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Abstract
Song generation focuses on producing con-001
trollable high-quality songs based on various002
prompts. However, existing methods struggle003
to generate vocals and accompaniments with004
prompt-based control and proper alignment.005
Additionally, they fall short in supporting var-006
ious tasks. To address these challenges, we007
introduce VersBand, a multi-task song genera-008
tion framework for synthesizing high-quality,009
aligned songs with prompt-based control. Vers-010
Band comprises these primary models: 1) Vo-011
calBand, a decoupled model, leverages the012
flow-matching method for generating singing013
styles, pitches, and mel-spectrograms, allowing014
fast, high-quality vocal generation with style015
control. 2) AccompBand, a flow-based trans-016
former model, incorporates the Band-MOE, se-017
lecting suitable experts for enhanced quality,018
alignment, and control. This model allows for019
generating controllable, high-quality accompa-020
niments aligned with vocals. 3) Two genera-021
tion models, LyricBand for lyrics and Melody-022
Band for melodies, contribute to the compre-023
hensive multi-task song generation system, al-024
lowing for extensive control based on multiple025
prompts. Experimental results demonstrate that026
VersBand performs better over baseline models027
across multiple song generation tasks using ob-028
jective and subjective metrics. Audio samples029
are available at https://VersBand.github.io.030

1 Introduction031

Song generation focuses on producing complete032

musical pieces based on text prompts (about lyrics,033

melodies, singing, and music styles) and optional034

audio prompts. Unlike singing voice synthesis035

(SVS) (Shi et al., 2022; Cho et al., 2022), which036

focuses on the singing component, or music genera-037

tion (Dong et al., 2018; Agostinelli et al., 2023) for038

synthesizing only instrumental tracks, song genera-039

tion involves synthesizing both high-quality vocals040

and accompaniments with high-level prompt-based041

control and proper alignment (Li et al., 2024a).042

Despite significant advancements in SVS and 043

music domains, generating high-quality, control- 044

lable, aligned songs remains challenging. Song 045

generation aims to enable controllable musical ex- 046

periences, with broad applications ranging from 047

entertainment videos to professional composition. 048

As shown in Figure 1, song generation models 049

can leverage different prompts for multiple tasks. 050

Text prompts allow for control over tasks, lyrics, 051

melody, singing styles (like singing methods, emo- 052

tion, and techniques), and music styles (like genre, 053

tone, and instrumentation), while audio prompts 054

enable users to input their voice or preferred mu- 055

sic for customization. However, the few existing 056

song generation models (Zhiqing et al., 2024) lack 057

mechanisms to properly align vocals with accom- 058

paniments and fail to achieve effective control. 059

Currently, song generation encounters three ma- 060

jor challenges: 1) Limitations in high-quality vo- 061

cal generation with style control. For singing 062

style control, StyleSinger (Zhang et al., 2024a) 063

conducts style transfer, while PromptSinger (Wang 064

et al., 2024) achieves singer identity control. How- 065

ever, existing models have yet to generate pleasing 066

vocals with high-level style control (like singing 067

methods, emotion, and techniques) by text prompts, 068

and customization with audio prompts. 2) Diffi- 069

culties in controllable and aligned accompani- 070

ment generation. Existing music generation mod- 071

els (Dong et al., 2018) and text-to-song models 072

(Zhiqing et al., 2024) lack mechanisms for style 073

control and aligning vocals with accompaniments 074

in rhythm, melody, and beats. Generating control- 075

lable (like genre, tone, and instrumentation) and 076

aligned accompaniments remains challenging. 3) 077

Challenges in multi-task song generation based 078

on various prompts. The limited existing song 079

generation methods (Li et al., 2024a) do not support 080

diverse related tasks. This reliance on constrained 081

inputs leads to a suboptimal user experience and 082

restricts the models’ ability to customize songs. 083
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Audio Prompts (Optional)

VersBand

Song

Text Prompts: The task is to generate a 

song…(Optional Below)

The Lyrics should describe  a scene of peaceful

anticipation, where time slows down…

Or

The Full Lyrics: “Hold your horses now / We sleep

until the sun goes down…”

The Melody should be in C major, with a high pitch

and a fast, uplifting pace…

Or

Music Scores:

The Singing should follow a pop style and happy

emotion, with singing techniques like falsetto and

vibrato for better expression…

The Music should be a energetic and aggressive metal

song, featuring punchy kick and snare hits, shimmering

cymbals, an aggressive electric guitar melody…

Vocal Prompt:

For timbre and singing style 

transfer or vocal-to-song

Accompaniment Prompt:

For music style transfer or 

accompaniment-to-song

Figure 1: Overview of VersBand, which generates complete songs like a versatile band. The dashed lines indicate
optional inputs. At a minimum, users can just input "The task is to generate a song."

To address these challenges, we introduce Vers-084

Band, a multi-task song generation framework085

for synthesizing high-quality, aligned songs with086

prompt-based control. Following the human per-087

ception that accompaniment complements vocal088

melody with complex harmonic and rhythmic struc-089

ture (Zhiqing et al., 2024), we generate them090

separately. To achieve fast and high-quality vo-091

cal generation with control, we design a decou-092

pled model VocalBand, predicting singing styles,093

pitches, and mel-spectrograms based on the flow-094

matching method. Based on the complex nature095

of music, we introduce a flow-based transformer096

model AccompBand to generate high-fidelity, con-097

trollable, aligned accompaniments. We design098

Band-MOE (Mixture of Experts), selecting suit-099

able experts for enhanced quality, alignment, and100

control. Additionally, we add two generation mod-101

els, LyricBand for lyrics and MelodyBand for102

melodies, contributing to the comprehensive multi-103

task song generation system. Our experiments104

on open-source and web-crawled bilingual song105

datasets show VersBand can generate high-quality106

songs with control, outperforming baseline models107

in multiple song generation tasks. The main contri-108

butions of our work are summarized as follows:109

• We propose VersBand, a multi-task song gen-110

eration approach for generating high-quality,111

aligned songs with prompt-based control.112

• We design a decoupled model VocalBand,113

which leverages the flow-matching method114

to generate singing styles, pitches, and mel-115

spectrograms, enabling fast and high-quality116

vocal synthesis with high-level style control.117

• We introduce a flow-based transformer model 118

AccompBand to generate high-quality, con- 119

trollable, aligned accompaniments, with the 120

Band-MOE, selecting suitable experts for en- 121

hanced quality, alignment, and control. 122

• Experimental results demonstrate that Vers- 123

Band achieves superior objective and subjec- 124

tive evaluations compared to baseline models 125

across multiple song generation tasks. 126

2 Background 127

2.1 Singing Voice Synthesis 128

Singing Voice Synthesis (SVS) rapidly advances 129

for generating singing voices from given lyrics 130

and music scores. Choi and Nam (2022) presents 131

a melody-unsupervised model, eliminating the 132

need for temporal alignment. VISinger 2 (Zhang 133

et al., 2022b) employs digital signal processing 134

techniques to enhance fidelity, while Kim et al. 135

(2024) uses adversarial multi-task learning to im- 136

prove the singing naturalness. StyleSinger (Zhang 137

et al., 2024a) facilitates style transfer by extracting 138

styles via a residual quantization method. Addi- 139

tionally, PromptSinger (Wang et al., 2024) attempts 140

to control speaker identity based on text descrip- 141

tions. GTSinger (Zhang et al., 2024b) releases a 142

dataset with multiple style annotations. Despite 143

these advancements, these approaches can not gen- 144

erate aligned accompaniment. Recently, Melodist 145

(Zhiqing et al., 2024) has introduced a text-to-song 146

model that sequentially generates vocals and ac- 147

companiments using auto-regressive transformers. 148

However, achieving high-quality vocal generation 149

with high-level control remains challenging. 150
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2.2 Accompaniment Generation151

Research in accompaniment usually focuses on152

musical symbolic tokens. MuseGAN (Dong et al.,153

2018) employs a GAN-based approach to gener-154

ate symbolic music. SongMASS (Sheng et al.,155

2021) uses transformer models to generate lyrics156

or melodies conditioned on each other. MusicLM157

(Agostinelli et al., 2023) leverages joint textual-158

music representations from MuLan (Huang et al.,159

2022) to generate semantic and acoustic tokens160

using transformer decoders. MusicLDM (Chen161

et al., 2024) incorporates beat-tracking informa-162

tion to address potential plagiarism concerns in163

music generation. Additionally, SingSong (Don-164

ahue et al., 2023) introduces a model that generates165

background music to complement the provided vo-166

cals. SongCreator (Lei et al., 2024) can create167

songs based on lyrics and audio prompts. Recently,168

MelodyLM (Li et al., 2024a) has employed trans-169

former and diffusion models for decoupled song170

generation. Nevertheless, challenges remain in gen-171

erating high-quality music with effective control172

based on multiple prompts. Existing methods also173

lack mechanisms for alignment with vocals and174

support for multiple song generation tasks.175

3 Method176

This section introduces VersBand. We design two177

distinct models, VocalBand for vocals and Ac-178

compBand for accompaniments, tailored to their179

unique characteristics. Additionally, we include180

LyricBand for lyrics and MelodyBand for melodies,181

composing a multi-task song generation system.182

3.1 Multi-Task Song Generation183

As shown in Figure 2 (a), VersBand handles multi-184

task song generation based on text and audio185

prompts. We employ a text encoder to generate186

text tokens zp. When lyrics or music scores are187

not provided, LyricBand and MelodyBand predict188

phonemes p and notes n (pitch and duration) as tar-189

get contents. Next, in Figure 2 (b), to achieve fast190

and high-quality vocal generation with granular191

control, we introduce VocalBand, which decouples192

the content zc, timbre zt, and style zs. Through the193

Flow-based Pitch Predictor, Mel Decoder, and pre-194

trained vocoder, the target vocal yv is synthesized.195

Then, in Figure 2 (c), for the complex nature of ac-196

companiment, we design AccompBand to achieve197

superior quality, alignment, and control. Accomp-198

Band uses two encoders to extract embeddings zv199

from yv and x from ground truth (GT) accompani- 200

ment ŷa during training. zv and noise-injected xt 201

are processed by Band Transformer Blocks with 202

Band-MOE, which selects suitable experts by zv, 203

zp, and time step t for enhanced quality, alignment, 204

and control. During inference, the ordinary differ- 205

ential equation (ODE) solver, accomp decoder, and 206

vocoder generate the target accompaniment ya. yv 207

and ya are combined to the final target song y. 208

3.2 VocalBand 209

Decomposition As shown in Figure 2(b), for 210

more personalized and fine-grained control, we 211

disentangle target vocal yv into content zc, style zs 212

(e.g., singing methods, emotion, techniques, pro- 213

nunciation, articulation skills), and timbre zt. For 214

zc, phonemes p and notes n (note pitch and dura- 215

tion) are encoded by a phoneme encoder and a note 216

encoder. Given a vocal prompt ỹv, the timbre and 217

personalized styles (like pronunciation and artic- 218

ulation skills) should remain consistent. We pass 219

ỹv through a timbre encoder to obtain z̃t, while 220

zt = z̃t. Next, the residual style encoder em- 221

ploys an RQ model (Lee et al., 2022a) to extract 222

phoneme-level prompt style z̃s. This serves as an 223

information bottleneck to filter out non-style infor- 224

mation (Zhang et al., 2024a), ensuring effective 225

decomposition. The Flow-based Style Predictor 226

uses zc, zt, z̃s, and text tokens zp to predict zs, 227

learning both personalized styles of z̃s and style 228

control information in zp (like singing methods). 229

For more details, please refer to Appendix C.2. 230

Flow-based Style Predictor Singing styles typ- 231

ically exhibit continuous and complex dynamics, 232

involving intricate variations. The flow-matching 233

model (Liu et al., 2022) is suitable for generating 234

styles with finer-grained control by modeling styles 235

as a smooth transformation, effectively balancing 236

multiple control inputs, enabling a fast and stable 237

generation of natural and consistent styles. 238

As shown in Figure 3 (a), we design the Flow- 239

based Style Predictor using content zc, timbre zt, 240

prompt style z̃s, and text tokens zp to predict the tar- 241

get style zs. With input zc and zt, we employ a style 242

alignment model with the Scaled Dot-Product At- 243

tention mechanism (Vaswani et al., 2017) to align 244

style control information from zp (e.g., singing 245

methods, emotions, techniques) with contents. The 246

fused condition c serves as the condition for an 247

ODE solver, which transforms Gaussian noise ϵ 248

into zs along a smooth probability path pt(zst). 249
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Figure 2: The overall architecture of VersBand. Vocal and accompaniment are generated by VocalBand and
AccompBand separately. Dashed lines represent optional processes, while LR stands for length regulator.

zst is obtained by linear interpolation at time250

t between ϵ and zs, which is extracted from the251

GT vocal by the residual style encoder, thus the252

target vector field u(zst, t) = zs − ϵ. We concate-253

nate z̃s with zst to allow zs to learn personalized254

styles (e.g., pronunciation, articulation skills). The255

learned vector field vt(zst, t|c; θ), predicted by a256

vector field estimator at each time t, ensures smooth257

interpolation between the initial noise and output,258

guided by the flow-matching objective, minimizing259

the distance of learned and true vector fields:260

Lstyle = Et,pt(zst) ∥vt(zst, t|c; θ)− (zs − ϵ)∥2 .
(1)261

where pt(zst) represents the distribution of zst at262

time t. This method ensures the fast and controlled263

generation of target style zs, learning both person-264

alized styles consistent with z̃s and aligned style265

control information from zp. Notably, z̃s and zp266

can be input individually for full style control. For267

more details, please refer to Appendix A and C.6.268

Flow-based Pitch Predictor and Mel Decoder269

Traditional pitch predictors and mel decoders strug-270

gle to capture the dynamic and complex variations271

in singing voices. Thus, we propose the Flow-272

based Pitch Predictor and Mel Decoder, which273

use content zc, timbre zt, and style zs to quickly274

and robustly generate high-quality F0 and mel-275

spectrograms with a similar architecture to Flow-276

based Style Predictor. Our pitch loss Lpitch and277

mel loss Lmel are analogous to Lstyle in Equation278

1. For more details, please refer to Appendix C.8.279

3.3 AccompBand 280

Band Transformer Block Accompaniment gen- 281

eration is highly complex due to the intricate inter- 282

play of various instruments and alignment with 283

vocals, especially for long-sequence generation. 284

Flow matching enables smooth transformations, 285

leading to stable and quick generation, while trans- 286

former models effectively capture intricate long- 287

range dependencies, making flow-based transform- 288

ers suitable for this task. As shown in Figure 2 (b), 289

based on Flag-Dit (Gao et al., 2024), we design the 290

Band Transformer Blocks as the vector field esti- 291

mator. We add the vocal encoder’s output zv to the 292

noisy input xt, leveraging the self-attention mech- 293

anism for alignment, and use RMSNorm (Zhang 294

and Sennrich, 2019) and style adaptor with AdaLN 295

(Peebles and Xie, 2023) to ensure training stabil- 296

ity and style consistency. Additionally, we employ 297

rotary positional embeddings (RoPE) (Su et al., 298

2024) to capture temporal relationships and the 299

zero-initialized attention mechanism (Bachlechner 300

et al., 2021) to effectively incorporate conditional 301

information from text tokens zp into the model. For 302

more details, please refer to Appendix D.3. 303

Band-MOE To further enhance accompaniment 304

quality, alignment, and control, we propose Band- 305

MOE (Mixture of Experts) in the Band Transformer 306

Block, selecting suitable experts for various condi- 307

tions. As shown in Figure 3 (d), Band-MOE con- 308

sists of three expert groups: Aligned MOE, Con- 309

trolled MOE, and Acoustic MOE, each containing 310
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Figure 3: The architecture of Flow-based Style Predictor and Band-MOE. Dashed lines represent optional processes.
C and U represent concatenation and upsampling operations.

multiple experts. Aligned MOE conditions on zv,311

adjusting inputs to match vocal features like loud-312

ness and frequency, selecting suitable experts like313

one specialized in large loudness and alto range.314

Controlled MOE uses aligned styles in text prompts315

to select experts for fine-grained style control, such316

as one for aggressive drums with metal guitar tones.317

Given the varying behavior of the transformer at318

different noise levels (Feng et al., 2023), we de-319

sign a global router to adjust the weightings for320

Aligned MOE and Controlled MOE: 1) at early321

time steps (near 0), where the hidden representation322

h is highly noisy, the network prioritizes matching323

with vocal for coherent reconstruction; 2) at later324

time steps (near 1), where h has been largely re-325

constructed, the network focuses more on refining326

stylistic details, relying heavily on text prompts.327

Finally, mel-spectrogram patterns exhibit varia-328

tion across acoustic frequencies (Lee et al., 2022b).329

In music, high-frequency components often include330

the harmonics and overtones of instruments like331

strings and flutes. At the same time, low-frequency332

content typically encompasses basslines and kick333

drums providing rhythm and depth. Since the ac-334

comp encoder employs 1D convolutions, the latent335

should retain the frequency distribution. Thus, we336

design Acoustic MOE, selecting experts in differ-337

ent acoustic frequency dimensions for better qual-338

ity. All routing strategies are based on the dense-to-339

sparse Gumbel-Softmax (Nie et al., 2021), allowing340

dynamic and efficient expert selection. For more341

details and algorithm, please refer to Appendix D.4.342

Classifier-free Guidance To further control343

styles of the generated accompaniment based on in-344

put text prompts, we implement the classifier-free345

guidance (CFG) strategy. During AccompBand346

training, we randomly replace input text tokens zp347

with encoded empty strings ∅ at a probability of348

0.2. During inference, we modify the output vector 349

field of the Band Transformer blocks as follows: 350

vcfg = γvt(x, t|zp; θ) + (1− γ)vt(x, t|∅; θ),
(2) 351

where γ is the classifier free guidance scale trading 352

off creativity and controllability. When γ = 1, vcfg 353

is the same as the original vector field vt(x, t|zp; θ). 354

For more details, please refer to Appendix D.5. 355

3.4 Lyric and Melody Generation 356

LyricBand To enable more personalized tasks, 357

we introduce LyricBand, a system designed to gen- 358

erate complete lyrics based on text prompts. Users 359

can design the theme, emotion, and other parame- 360

ters to generate personalized lyrics. We leverage 361

QLoRA (Dettmers et al., 2024) for efficient fine- 362

tuning of a well-performing open-source bilingual 363

language model Qwen-7B (Bai et al., 2023). With 364

4-bit quantization and low-rank adapters, QLoRA 365

enables LyricBand to adapt effectively to lyric gen- 366

eration, enabling customization and creativity. For 367

more details, please refer to Appendix E.1. 368

MelodyBand Previous singing voice and song 369

generation models often require users to provide 370

music scores to achieve stable melodies (Zhiqing 371

et al., 2024), lacking customization of the melody. 372

Inspired by symbolic music models (Dong et al., 373

2018), we propose MelodyBand, which generates 374

musical notes based on text prompts, lyrics, and 375

vocal prompts. We employ a non-autoregressive 376

transformer model to efficiently generate notes. Af- 377

ter encoding phonemes and timbre, MelodyBand 378

achieves fine-grained melody control by injecting 379

text tokens through cross-attention mechanisms. 380

We train MelodyBand with the cross-entropy loss 381

for note pitches and an L2 loss for note durations. 382

For more details, please refer to Appendix E.2. 383
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3.5 Training and Inference384

The VocalBand, AccompBand, LyricBand, and385

MelodyBand are trained separately, and the de-386

tailed training details are provided in Appendix387

B.2. For inference, our model can accept various388

prompts for multiple tasks. Without input lyrics or389

music scores, LyricBand and MelodyBand gener-390

ate phonemes p and notes n. For song generation or391

singing style transfer, VocalBand generates the tar-392

get vocal yv, and AccompBand generates the target393

accompaniment ya from Gaussian noise ϵ. Dur-394

ing music style transfer, AccompBand uses noisy395

prompt accompaniment ỹa instead of ϵ as input. In396

vocal-to-song, VocalBand is not used, whereas in397

accompaniment-to-song, notes n extracted from398

GT accompaniment ŷa guide VocalBand. More399

inference details can be found in Appendix B.3.400

4 Experiments401

4.1 Experimental Setup402

Dataset We train our model using a combination403

of bilingual web-crawled and open-source song404

datasets. Since there are no publicly available anno-405

tated song datasets including vocals and accompa-406

niments, we collect 20k Chinese and English songs407

from well-known music websites. To expand data,408

we also use open-source singing datasets including409

GTSinger (Zhang et al., 2024b) (30 hours in Chi-410

nese and English), M4Singer (Zhang et al., 2022a)411

(30 hours in Chinese), and OpenSinger (Huang412

et al., 2021) (83 hours in Chinese). After process-413

ing and cleaning, we have about 1,000 hours of414

song data and 1,150 hours of vocal data. We also415

use a filtered subset of LP-MusicCaps-MSD (Doh416

et al., 2023), resulting in about 1,200 hours of ac-417

companiment data. For zero-shot evaluation, we418

leave out 500 out-of-domain bilingual samples with419

unseen singers as the test set for each task. For420

more details, please refer to Appendix F.421

Implementation Details Mel-spectrograms are422

driven from raw waveforms with a 24kHz sample423

rate, 1280 window size, 320 hop size, and 80 mel424

bins. We use 4 layers of Band Transformer Blocks.425

The flow-matching time step is 100 for VocalBand426

and 1000 for AccompBand during training, while427

25 during inference with the Euler ODE solver. For428

more details, please refer to Appendix B.1.429

Evaluation Metrics We conduct both subjective430

and objective evaluations on generated samples.431

For lyric generation, we use overall quality (OVL)432

and relevance to the prompt (REL) for subjective 433

evaluation. In melody generation, multiple objec- 434

tive metrics are employed for controllability. We 435

use the Krumhansl-Schmuckler algorithm to pre- 436

dict the potential key of the generated notes and 437

report the average key accuracy KA. We compute 438

the average absolute difference of average pitches 439

(APD) and temporal duration (TD, in seconds). 440

Then, we employ pitch and duration distribution 441

similarity (PD and DD). Melody distance (MD) is 442

also computed using dynamic time warping. 443

For vocal generation, we conduct MOS (Mean 444

Opinion Score) as the subjective evaluation. We 445

use MOS-Q for synthesized quality and MOS-C for 446

controllability based on text prompts. We also use 447

F0 Frame Error (FFE) as the objective metric. For 448

singing style transfer, we also employ MOS-S and 449

Cosine Similarity (Cos) to assess singer similarity 450

in timbre and personalized styles of vocal prompts. 451

For song generation, raters evaluate audio sam- 452

ples in overall quality (OVL), relevance to the 453

prompt (REL), and alignment with the vocal (ALI). 454

For objective evaluation, we calculate Frechet Au- 455

dio Distance (FAD), Kullback–Leibler Divergence 456

(KLD), and the CLAP score (CLAP). Please refer 457

to Appendix G for more evaluation details. 458

Baseline Models For lyric generation, we use the 459

original Qwen-7B (Bai et al., 2023) as the baseline 460

model. For melody generation, we compare with 461

SongMASS (Sheng et al., 2021) and MIDI part 462

of MelodyLM (Li et al., 2024a). For vocal gener- 463

ation, we compare with VISinger2 (Zhang et al., 464

2022b), a high-fidelity SVS model, StyleSinger 465

(Zhang et al., 2024a), a zero-shot SVS model, 466

and vocal part of Melodist (Zhiqing et al., 2024) 467

and MelodyLM. For song generation, we compare 468

with Melodist and MelodyLM. For Melodist and 469

MelodyLM, we use their papers and demos for 470

evaluation, and open-source codes for other mod- 471

els. Please refer to Appendix H for more details. 472

4.2 Lyric and Melody Generation 473

Lyric Generation We evaluate lyric generation 474

models with different text prompts covering aspects 475

such as theme, emotion, genre, style, and specific 476

keywords to generate lyrics. As shown in Table 477

3, our fine-tuned LyricBand model outperforms 478

the original Qwen-7B model in overall quality and 479

relevance to text prompts. This result highlights 480

the effectiveness of our LyricBand in handling the 481

specific downstream task more proficiently. 482
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Methods KA(%)↑ APD↓ TD↓ PD(%)↑ DD(%)↑ MD ↓

SongMASS 58.9 3.78 2.93 55.4 68.1 3.41
MelodyLM 76.6 2.05 2.29 62.8 40.8 3.62

MelodyBand 72.7 1.74 1.65 65.8 70.5 3.12

Table 1: Results of melody generation.

Methods Vocal Generation Singing Style Transfer
MOS-Q ↑ MOS-C ↑ FFE ↓ MOS-Q ↑ MOS-C ↑ MOS-S ↑ Cos ↑

GT 4.34 ± 0.09 - - 4.35 ± 0.06 - - -

Melodist 3.83±0.09 - 0.12 - - - -
MelodyLM 3.88±0.10 - 0.08 3.76±0.12 - 3.81±0.12 -
VISinger2 3.62±0.07 3.63±0.09 0.16 3.55±0.11 3.57±0.05 3.70±0.08 0.82
StyleSinger 3.90±0.08 3.96±0.05 0.08 3.87±0.06 3.86±0.09 4.05±0.05 0.89

VocalBand 4.04±0.08 4.02±0.07 0.07 3.96±0.10 3.95±0.06 4.12±0.04 0.90

Table 2: Results of vocal generation and singing style transfer.

Methods OVL↑ REL↑

GT 92.31±1.29 84.07±1.63

Qwen-7B 74.35±1.37 80.66±0.92
LyricBand 79.68±1.05 82.01±1.13

Table 3: Results of lyric generation.

Melody Generation For MelodyLM, since the483

melody part is closed-sourced, we directly use484

the objective metrics reported in the paper. As485

shown in Table 1, MelodyBand outperforms Song-486

MASS across all metrics and performs better487

than MelodyLM except KA. Since we use a non-488

autoregressive transformer architecture, the gener-489

ation speed is much faster than the autoregressive490

model of MelodyLM. Thus, although MelodyLM491

has a slightly higher KA, our model is more suit-492

able for the multi-task song generation system.493

4.3 Vocal Generation494

We evaluate VocalBand on both zero-shot vocal495

generation and singing style transfer tasks using the496

same test set with unseen singers for fair compari-497

son. To enable style control (e.g., singing method,498

emotion, techniques), we incorporate our text en-499

coder and style alignment models into VISinger2500

and StyleSinger. Notably, Melodist uses known501

singer IDs, making it unfair for zero-shot com-502

parisons and incapable of achieving style transfer.503

Meanwhile, neither Melodist nor MelodyLM con-504

trol singing styles, so MOS-C is not provided.505

As shown in Table 2, VocalBand consistently out-506

performs baseline models in both tasks, achieving507

higher quality (MOS-Q, FFE), similarity (MOS-508

S, Cos), and controllability (MOS-C). This shows 509

the effectiveness of our Flow-based Style Predictor 510

for style control and transfer, as well as the high 511

quality provided by the Flow-based Pitch Predictor 512

and Mel Decoder. For more detailed and visualized 513

results, please refer to Appendices I.1 and I.2. 514

4.4 Song Generation 515

For song generation evaluation, we remix the gen- 516

erated vocals by VocalBand and accompaniments 517

by AccompBand. For MelodyLM and Melodist, 518

we use the objective metrics in their papers and sub- 519

jectively evaluate the demos on their demo pages. 520

We test the multi-task capabilities of Accomp- 521

Band under different conditions: using LyricBand 522

when lyrics are not provided, adding MelodyBand 523

when music scores are missing, using both with no 524

prompts, and finally evaluating full text prompts 525

and optional timbre prompts are provided. Notably, 526

the REL of MelodyLM and Melodist only con- 527

siders accompaniment controllability. In contrast, 528

for our model, we evaluate lyrics, melody, singing 529

styles, and music styles based on text prompts. 530

The results are listed in Table 4, where VersBand 531

demonstrates the highest perceptual quality (FAD, 532

KLD, OVL), the best adherence to text prompts 533

(CLAP, REL), and the most effective alignment 534

(ALI). This demonstrates the quality and control- 535

lability of VocalBand, as well as the quality, con- 536

trollability, and alignment of AccompBand. When 537

some elements in text prompts are removed, Vers- 538

Band can strike an impressive balance between cre- 539

ativity and stability. For experiments about more 540

song generation tasks, please refer to Appendix I. 541
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Methods FAD ↓ KLD ↓ CLAP ↑ OVL ↑ REL ↑ ALI ↑

Melodist 3.81 1.34 0.39 84.12±1.54 85.97±1.51 74.86±1.13
MelodyLM 3.42 1.35 0.35 85.23±1.62 86.44±0.90 75.41±1.34

VersBand (w/o lyrics) 3.37 1.30 0.50 86.65±0.91 85.98±1.08 77.02±1.33
VersBand (w/o scores) 3.38 1.31 0.48 85.12±0.77 85.15±1.22 75.91±1.62
VersBand (w/o prompts) 3.55 1.35 - 83.49±1.20 - 74.87±1.68
VersBand (w/ full) 3.01 1.27 0.58 87.92±1.73 88.03±0.59 80.51±1.66

Table 4: Results of song generation. Content includes lyrics and music scores.

Methods FAD ↓ KLD ↓ CLAP ↑ OVL ↑ REL ↑ ALI ↑

VersBand 3.01 1.27 0.58 87.92±1.73 88.03±0.59 80.51±1.66

w/o Band-MOE 3.29 1.34 0.42 86.11±1.30 87.49±0.84 77.59±1.50
w/o Aligned MOE 3.15 1.25 0.54 87.19±1.14 88.48±0.66 77.86±1.35
w/o Controlled MOE 3.10 1.23 0.44 88.48±1.74 87.90±1.50 79.33±1.63
w/o Acoustic MOE 3.26 1.32 0.40 86.50±1.55 87.72±1.04 79.08±1.24

Table 5: Results of ablation study on AccompBand.

Methods MOS-Q↑ MOS-C↑ FEE↓

VocalBand 4.04±0.08 4.02±0.07 0.07

w/o styles 3.87±0.04 - 0.09
w/o Pirch Predictor 3.79±0.06 3.99±0.09 0.09
w/o Mel Decoder 3.68±0.08 3.92±0.07 0.13

Table 6: Ablation Results of VocalBand.

4.5 Ablation Study542

Ablation Study on VocalBand We conduct tests543

on key modules of VocalBand. To compare quality,544

we remove the style information from the Flow-545

based Style Predictor, and replace the Flow-based546

Pitch Predictor and Mel Decoder with simpler mod-547

els from FastSpeech2 (Ren et al., 2020) for com-548

parison. As shown in Table 6, we observe that549

the absence of style representation leads to a de-550

crease in quality, as it cannot generate vocals with551

rich emotional and stylistic variations, nor can it552

achieve style control or style transfer. Additionally,553

our Flow-based Pitch Predictor and Mel Decoder554

contribute significantly to the overall quality.555

Ablation Study on AccompBand We conduct556

tests on major modules of AccompBand. We set the557

full Band-MOE and three expert groups removed558

as other baseline models. As shown in Table 5,559

removing the Band-MOE results in a decline in all560

metrics. For individual expert groups, we observe561

that the Aligned MOE affects alignment, while562

the Controlled MOE impacts controllability. The563

absence of the Acoustic MOE, which handles dif-564

ferent acoustic channels, leads to a drop in quality.565

Ablation Study on VersBand We remove vari- 566

ous components from text prompts for evaluation. 567

As shown in Table 4, even with a minimum input, 568

VersBand still delivers remarkable performance. 569

When listening to songs generated for various tasks 570

on our demo page, it is evident VersBand shows 571

strong controllability and expressiveness over var- 572

ious text prompts, along with the ability to pro- 573

duce intricate, skillful vocals employing multiple 574

techniques, and complex, well-aligned accompani- 575

ments featuring harmonious instrumentation. For 576

more ablation studies, please refer to Appendix J. 577

5 Conclusions 578

In this paper, we present VersBand, a multi-task 579

song generation framework for synthesizing high- 580

quality, aligned songs with prompt-based con- 581

trol. We mainly design these models: 1) Vo- 582

calBand, a decoupled model leveraging the flow- 583

matching model for singing styles, pitches, and 584

mel-spectrograms generation, allowing fast and 585

high-quality vocal generation with style control. 586

2) AccompBand, a flow-based transformer model, 587

incorporates the Band-MOE, selecting suitable ex- 588

perts for enhanced quality, alignment, and control. 589

This model generates controllable, high-quality ac- 590

companiments aligned with vocals. 3) Two gen- 591

eration models, LyricBand for lyrics and Melody- 592

Band for melodies, contribute to the comprehensive 593

multi-task song generation system. Experimental 594

results demonstrate that VersBand performs better 595

over baseline models across multiple song genera- 596

tion tasks using objective and subjective metrics. 597
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6 Limitations598

In this section, we discuss two main limitations599

of VersBand and provide potential strategies to ad-600

dress them in future work: 1) To achieve compre-601

hensive controllability and high-quality multi-task602

song generation based on various prompts, Vers-603

Band utilizes four sub-models to generate differ-604

ent song components, relying on multiple infras-605

tructures like the flow-based transformer and VAE.606

This results in cumbersome training and inference607

procedures. Future work will explore using a single608

model to achieve the same multi-task generation609

capabilities and controllability. 2) Our dataset only610

includes songs in Chinese and English, lacking di-611

versity. In the future, we will attempt to build a612

larger and more comprehensive dataset to enable a613

wider range of application scenarios.614

7 Ethics Statement615

Large-scale generative models always present eth-616

ical challenges. VersBand, due to its multi-task617

song generation capabilities, could potentially be618

misused for dubbing in entertainment short videos,619

raising concerns about the infringement of famous620

singers’ copyrights. Then, its ability to transfer and621

control multiple song styles about lyric, melody,622

singing, and music, lowers the requirements for623

high-quality, personalized, controllable song gen-624

eration, posing some risks like unfair competition625

and potential unemployment for professionals in626

related music and singing occupations. To mitigate627

these potential risks, we will explore methods like628

music watermarking to protect individual privacy.629
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A Rectified flow-matching923

In this section, we introduce the flow-matching gen-924

erative method, as described by Liu et al. (2022).925

In generative modeling, the true data distribution is926

denoted as q(x1), which can be sampled but lacks927

an accessible density function. Consider a proba-928

bility path pt(xt), where x0 ∼ p0(x) represents a929

known simple distribution (e.g., a standard Gaus-930

sian), and x1 ∼ p1(x) approximates the real data931

distribution. The objective of flow-matching is to932

model this probability path directly, expressed as933

an ordinary differential equation (ODE):934

dx = u(x, t)dt, t ∈ [0, 1], (3)935

where u(x, t) denotes the target vector field, and936

t is the time index. If the vector field u is known,937

realistic data can be recovered by reversing the flow.938

To approximate u, a vector field estimator v(·) is939

used, with the flow-matching objective defined as:940

LFM(θ) = Et,pt(x) ∥v(x, t; θ)− u(x, t)∥2 ,
(4)941

where pt(x) denotes the distribution of x at time942

t. To enable conditional generation, we add con-943

ditional information c, leading to the conditional944

flow-matching objective (Lipman et al., 2022):945

LCFM(θ) =

Et,p1(x1),pt(x|x1) ∥v(x, t|c; θ)− u(x, t|x1, c)∥2 .
(5)946

Flow-matching proposes a straight path from noise947

to data. Specifically, we use a linear interpolation948

between the data x1 and Gaussian noise x0 to gen-949

erate samples at time t:950

xt = (1− t)x0 + tx1. (6)951

Thus, the conditional vector field becomes952

u(x, t|x1, c) = x1 − x0, and the rectified flow-953

matching (RFM) loss used for gradient descent is:954

∥v(x, t|c; θ)− (x1 − x0)∥2 . (7)955

If the vector field u is estimated correctly, we can956

generate realistic data by propagating Gaussian957

noise through an ODE solver at discrete time steps.958

A widely used method for solving the reverse flow959

is the Euler ODE:960

xt+ϵ = x+ ϵv(x, t|c; θ), (8)961

where ϵ is the step size. In our VocalBand, we use962

content, timbre, prompt style, text tokens, and other963

inputs for each task as conditioning information c, 964

while the target data x1 consists of target style, 965

F0, or mel-spectrograms. In our AccompBand, we 966

use timestep, text tokens, and vocal embedding as 967

conditioning information c, while the target data 968

x1 is the accompaniment embedding. 969

Moreover, flow matching models require 100 to 970

1000 steps during training, but since they generate 971

a straight path, they only require 25 or fewer steps 972

during inference, making the generation highly 973

efficient for fast generation. Additionally, flow- 974

matching models ensure stable and high-quality 975

generation due to their ability to model smooth 976

transitions between noise and data, maintaining 977

fidelity throughout the process. This stability is 978

crucial for complex generation tasks, as it reduces 979

artifacts and enhances the consistency of the output 980

across various conditions. 981

B VersBand Details 982

B.1 Model Details 983

Our VersBand framework consists of four models: 984

VocalBand, AccompBand, LyricBand, and Melody- 985

Band. For the text encoder, we use FLAN-T5-large 986

(Chung et al., 2024), while we also test BERT-large 987

(Devlin et al., 2018) and the text encoder of CLAP 988

(Elizalde et al., 2023) in Appendix J.1. Our vocoder 989

is the pre-trained HiFi-GAN (Kong et al., 2020). 990

For detailed hyperparameters of each component, 991

please refer to Appendix C.1, D.1, E.1, and E.2. 992

For training details, we set the sample rate to 993

24kHz, the window size to 1280, the hop size 994

to 320, and the number of mel bins to 80 to de- 995

rive mel-spectrograms from raw waveforms. We 996

train VocalBand on 4 NVIDIA RTX-4090 GPUs 997

for 200k steps. The Adam optimizer is used with 998

β1 = 0.9 and β2 = 0.98. AccompBand is trained 999

on 8 NVIDIA RTX-4090 GPUs for 80k steps, us- 1000

ing the AdamW optimizer with a base learning 1001

rate of 3× 10−6. The pre-trained accomp encoder 1002

and decoder are trained on 4 NVIDIA RTX-4090 1003

GPUs for 40k steps. MelodyBand is trained for 30k 1004

steps until convergence on 4 NVIDIA RTX-4090 1005

GPUs. LyricBand is fine-tuned for 4k steps until 1006

convergence on 4 NVIDIA RTX-4090 GPUs. 1007

B.2 Training Procedures 1008

For VocalBand, the final loss terms in the train- 1009

ing phase include the following components: 1) 1010

Lcommit: the commitment loss for the residual 1011

style encoder in Equation 9; 2) Lstyle: the flow 1012
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matching loss of Flow-based Style Predictor in1013

Equation 1; 3) Lpitch: the flow matching loss1014

of Flow-based Pitch Predictor; 4) Lmel: the flow1015

matching loss of Flow-based Mel Decoder; 5)Ldur:1016

the MSE duration loss between the predicted and1017

the GT phoneme-level duration in the log scale.1018

As for AccompBand, the final loss terms dur-1019

ing training consist of the following aspects: 1)1020

Lbalance: the load-balancing loss for each expert1021

group in Band-MOE in Equation 14; 2) Lflow: the1022

flow matching loss of AccompBand.1023

For the pre-trained accomp encoder and accomp1024

decoder, the final loss terms include: 1) Lrec: the1025

L2 reconstruction loss; 2) Ladv: the LSGAN-styled1026

adversarial loss in GAN discriminator.1027

Regarding MelodyBand, the final loss terms for1028

training involve: 1) Lpitch: the cross-entropy loss1029

for note pitches in Equation 15; 2) Lduration: the1030

L2 loss for note durations in Equation 16.1031

B.3 Multi-Task Inference Procedures1032

During inference, we can achieve multiple song1033

generation tasks based on text and audio prompts.1034

If full lyrics are not provided, LyricBand generates1035

phonemes p based on the text tokens zp. Without1036

input music scores, MelodyBand generates notes1037

n (note pitches and note durations) based on lyrics,1038

text prompts, and optional vocal prompts.1039

For the song generation task, VocalBand gener-1040

ates the target vocal yv based on n and p as con-1041

tents, along with zp to control styles, timbre prompt1042

zt is optional. AccompBand generates the target1043

accompaniment ya from Gaussian noise ϵ and yv.1044

To conduct singing style transfer, VocalBand1045

additionally takes a vocal prompt ỹa as input to1046

extract timbre zt and prompt style z̃s. The tar-1047

get vocal is required to maintain consistent timbre1048

and personal style (e.g., pronunciation, articulation1049

skills). The Flow-based Style Predictor is used to1050

predict the target style zs, learning both personal-1051

ized styles from z̃s and style control information1052

from zp (such as singing methods). Notably, z̃s and1053

zp can be input individually for full style control.1054

For music style transfer, AccompBand uses the1055

noisy prompt accompaniment ỹa with a time step1056

0.5 instead of ϵ and sums it with target vocal yv, en-1057

abling the model to learn the style from the retained1058

components of the prompt accompaniment.1059

In the vocal-to-song task, the GT vocal is used to1060

guide AccompBand in generating the accompani-1061

ment. In contrast, for the accompaniment-to-song1062

task, notes n are extracted from the GT accom-1063

Hyper-parameter Value

Phoneme
Encoder

Phoneme Embedding 256
Encoder Layers 4
Encoder Hidden 256

Encoder Conv1D Kernel 9
Encoder Conv1D Filter Size 1024

Note
Encoder

Pitch Embedding 256
Duration Hidden 256

Timbre
Encoder

Encoder Layers 5
Hidden Size 256

Conv1D Kernel 31

Residual
Style

Encoder

Conv Layers 5
RQ Codebook Size 256

Depth of RQ 4

Flow-based
Style

Predictor

Conv Layers 20
Kernel Size 3

Residual Channel 256
Hidden Channel 256

Training Time Steps 100

Flow-based
Pitch

Predictor

Conv Layers 12
Kernel Size 3

Residual Channel 192
Hidden Channel 256

Training Time Steps 100

Flow-based
Mel

Decoder

Conv Layers 20
Kernel Size 3

Residual Channel 256
Hidden Channel 256

Training Time Steps 100

Total Number of Parameters 56.26M

Table 7: Hyper-parameters of VocalBand.

paniment ŷa using ROSVOT (Li et al., 2024b) to 1064

guide VocalBand in vocal generation, while Ac- 1065

compBand is not used. 1066

C VocalBand Details 1067

C.1 Model Configuration 1068

We list the architecture and hyperparameters of 1069

VocalBand in Table 7. 1070

C.2 Decomposition Strategy 1071

We assume that the target vocal yv can be decom- 1072

posed into three distinct representations: content 1073

zc, style zs (e.g., singing methods, emotion, tech- 1074

niques, pronunciation, and articulation skills), and 1075

timbre zt. When a vocal prompt ỹv is provided 1076

during training, our goal is to transfer both the tim- 1077

bre z̃t and personalized style z̃s (like pronunciation 1078

and articulation skills) from the vocal prompt to 1079

the target vocal yv. Meanwhile, we also need to 1080

achieve style control from text tokens zp (such as 1081

singing method, emotion, and techniques). 1082

Following previous style transfer approaches 1083
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(Jiang et al., 2024), we assume that the mutual infor-1084

mation between yv and ỹv primarily captures global1085

information, represented by zt (timbre). Therefore,1086

the target timbre zt is set equal to the prompt tim-1087

bre z̃t, as we aim to control the timbre of the output1088

based on the user’s input. Under this assumption, z̃t1089

is extracted using a timbre encoder, which focuses1090

solely on timbre information, without capturing1091

style zs or content zc. To ensure that the content1092

encoders extract only content-related information,1093

we feed it phoneme sequences and musical notes,1094

allowing it to exclusively pass the content repre-1095

sentation zc. For the timbre and content encoders,1096

please refer to Appendix C.3 and C.4.1097

Once both zc and zt are obtained, we must re-1098

move fine-grained content and timbre information1099

from the target style zs. We employ a residual style1100

encoder to extract the prompt style z̃s, and then1101

use the Flow-based Style Predictor to predict the1102

target style zs. The latent vector zs generated by1103

the Flow-based Style Predictor not only captures1104

the personalized styles consistent with the prompt1105

style z̃s (e.g., pronunciation and articulation skills)1106

but also incorporates the styles in the text tokens zp1107

(like singing methods, emotions, and techniques).1108

By utilizing a residual quantization (RQ) model1109

(Lee et al., 2022a) as an information bottleneck1110

(Qian et al., 2019), the residual style encoder is1111

compelled to transmit only the fine-grained style1112

information zs (Zhang et al., 2024a), which other1113

encoders cannot capture. Both zs and z̃s share the1114

same form as the RQ embeddings, consisting of1115

multiple layers of fine-grained style information1116

that are disentangled from both timbre and con-1117

tent. This is because zs is the output of the flow-1118

matching ODE solver, whose training objective is1119

to capture the target style from the ground truth vo-1120

cals, as extracted by the residual style encoder. For1121

more details about the Flow-based Style Predictor,1122

please refer to Appendix C.6. Consequently, the1123

process guarantees the successful decomposition1124

of style from content and timbre. These embed-1125

dings zc, zt, and zs are then fed into a duration1126

predictor (Ren et al., 2020) and a length regulator1127

for subsequent F0 and mel-spectrogram prediction.1128

C.3 Timbre Encoder1129

The timbre encoder, designed to capture the unique1130

identity of the singer, extracts a global timbre vec-1131

tor z̃t from the vocal prompt ỹv. The encoder con-1132

sists of multiple stacked convolutional layers. To1133

ensure stability in the timbre representation, the1134

output of the timbre encoder is temporally aver- 1135

aged, producing a one-dimensional timbre vector 1136

z̃t. The target timbre zt is set equal to the prompt 1137

timbre z̃t, as we aim to control the timbre of the 1138

output based on the user’s input. 1139

C.4 Content Encoders 1140

Our content encoders consist of a phoneme en- 1141

coder and a note encoder. The phoneme encoder 1142

processes a sequence of phonemes p through a 1143

phoneme embedding layer followed by four FFT 1144

blocks, extracting phoneme features. In parallel, 1145

the note encoder handles musical score information 1146

n, processing note pitches and durations. These 1147

are passed through two separate embedding layers 1148

and a linear projection layer, which generate the 1149

corresponding note features. The outputs of the 1150

phoneme encoder and the note encoder are then 1151

summed as zc. 1152

C.5 Residual Style Encoder 1153

Singing style can vary across and within phonemes. 1154

To comprehensively capture phoneme-level styles 1155

(such as singing methods, emotion, techniques, pro- 1156

nunciation, and articulation skills) and disentangle 1157

them from timbre and content, we design the resid- 1158

ual style encoder. In the residual style encoder, 1159

we employ a Residual Quantization (RQ) module 1160

(Lee et al., 2022a) to extract singing style, creating 1161

an information bottleneck that effectively filters 1162

out non-style information (Zhang et al., 2024a). 1163

Thanks to the RQ’s ability to extract multiple lay- 1164

ers of information, it enables more comprehensive 1165

modeling of style across various hierarchical levels. 1166

Specifically, pronunciation and articulation skills 1167

encompass pitch transitions between musical notes 1168

and vibrato within a phoneme, where the multi- 1169

level modeling capability of RQ is highly suitable. 1170

More concretely, as illustrated in Figure 4 (a), 1171

we first extract the mel-spectrogram from the in- 1172

put vocal using the open-source tool librosa 1 and 1173

further refine it through convolutional blocks. The 1174

output is then condensed into phoneme-level hid- 1175

den states via a pooling layer, which operates based 1176

on phoneme boundaries. We utilize open-source 1177

tools including WhisperX (Bain et al., 2023) and 1178

Montreal Forced Aligner (MFA) (McAuliffe et al., 1179

2017) to extract these phoneme boundaries directly 1180

from the input vocal. Subsequently, the convolution 1181

stacks capture phoneme-level correlations. Next, 1182

1https://github.com/librosa/librosa
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Figure 4: The architecture of two components of VocalBand, Figure (a) shows the residual style encoder while
Figure (b) illustrates the vector field estimator of the Flow-based Mel Decoder.

we use a linear projection to map the output into a1183

low-dimensional latent variable space for code in-1184

dex lookup, significantly enhancing the utilization1185

of the codebook (Yu et al., 2021).1186

With a quantization depth of n, the RQ module1187

represents the input ze as a sequence of N ordered1188

codes. Let RQi(ze) denote the process of repre-1189

senting ze as RQ code and extracting the code em-1190

bedding in the i-th codebook. The representation1191

of ze in the RQ module at depth n ∈ [N ] is denoted1192

as ẑen =
∑n

i=1RQi(ze). To ensure that the input1193

representation adheres to a discrete embedding, a1194

commitment loss (Lee et al., 2022a) is employed:1195

Lcommit =

N∑
n=1

∥ze − sg[ẑe
n]∥22 , (9)1196

where the notation sg represents the stop-gradient1197

operator. It is important to note that Lcommit is the1198

cumulative sum of quantization errors across all1199

n iterations, rather than a single term. The objec-1200

tive is to ensure that ẑen progressively reduces the1201

quantization error of ze as the value of n increases.1202

Finally, we extract the phoneme-level style embed-1203

ding from the input vocal.1204

C.6 Flow-based Style Predictor1205

As shown in Figure 3 (a), the Flow-based Style1206

Predictor uses content zc, timbre zt, phoneme-level1207

prompt style z̃s, and text tokens zp to predict the1208

target style zs. With the combined zc and zt, we1209

employ a style alignment model utilizing the Scaled1210

Dot-Product Attention mechanism (Vaswani et al.,1211

2017) to align style control information from zp1212

(e.g., singing methods, emotions, techniques) with1213

the content. Positional embedding is applied be-1214

fore feeding zp into the attention module. In the1215

attention module, the combined zc and zt serve as 1216

the query zct, while zp serves as both the key and 1217

value, and d represents the dimensionality of the 1218

key and query: 1219

Attention(Q,K, V ) = Attention(zct, zp, zp)

= Softmax

(
zctz

T
p√
d

)
zp.

(10) 1220

We stack the style alignment layer multiple times 1221

for better performance and gradually stylize the 1222

query value. We combine the output with zct as 1223

condition c and then feed it into an ODE solver, 1224

which transforms Gaussian noise ϵ into zs along a 1225

probability path pt(zst). We concatenate z̃s with ϵ 1226

to allow zs to learn personalized styles (e.g., pro- 1227

nunciation and articulation skills). 1228

During training, we set u(zst, t) to represent the 1229

target vector field at time t, obtained through linear 1230

interpolation between ϵ and the ground truth (GT) 1231

phoneme-level style zs, which is extracted from the 1232

GT vocal by the residual style encoder. To stabilize 1233

the flow-matching training process, we do not train 1234

the Flow-based Style Predictor during the early 1235

stages of training (the first 50,000 steps). Instead, 1236

we feed the GT style zs into the subsequent Flow- 1237

based Pitch Predictor and Mel Decoder. Therefore, 1238

by the time we begin training the Flow-based Style 1239

Predictor, the residual style encoder has stabilized, 1240

ensuring a consistent GT zs, which is beneficial for 1241

the flow-matching training. 1242

The learned vector field v(zst, t|c; θ), predicted 1243

by a vector field estimator at each time t, ensures 1244

smooth interpolation between the initial noise and 1245

the output zs, guided by the flow-matching objec- 1246

tive. We use the non-causal WaveNet architecture 1247
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Figure 5: The architecture of Flow-based Mel Decoder.

(Van Den Oord et al., 2016) as the backbone of our1248

vector field estimator, due to its proven capability1249

in modeling sequential data. For more details about1250

the vector field estimator, please refer to Appendix1251

C.7. Notably, to enable the model to handle cases1252

without a vocal prompt, we drop vocal prompts1253

with a probability of 0.2 during training. We also1254

replace zp with embedded empty strings in a prob-1255

ability of 0.1 for cases without prompts.1256

During inference, the ODE solver generates the1257

phoneme-level target style zs directly from the con-1258

catenation of Gaussian noise and z̃s (if a vocal1259

prompt is provided), based on the condition c. This1260

method ensures fast and controllable generation of1261

zs, learning personalized styles consistent with z̃s1262

while incorporating the aligned style control infor-1263

mation from zp.1264

C.7 Vector Field Estimator1265

We adopt the non-causal WaveNet architecture1266

(Van Den Oord et al., 2016) as the backbone of1267

our vector field estimators for the Flow-based Style1268

Predictor, Pitch Predictor, and Mel Decoder, due1269

to its demonstrated effectiveness in modeling se-1270

quential data. The architecture of the vector field1271

estimator for the Flow-based Mel Decoder is de-1272

picted in Figure 4 (b). We input content zc, timbre1273

zt, style zs, and F0 as conditioning factors to pre-1274

dict the corresponding vector field. Similarly, the1275

architecture of the vector field estimators for the1276

Flow-based Pitch Predictor and Style Predictor fol-1277

lows the same structure, while the only difference1278

lies in the input and condition for each model.1279

C.8 Flow-based Pitch Predictor and Mel1280

Decoder1281

During training, our target F0 is extracted using1282

the open-source tool RMVPE (Wei et al., 2023),1283

while mel-spectrograms are extracted using the1284

open-source tool librosa 1. As shown in Figure1285

5, the Flow-based Mel Decoder employs a flow-1286

matching architecture (Liu et al., 2022), where the1287

Hyperparameter Value

Accomp
Encoder

Encoder Layers 3
Encoder Hidden 384

Encoder Conv1D Kernel 5
Encoder Output Channels 20

Accomp
Decoder

Decoder Layers 3
Decoder Hidden 384

Decoder Conv1D Kernel 5
Decoder Input Channels 20

Vocal
Encoder

Encoder Layers 3
Encoder Hidden 384

Encoder Conv1D Kernel 5
Encoder Output Channels 20

Band
Transformer

Blocks

Transformer Layers 4
Transformer Embed Dim 768

Transformer Attention Headers 8
Experts for each group 4
Training Time Steps 1000

Total Number of Parameters 431.07M

Table 8: Hyper-parameters of AccompBand.

vector field estimator and ODE solver generate 1288

the target mel-spectrogram from Gaussian noise ϵ. 1289

The Flow-based Pitch Predictor follows a similar 1290

flow-matching procedure. We adopt the non-causal 1291

WaveNet architecture (Van Den Oord et al., 2016) 1292

as the backbone of our vector field estimator. For 1293

further details on the vector field estimator, please 1294

refer to Appendix C.7. 1295

D AccompBand Details 1296

D.1 Model Configuration 1297

We list the architecture and hyperparameters of 1298

AccompBand in Table 8. 1299

D.2 Accomp Encoder and Decoder 1300

The accomp encoder and decoder are based on 1301

the VAE model (Kingma and Welling, 2013). For 1302

pre-training the accomp encoder and decoder, we 1303

use the L2 reconstruction loss: Lrec = ∥yv − 1304

ŷv∥2,where yv is the reconstructed accompani- 1305

ment mel-spectrogram and ŷv is the ground truth 1306

accompaniment mel-spectrogram. Additionally, 1307

we incorporate a GAN discriminator, following 1308

the architecture of ML-GAN (Chen et al., 2020), 1309

to further enhance the quality of the reconstruc- 1310

tion. We apply the LSGAN-style adversarial loss 1311

(Mao et al., 2017), Ladv, which aims to mini- 1312

mize the distributional distance between the pre- 1313

dicted mel-spectrograms and the ground truth mel- 1314

spectrograms. Before feeding the waveform into 1315

the accomp encoder, we first extract the mel- 1316

spectrogram using librosa 1. After generating the 1317

16



mel-spectrogram from the decoder output, we uti-1318

lize HiFi-GAN (Kong et al., 2020) to convert it1319

back into audio.1320

D.3 Band Transformer Blocks1321

As shown in Figure 2 (c), the Band Transformer1322

Blocks are based on Flag-Dit (Gao et al., 2024).1323

During training, the vocal embedding zv extracted1324

by the vocal encoder is added to the noisy input xt1325

to leverage the transformer’s self-attention mecha-1326

nism, allowing the model to learn vocal-matching1327

style, rhythm, and melody. We use RMSNorm1328

(Zhang and Sennrich, 2019) to improve training sta-1329

bility, preventing the absolute values from growing1330

uncontrollably and causing numerical instability.1331

Next, we compute the global style embedding zg1332

by averaging the text tokens zp and vocal embed-1333

ding zv along the temporal dimension and adding1334

the time step embedding of t. This global style1335

embedding is used in a multi-layer style adaptor,1336

which modulates the latent representation using1337

adaptive layer normalization (AdaLN) (Peebles and1338

Xie, 2023) to ensure style consistency. We compute1339

the scale and shift using linear regression:1340

AdaLN(h, c) = γc × LayerNorm(h) + βc,
(11)1341

where h represents the hidden representation. We1342

zero-initialize the batch norm scale factor γ in1343

each block (Peebles and Xie, 2023). Moreover,1344

we explore relative positional encoding with ro-1345

tary positional embedding (RoPE) (Su et al., 2024),1346

which injects temporal positional information into1347

the model. This enables the model to capture the1348

temporal relationships between successive frames,1349

providing significant performance improvements1350

for the transformer.1351

Then, the zero-initialized attention mechanism1352

(Bachlechner et al., 2021) is used to inject con-1353

ditional information from the text tokens zp into1354

the hidden states h, while simultaneously learning1355

the vocal style, rhythm, and melody aligned with1356

the vocal embedding zv added to xt. Given the1357

accompaniment queries Qh, keys Kh, and values1358

Vh from hidden states, along with the text keys Kz1359

and values Vz , the final attention output is:1360

Attention = softmax

(
Q̃hK̃h

⊤

√
d

)
Vh+

tanh(α)softmax

(
Q̃hK

⊤
z√

d

)
Vz,

(12)1361

where Q̃h and K̃h denote using RoPE in both 1362

queries and keys, d is the dimensionality of both 1363

queries and keys, and α is a zero-initialized learn- 1364

able parameter that gates the cross-attention with 1365

the input text tokens. 1366

D.4 Band-MOE 1367

As illustrated in Figure 3(d), Band-MOE is com- 1368

posed of three expert groups: Aligned MOE, Con- 1369

trolled MOE, and Acoustic MOE, each comprising 1370

multiple experts. We employ Feed-Forward Net- 1371

works (FFNs) as the architecture for each expert. 1372

It is well-established (Lee et al., 2022b) that mel- 1373

spectrogram details exhibit different patterns across 1374

various acoustic frequencies. In musical accompa- 1375

niment, high-frequency components often include 1376

the harmonics and overtones of instruments like 1377

strings and flutes, as well as percussive elements 1378

such as cymbals and hi-hats, which enhance the 1379

brightness and clarity of the sound. Conversely, 1380

low-frequency content encompasses basslines and 1381

kick drums, providing foundational rhythm and 1382

depth that shape the overall groove and warmth 1383

of the music. Motivated by this, previous works 1384

(Kong et al., 2020) have adopted multi-scale archi- 1385

tectures to model downsampled signals at different 1386

frequency bands, which effectively control the pe- 1387

riodic elements of the signal and reduce artifacts. 1388

Building on this idea, we introduce Acoustic 1389

MOE, where experts are assigned to specific acous- 1390

tic frequency bands based on the processed hidden 1391

representation h, and their outputs are aggregated 1392

to produce the final result. Moreover, since the 1393

vocal and accomp encoder employ 1D convolu- 1394

tions to encode both the vocal and accompaniment 1395

mel-spectrograms, the latent representation of the 1396

hidden h should retain the frequency distribution. 1397

Our routing strategy for all routers is based on 1398

the dense-to-sparse Gumbel-Softmax method (Nie 1399

et al., 2021), enabling dynamic and efficient expert 1400

selection. The Gumbel-Softmax trick facilitates 1401

sampling from a categorical distribution by repa- 1402

rameterizing categorical variables to make them 1403

differentiable. Specifically, the routing score g(h) 1404

for each expert i is computed as follows: 1405

g(h)i =
exp((h ·Wg + ζi)/τ)∑N
j=1 exp((h ·Wg + ζj)/τ)

, (13) 1406

where Wg is the learned gating weight, ζ is sam- 1407

pled from the Gumbel(0, 1) distribution (Jang et al., 1408

2016), and τ is the softmax temperature. Initially, 1409
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a high temperature τ results in denser expert se-1410

lection, allowing multiple experts to process the1411

same input. As training progresses, τ is gradually1412

decreased, making the routing sparser and select-1413

ing fewer experts for each input. When τ → 0, the1414

distribution approaches a nearly one-hot form, ef-1415

fectively selecting the most suitable expert for each1416

token. Following prior work (Nie et al., 2021), we1417

dynamically reduce τ from 2.0 to 0.3 during train-1418

ing and use the hard mode during inference, select-1419

ing only one expert. Notably, only the global router1420

does not conduct hard mode during inference, as1421

we need experts from different expert groups to1422

cooperate in accompaniment generation. The algo-1423

rithm of Band-MOE is shown in Algorithm 1.1424

Moreover, to avoid overloading any individual1425

expert and ensure balanced utilization, we incor-1426

porate a load-balancing loss for each expert group1427

(Fedus et al., 2022). The balance loss Lbalance is:1428

Lbalance = αN
N∑
i=1

(
1

B

∑
h∈B

g(h)i

)
. (14)1429

where B is the batch size, N is the number of ex-1430

perts, and α is a hyperparameter controlling the1431

strength of the regularization, for which we use1432

0.1. This loss encourages a more uniform distribu-1433

tion of tokens across experts, improving training1434

efficiency by preventing expert underutilization or1435

overload. Thus, our routing strategy not only al-1436

lows dynamic expert selection but also ensures that1437

the computational load is evenly distributed across1438

experts, reducing training time and improving the1439

model performance of Band-MOE.1440

D.5 Classifier-free Guidance1441

During AccompBand training, we randomly re-1442

place the input text tokens with embedded empty1443

strings at a probability of 0.2. The empty strings1444

are processed through the text encoder to extract1445

text tokens and are padded to a fixed length, like the1446

original text prompts. For γ in Equation 2, a higher1447

γ emphasizes the control of the text prompt, im-1448

proving generation quality by making the outputs1449

more aligned with the given conditions. In contrast,1450

a lower γ allows for more diverse outputs by reduc-1451

ing the reliance on the text prompt, though this may1452

result in lower relevance to the input prompt. In1453

our major accompaniment generation experiments,1454

we use γ = 3.1455

E LyricBand and MelodyBand 1456

E.1 LyricBand 1457

To enhance the customizability of our song gen- 1458

eration system, we introduce LyricBand, a model 1459

designed to generate complete song lyrics based 1460

on arbitrary text prompts. Users can input parame- 1461

ters such as theme, emotion, genre, style, and spe- 1462

cific keywords to generate fully personalized lyrics 1463

tailored to their preferences. To effectively train 1464

LyricBand, we leverage GPT-4o (Achiam et al., 1465

2023) to extract prompts from a large corpus of 1466

existing song lyrics in our training data. These 1467

prompts encapsulate essential elements such as the 1468

thematic content, emotional tone, narrative perspec- 1469

tive, rhyme scheme, and stylistic features of the 1470

songs. By extracting this rich set of attributes, we 1471

create a comprehensive dataset that pairs textual 1472

prompts with corresponding lyrics, enabling the 1473

model to learn the mapping between user inputs 1474

and desired lyrical outputs. 1475

We employ QLoRA (Dettmers et al., 2024) for 1476

efficient fine-tuning of the well-performing open- 1477

source bilingual large language model Qwen-7B 1478

(Bai et al., 2023). By utilizing 4-bit quantization 1479

and low-rank adapters, QLoRA significantly re- 1480

duces the computational resources required for fine- 1481

tuning while preserving the model’s performance. 1482

This approach allows LyricBand to adapt effec- 1483

tively to the task of lyrics generation, maintaining 1484

high levels of customization and creativity across a 1485

diverse range of user prompts. In our experiments, 1486

we set LoRA r = 32, α = 16. LyricBand demon- 1487

strates the capability to capture nuanced themes 1488

and emotions specified by users, generating lyrics 1489

that not only align with the given prompts but also 1490

exhibit coherent structure and artistic expression. 1491

E.2 MelodyBand 1492

Previous singing voice and song generation mod- 1493

els often require users to provide music scores 1494

to achieve stable melodies (Zhiqing et al., 2024), 1495

lacking personalized customization of the melody. 1496

Inspired by symbolic music generation models 1497

(Dong et al., 2018; Ding et al., 2024), we introduce 1498

MelodyBand, an additional model where melody- 1499

related features like notes are generated from text 1500

descriptions in advance. By using notes as the rep- 1501

resentation of the melody, we can achieve more 1502

stable melody control. However, requiring users 1503

to provide music scores is impractical. Generat- 1504

ing notes using natural language prompts can both 1505
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Algorithm 1 Pseudo-Code of Band-MOE Routing Strategy

Input: Input hidden representation h, vocal embedding zv, text prompt embedding zp, time step t
Output: Output with enhanced quality and control ofinal

1: Initialize Gumbel-Softmax temperature τ , sample Gumbel noise ζ
2: for each time step t do
3: Aligned MOE:
4: Use Gumbel-Softmax for each token in the time channel to select an expert by zv:
5: galigned(h)← GumbelSoftmax(zv ·Waligned + ζ)/τ
6: Compute Aligned MOE output:
7: oaligned ←

∑
i galigned,i · Experti,aligned(h)

8: Controlled MOE:
9: Use Cross-Attention extracting style for alignment between zp and h:

10: zsty ← CrossAttention(h(Q), zp(K), zp(V ))
11: Use Gumbel-Softmax for each token in the time channel to select an expert by zsty:
12: gcontrolled(h)← GumbelSoftmax(zsty ·Wcontrolled + ζ)/τ
13: Compute Controlled MOE output:
14: ocontrolled ←

∑
i gcontrolled,i · Experti,controlled(h)

15: Global Router:
16: Use Gumbel-Softmax to compute global weights αt and βt:
17: gglobal(h)← GumbelSoftmax(embedding(t) ·Wglobal + ζ)/τ
18: αt, βt ← gglobal(h)
19: Combine Aligned and Controlled MOE outputs:
20: ocombined ← αt · oaligned + βt · ocontrolled
21: Acoustic MOE:
22: Use Gumbel-Softmax to select an expert for each frequency channel:
23: gacoustic(ocombined)← GumbelSoftmax(ocombined ·Wacousitc + ζ)/τ
24: Compute Acoustic MOE output:
25: oacoustic ←

∑
j gacoustic,j · Expertj,acoustic(ocombined)

26: end for
27: Return ofinal ← oacoustic as the final routed output

ensure stable melodies and allow for flexible cus-1506

tomization. For controllable melody generation,1507

we construct artificial textual prompts to deliver1508

melody-related information. Musical attributes like1509

key, tempo, vocal range, and other information can1510

be used as prompts for melody customization.1511

When users do not input music scores, as shown1512

in Figure 6(b), MelodyBand takes the phonemes of1513

the lyrics as content information and optional vocal1514

prompts to extract timbre. It composes music for1515

the lyrics and selects appropriate frequencies based1516

on the timbre, using text prompts for style control.1517

We employ a non-autoregressive transformer model1518

to efficiently generate note pitches and durations si-1519

multaneously. The non-autoregressive transformer1520

enables fast and high-quality generation, making it1521

suitable for our multi-task song generation system.1522

With encoded phonemes and timbre, we inject1523

text prompts through cross-attention transformers,1524

allowing the model to integrate linguistic cues more1525

Self-Attention

Cross-Attention

Add & Norm

Add & Norm

𝑧𝑝
Phoneme 𝑝

MLP

Note PitchNote Duration

SoftmaxLinear

𝑁 ×

Phoneme Embed

Timbre Encoder

Vocal Prompt ෦𝑦𝑣

Figure 6: The architecture of MelodyBand.

effectively. Several heads are added to generate 1526

note pitches and durations. We pass each dimen- 1527

sion of the stacked output through a softmax func- 1528

tion to generate note pitches and through a linear 1529

layer to generate note durations. We train Melody- 1530
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Dataset Type Languages Annotation Duration (hours)

GTSinger (Zhang et al., 2024b) vocal Chinese & English lyrics, notes,styles 29.6
M4Singer (Zhang et al., 2022a) vocal Chinese lyrics, notes 29.8
OpenSinger (Huang et al., 2021) vocal Chinese lyrics 83.5
LP-MusicCaps-MSD (Doh et al., 2023) accomp / text prompt 213.6
web-crawled song Chinese, English / 979.4

Table 9: Statistics of training datasets.

Band using cross-entropy loss for note pitches and1531

an L2 loss for note durations. Let the true note pitch1532

and duration for i-th phoneme be n(i)
p and n

(i)
d , and1533

the GT note pitch and duration be n̂
(i)
p and n̂

(i)
d ,1534

respectively. The cross-entropy loss Lpitch is:1535

Lpitch = −
N∑
i=1

K∑
k=1

δn̂p
(i),k log(P

(i)
k ), (15)1536

where N is the length of phoneme sequence, K is1537

number of pitch classes, δn̂p
(i),k is 1 if n̂p

(i) = k1538

and 0 otherwise. P (i)
k is the predicted probability1539

of pitch k at time i. The L2 loss Lduration is:1540

Lduration =
N∑
i=1

(
n
(i)
d − n̂

(i)
d

)2
. (16)1541

Our MelodyBand employs 8 transformer layers,1542

and 8 attention heads, the hidden size is 768, with1543

23.32M parameters in total.1544

F Dataset Analysis1545

We train our model using a combination of bilin-1546

gual web-crawled song datasets and open-source1547

singing datasets. Since there are no publicly avail-1548

able annotated song datasets, we collect 20k Chi-1549

nese and English songs from well-known music1550

websites. To expand data, we also use open-1551

source singing datasets including GTSinger (Zhang1552

et al., 2024b) (30 hours in Chinese and English),1553

M4Singer (Zhang et al., 2022a) (30 hours in Chi-1554

nese), and OpenSinger (Huang et al., 2021) (831555

hours in Chinese). After processing and cleaning,1556

we have about 1,000 hours of song data (about 80%1557

in Chinese and 20% in English) and 1,150 hours1558

of vocal data. For accompaniment generation, we1559

use a filtered subset of LP-MusicCaps-MSD (Doh1560

et al., 2023), resulting in a total size of around1561

1,200 hours. We use all open-source datasets under1562

license CC BY-NC-SA 4.0. The statistics of the1563

datasets are listed in 9.1564

For the web-crawled data, we use Ultimate Vo-1565

cal Remover 2, an open-source music source sep-1566

2https://github.com/Anjok07/ultimatevocalremovergui

aration tool, to perform the vocal-accompaniment 1567

separation. We utilize WhisperX (Bain et al., 2023) 1568

to automatically transcribe the demixed vocals, and 1569

Montreal Forced Aligner (MFA) (McAuliffe et al., 1570

2017) is employed for phoneme and vocal align- 1571

ment. After that, we filter the samples using Silero 1572

VAD (Team, 2021) to eliminate unvoiced clips. The 1573

samples are segmented into phrases with a maxi- 1574

mum length of 20 seconds, resulting in an average 1575

segment duration of 12 seconds. 1576

We utilize a music captioning model (Doh et al., 1577

2023) to generate text prompts from the segmented 1578

song clips, and GPT-4o (Achiam et al., 2023) is 1579

used to separate music styles (such as genre, tone, 1580

and instrumentation) from vocal descriptions (such 1581

as emotion and gender). For singing styles, follow- 1582

ing style labels of GTSinger, we hire music experts 1583

to annotate all songs for the global singing method 1584

(e.g., pop or bel canto) and to label around 200 1585

hours of segmented vocal clips for specific tech- 1586

niques used (e.g., mixed voice, falsetto, breathy, 1587

vibrato, glissando, and pharyngeal). We hire all 1588

music experts and annotators with musical back- 1589

grounds at a rate of $300 per hour. They have 1590

agreed to make their contributions available for re- 1591

search purposes. These annotations, along with 1592

the separated vocal descriptions, form the complete 1593

singing styles. For melody styles, we extract the 1594

key from the segmented demixed vocal clips us- 1595

ing music21 3, tempo and duration using librosa 1, 1596

and then use GPT-4o to combine these elements, 1597

generating natural language descriptions of vocal 1598

ranges based on the average pitch. For lyric styles, 1599

we process lyrics using GPT-4o to extract elements 1600

such as thematic content, emotional tone, narrative 1601

perspective, rhyme scheme, and stylistic features. 1602

All styles are combined, along with various an- 1603

notations, to form the final text prompts. During 1604

generation, we randomly omit certain elements or 1605

entire styles to enhance the model’s generalization 1606

ability. We utilize ROSVOT (Li et al., 2024b) to 1607

obtain note sequences from the segmented demixed 1608

3https://github.com/cuthbertLab/music21
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Figure 7: Screenshot of lyric evaluation.

Figure 8: Screenshot of vocal evaluation.

vocal clips. For vocal and accompaniment data that1609

lacks specific annotations, we use corresponding1610

methods to complete the labeling process.1611

G Evaluation Metrics1612

G.1 Lyric and Melody Evaluation1613

For evaluating lyric generation, we randomly select1614

30 prompts and generate 30 sets of lyrics. Each1615

set is evaluated by at least 15 raters for overall1616

quality (OVL) and relevance to the prompt (REL)1617

as subjective evaluation metrics. The rating scale1618

ranged from 1 to 100, representing poor to good1619

quality. OVL focused on the overall quality of1620

the lyrics, including naturalness, and grammati-1621

cal correctness, while REL assessed the alignment1622

with the thematic content, emotional tone, narrative1623

perspective, rhyme scheme, and stylistic features1624

specified in the text prompt. All participants are1625

fairly compensated for their time and effort at a rate1626

of $12 per hour. They are also informed that the1627

results will be used for scientific research purposes.1628

The testing screenshot is shown in Figure 7.1629

In melody generation, multiple objective metrics1630

are employed to evaluate controllability. We use1631

the Krumhansl-Schmuckler algorithm to predict1632

the potential key of the generated notes and report 1633

the average key accuracy (KA). If the Pearson cor- 1634

relation coefficient of the ground truth (GT) notes 1635

corresponding to the GT key is r, and the predicted 1636

MIDI corresponding to the GT key is r̂, we de- 1637

fine the key accuracy as KA = r̂/r (only valid 1638

if r ̸= 0). We also compute the average absolute 1639

difference of average pitches (APD) and tempo- 1640

ral duration (TD, in seconds). Moreover, follow- 1641

ing previous work (Sheng et al., 2021), we record 1642

pitch and duration distribution similarity (PD and 1643

DD). Specifically, we calculate the distribution (fre- 1644

quency histogram) of pitches and durations in notes 1645

and measure the distribution similarity between 1646

generated notes and ground truth notes: 1647

1

Ns

Ns∑
i=1

OA(Disi, D̂isi), (17) 1648

where Disi and D̂isi represent the pitch or dura- 1649

tion distribution of the i-th generated and ground- 1650

truth song, respectively, Ns is the number of songs 1651

in the test set, and OA represents the average over- 1652

lapped area. Melody distance (MD) is also com- 1653

puted with dynamic time warping (DTW) (Berndt 1654

and Clifford, 1994). To evaluate the pitch trend 1655
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Figure 9: Screenshot of song evaluation.

of the melody, we spread out the notes into a time1656

series of pitch according to the duration, with a1657

granularity of 1/16 note. Each pitch is normal-1658

ized by subtracting the average pitch of the entire1659

sequence. To measure the similarity between gen-1660

erated and ground-truth time series with different1661

lengths, we use DTW to compute their distance.1662

G.2 Vocal Evaluation1663

For vocal generation, we randomly select 30 pairs1664

of sentences from our test set for subjective eval-1665

uation. Each pair consists of a ground truth (GT)1666

and a synthesized vocal, each listened to by at least1667

15 professional listeners. For MOS-Q evaluations,1668

these listeners are instructed to focus on synthesis1669

quality (including clarity, naturalness, and richness1670

of stylistic details) without considering the style1671

control relevance to text prompts. For MOS-C,1672

the listeners are informed to evaluate style con-1673

trollability (relevance to the text prompt regarding1674

the singing method, emotion, and techniques), dis-1675

regarding any differences in content, timbre, or1676

synthesis quality (such as clarity, naturalness, and1677

stylistic details). In both MOS-Q and MOS-C eval-1678

uations, listeners are asked to grade various vocal1679

samples on a Likert scale from 1 to 5. For fairness,1680

all samples are resampled to 24kHZ. The screen-1681

shots of instructions are shown in Figure 8.1682

We employ F0 Frame Error (FFE) to evaluate1683

the test set’s synthesis quality objectively. FFE1684

combines metrics for voicing decision error and F01685

error, capturing essential synthesis quality informa-1686

tion. For comparison with the FFE reported in the1687

MelodyLM paper, we resample all audio to 24kHz.1688

For singing style transfer, subjective evaluation 1689

is conducted using pairs of audio, where each pair 1690

includes a prompt vocal and a synthesized vocal. 1691

During MOS-S evaluations, listeners are asked to 1692

assess singer similarity in terms of timbre and per- 1693

sonalized styles to the vocal prompt, disregarding 1694

any differences in content or synthesis quality. 1695

To objectively evaluate timbre similarity, we em- 1696

ploy Cosine Similarity (Cos). Cos measures the 1697

resemblance in singer identity between the synthe- 1698

sized vocal and the vocal prompt by computing the 1699

average cosine similarity between the embeddings 1700

extracted from the synthesized voices and the vocal 1701

prompt, thus providing an objective indication of 1702

singer similarity performance. Specifically, we use 1703

a voice encoder 4 to extract singer embeddings. 1704

In all MOS-Q, MOS-S, and MOS-C evaluations, 1705

listeners are requested to grade the vocal samples 1706

on a Likert scale ranging from 1 to 5. All partic- 1707

ipants are fairly compensated for their time and 1708

effort. We compensate participants at a rate of $12 1709

per hour. Participants are informed that the results 1710

will be used for scientific research. 1711

G.3 Song Evaluation 1712

For the subjective evaluation of song generation, 1713

we randomly select 30 audio samples from our 1714

test set. Each sample is listened to by at least 15 1715

raters. Following previous work (Copet et al., 2024; 1716

Zhiqing et al., 2024), we ask human raters to evalu- 1717

ate three aspects of the audio samples: (i) overall 1718

quality (OVL), (ii) relevance to the text prompts 1719

4https://github.com/resemble-ai/Resemblyzer
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(REL), and (iii) alignment with the vocal (ALI).1720

For the overall quality test, raters are asked to rate1721

the perceptual quality of the provided samples. For1722

the text relevance test, raters evaluate how well the1723

audio matches the music style control information1724

in the text prompts. For the alignment with the1725

vocal test, raters focus on the temporal correspon-1726

dence between accompaniment and vocal in terms1727

of style, melody, and rhythm. Ratings are given on1728

a scale from 1 to 100.1729

All participants are fairly compensated for their1730

time and effort, with a rate of $12 per hour. Partici-1731

pants are informed that the results will be used for1732

scientific research. For fairness, all samples are re-1733

sampled to 24kHZ and normalized to -23dB LUFS1734

(Series, 2011). The screenshots of instructions in1735

the song generation task are shown in Figure 9.1736

For the objective evaluation, we use Frechet Au-1737

dio Distance (FAD), Kullback-Leibler Divergence1738

(KLD), and the CLAP score (CLAP). We report the1739

FAD (Kilgour et al., 2018) using the official imple-1740

mentation in TensorFlow with the VGGish model1741
5. A low FAD score indicates that the generated1742

audio is plausible. Following previous work (Copet1743

et al., 2024), we compute the KL-divergence over1744

the probabilities of the labels between the GT and1745

the generated music. Finally, the CLAP score (Wu1746

et al., 2023) is computed between the track descrip-1747

tion and the generated audio to quantify audio-text1748

alignment, using the pre-trained CLAP model 6.1749

H Baseline Models1750

For lyric generation, we employ the fine-tuned1751

Qwen-7B model as our lyric generation compo-1752

nent and use its original (non-fine-tuned) version as1753

the baseline. For melody generation, we compare1754

against SongMASS (Sheng et al., 2021) and the1755

MIDI component of MelodyLM (Li et al., 2024a),1756

both of which are capable of generating MIDI se-1757

quences based on Transformer architectures.1758

For vocal generation, we compare with1759

VISinger2 (Zhang et al., 2022b), a traditional high-1760

fidelity SVS model, StyleSinger (Zhang et al.,1761

2024a), the current state-of-the-art zero-shot SVS1762

model with style transfer capabilities. We incorpo-1763

rate our text encoder and style alignment modules1764

into the open-source VISinger2 and StyleSinger1765

implementations to enable style control. These1766

5https://github.com/google-research/google-
research/tree/master/frechet_audio_distance

6https://github.com/LAION-AI/CLAP

two models represent well-performing open-source 1767

SVS baselines: one follows the traditional SVS 1768

paradigm, while the other supports zero-shot style 1769

transfer and style modeling. Meanwhile, we also 1770

compare with vocal parts of Melodist (Zhiqing 1771

et al., 2024) and MelodyLM. They both leverage 1772

Transformer models for vocal generation, allow- 1773

ing for direct comparisons like other SVS models. 1774

It should be noted that Melodist lacks zero-shot 1775

capabilities and style transfer features. Similarly, 1776

Melodist and MelodyLM cannot perform natural 1777

language prompt–based style control. 1778

For song generation, we compare with Melodist 1779

and MelodyLM, two representative text-to-song 1780

models. They publicly report datasets of a similar 1781

scale to ours and provide comprehensive subjective 1782

and objective evaluation metrics for song genera- 1783

tion, thus enabling fair comparisons. We do not em- 1784

ploy the recently proposed Seed-Music (Bai et al., 1785

2024) as a baseline model because it was intro- 1786

duced very recently, does not provide open-source 1787

code, and lacks details on dataset type and size, 1788

as well as comprehensive objective and subjective 1789

evaluation results. Additionally, we did not com- 1790

pare our work with SongCreator (Lei et al., 2024) 1791

because its task design does not support style con- 1792

trol via natural language prompts, excludes melody 1793

information, lacks open-source code, and differs 1794

significantly in both task scope and the types of 1795

evaluation metrics reported. Consequently, we 1796

were unable to conduct a meaningful comparison. 1797

Meanwhile, we do not include pure music gener- 1798

ation models as baselines, since these models are 1799

typically closed-source, not adapted for vocal align- 1800

ment, and differ significantly in both data usage 1801

and task definition. For Melodist and MelodyLM, 1802

we rely on their papers and available demos for 1803

evaluation. For the other models, we use the corre- 1804

sponding open-source codes. 1805

I Multi-Task Experiments 1806

I.1 Vocal Generation 1807

In Figure 10, we compare the mel-spectrograms of 1808

VocalBand with different singing styles specified 1809

in the text prompt. Figure 10 (a) represents the 1810

GT vocal, where the mel-spectrogram within the 1811

yellow box is relatively uniform, indicating a sta- 1812

ble vocal performance, while the F0 contour in the 1813

red box is smooth. In contrast, Figure 10 (b) does 1814

not specify singing styles, allowing the free use 1815

of techniques to enhance expressiveness, as seen 1816
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(a) GT (b) w/o singing style (c) breathy technique (d) bubble technique

Figure 10: Visualization of the mel-spectrogram results generated by VocalBand under different singing styles in
the text prompt. The red box contains the fundamental pitch, and the yellow box contains the details of harmonics.

(a)  Vocal Prompt (b) VISinger2 (c) StyleSinger (d) VocalBand

Figure 11: Visualization of the mel-spectrogram results generated by VocalBand for singing style transfer. The
yellow box contains the fundamental pitch.

by the significant pitch oscillations in the red box,1817

characteristic of vibrato. In Figure 10 (c), repre-1818

senting the breathy technique, the mel energy in1819

the yellow box shows a significant drop in high-1820

frequency energy, consistent with the softer, airier1821

vocal timbre of breathy singing. Finally, Figure1822

10 (d) illustrates the bubble technique, where the1823

yellow box displays pronounced low-frequency en-1824

ergy with more exaggerated vertical modulations.1825

The red box shows a distinctive pitch fluctuation1826

pattern, characterized by slower, larger oscillations,1827

indicative of the unique vocal fold vibrations in1828

this technique. These results demonstrate that Vo-1829

calBand can achieve diverse and highly expressive1830

control over the same content based on the different1831

singing styles specified in the text prompt.1832

I.2 Singing Style Transfer1833

In Figure 11, we compare the performance of Vo-1834

calBand and baseline models on singing style trans-1835

fer. It can be observed that VocalBand excels1836

at capturing the intricate nuances of the prompt1837

style. The pitch curve generated by VocalBand1838

displays a greater range of variations and finer de-1839

tails, closely resembling the prompt style. In the1840

yellow boxes, it is evident that VocalBand captures1841

nuances in pronunciation and articulation skills1842

similar to the vocal prompt. In contrast, the curves1843

generated by other methods appear relatively flat,1844

lacking distinctions in singing styles. Moreover,1845

the mel-spectrograms generated by VocalBand ex-1846

hibit superior quality, showcasing rich details in 1847

frequency bins between adjacent harmonics and 1848

high-frequency components. In contrast, the mel- 1849

spectrograms produced by other methods demon- 1850

strate lower quality and a lack of intricate details. 1851

I.3 Music Style Transfer 1852

For music style transfer, AccompBand uses the 1853

noisy prompt accompaniment ỹa with a time step 1854

0.5 instead of Gaussian noise ϵ and sums it with 1855

the target vocal yv, enabling the model to learn the 1856

style from the retained components of the prompt 1857

accompaniment. Thus, we do not need a text 1858

prompt to control the music style. We use ALI- 1859

A for subjective evaluation of the style similarity 1860

to the prompt accompaniment. As shown in Table 1861

10, we achieve good style similarity with minimal 1862

changes in quality. This demonstrates that Vers- 1863

Band, leveraging AccompBand’s flow matching 1864

mechanism, can also effectively perform the music 1865

style transfer task. 1866

I.4 Vocal-to-Song Generation 1867

We can directly input GT vocals for the vocal-to- 1868

song generation task. We compare our method with 1869

MelodyLM, which also generates songs from GT 1870

vocals. We use the objective metrics reported in 1871

their papers and subjectively evaluate the demos on 1872

their demo pages. As shown in Table 11, it is evi- 1873

dent that with GT vocal input, VersBand achieves 1874

improved quality and better alignment with the 1875
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Methods FAD ↓ KLD ↓ OVL ↑ ALI-A ↑

VersBand (w/o prompt) 3.01 1.27 87.92±1.73 -
VersBand 3.02 1.26 87.34±1.28 80.24±1.57

Table 10: Results of music style transfer. Prompt means prompt accompaniment.

Methods FAD ↓ KLD ↓ OVL ↑ ALI ↑

VersBand (w/o GT) 3.01 1.27 87.92±1.73 80.51±1.66

MelodyLM 3.13 1.31 84.67±1.23 75.19±0.82
VersBand 2.65 1.19 90.17±1.55 83.54±1.32

Table 11: Results of vocal-to-song generation. GT means GT vocal.

Methods MOS-Q↑ FEE↓

VocalBand (w/o GT) 4.04±0.08 0.07

StyleSinger 3.79±0.10 0.09
VocalBand 3.87±0.05 0.08

Table 12: Results of accompaniment-to-song generation.
GT means GT accompaniment.

vocals compared to song generation without GT1876

vocal input, and it outperforms MelodyLM. This1877

is because the GT vocal provides a more accurate1878

style, melody, and rhythm, better matching the tar-1879

get accompaniment. It demonstrates that VersBand1880

effectively utilizes AccompBand’s excellent vocal1881

alignment mechanisms of Aligned MOE, to accom-1882

plish the Vocal-to-Song Generation task.1883

I.5 Accompaniment-to-Song Generation1884

We use ROSVOT (Li et al., 2024b) to extract notes1885

from the accompaniment to guide VocalBand for1886

vocal generation. The extracted notes are also pro-1887

vided to StyleSinger, which can similarly utilize1888

notes, as a baseline model. As shown in Table 12,1889

it is evident that the quality decreases when us-1890

ing GT accompaniment instead of music scores, as1891

the notes from the accompaniment are not aligned1892

with the vocal notes, primarily due to differences1893

in their characteristics. Vocals often involve tech-1894

niques and emotional expression, with pauses be-1895

tween words. At the same time, accompaniments1896

are more complex, involving multiple instruments1897

and rarely pausing, leading to discrepancies in tim-1898

ing and pitch between the vocal and accompani-1899

ment notes. However, VocalBand still outperforms1900

StyleSinger and achieves satisfactory results. This1901

demonstrates that VersBand can leverage the user’s1902

preferred GT accompaniment for vocal pairing,1903

with VocalBand exhibiting excellent rhythm and1904

melody control by decoupling content. 1905

J Ablation Study 1906

J.1 Experiments on Text Encoder 1907

For the text encoder, following previous work 1908

(Zhiqing et al., 2024), we test FLAN-T5-large 1909

(Chung et al., 2024), BERT-large (Devlin et al., 1910

2018), and the text encoder of CLAP (Elizalde 1911

et al., 2023). Table 13 shows that we test VersBand 1912

without inputting lyrics or music scores. It can 1913

be seen that the T5 text encoder outperforms the 1914

other two text encoders in both quality and rele- 1915

vance, but has only a slight advantage over BERT, 1916

which is likely due to its larger parameter count 1917

and multi-task capability. 1918

J.2 Experiments on MOE 1919

To demonstrate the effectiveness of our MOE, we 1920

conducted experiments on the final routing behav- 1921

ior. As shown in Figure 12 (a), we can observe 1922

that our global routing behaves as expected. As 1923

the noise level decreases, the weighting of outputs 1924

from Aligned MOE and Controlled MOE changes 1925

accordingly: 1) At early time steps (near 0), where 1926

the hidden representation h is highly noisy, the net- 1927

work prioritizes matching with the vocal for coher- 1928

ent reconstruction, thus the weight of the Aligned 1929

MOE is higher. 2) At later time steps (near 1), 1930

where h has been largely reconstructed, the net- 1931

work focuses more on refining stylistic details, re- 1932

lying heavily on text prompts, thus the weight of 1933

the Controlled MOE is higher. 1934

As shown in Figure 12 (b), the Acoustic MOE 1935

also behaves as expected by assigning different 1936

experts to different channels. We encode the mel- 1937

spectrogram into 20 dimensions through the ac- 1938

comp encoder, resulting in 20 channels and select- 1939

ing experts for each channel. We perform a statis- 1940
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Methods FAD ↓ KLD ↓ CLAP ↑ OVL ↑ REL ↑

VersBand (T5) 3.01 1.27 0.58 87.92±1.73 88.03±0.59
VersBand (CLAP) 3.31 1.34 0.41 85.36±1.57 86.03±1.39
VersBand (BERT) 3.12 1.29 0.49 87.02±0.84 87.21±0.83

Table 13: Results of ablation study on different text encoders.
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Figure 12: The statistics of global routing and acoustic routing in Band-MOE.

tical analysis of the softmax output probabilities1941

before expert selection. 1) Expert 1 focuses on1942

channels 0 to 7, which include instruments that pro-1943

vide foundational rhythm and depth, such as bass1944

guitars, kick drums, low-frequency percussion, and1945

the lower registers of piano and organ. 2) Expert 21946

specializes in channels 4 to 12, capturing the rich-1947

ness of rhythm guitars, mid-range piano notes, and1948

various percussion instruments that contribute to1949

the fullness and body of the music. 3) Expert 31950

targets channels 9 to 16, encompassing lead gui-1951

tars, higher piano octaves, string instruments, and1952

brass instruments. This allows the model to cap-1953

ture melodic elements and intricate harmonics that1954

enhance the expressiveness of the accompaniment.1955

4) Expert 4 is assigned to channels 14 to 19, focus-1956

ing on cymbals, hi-hats, flutes, and high-frequency1957

string overtones that contribute to the brightness1958

and airiness of the music.1959

K MIDI and F01960

The pitch predicted by VocalBand refers to the F01961

of the vocal, while MelodyBand predicts the MIDI1962

music score. These two representations are funda-1963

mentally different in terms of both their structure1964

and level of granularity.1965

F0 (Fundamental Frequency) refers to the low-1966

est frequency of a periodic waveform, typically1967

representing the pitch of a sound. In vocal music,1968

it corresponds to the pitch produced by the singer’s1969

voice. f0 is continuous and fine-grained, capturing1970

subtle pitch variations that occur naturally during1971

singing. This includes slight pitch bends, vibrato, 1972

and dynamic vocal expressions. The vocal f0 pre- 1973

diction in VocalBand focuses on capturing these 1974

nuanced and continuous pitch variations that define 1975

vocal performances. 1976

MIDI (Musical Instrument Digital Interface) 1977

is a digital representation of music that encodes 1978

musical notes, chords, velocities, and other musi- 1979

cal events in a discrete, symbolic format. MIDI 1980

defines music in terms of note numbers (represent- 1981

ing pitch) and timing information (e.g., note onset 1982

and duration). Unlike f0, MIDI is typically coarser 1983

in its resolution. It represents pitch as discrete notes 1984

(e.g., C4, D5), with fixed intervals, meaning it does 1985

not capture the smooth pitch fluctuations found 1986

in vocal performances or continuous instruments. 1987

The MIDI music score predicted by MelodyBand 1988

works with these discrete representations, focus- 1989

ing more on the overall structure of the music (i.e., 1990

sequence of notes and timing) rather than the fine 1991

details of pitch fluctuations. In summary, f0 is a 1992

detailed, continuous signal that reflects the pitch of 1993

vocal sounds, whereas MIDI is a more abstract, dis- 1994

crete representation of musical notes with a lower 1995

level of granularity. These differences illustrate the 1996

challenge and complexity of predicting both types 1997

of information, each serving a distinct purpose in 1998

music generation and synthesis. 1999

Modeling vocal MIDI as an intermediate modal- 2000

ity for supervision can significantly improve the 2001

synthesis performance of models. Directly predict- 2002

ing f0 in VocalBand would complicate the model- 2003

ing of phoneme duration and the f0 itself, leading to 2004
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poorer results and making it harder for the model to2005

perform core synthesis tasks. Additionally, singing2006

voice synthesis models typically require user input2007

of music scores for coarse control. To maintain2008

consistency within our model, we opted to include2009

MIDI prediction.2010

L Reproducibility Statement2011

We have implemented several measures to ensure2012

reproducibility: 1) We provide very detailed ex-2013

planations of each module in our Appendix B, C,2014

D, and E. We will also release the code after the2015

paper is accepted. 2) We offer hyperparameters2016

and experimental configurations for each model2017

in Appendix B.1, C.1, D.1, E.1, and E.2. 3) The2018

data processing steps and the open-source tools we2019

used are described in detail in F. Since our datasets2020

consist of open-source singing voices and songs2021

collected from the internet, we will provide all web2022

links and corresponding text prompt annotations af-2023

ter the paper is accepted. 4) All evaluation metrics2024

are thoroughly described in Appendix G.2025
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