearning process
in Algorithm 2 and provide a distinct illustration in Fig-
ure 3. The advantage of Algorithm 2 is that the forging map
can be implemented in parallel thanks to our formulation
in Equation (6), which largely reduces the execution time
in real-world scenarios with frequent unlearning requests.
Specifically, we analyze the condition of Algorithm 2 satis-
fying the reproducing verification and the time complexity
of Algorithm 2 as follows.

Proposition 4.4. Under the same assumptions as in Propo-
sition 4.3, when g

(t)
r is the vanilla SGD, 0 ≤ γ(t) ≤

1
2L (

√
9 + 4εL/(LxCD)−3), and 0 ≤ γ

(t)
r ≤ ε−γ(t)LxCD

G(2+γ(t)L)
,

Algorithm 2 returns a valid Proof of Retraining under ε > 0
threshold.

Proposition 4.5. Assume the time complexity of naive re-
training is T (n). The time complexity of Algorithm 1 is T (n)
and the time complexity of Algorithm 2 is (pu

P + 1−pu

mP)·T (n),
where pu = 1 − (1 − |Du|/|D|)m, P denotes the number
of processes in parallel, and m denotes the batch size.

The proofs of Proposition 4.4 and Proposition 4.5 can be
found in Appendix A. Proposition 4.4 provides a theoreti-
cal guarantee when Algorithm 2 successfully deceives the
ε-threshold reproducing verification. Proposition 4.5 com-

6

Verification of Machine Unlearning is Fragile

Table 1. Dataset statistics.
Dataset # Train # Test # Class Image Size
MNIST 60,000 10,000 10 28×28
CIFAR-10 50,000 10,000 10 32×32×3
SVHN 73,257 26,032 10 32×32×3

pares the time complexity of Algorithm 1 and Algorithm 2
with naive retraining and demonstrates the superiority of
Algorithm 2 in computational efficiency. Despite the effi-
ciency of Algorithm 2, it can fail to satisfy the backdoor
verification because the final unlearned model w(T)

r is still
dependent on the information of injected backdoor data.

5. Experiments
In this section, we empirically evaluate the vulnerability of
MUL verification with numerical experiments.

Datasets. Our experiments are based on three widely
adopted real-world datasets for image classification,
MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011),
and CIFAR-10 (Krizhevsky et al., 2009): the MNIST dataset
consists of a collection of handwritten digit images; the
CIFAR-10 dataset contains color images in 10 classes, with
each class representing a specific object category, e.g., cats
and automobiles; the SVHN dataset consists of house num-
bers images captured from Google Street View. The statis-
tics of these three datasets are shown in Table 1. All datasets
are publicly accessible (MNIST with GNU General Public
License, CIFAR-10 with MIT License, and SVHN with CC
BY-NC License).

Evaluation Metrics. Recall that the goal of adversarial
unlearning processes is to preserve the model utility and
improve the efficiency of unlearning while circumventing
the verification methods. To demonstrate the efficacy of
our adversarial unlearning methods, we use the verification
error threshold ε to evaluate the forging-based method and
use the probability of type II errors (the target data is not
unlearned is regarded as the null hypothesis) to evaluate our
retraining-based method. In addition, we should also ensure
that adversarial unlearning methods benefit model providers
in preserving model utility and improving efficiency. Hence,
we use utility metrics (e.g., F1-score) and the execution time
to verify the benefit of adversarial unlearning methods.

Implementation. We implemented all experiments in the
PyTorch (Paszke et al., 2019) library and exploited SGD
as the optimizer for training. All experiments were con-
ducted on an Nvidia RTX A6000 GPU. We use the ver-
ification error threshold ε to evaluate the forging-based
method and use the probability of type II errors (the ver-
ifier thinks target data is unlearned but actually not) to
evaluate the retraining-based method. We use utility met-

0% 20% 40% 60% 80% 100%
Proportion Below Threshold

10 6

10 5

10 4

10 3

Ve
rif

ica
tio

n
Er

ro
r T

hr
es

ho
ld

mnist
cifar-10
svhn

(a) Verification error

2 × 10 4

3 × 10 4

4 × 10 4

M
NI

ST

Ie error
In error

10 3

4 × 10 4

6 × 10 4

CI
FA

R-
10 Ie error

In error

0 5 10 15 20 25 30
Epoch Number

10 3

2 × 10 4
3 × 10 4
4 × 10 4
6 × 10 4

SV
HN

Ie error
In error

(b) Details of error statistics

Figure 4. Verification error of forging-based adversarial unlearning
method for MLP over MNIST, CNN over CIFAR-10, and ResNet
over SVHN.

Table 2. Probability of the type II error (β value) of backdoor
verification on different (adversarial) unlearning strategies over
three datasets.

Method MNIST CIFAR-10 SVHN
Original 2.61× 10−42 5.14× 10−20 1.11× 10−28

Retrain 0.998 0.998 0.999
Adv-R 0.997 0.997 0.999
Adv-F 5.46× 10−34 2.78× 10−16 2.08× 10−26

rics (e.g., F1-score) and the execution time to show the
benefit of adversarial unlearning. We report the average
value and standard deviation of the numerical results un-
der five random seeds. More details of the hyperparam-
eter setting are presented in Appendix B. Our code is
available at https://github.com/zhangbinchi/
unlearning-verification-is-fragile.

5.1. Adversarial Unlearning vs Verification

We first empirically demonstrate the efficacy of our pro-
posed adversarial unlearning methods, i.e., they can satisfy
the verification and let the verifier believe that the data is
unlearned normally. We next discuss the reproducing verifi-
cation and the backdoor verification separately.

Reproducing Verification. For reproducing verification,
our retraining-based method can always satisfy the verifica-
tion with an exact 0 verification error because the PoRT is
recorded directly based on the retraining process. Hence, we
mainly focus on the efficacy of the forging-based method in
this experiment. As the choice of verification error threshold
ε is highly personalized, we directly fix the hyperparameters
of our forging-based method and record the verification er-
ror in each model updating step. Specifically, we randomly
choose 2% data as the unlearned set. The hyperparameter
settings are shown in Appendix B, and the experimental
results are shown in Figure 4. We can observe that the veri-
fication errors in most steps for all datasets are below 1e−3,
i.e., our forging-based method can satisfy the reproducing
verification with a 1e−3 threshold. Compared with the scale

7

https://github.com/zhangbinchi/unlearning-verification-is-fragile
https://github.com/zhangbinchi/unlearning-verification-is-fragile

Verification of Machine Unlearning is Fragile

MNIST CIFAR-10 SVHN
Datasets

100

101

102

103
Ex

ec
ut

io
n

Ti
m

e
/ E

po
ch

Original
Retrain

Adv-F
Adv-R-Sn

Adv-R-Sr

Figure 5. Comparison of execution time among original training,
naive retraining, and adversarial unlearning methods over three
real-world datasets.

of adopted neural networks, 1e−3 can be seen as a small
value. We can also see a reduction in the overall verification
error as the model scale decreases (from ResNet to MLP). In
addition, we also illustrate the mean value and the standard
deviation of the verification error of Ie (excluding Du) and
In (including Du) steps in different epochs and obtain the
following observations: 1) the verification errors in Ie and
In steps are consistent, perhaps due to the high dependence
of both errors on the gradient scale; 2) within the overall
threshold, the verification error tends to first increase and
then decrease until staying nearby a local optimum; again,
we attribute this to the dependence of errors on gradients.

Backdoor Verification. For backdoor verification, we
exploit Athena (Sommer et al., 2022) as the verification
strategy. In particular, we randomly choose the backdoor
training and test data, inject a specific pattern of pixels, and
change the label of training data to a fixed target label. To
test the integrity of unlearning, we make unlearned data
include the backdoor training data. If the backdoor suc-
cess rate is close to the random prediction, the model can
predict the original labels for the backdoor test data, and
the unlearned model was not trained on the poisoned data.
Thus, the verifier believes that the model provider follows
the unlearning request. Specifically, we regard “the target
data is unlearned” as the null hypothesis and “the target
data is not unlearned” as the alternative hypothesis. We use
the probability of type II errors (the verifier thinks target
data is unlearned but actually not) to evaluate our adversar-
ial unlearning methods. The results are shown in Table 2.
Consistent with our former discussion, the retraining-based
adversarial method and naive retraining are almost always
regarded as truly unlearning the target data; the forging-
based adversarial method and original training are hardly
regarded as truly unlearning the target data.

5.2. Adversary’s Goal

In previous experiments, we have demonstrated that our
proposed adversarial unlearning methods can satisfy repro-
ducing and backdoor verification. Next, we aim to show
that 1) the adversarial unlearning deceives the verification:

they still memorize the information of unlearned data, and
2) model providers benefit from adversarial unlearning: they
preserve the model utility and improve unlearning efficiency.

Utility. In this experiment, we compare the model util-
ity between naive retraining and our adversarial unlearning.
To simulate the data heterogeneity in real-world scenar-
ios, we add a class-imbalanced unlearning setting. For the
retraining-based adversarial method, we adopt both random
sampling Sr and nearest neighbor Sn approaches to select
mini-batches. For the forging-based adversarial method, we
use the last recorded model on the PoRT w

(T)
r for utility

evaluation. To demonstrate the long-term effect of adver-
sarial unlearning, we divide 10% of the training data as the
unlearned set. Details of hyperparameter settings and com-
plete experimental results can be found in Appendix B.1,
and we provide the truncated experimental results in Table 3.
From the results, we can obtain the following observations:
1) in the normal setting, the retraining-based adversarial
method has a similar utility to naive retraining; 2) in the
class-imbalanced setting, the retraining-based adversarial
method has a much better utility than naive retraining, which
means model providers can benefit more when data hetero-
geneity exists in the unlearning process. 3) in both settings,
the forging-based adversarial method has the best utility of
the unlearned model (close to the original training).

Efficiency. In this experiment, we compare the computa-
tional efficiency between naive retraining and our adversar-
ial unlearning. For the retraining-based adversarial method,
we use the nearest neighbor selection to choose the mini-
batches and obtain the nearest neighbor mapping by ranking
the pre-computed distance between the unlearned data and
the retained data. For the forging-based adversarial method,
we adopt five processes in parallel to compute the PoRT.
We record the average execution time for each epoch and
show the results in Figure 5. From the results, we can obtain
that 1) the forging-based method has the shortest execution
time; 2) the time cost of forging in practice can be longer
than theoretical results due to the resource bottleneck of
the adopted single GPU; 3) the retraining-based method is
slightly slower than naive retraining due to the nearest neigh-
bor calculation, but our proposed nearest neighbor selection
is much faster than random sampling.

5.3. Mini-batch Selection: Nearest Neighbor vs Random
Sampling

In Section 4.2, we introduced two mini-batch selection
strategies for the retraining-based method: random sampling
Sr and nearest neighbor Sn. Additionally, in Section 5.2,
we demonstrated that our nearest neighbor selection strategy
is faster than random sampling. This section delves deeper
into comparing these two strategies.

8

Verification of Machine Unlearning is Fragile

Table 3. Comparison of the model utility among original training, naive retraining, and adversarial unlearning methods over three popular
DNNs across three real-world datasets. We record the macro F1-score of the predictions on the unlearned set Du, retained set D\Du, and
test set Dt. The prefix ‘im-’ denotes the results in the class-imbalanced setting.

Method MLP & MNIST CNN & CIFAR-10 ResNet & SVHN
Du D\Du Dt Du D\Du Dt Du D\Du Dt

Original 99.47 ± 0.09 99.76 ± 0.08 97.00 ± 0.17 100.00 ± 0.00 100.00 ± 0.00 85.33 ± 0.31 100.00 ± 0.00 100.00 ± 0.00 94.91 ± 0.09

Retrain 96.43 ± 0.19 99.52 ± 0.10 96.75 ± 0.13 83.60 ± 0.31 100.00 ± 0.00 83.12 ± 0.23 94.33 ± 0.24 100.00 ± 0.00 94.57 ± 0.06

Adv-R (Sr) 98.17 ± 0.16 99.33 ± 0.18 96.78 ± 0.13 83.81 ± 0.44 100.00 ± 0.00 83.08 ± 0.34 94.38 ± 0.11 100.00 ± 0.00 94.54 ± 0.09

Adv-R (Sn) 96.34 ± 0.11 98.65 ± 0.19 96.60 ± 0.14 82.40 ± 0.39 100.00 ± 0.00 81.85 ± 0.44 94.64 ± 0.20 100.00 ± 0.00 94.75 ± 0.04

Adv-F 99.30 ± 0.13 99.33 ± 0.10 96.94 ± 0.14 100.00 ± 0.00 100.00 ± 0.00 85.20 ± 0.24 100.00 ± 0.00 100.00 ± 0.00 94.91 ± 0.07

im-Original 60.29 ± 13.07 97.00 ± 2.60 96.88 ± 0.07 100.00 ± 0.00 100.00 ± 0.00 85.44 ± 0.22 100.00 ± 0.00 100.00 ± 0.00 94.66 ± 0.30

im-Retrain 38.76 ± 13.41 95.86 ± 4.34 89.92 ± 5.70 24.25 ± 6.98 90.88 ± 5.03 65.22 ± 5.94 33.08 ± 11.97 95.19 ± 3.78 83.89 ± 5.83

im-Adv-R (Sr) 39.48 ± 12.20 99.71 ± 0.19 91.04 ± 4.80 25.94 ± 6.89 96.00 ± 4.90 76.51 ± 4.32 34.76 ± 12.06 98.00 ± 4.01 87.63 ± 6.11

im-Adv-R (Sn) 42.90 ± 11.87 97.96 ± 0.59 92.80 ± 4.54 23.97 ± 8.75 91.46 ± 1.81 67.34 ± 4.02 33.92 ± 11.85 99.37 ± 0.20 84.87 ± 5.42

im-Adv-F 64.21 ± 9.89 97.28 ± 3.34 96.81 ± 0.04 100.00 ± 0.00 100.00 ± 0.00 85.11 ± 0.21 100.00 ± 0.00 100.00 ± 0.00 94.77 ± 0.09

Adv-R-Sn

Adv-R-Sr-5
Adv-R-Sr-10

Adv-R-Sr-25
Adv-R-Sr-50

10 2

10 1

Se
le

ct
io

n
Ti

m
e

/ B
at

ch

MNIST

(a) Selection time of two mini-batch se-
lection strategies.

Adv-R-Sn

Adv-R-Sr-5
Adv-R-Sr-10

Adv-R-Sr-25
Adv-R-Sr-50

0

0.04

0.08

0.12

Gr
ad

ie
nt

 D
ist

an
ce

/ E
po

ch

MNIST

(b) Gradient distance between mini-batch
selection strategies and the original batch.

0
0.1
0.2

MNIST
Adv-R-Sn Adv-R-Sr

0
1.5

3

Gr
ad

ie
nt

 D
ist

an
ce

CIFAR-10
Adv-R-Sn Adv-R-Sr

1 10 20 30
Epoch Number

0
3
6 SVHN

Adv-R-Sn Adv-R-Sr

(c) Gradient distance in different datasets.

Figure 6. Comparison of two mini-batch selection strategies: random sampling Sr and nearest neighbor Sn.

Figure 6(b) and Figure 6(a) illustrate the selection time per
epoch and the gradient distance between selected batches
and their corresponding batches containing unlearn data
for both strategies. We conduct these experiments on the
MNIST dataset, varying the number of batch samples M
for random sampling. In this strategy, M candidate batches
are selected, and the one with the smallest gradient distance
to the original batch is chosen. We tested M values of 5, 10,
25, and 50.

From Figure 6(a), we observe that: i) in the random sam-
pling strategy, selection time increases with M due to the
increased gradient computations; ii) our nearest neighbor se-
lection consistently outperforms random sampling in speed,
even with smaller M values, by avoiding extra gradient
computations. Figure 6(b) shows that: i) larger M values in
random sampling lead to better batch selection; ii) nearest
neighbor selection performs better than random sampling
with small M values and is comparable when M is large.
Further, we extended our experiments to two additional
datasets with M = 50 for the random sampling strategy.
As depicted in Figure 6(c), our strategy exhibits similar
performance to random sampling. In summary, the nearest
neighbor strategy offers significantly faster selection times
and comparable model training performance compared to

the random sampling strategy.

6. Conclusion
In this paper, we expose the vulnerability in the verification
of MUL. In particular, we summarize current verification
strategies into two types. Regarding both types, we propose
two adversarial unlearning processes that circumvent the ver-
ification while preserving the information of unlearned data.
Our theoretical and empirical results highlight the following
conclusions: the adversarial unlearning method can circum-
vent the verification methods while improving the model
utility without extra computation costs. Put another way of
thinking, by adopting an adversarial unlearning method, a
dishonest model provider gains a higher model utility (still
memorizes the unlearned data) after unlearning without
compromising efficiency. Furthermore, the retraining-based
adversarial method can perfectly circumvent all existing ver-
ification methods relying on the natural similarity within the
training data and the randomness of the training algorithm.
This threat poses a novel challenge for the safe verification
of machine unlearning: there is no strict guarantee for the
verification of MUL. Better verification methods are needed
to obtain precise and reliable verification results.

9

Verification of Machine Unlearning is Fragile

Acknowledgements
This work is supported in part by the National Science
Foundation under grants (IIS-2006844, IIS-2144209, IIS-
2223769, CNS-2154962, BCS-2228534, ECCS-2033671,
ECCS-2143559, CPS-2313110, and SII-2132700), the Com-
monwealth Cyber Initiative Awards under grants (VV-1Q23-
007, HV-2Q23-003, and VV-1Q24-011), the JP Morgan
Chase Faculty Research Award, and the Cisco Faculty Re-
search Award.

Impact Statement
Our proposed adversarial unlearning methods in this paper
can threaten the safety of the verification of MUL. Generally,
we can consider that a model provider trains an ML model
based on some personal data collected from data owners.
According to the legislation (CCPA, 2018; GDPR, 2016),
the data owners have the right to have their data removed
from the ML model and take actions to verify the efficacy
of unlearning. However, using our proposed adversarial
unlearning algorithms, the model provider can make the data
owners (verifiers) believe that their data has been unlearned
while preserving the information of these personal data.

Despite that, our research has a more significant positive
influence compared with the potential risks. The study of
MUL verification is still at a nascent stage. Given the de-
ficient understanding of the safety of MUL verification,
our study highlights the vulnerability of current verifica-
tion strategies of MUL and inspires further research on the
safe verification of MUL. Moreover, we tentatively provide
discussions on the weak points of our proposed adversar-
ial unlearning strategies and insights for detecting these
misbehaviors in Appendix C.

References
Ajalloeian, A. and Stich, S. U. On the convergence of sgd

with biased gradients. arXiv preprint arXiv:2008.00051,
2020.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot,
N. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141–159, 2021.

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004.

Cao, Y. and Yang, J. Towards making systems forget with
machine unlearning. In 2015 IEEE Symposium on Secu-
rity and Privacy (SP), pp. 463–480, 2015.

CCPA. California consumer privacy act. 2018. URL
https://oag.ca.gov/privacy/ccpa.

Che, T., Zhou, Y., Zhang, Z., Lyu, L., Liu, J., Yan, D., Dou,
D., and Huan, J. Fast federated machine unlearning with
nonlinear functional theory. In International conference
on machine learning, pp. 4241–4268, 2023.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M.,
and Zhang, Y. When machine unlearning jeopardizes
privacy. In Proceedings of the 2021 ACM SIGSAC con-
ference on computer and communications security, pp.
896–911, 2021.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M.,
and Zhang, Y. Graph unlearning. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pp. 499–513, 2022.

Chien, E., Pan, C., and Milenkovic, O. Efficient model up-
dates for approximate unlearning of graph-structured data.
In International Conference on Learning Representations,
2023.

Chundawat, V. S., Tarun, A. K., Mandal, M., and Kankan-
halli, M. Zero-shot machine unlearning. IEEE Transac-
tions on Information Forensics and Security, 2023.

Costan, V. and Devadas, S. Intel sgx explained. Cryptology
ePrint Archive, 2016.

Eisenhofer, T., Riepel, D., Chandrasekaran, V., Ghosh,
E., Ohrimenko, O., and Papernot, N. Verifiable and
provably secure machine unlearning. arXiv preprint
arXiv:2210.09126, 2022.

Gao, X., Ma, X., Wang, J., Sun, Y., Li, B., Ji, S., Cheng,
P., and Chen, J. Verifi: Towards verifiable federated
unlearning. arXiv preprint arXiv:2205.12709, 2022.

GDPR. General data protection regulation. 2016. URL
https://gdpr-info.eu/.

Golatkar, A., Achille, A., and Soatto, S. Eternal sunshine of
the spotless net: Selective forgetting in deep networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020.

Golatkar, A., Achille, A., Ravichandran, A., Polito, M., and
Soatto, S. Mixed-privacy forgetting in deep networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 792–801, 2021.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning.
MIT press, 2016.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten,
L. Certified data removal from machine learning models.
In International Conference on Machine Learning, pp.
3832–3842, 2020.

10

https://oag.ca.gov/privacy/ccpa
https://gdpr-info.eu/

Verification of Machine Unlearning is Fragile

Guo, Y., Zhao, Y., Hou, S., Wang, C., and Jia, X. Verifying
in the dark: Verifiable machine unlearning by using invisi-
ble backdoor triggers. IEEE Transactions on Information
Forensics and Security, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Izzo, Z., Smart, M. A., Chaudhuri, K., and Zou, J. Approx-
imate data deletion from machine learning models. In
International Conference on Artificial Intelligence and
Statistics, pp. 2008–2016, 2021.

Kim, J. and Woo, S. S. Efficient two-stage model retraining
for machine unlearning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 4361–4369, 2022.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885–1894, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

maintainers, T. and contributors. Torchvision: Pytorch’s
computer vision library. https://github.com/
pytorch/vision, 2016.

Mehta, R., Pal, S., Singh, V., and Ravi, S. N. Deep unlearn-
ing via randomized conditionally independent hessians.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 10422–10431,
2022.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. Descent-to-
delete: Gradient-based methods for machine unlearning.
In Algorithmic Learning Theory, pp. 931–962, 2021.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

Nguyen, T. T., Huynh, T. T., Nguyen, P. L., Liew, A. W.-C.,
Yin, H., and Nguyen, Q. V. H. A survey of machine
unlearning. arXiv preprint arXiv:2209.02299, 2022.

Pan, C., Chien, E., and Milenkovic, O. Unlearning graph
classifiers with limited data resources. In Proceedings of
the ACM Web Conference 2023, pp. 716–726, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Sekhari, A., Acharya, J., Kamath, G., and Suresh, A. T. Re-
member what you want to forget: Algorithms for machine
unlearning. Advances in Neural Information Processing
Systems, 34:18075–18086, 2021.

Setty, S. Spartan: Efficient and general-purpose zksnarks
without trusted setup. In Annual International Cryptology
Conference, pp. 704–737, 2020.

Shafran, A., Peleg, S., and Hoshen, Y. Membership in-
ference attacks are easier on difficult problems. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 14820–14829, 2021.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy
(SP), pp. 3–18, 2017.

Shumailov, I., Shumaylov, Z., Kazhdan, D., Zhao, Y., Paper-
not, N., Erdogdu, M. A., and Anderson, R. J. Manipulat-
ing sgd with data ordering attacks. Advances in Neural
Information Processing Systems, 34:18021–18032, 2021.

Sommer, D. M., Song, L., Wagh, S., and Mittal, P. Athena:
Probabilistic verification of machine unlearning. Proc.
Privacy Enhancing Technol, 3:268–290, 2022.

Tarun, A. K., Chundawat, V. S., Mandal, M., and Kankan-
halli, M. Deep regression unlearning. In International
Conference on Machine Learning, pp. 33921–33939,
2023.

Thudi, A., Jia, H., Shumailov, I., and Papernot, N. On
the necessity of auditable algorithmic definitions for ma-
chine unlearning. In 31st USENIX Security Symposium
(USENIX Security 22), pp. 4007–4022, 2022.

Ullah, E., Mai, T., Rao, A., Rossi, R. A., and Arora, R. Ma-
chine unlearning via algorithmic stability. In Conference
on Learning Theory, pp. 4126–4142, 2021.

Warnecke, A., Pirch, L., Wressnegger, C., and Rieck, K. Ma-
chine unlearning of features and labels. In Network and
Distributed System Security Symposium, NDSS, 2023.

Weng, J., Yao, S., Du, Y., Huang, J., Weng, J., and Wang, C.
Proof of unlearning: Definitions and instantiation. arXiv
preprint arXiv:2210.11334, 2022.

Wu, J., Yang, Y., Qian, Y., Sui, Y., Wang, X., and He, X.
Gif: A general graph unlearning strategy via influence

11

https://github.com/pytorch/vision
https://github.com/pytorch/vision

Verification of Machine Unlearning is Fragile

function. In Proceedings of the ACM Web Conference
2023, pp. 651–661, 2023a.

Wu, K., Shen, J., Ning, Y., Wang, T., and Wang, W. H.
Certified edge unlearning for graph neural networks. In
Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 2606–2617,
2023b.

Xu, H., Zhu, T., Zhang, L., Zhou, W., and Yu, P. S. Machine
unlearning: A survey. ACM Computing Surveys, pp. 1–36,
2023.

Yuan, L., Tay, F. E., Li, G., Wang, T., and Feng, J. Revisiting
knowledge distillation via label smoothing regularization.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 3903–3911, 2020.

Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K.,
Hoang, N., and Khazaeni, Y. Bayesian nonparametric
federated learning of neural networks. In International
conference on machine learning, pp. 7252–7261. PMLR,
2019.

Zhang, Z., Zhou, Y., Zhao, X., Che, T., and Lyu, L. Prompt
certified machine unlearning with randomized gradient
smoothing and quantization. Advances in Neural Infor-
mation Processing Systems, 35:13433–13455, 2022.

12

Verification of Machine Unlearning is Fragile

A. Proof
A.1. Proof of Proposition 4.2

Proof. To prove that Algorithm 1 returns a valid PoRT, we verify the two properties of a valid PoRT in Definition 4.1.
First, we verify the removable property. For any d ∈ Sr(w(t−1)

r ; d(t)) ∪ Sn(d(t)), we have d ∈ D\Du. Hence, we have
d
(t)
r ∩ Du = ∅. We then verify the reproducible property. It is obvious that ∥w(t)

r − g
(t)
r (w

(t−1)
r , d

(t)
r)∥ = 0 and the

reproducible property holds for ε = 0. In conclusion, Algorithm 1 returns a valid PoRT.

A.2. Proof of Proposition 4.3

Proof. Recall that Algorithm 1 can be seen as a mini-batch SGD with the following model updating function:

w(t+1)
r = w(t)

r − γ∇L(w(t)
r , d(t+1)

r)

= w(t)
r − γ∇L(w(t)

r ,Sn(d(t+1))),
(9)

where d(t+1) ∼ D. It is worth noting that d(t+1) is randomly chosen from D, while d
(t+1)
r relies on the selection of d(t+1)

and the unlearned set Du. If we take the expectation value over both sides, it will be difficult to directly compute the
expectation E[∇L(w(t)

r , d
(t+1)
r)] on the right-hand side. Consequently, we let b(t) = ∇L(w(t)

r , d
(t+1)
r)−∇L(w(t)

r , d(t+1))
and have

w(t+1)
r = w(t)

r − γ(∇L(w(t)
r , d(t+1)) + b(t)). (10)

For simplicity, we denote L(w) as the loss over the whole training set L(w,D) and Lt(w) as the loss over the original
mini-batch at the t-th iteration L(w, d(t+1)). Next, we focus on the loss function value

L(w(t+1)
r) = L(w(t)

r − γ(∇Lt(w
(t)
r) + b(t)))

= L(w(t)
r)−∇L(w(t)

r)⊤γ(∇Lt(w
(t)
r) + b(t)) +

γ2

2
(∇Lt(w

(t)
r) + b(t))⊤∇2L(ξ(t))(∇Lt(w

(t)
r) + b(t))

≤ L(w(t)
r)− γ∇L(w(t)

r)⊤(∇Lt(w
(t)
r) + b(t)) +

γ2L

2
∥∇L(w(t)

r) + b(t)∥2

(11)
The second equality sign is based on the first-order Taylor’s theorem with γ2

2 (∇Lt(w
(t)
r) + b(t))⊤∇2L(ξ(t))(∇Lt(w

(t)
r) +

b(t)) as the Lagrange remainder. Given w
(t)
r , we take the expectation over the randomly selected mini-batch d(t) for both

sides and obtain

E[L(w(t+1)
r)] ≤ E[L(w(t)

r)− γ∇L(w(t)
r)⊤(∇Lt(w

(t)
r) + b(t)) +

γ2L

2
∥∇L(w(t)

r) + b(t)∥2]

≤ E[L(w(t)
r)]− γE[∇L(w(t)

r)⊤∇Lt(w
(t)
r)]− γE[∇L(w(t)

r)⊤b(t)] +
γ2L

2
E[∥∇L(w(t)

r) + b(t)∥2])

≤ E[L(w(t)
r)]− γ∥∇L(w(t)

r)∥2 − γ(1− γL)E[∇L(w(t)
r)⊤b(t)] +

γ2L

2
(G2 + E[∥b(t)∥2]).

(12)

For each iteration t, we have one corresponding inequality as Equation (12). We then sum up the Equation (12) for t = 0 to
T − 1 and have

T−1∑
t=0

E[L(w(t+1)
r)] ≤

T−1∑
t=0

E[L(w(t)
r)]− γ∥∇L(w(t)

r)∥2 − γ(1− γL)E[∇L(w(t)
r)⊤b(t)] +

γ2L

2
(G2 +E[∥b(t)∥2]). (13)

After telescoping Equation (13), we have

γ

T−1∑
t=0

∥∇L(w(t)
r)∥2 + (1− γL)E[∇L(w(t)

r)⊤b(t)] ≤ L(w(0)
r)− L(w(T)

r) +
γ2L

2

T−1∑
t=0

(G2 + E[∥b(t)∥2]). (14)

13

Verification of Machine Unlearning is Fragile

Without loss of generality, we specify the norm as ℓ-2 norm and have

∥b(t)∥ = ∥∇L(w(t)
r , d(t+1)

r)−∇L(w(t)
r , d(t+1))∥

=
1

m

∥∥∥∥∥
m∑
i=1

∇wl(w(t)
r , d(t+1)

ri)−∇wl(w(t)
r , d

(t+1)
i)

∥∥∥∥∥
≤ 1

m

m∑
i=1

∥∇wl(w(t)
r , d(t+1)

ri)−∇wl(w(t)
r , d

(t+1)
i)∥.

(15)

In particular, we use d
(t+1)
ri and d

(t+1)
i to denote the i-th data point in the mini-batch d

(t+1)
r and d(t+1). We let d(t+1)

ri =

(x
(t+1)
ri , y

(t+1)
ri) and d

(t+1)
i = (x

(t+1)
i , y

(t+1)
i), denoting the pair of feature vector and label. It is worth noting that

y
(t+1)
ri = y

(t+1)
i according to the definition of Sn. We denote w[j] as the j-th element of w. Given y

(t+1)
ri = y

(t+1)
i , we

omit the variable y in l(·) and have

∣∣∣∣∣∂l(w(t)
r ,x

(t+1)
ri)

∂w[j]
− ∂l(w

(t)
r ,x

(t+1)
i)

∂w[j]

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

s=0

(x(t+1)
ri − x

(t+1)
i)⊤

∂2l(w
(t)
r ,x

(t+1)
i + s(x

(t+1)
ri − x

(t+1)
i))

∂w[j]∂x
ds

∣∣∣∣∣
≤

∫ 1

s=0

∣∣∣∣∣(x(t+1)
ri − x

(t+1)
i)⊤

∂2l(w
(t)
r ,x

(t+1)
i + s(x

(t+1)
ri − x

(t+1)
i))

∂w[j]∂x

∣∣∣∣∣ ds
≤

∫ 1

s=0

∥x(t+1)
ri − x

(t+1)
i ∥ ·

∥∥∥∥∥∂2l(w
(t)
r ,x

(t+1)
i + s(x

(t+1)
ri − x

(t+1)
i))

∂w[j]∂x

∥∥∥∥∥ ds
≤

∫ 1

s=0

∥x(t+1)
ri − x

(t+1)
i ∥ ·

∥∥∥∥∇x
∂l(w,x)

∂w[j]

∥∥∥∥ ds
= ∥x(t+1)

ri − x
(t+1)
i ∥ ·

∥∥∥∥∇x
∂l(w,x)

∂w[j]

∥∥∥∥ .

(16)

We then incorporate Equation (16) into Equation (15) and obtain that

∥b(t)∥ ≤ 1

m

m∑
i=1

∥∇wl(w(t)
r , d(t+1)

ri)−∇wl(w(t)
r , d

(t+1)
i)∥

≤ 1

m

m∑
i=1

Lx∥x(t+1)
ri − x

(t+1)
i ∥

≤ LxCD = B.

(17)

In addition, the unlearned data cannot be involved in every single iteration when |Du| < T . When d(t+1) ∩ Du = ∅, we
have d(t+1) = d

(t+1)
r and b(t) = 0. Considering that d(t+1) is chosen uniformly from D, we can compute the probability of

d(t+1) ∩ Du ̸= ∅ as pu = 1− (1− |Du|/|D|)m. Consequently, when T →∞, we can consider that only puT iterations
contain the bias term b(t) and we have b(t) = 0 for the remaining (1− pu)T iterations. We then incorporate Equation (17)
back into Equation (14) and have

γ

T−1∑
t=0

∥∇L(w(t)
r)∥2 − γ(1− γL)puTGB ≤ γ

T−1∑
t=0

∥∇L(w(t)
r)∥2 + (1− γL)E[∇L(w(t)

r)⊤b(t)]

≤ L(w(0)
r)− L(w(T)

r) +
γ2L

2

T−1∑
t=0

(G2 + E[∥b(t)∥2])

≤ L(w(0)
r)− L(w(T)

r) +
γ2LT

2
(G2 + puB

2).

(18)

14

Verification of Machine Unlearning is Fragile

Finally, we can finish the proof by

ET [∥∇L(w(T)
r)∥2] = 1

T

T−1∑
t=0

∥∇L(w(t)
r)∥2

≤ L(w
(0)
r)− L(w(T)

r)

γT
+

γL

2
(G2 + puB

2) + (1− γL)puGB.

(19)

A.3. Proof of Proposition 4.4

Proof. To prove that Algorithm 2 returns a valid PoRT, we verify the two properties of a valid PoRT in Definition 4.1. First,
we verify the removable property. For the t-th iteration, if t ∈ Ie, we have that d(t)r ∩ Du = d(t) ∩ Du = ∅ holds; if t ∈ Ie,
we have that

d(t)r ∩ Du = Sn(d(t)) ∩ Du

=
(
(d(t)\Du) ∩ Du

)
∪
(
{N (x, y)|(x, y) ∈ d(t) ∩ Du} ∩ Du

)
= {argmin(x′,y′)∈D\Du,y′=y∥x′ − x∥|(x, y) ∈ d(t) ∩ Du} ∩ Du

= ∅.

(20)

The last equality sign holds because each element argmin(x′,y′)∈D\Du,y′=y∥x′ − x∥ is involved in D\Du. Hence, we have
verified the removable property of Algorithm 2. Next, we verify the reproducible property. For any t ∈ I , we have t ∈ Ie or
t ∈ In. We then discuss these two conditions separately. For simplicity, we denote that p(t) = w

(t)
r −w(t).

(1). t ∈ Ie: we have d
(t)
r = d(t).

w(t)
r − g(t)r (w(t−1)

r , d(t)r)

=w(t) + p(t) −w(t−1)
r + γ(t)∇L(w(t−1)

r , d(t)r)

=w(t) + p(t) −w(t−1) − p(t−1) + γ(t)∇L(w(t−1)
r , d(t)r)

=p(t) − p(t−1) + γ(t)∇L(w(t−1)
r , d(t))− γ(t)∇L(w(t−1), d(t)).

(21)

We then focus on the norm value and have

∥w(t)
r − g(t)r (w(t−1)

r , d(t)r)∥
=∥p(t) − p(t−1) + γ(t)∇L(w(t−1)

r , d(t))− γ(t)∇L(w(t−1), d(t))∥
≤∥p(t) − p(t−1)∥+ γ(t)L∥w(t−1)

r −w(t−1)∥
=∥p(t) − p(t−1)∥+ γ(t)L∥p(t−1)∥.

(22)

(2). t ∈ In: we have d
(t)
r = Sn(d(t)).

w(t)
r − g(t)r (w(t−1)

r , d(t)r)

=w(t) + p(t) −w(t−1)
r + γ(t)∇L(w(t−1)

r , d(t)r)

=w(t−1) − γ(t)∇L(w(t−1), d(t)) + p(t) −w(t−1)
r + γ(t)∇L(w(t−1)

r , d(t)r)

=p(t) − p(t−1) + γ(t)∇L(w(t−1), d(t)r)− γ(t)∇L(w(t−1), d(t)) + γ(t)∇L(w(t−1)
r , d(t)r)− γ(t)∇L(w(t−1), d(t)r).

(23)

We then focus on the norm value and have

∥w(t)
r − g(t)r (w(t−1)

r , d(t)r)∥

≤∥p(t) − p(t−1)∥+ ∥γ(t)∇L(w(t−1), d(t)r)− γ(t)∇L(w(t−1), d(t))∥+ ∥γ(t)∇L(w(t−1)
r , d(t)r)− γ(t)∇L(w(t−1), d(t)r)∥

≤∥p(t) − p(t−1)∥+ γ(t)
(
∥b(t−1)∥+ L∥p(t−1)∥

)
,

(24)

15

Verification of Machine Unlearning is Fragile

where b(t−1) = ∇L(w(t−1), d
(t)
r) − ∇L(w(t−1), d(t)). Next, we find the upper bound of p(t). When t ∈ Ie, we have

∥p(t)∥ = γ
(t)
r ∥∇l(fw(t)(x(t)), y(t))∥; when t ∈ In, we have

∥p(t)∥ = ∥w(t−1) − γ(t)∇L(w(t−1), d(t))−w(t−1) + γ(t)∇L(w(t−1), d(t)r)∥ = γ(t)∥b(t−1)∥. (25)

In addition, we know from Equation (17) that ∥b(t−1)∥ ≤ LxCD. Combine the case t ∈ Ie and the case t ∈ In,
we have ∥p(t)∥ ≤ max{γ(t)

r ∥∇l(fw(t)(x(t)), y(t))∥, γ(t)LxCD} = P . Finally, we verify the reproducible property by
proving ∥p(t) − p(t−1)∥ + γ(t)L∥p(t−1)∥ ≤ ε and ∥p(t) − p(t−1)∥ + γ(t)

(
∥b(t−1)∥+ L∥p(t−1)∥

)
≤ ε. Noting that

∥p(t) − p(t−1)∥ + γ(t)
(
∥b(t−1)∥+ L∥p(t−1)∥

)
≥ ∥p(t) − p(t−1)∥ + γ(t)L∥p(t−1)∥, we can only verify the second

inequality.

(i). If γ(t)
r ∥∇l(fw(t)(x(t)), y(t))∥ ≤ γ(t)LxCD, we have

∥p(t) − p(t−1)∥+ γ(t)
(
∥b(t−1)∥+ L∥p(t−1)∥

)
≤ 3γ(t)LxCD +

(
γ(t)

)2

LLxCD ≤ ε. (26)

By solving this quadratic inequality, we obtain that when γ(t) ≤ 1
2L

(√
9 + 4εL

LxCD
− 3

)
, Equation (26) holds.

(ii). If γ(t)
r ∥∇l(fw(t)(x(t)), y(t))∥ ≥ γ(t)LxCD, we have

∥p(t) − p(t−1)∥+ γ(t)
(
∥b(t−1)∥+ L∥p(t−1)∥

)
≤ γ(t)LxCD + γ(t)

r ∥∇l(fw(t)(x(t)), y(t))∥(2 + γ(t)L) ≤ ε. (27)

Consequently, we obtain that when γ
(t)
r ≤ ε−γ(t)LxCD

∥∇l(f
w(t) (x(t)),y(t))∥(2+γ(t)L)

, Equation (27) holds. In order to avoid no solution

for γ(t)
r , we also need

0 ≤ γ(t)LxCD

∥∇l(fw(t)(x(t)), y(t))∥(2 + γ(t)L)
≤ γ(t)

r ≤
ε− γ(t)LxCD

∥∇l(fw(t)(x(t)), y(t))∥(2 + γ(t)L)
. (28)

By solving this inequality for γ(t), we obtain 0 ≤ γ(t) ≤ 1
2L

(√
9 + 4εL

LxCD
− 3

)
again. Combining conclusions from

above cases and the assumption that ∥∇wl(w,x)∥ ≤ G, we have obtained that when 0 ≤ γ(t) ≤ 1
2L

(√
9 + 4εL

LxCD
− 3

)
and 0 ≤ γ

(t)
r ≤ ε−γ(t)LxCD

G(2+γ(t)L)
, the reproducible property holds, i.e., ∥w(t)

r − g
(t)
r (w

(t−1)
r , d

(t)
r)∥ ≤ ε. In conclusion, by

incorporating the reproducible property and the removable property, our proof is finished.

A.4. Proof of Proposition 4.5

Proof. We assume the time complexity of naive retraining is T (n). For Algorithm 1, the only difference with naive retraining
is the selection of mini-batches. At best, we can compute the nearest neighbor of each data sample beforehand and obtain a
T (n) complexity. For Algorithm 2, every iteration in the PoRT can be computed separately in parallel. In particular, we have
T (n) = n ·m · T (1), where n is the number of iterations, m is the batch size, and T (1) denotes the time for computing the
gradient of one data sample. If t ∈ Ie, computing w

(t)
r requires a complexity of T (1); if t ∈ In, computing w

(t)
r requires a

complexity of m · T (1). According to the analysis in Appendix A.2, we have that when n→∞, the number of iterations in
In will approach pun and the number of iterations in Ie will approach (1− pu)n. Finally, with the parallel processes, we
have the overall complexity is

m · T (1) · pun
P

+ T (1) · (1− pu)n

P
=

(
pu
P

+
1− pu
mP

)
T (n). (29)

B. Experimental Setups and Additional Experimental Results
We implemented all experiments in the PyTorch (Paszke et al., 2019) library and exploited SGD as the optimizer for training.
For consistent hyperparameter settings across all datasets, we fix the learning rate γ(t) as 10−2, the weight decay parameter

16

Verification of Machine Unlearning is Fragile

Table 4. Model Utility in Normal Settings. We assess the model utility among original training, naive retraining, and adversarial
unlearning methods over three popular DNNs across three real-world datasets. We record the macro F1-score of the predictions on the
unlearned set Du, retained set D\Du, and test set Dt.

Model Method MNIST CIFAR-10 SVHN
Du D\Du Dt Du D\Du Dt Du D\Du Dt

MLP

Original 99.47 ± 0.09 99.76 ± 0.08 97.00 ± 0.17 80.96 ± 0.15 80.75 ± 0.96 50.54 ± 0.57 89.56 ± 0.78 89.40 ± 0.45 80.03 ± 0.45
Retrain 96.43 ± 0.19 99.52 ± 0.10 96.75 ± 0.13 49.32 ± 0.59 82.96 ± 1.29 49.29 ± 0.77 82.42 ± 0.22 89.83 ± 0.39 79.50 ± 0.37

Adv-R (Sr) 96.36 ± 0.13 99.48 ± 0.17 96.58 ± 0.12 48.49 ± 0.41 82.33 ± 0.40 48.27 ± 0.48 81.85 ± 0.85 89.31 ± 0.86 78.63 ± 0.71
Adv-R (Sn) 96.34 ± 0.11 98.65 ± 0.19 96.60 ± 0.14 50.43 ± 0.17 80.01 ± 1.30 49.86 ± 0.23 82.98 ± 0.57 92.60 ± 0.56 79.77 ± 0.57

Adv-F 99.30 ± 0.13 99.33 ± 0.10 96.94 ± 0.14 81.13 ± 0.76 81.38 ± 0.79 50.81 ± 0.63 89.99 ± 0.71 89.77 ± 0.55 80.11 ± 0.85

CNN

Original 99.69 ± 0.31 99.74 ± 0.30 99.13 ± 0.25 100.00 ± 0.00 100.00 ± 0.00 85.33 ± 0.31 99.64 ± 0.73 99.61 ± 0.77 94.66 ± 1.00
Retrain 99.31 ± 0.12 100.00 ± 0.00 99.39 ± 0.05 83.60 ± 0.31 100.00 ± 0.00 83.12 ± 0.23 94.24 ± 0.22 100.00 ± 0.00 94.96 ± 0.10

Adv-R (Sr) 99.24 ± 0.13 100.00 ± 0.00 99.27 ± 0.02 83.81 ± 0.44 100.00 ± 0.00 83.08 ± 0.34 94.29 ± 0.17 100.00 ± 0.00 94.90 ± 0.07
Adv-R (Sn) 99.35 ± 0.09 100.00 ± 0.00 99.40 ± 0.02 83.12 ± 0.31 100.00 ± 0.00 82.71 ± 0.33 94.36 ± 0.32 100.00 ± 0.00 94.92 ± 0.15

Adv-F 100.00 ± 0.00 100.00 ± 0.00 99.46 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 85.20 ± 0.24 100.00 ± 0.00 99.99 ± 0.01 95.13 ± 0.10

ResNet

Original 100.00 ± 0.00 100.00 ± 0.00 99.53 ± 0.05 99.99 ± 0.03 99.99 ± 0.03 84.11 ± 0.74 100.00 ± 0.00 100.00 ± 0.00 94.91 ± 0.09
Retrain 99.41 ± 0.09 100.00 ± 0.00 99.46 ± 0.07 82.76 ± 0.38 100.00 ± 0.00 82.10 ± 0.39 94.33 ± 0.24 100.00 ± 0.00 94.57 ± 0.06

Adv-R (Sr) 99.43 ± 0.09 100.00 ± 0.00 99.46 ± 0.04 82.29 ± 0.98 99.99 ± 0.01 81.71 ± 0.78 94.38 ± 0.11 100.00 ± 0.00 94.54 ± 0.09
Adv-R (Sn) 99.41 ± 0.06 100.00 ± 0.00 99.42 ± 0.04 82.40 ± 0.39 100.00 ± 0.00 81.85 ± 0.44 94.64 ± 0.20 100.00 ± 0.00 94.75 ± 0.04

Adv-F 100.00 ± 0.00 100.00 ± 0.00 99.49 ± 0.03 100.00 ± 0.00 100.00 ± 0.00 84.54 ± 0.37 100.00 ± 0.00 100.00 ± 0.00 94.91 ± 0.07

Table 5. Model Utility in Class-Imbalanced Settings. We assess the model utility among original training, naive retraining, and
adversarial unlearning methods over three popular DNNs across three real-world datasets. We record the macro F1-score of the predictions
on the unlearned set Du, retained set D\Du, and test set Dt.

Model Method MNIST CIFAR-10 SVHN
Du D\Du Dt Du D\Du Dt Du D\Du Dt

MLP

Original 60.29 ± 13.07 97.00 ± 2.60 96.88 ± 0.07 34.50 ± 6.41 75.68 ± 2.29 50.95 ± 0.19 39.13 ± 7.26 84.02 ± 3.90 80.50 ± 0.83
Retrain 38.76 ± 13.41 95.86 ± 4.34 89.92 ± 5.70 13.29 ± 4.49 77.93 ± 2.83 44.81 ± 1.70 22.65 ± 8.11 76.87 ± 3.93 67.33 ± 4.90

Adv-R (Sr) 39.48 ± 12.20 99.71 ± 0.19 91.04 ± 4.80 13.13 ± 4.32 81.21 ± 3.21 44.19 ± 1.81 26.33 ± 8.99 87.25 ± 2.74 72.09 ± 4.50
Adv-R (Sn) 42.90 ± 11.87 97.96 ± 0.59 92.80 ± 4.54 16.17 ± 4.76 67.25 ± 2.15 45.74 ± 1.80 28.06 ± 9.45 82.16 ± 1.65 70.67 ± 3.55

Adv-F 64.21 ± 9.89 97.28 ± 3.34 96.81 ± 0.04 35.46 ± 6.74 75.08 ± 1.68 51.06 ± 0.86 40.10 ± 7.87 82.78 ± 4.54 79.70 ± 1.08

CNN

Original 100.00 ± 0.00 100.00 ± 0.00 99.48 ± 0.06 100.00 ± 0.00 100.00 ± 0.00 85.44 ± 0.22 100.00 ± 0.00 100.00 ± 0.00 95.13 ± 0.07
Retrain 47.64 ± 15.76 100.00 ± 0.00 94.98 ± 5.35 24.25 ± 6.98 90.88 ± 5.03 65.22 ± 5.94 32.79 ± 12.61 92.68 ± 4.79 84.23 ± 6.65

Adv-R (Sr) 46.00 ± 12.84 100.00 ± 0.00 94.94 ± 4.77 25.94 ± 6.89 96.00 ± 4.90 76.51 ± 4.32 33.43 ± 12.12 97.52 ± 3.87 86.69 ± 5.40
Adv-R (Sn) 49.90 ± 15.03 99.96 ± 0.07 95.08 ± 4.82 23.97 ± 8.75 91.46 ± 1.81 67.34 ± 4.02 33.89 ± 12.26 98.49 ± 0.40 85.76 ± 6.46

Adv-F 92.49 ± 15.01 99.97 ± 0.05 99.45 ± 0.12 100.00 ± 0.00 100.00 ± 0.00 85.11 ± 0.21 100.00 ± 0.00 100.00 ± 0.00 95.14 ± 0.05

ResNet

Original 100.00 ± 0.00 100.00 ± 0.00 99.54 ± 0.05 98.30 ± 3.39 99.96 ± 0.08 85.02 ± 0.96 100.00 ± 0.00 100.00 ± 0.00 94.66 ± 0.30
Retrain 50.74 ± 14.51 99.00 ± 2.00 95.89 ± 5.40 21.80 ± 6.43 89.13 ± 2.84 66.86 ± 3.29 33.08 ± 11.97 95.19 ± 3.78 83.89 ± 5.83

Adv-R (Sr) 51.76 ± 14.11 100.00 ± 0.00 96.33 ± 4.73 25.53 ± 6.93 100.00 ± 0.00 74.18 ± 4.26 34.76 ± 12.06 98.00 ± 4.01 87.63 ± 6.11
Adv-R (Sn) 50.61 ± 11.18 100.00 ± 0.00 96.54 ± 4.27 23.83 ± 6.84 96.53 ± 1.05 68.86 ± 4.00 33.92 ± 11.85 99.37 ± 0.20 84.87 ± 5.42

Adv-F 100.00 ± 0.00 100.00 ± 0.00 99.54 ± 0.03 97.13 ± 5.74 99.98 ± 0.03 84.04 ± 0.46 100.00 ± 0.00 100.00 ± 0.00 94.77 ± 0.09

as 5× 10−4, the training epochs number as 30, and set the batch size to 128. In determining the selection Sr, specifically for
data batches containing unlearned data, we randomly sample 50 data batches from the remaining set D\Du and select the
batch that yields the smallest distance, as defined in Equation (3). All experiments were conducted on an Nvidia RTX A6000
GPU. We reported the average value and the standard deviation of the numerical results under five different random seeds.
For the experiment of verification errors in Figure 4, we set the learning rate γ(t) as 5× 10−3, weight decay parameter as 0.
We fix the size of the unlearned set as 1, 000 and set the learning rate γ

(t)
r as 10−3.

B.1. Model Utility Study

B.1.1. EXPERIMENTAL SETTINGS

All datasets utilized in our experiments adhere to the standard train/test split provided by the Torchvision library (maintainers
& contributors, 2016). Within each experiment, 20% of the training data is set aside as the validation set. To assess model
performance, we randomly sample 10% of the remaining training data to form the unlearn set. We report the average macro
F1-score, along with its standard deviation, based on model predictions for the unlearn set Du, the remaining set D\Du, and
the test set Dt. These metrics are computed across five random seeds to ensure robustness.

Additionally, to simulate scenarios where the data distribution of the unlearn set deviates from the overall training set, we
introduce a class-imbalanced unlearning setting under a fixed train/val/test split. For each class c, we follow the approach
of Yurochkin et al. by drawing a 5-dimensional vector qc from a Dirichlet distribution with its parameter of 0.5. We then

17

Verification of Machine Unlearning is Fragile

Table 6. Comparison of the model utility among original training, naive retraining, and adversarial unlearning methods based on ResNet-50
over the Tiny-ImageNet dataset. We record the macro F1-score of the predictions on the unlearned set Du, retained set D\Du, and test set
Dt.

Method Normal Imbalanced
Du D\Du Dt Du D\Du Dt

Original 90.34 ± 0.47 90.21 ± 0.43 36.59 ± 0.74 91.76 ± 0.64 91.42 ± 0.59 33.81 ± 0.60
Retrain 31.03 ± 0.62 93.78 ± 0.57 31.08 ± 0.33 8.59 ± 1.94 95.79 ± 18.38 26.19 ± 1.91

Adv-R (Sr) 31.26 ± 0.46 92.83 ± 0.63 31.78 ± 0.16 8.98 ± 2.95 95.65 ± 18.65 26.76 ± 1.17
Adv-R (Sn) 31.82 ± 0.26 93.09 ± 0.42 31.76 ± 0.43 8.70 ± 0.96 92.83 ± 5.36 26.80 ± 1.20

Adv-F 90.16 ± 0.66 90.30 ± 0.51 36.57 ± 0.80 91.37 ± 0.56 91.10 ± 0.56 33.69 ± 0.81

assign data to the i-th piece proportionally to qc[i]. In each experiment, one piece of data is selected as the unlearn set Du,
while the remaining pieces constitute the remaining set D\Du. The average model performance is recorded across five
experiments.

B.1.2. ADDITIONAL EXPERIMENTAL RESULTS

We provide the complete experimental results of the model utility in different types of unlearning strategies under normal
and class-imbalanced settings in Table 4 and Table 5, respectively. From the full version of the results, we can obtain that:

1. The naive retraining can render a larger utility drop when the model under-fits the data and the data heterogeneity exists
in the unlearning process;

2. In the normal setting, the retraining-based adversarial method has similar utility to the naive retraining, while in the
class-imbalanced setting, the retraining-based adversarial method achieves a much better utility than naive retraining,
which means model providers can benefit more when data heterogeneity exists in the unlearning process;

3. The forging-based adversarial method has much better performance than other unlearning methods in all cases, even
better than the original training in some cases, which means the model provider can benefit the most from forging (but
also with a larger probability of being detected by backdoor verification).

To further show the scalability of our proposed methods, we conduct additional experiments using the ResNet-50 model (He
et al., 2016) over the Tiny-ImageNet dataset (Le & Yang, 2015). The TinyImageNet dataset (Le & Yang, 2015) is a subset
of the ImageNet dataset. It consists of 200 object classes, and for each object class, it provides 500 training images, 50
validation images, and 50 test images. All images have been downsampled to 64 × 64 × 3 pixels. As the test set is released
without labels, we use the validation set as the test set in our experiment. Within each experiment, 20% of the training data
is set aside as the validation set, and the division of the unlearn set and other parameter settings are consistent with the main
experiments in the paper. We train the ResNet-50 model from scratch for 50 epochs following the experimental setting in
(Yuan et al., 2020) and record the accuracy under 5 random seeds. For Sr, we randomly sample 10 mini-batches from the
retained set D\Du and select the batch that yields the smallest distance, as defined in Equation (3). The experimental results
of the utility of the unlearned model are shown in Table 6. Basically, the experimental results are consistent with Table 3 in
our paper (though overfitting exists), i.e., Adv-F achieves comparable performance as the original model and Adv-R has a
better performance compared with naive retraining. We also find that the difference between the normal setting and the
imbalanced setting is not as distinct as in Table 3. We explain this as

1. Tiny-ImageNet has 200 classes while the datasets in Table 3 only have 10 classes. The impact of imbalanced sampling
can be weakened under far more classes.

2. Tiny-ImageNet has only 400 training samples per class while the datasets in Table 3 have over 5,000 samples. The
effect of nearest neighbor selection can be diminished as the constant CD (introduced in Proposition 4.3) might increase
and subsequently, the gap between the adversarially unlearned model and the original model can be larger according to
Proposition 4.3.

18

Verification of Machine Unlearning is Fragile

Table 7. Results of backdoor verification on different (adversarial) unlearning strategies over three datasets.

Method MLP & MNIST CNN & CIFAR-10 ResNet & SVHN
in atk acc p ex atk acc q β in atk acc p ex atk acc q β in atk acc p ex atk acc q β

Original 0.998 ± 0.007 0.101 ± 0.010 2.61 × 10−42 0.933 ± 0.105 0.088 ± 0.139 5.14 × 10−20 0.982 ± 0.003 0.095 ± 0.001 1.11 × 10−28

Retrain 0.102 ± 0.016 0.103 ± 0.012 0.998 0.118 ± 0.022 0.124 ± 0.010 0.998 0.110 ± 0.001 0.096 ± 0.001 0.999
Adv-R 0.103 ± 0.017 0.102 ± 0.015 0.997 0.129 ± 0.021 0.102 ± 0.009 0.997 0.109 ± 0.001 0.096 ± 0.001 0.999
Adv-F 0.995 ± 0.003 0.103 ± 0.013 5.46 × 10−34 0.914 ± 0.119 0.100 ± 0.050 2.78 × 10−16 0.981 ± 0.006 0.096 ± 0.001 2.08 × 10−26

B.2. Backdoor Verification

For backdoor verification, we exploit Athena (Sommer et al., 2022) as the verification strategy. Specifically, we consider
two hypotheses: H0 - the data has been unlearned, and H1 - the data has not been unlearned. In assessing the effectiveness
of a backdoor verification strategy applied to an algorithm A, we focus on the deletion confidence for a given acceptable
tolerance of Type I error α (α = Pr[Reject H0|H0 is true]), i.e.,

ρA,α(n) = (1− β) = 1− Pr[Accept H0|H1 is true]. (30)

We follow Sommer et al. to compute the Type II error β as a function of α and the number of testing samples n, i.e.,

(1− β) = 1−
n∑

k=0

(
n
k

)
pk(1− p)n−k · I[

k∑
l=0

(
n
l

)
ql(1− q)n−l ≤ 1− α], (31)

where q and p represent the backdoor attack accuracy for deleted and undeleted data, respectively. The function I(x) = 1 if
x is True and 0 otherwise. We apply similar method as in Sommer et al. to estimate q and p:

• Estimating p. To estimate p, we first introduce a specific backdoor pattern to 10% of the unlearn set. This involves
randomly selecting four pixels in each sample, setting their values to 1, and assigning a target label cb. The model is
then trained on this partially backdoored dataset Db

train. For evaluation, we extract 2% of the test samples Db
test, apply

the same backdoor pattern, and calculate the backdoor success rate for this trigger with the target label cb as,

p =
1

|Db
test|
|{(x, y) ∈ Db

test|A(Db
train)(x) = cb}| (32)

• Estimating q. To estimate q, we randomly select an additional 2% of the test samples, denoted as Dex
test. On these

samples, a different backdoor pattern is applied. We then calculate the backdoor success rate, focusing on the trigger
with an alternate target label cex. This process enables us to determine q as,

q =
1

|Dex
test|
|{(x, y) ∈ Dex

test|A(Db
train)(x) = cex}| (33)

We set α to 10−3, n to 30, and use the estimate p and q to compute β in Equation (31). For the MNIST and CIFAR-10
datasets, the target labels cb and cex are selected randomly, owing to the even distribution of their test data across classes.
In contrast, for the SVHN dataset, we specifically choose cb = 3 and cex = 4 for a better explanation due to its uneven
data distribution. Notably, in the SVHN dataset, data labeled as 3 or 4 accounts for nearly one-tenth of the test data, which
is significant given that the dataset comprises ten classes. We provide the complete experimental results of the backdoor
verification in Table 7.

We first clarify that if p or q approaches the level of random prediction, it suggests the corresponding backdoored data
has not been utilized during the training process. Conversely, a high value of p indicates the effectiveness of the backdoor
strategy. In other words, a large p value signifies that the backdoor attack was successful in influencing the model’s behavior.
The results in Table 7 reveal that the backdoor verification mechanism is highly effective for models trained on Db

train. This
effectiveness is primarily attributed to the substantial difference between p and q. Additionally, the verification mechanism
is capable of detecting models modified using the forging-based method with a high degree of probability. This is due to the
fact that such modifications only slightly alter the original model. In contrast, the retraining-based model can deception
backdoor verification, as it does not directly utilize the partially backdoored unlearning data, resulting in a model that is not
affected by poisoned data.

19

Verification of Machine Unlearning is Fragile

Table 8. Results of the membership inference attack on different (adversarial) unlearning strategies over three datasets.
Method MNIST CIFAR-10 SVHN
Original 50.60 ± 0.61 72.59 ± 1.03 59.67 ± 0.31
Retrain 50.16 ± 0.92 48.97 ± 0.65 51.88 ± 1.39
Adv-F 50.09 ± 0.34 72.41 ± 0.55 59.04 ± 1.10
Adv-R 49.66 ± 0.85 48.93 ± 1.22 50.09 ± 0.65

0% 20% 40% 60% 80% 100%
Proportion Below Threshold

10 6

10 5

10 4

10 3

10 2

10 1

100

Ve
rif

ica
tio

n
Er

ro
r T

hr
es

ho
ld

5E-3
1E-3
5E-4
1E-4
5E-5

(a) Verification error distribution

5E-3 1E-3 5E-4 1E-4 5E-5
Learning Rate

10 3

10 2

10 1

Ve
rif

ica
tio

n
Er

ro
r

(b) Verification error statistics

Figure 7. Comparison of verification error under different learning rate configurations.

B.3. Membership Inference Attack

Membership Inference Attack (MIA) (Shokri et al., 2017) is seen as an effective evaluation method of machine unlearning
by measuring the privacy leakage of the data supposedly unlearned. Different from the reproducing verification and the
backdoor verification, we tend to categorize MIA into the evaluation method rather than the verification method. To clarify
this, we first aim to distinguish two different settings for measuring the unlearning efficacy. We can refer to them as
evaluation and verification (which might be mixed up in previous works). Evaluation is supposed to be conducted by
honest model providers to choose the best unlearning methods from a candidate set of unlearning algorithms. In contrast,
verification is supposed to be conducted by data owners or third parties to check the unlearning efficacy. The most distinct
difference between evaluation and verification is the capacity of the evaluator (or verifier), where the evaluator (model
provider) has full access to the original model, unlearned model, and the dataset, while the verifier (data owner) only has
limited access to the models and the data. As a typical example of evaluation methods, comparing the model utility with
the retrained model (Golatkar et al., 2020; Nguyen et al., 2022) can only be conducted by the model provider with full
access. For MIA, the attacker requires extensive knowledge of the model architecture for white-box attack variants, access
to auxiliary or shadow data, and computational power to an extent similar to the model provider (Sommer et al., 2022).
However, considering that a powerful third-party verifier can be seen as a potential membership-inference attacker, we
conduct additional experiments to demonstrate whether our proposed adversarial methods can circumvent MIA. We adapt
MIA against machine learning models (Shokri et al., 2017) to machine unlearning. We use a two-layer MLP as the attack
model (discriminator). The attack model is trained using the same way, aiming at distinguishing the training samples
(unlearned samples) from the test samples. We label the predictions of the unlearned data as positive data, and we randomly
sample predictions of test data to ensure that the number of positive cases and the number of negative cases of the attack
model are balanced. Ideally, the attack model is supposed to have low accuracy since the unlearned data is supposed to be
removed from the trained model and be indistinguishable from the test samples. However, if the unlearning is ineffective, the
unlearned data is still memorized by the unlearned model as the retained training samples, leading to a high attack accuracy.
We record the AUC score of the attack under five different random seeds. The experimental results are shown in Table 8.
From the results, we can observe that our proposed Adv-R and naive retraining have an attack accuracy around 50% (similar
to random guessing), indicating that our proposed Adv-R is able to circumvent MIA. For simple target tasks (e.g. MNIST),

20

Verification of Machine Unlearning is Fragile

0 5 10 15 20 25 30
Epochs

0.008

0.009

0.010

0.011

0.012

0.013

0.014

St
oc

ha
st

ic
Gr

ad
ie

nt
 N

or
m

(a) Gradient norm over MNIST.

0 5 10 15 20 25 30
Epochs

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

St
oc

ha
st

ic
Gr

ad
ie

nt
 N

or
m

(b) Gradient norm over CIFAR-10.

0 5 10 15 20 25 30
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

St
oc

ha
st

ic
Gr

ad
ie

nt
 N

or
m

(c) Gradient norm over SVHN.

Figure 8. Comparison of gradient norm over three datasets.

the predictions of the test samples are similar to the predictions of the training samples, and they are difficult to distinguish
since the model learns well and has good generalizability (the predictions are correct and with high confidence). Hence, the
attack accuracy is low. For difficult target tasks (e.g. CIFAR-10), the model might have a confident and accurate prediction
for training samples but not for test samples. Subsequently, the training and test samples are easier to distinguish for attack
models. This can also be seen as a limitation of membership inference attacks (ineffective for well-learned models) (Shafran
et al., 2021).

B.4. Effect of Learning Rate on Verification Error

From Proposition 4.4, we obtain that we can find a small enough learning rate γ(t) and γ
(t)
r to forge a valid PoRT based on

Algorithm 2 for arbitrarily small reproducing error threshold ε. To verify the effect of learning rate on the verification error,
we conduct experiments of different learning rate configurations over the MNIST dataset, using the MLP model. We choose
five different values for learning rate γ(t) as 5× 10−3, 10−3, 5× 10−4, 10−4, and 5× 10−5. To simplify hyperparameter
tuning, we directly set the forging learning rate the same as the original learning rate, i.e., γ(t)

r = γ(t). Experimental
results are shown in Figure 7. In particular, we show the percentage of verification errors (in different iterations) within the
corresponding threshold in Figure 7(a), and show the statistics of verification error and the maximum value (representing the
threshold ε and shown as red triangles) in Figure 7(b). From the results, we can observe that the verification error threshold
(maximum) and the mean value of verification error decreases as the learning rate becomes smaller. In addition, in the
case of γ(t) = γ

(t)
r , we can obtain a corollary of Proposition 4.4 as ε ≥ LCγ2 + 3Cγ where C = max{LxCD, G}. As

the value of learning rate γ is very small (γ usually has a significantly lower order of magnitude compared to C), we can
approximately omit the second-order term and obtain that ε ∝ γ, which conforms to the experimental results shown in
Figure 7(b).

B.5. Error Statistics of Reproducing Verification

We provide an in-depth analysis of the variation trend of the error statistics in Figure 4(b). Basically, as mentioned in the
experiments, we attribute this result to the change in the gradient norm. We first take a look at the verification error from a
theoretical perspective. Based on the proof of Proposition 4.4, when a batch contains the unlearned data, the verification
error is related to b (the difference between the gradient on the original data and the gradient on the forging data); when a
batch does not contain the unlearned data, the verification error is related to the stochastic gradient (the gradient on a random
data point). As the number of unlearned data is small (the batches excluding the unlearned data distinctly outnumber the
batches including the unlearned data), the mean verification error over an epoch is mainly determined by the norm of the
stochastic gradient. For MNIST, the model learns well and the optimization converges fast (the accuracy nearly reaches
90% after the first epoch). Hence, the verification error remains stable and is relatively small. For CIFAR-10, the task is
challenging for CNN, and the norm of the stochastic gradient grows larger and then decreases as the optimization converges
(the convergence is not complete at the end, so we are not able to observe the plateau as MNIST). For SVHN, the difficulty
of the task is between MNIST and CIFAR-10 for ResNet. Hence, the verification error goes through a short increase and
then decrease, and finally goes into a stable plateau as MNIST. To support our insights, we plot the norm of the stochastic
gradient (we directly use the gradient over the training batch) under different settings. The results are shown in Figure 8.
The variation trend of the norm of stochastic gradients matches the verification error shown in Figure 4(b). The experimental

21

Verification of Machine Unlearning is Fragile

results demonstrate that the reproducing verification error is closely related to the gradient norm.

C. Deal with the Vulnerability of MUL Verification
In the aforementioned studies, we have exposed the vulnerability of the verification strategies of MUL, proved by theoretical
and experimental results. Next, we would like to provide some simple insights on how to deal with vulnerability.

Retraining-based Adversarial Unlearning. Detecting retraining-based adversarial unlearning is extremely difficult
because retraining-based adversarial unlearning does not explicitly utilize the unlearned data to update the model parameters.
Consequently, the benefit for model providers from retraining-based adversarial unlearning is relatively small. In our
observation, the performance of the unlearned model conducted by retraining-based adversarial unlearning is better
than naive retraining but worse than original training, which conforms to the performance of approximate unlearning
methods (Guo et al., 2020; Golatkar et al., 2020; 2021; Mehta et al., 2022). Unfortunately, existing studies of verification for
approximate unlearning remain nascent. However, it would be promising to investigate the safe verification of approximate
unlearning and exploit the verification methods to detect the retraining-based adversarial unlearning method.

Forging-based Adversarial Unlearning. Forging-based adversarial unlearning is relatively easy to detect because of its
bounded difference from the original model. According to our experimental results, forging-based adversarial unlearning
can be detected by backdoor verification with high confidence (in Table 7). Correspondingly, the model provider can largely
benefit from forging-based adversarial unlearning (high utility as the original model and low unlearning time cost). Although
theoretically, the model provider can find a proper learning rate γ(t) and γ

(t)
r to circumvent the reproducing verification

with arbitrarily small threshold ε, the choice of learning rate is limited in practice. When model providers choose a smaller
learning rate to circumvent more strict reproducing verification, the original training process can take longer time, even
fail to converge. Hence, forging-based adversarial unlearning methods cannot circumvent arbitrarily strict reproducing
verification, and the verifier can carefully select the error threshold to reject questionable unlearning operations.

22

