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Abstract

Mixture of Experts (MoE) offers remarkable001
performance and computational efficiency by002
selectively activating subsets of model param-003
eters. Traditionally, MoE models use homo-004
geneous experts, each with identical capac-005
ity. However, varying complexity in input data006
necessitates experts with diverse capabilities,007
while homogeneous MoE hinders effective ex-008
pert specialization and efficient parameter uti-009
lization. In this study, we propose a novel Het-010
erogeneous Mixture of Experts (HMoE) frame-011
work, where experts differ in size and thus pos-012
sess diverse capacities. This heterogeneity al-013
lows for more specialized experts to handle014
varying token complexities more effectively. To015
address the imbalance in expert activation, we016
propose a novel training objective that encour-017
ages the frequent activation of smaller experts,018
so as to improve computational efficiency and019
parameter utilization. Extensive experiments020
demonstrate that HMoE achieves a lower loss021
rate with fewer activated parameters and outper-022
forms conventional homogeneous MoE models023
on various pre-training evaluation benchmarks.024
Codes will be released upon acceptance.025

1 Introduction026

Mixture of Experts (MoE) (Jacobs et al., 1991;027

Shazeer et al., 2017; Lepikhin et al., 2020; Fedus028

et al., 2022; Jiang et al., 2024; Dai et al., 2024) is029

a cutting-edge technique in the field of large lan-030

guage models (LLMs) (Brown et al., 2020; Achiam031

et al., 2023; Ouyang et al., 2022; Touvron et al.,032

2023a,b; Dubey et al., 2024) that excels in both033

performance and computational efficiency. At its034

core, MoE operates on the principle of dividing a035

model into multiple components, known as experts036

(Shazeer et al., 2017), each specializing in different037

tasks or aspects of the data. This specialization038

allows MoE to activate a subset of parameters, sig-039

nificantly enhancing the model’s robustness and040

flexibility. The main advantage of MoE lies in that041
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Figure 1: Comparisons of our heterogeneous MoE-3B
with conventional homogeneous MoE-3B. Our proposed
HMoE is superior on both performance and efficiency.

it can scale with model parameters without incom- 042

ing extra computational costs. 043

The specialization of experts is crucial for im- 044

proving computational efficiency and performance 045

under sparse activation. However, almost all MoE 046

models (Jiang et al., 2024; Dai et al., 2024; Wu 047

et al., 2024; Huang et al., 2024) rely on identical ex- 048

perts with similar representational capacities. This 049

design often leads to convergence, where experts 050

learn similar features over time, thereby reducing 051

their uniqueness and specialization (Zhou et al., 052

2022; Cai et al., 2024). Such uniformity limits 053

the model’s ability to generalize effectively across 054

tasks and undermines its performance. Moreover, 055

the lack of functional differentiation among experts 056

makes it challenging for MoE models to efficiently 057

handle complex inputs in NLP (Huang et al., 2024). 058

When all experts have equivalent representational 059

capacities, the system fails to utilize its parameters 060

optimally. As a result, the potential depth and di- 061

versity required for processing nuanced inputs are 062

lost, which compromises the effectiveness of the 063

MoE architecture. 064

To address these challenges, a simple idea is to 065

change the current homogeneous experts to hetero- 066

geneous ones. However, the challenges of hetero- 067

geneous MoE mainly exist in the following aspects: 068

(a) How to introduce appropriate heterogeneity to 069

experts? This fundamental difference between ho- 070

mogeneous and heterogeneous MoE significantly 071
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impacts performance. (b) How to design and guide072

the desired load distributions for heterogeneous073

experts? The optimal activation of heterogeneous074

experts is different from that in conventional MoE.075

We should first conclude what kind of expert activa-076

tion distribution is optimal for heterogeneous MoE,077

and then provide effective guidance towards such078

activation, balancing both parameter efficiency and079

model effectiveness.080

In this study, We introduce a novel Heteroge-081

neous Mixture of Experts (HMoE) pre-trained082

language model with varied expert sizes to create083

heterogeneity. However, it is found that, without084

training guidance, intuitive HMoE version does085

not outperform traditional MoE. Larger experts get086

more activation, while smaller ones are underused,087

reducing the model’s representational capacity and088

hindering heterogeneous expert utilization.089

Therefore, we propose novel HMoE training ob-090

jectives, P-Penalty Loss, that encourages the acti-091

vation of smaller experts, leading to a more rational092

allocation of activated parameters and improved093

model capability. Besides, we analyze three strate-094

gies of designing different heterogeneous expert095

size distributions, discovering the insights of opti-096

mal heterogeneity of experts in HMoE.097

We conduct extensive experiments to verify the098

effectiveness and efficiency of our proposed HMoE,099

along with in-depth analyses. We contribute to the100

success of our enhanced HMoE for following rea-101

sons: (a) Experts of varying sizes provide diverse102

capacities and promote higher specialization. (b)103

Expert heterogeneity ensures complex input get the104

necessary resources while simpler input are pro-105

cessed economically. (c) Leveraging MoE’s inher-106

ent imbalance by activating more small experts to107

enhance their overall capability and further reduce108

computing costs.109

We summarize our contributions as follows:110

(1) We introduce a novel HMoE model. It allows111

for enhanced specialization and more granular re-112

sponses to diverse token complexities, improving113

both effectiveness and efficiency. To the best of our114

knowledge, this work is the first work exploring115

heterogeneous MoE as a base language model.116

(2) We propose a new set of training objectives117

that encourages the activation of smaller experts,118

leading to more efficient utilization of experts and119

preventing the disproportionate reliance on larger120

experts in HMoE. We also explore different types121

of heterogeneity strategies for HMoE.122

(3) Our experiments demonstrate that our HMoE123

achieves stronger performance with fewer activated 124

parameters, thereby enhancing computational effi- 125

ciency without sacrificing downstream results. 126

2 Methodology 127

2.1 Classical Mixture of Experts 128

Unlike dense models, most MoE models (Lepikhin 129

et al., 2020; Fedus et al., 2022; Huang et al., 2024; 130

Dai et al., 2024; Jiang et al., 2024) replace the 131

FFN layer of the transformer (Vaswani et al., 2017) 132

block with a MoE layer. The MoE layer consists of 133

a router gi(·) and multiple experts {e1, e2, ..., eN}. 134

The experts are composed of a set of independent 135

Feed-Forward Network (FFN) layers. Experts are 136

responsible for processing input data according to 137

their specialized knowledge. For each token, a sub- 138

set of experts is activated to execute computations, 139

and the router generates a probability distribution. 140

The probability of this distribution indicates the 141

likelihood of assigning the token to each expert. 142

Routing Strategy. The routing strategy is applied 143

to select experts to be activated from N experts. 144

The Top-K Routing (Shazeer et al., 2017) strategy 145

is the most widely-used strategy, which always ac- 146

tivates a fixed number of experts for each token. It 147

calculates the score which represents the probabil- 148

ity of selecting each expert. We select the top k 149

experts with the highest scores to activate. 150

Recently, Top-P Routing (Huang et al., 2024) is 151

proposed to dynamically activate different numbers 152

of experts for each token. Specifically, it first sorts 153

scores from highest to lowest. Then given a fixed 154

threshold p, if the highest probability is larger than 155

the threshold, we only activate one expert. Other- 156

wise, we progressively add additional experts until 157

the cumulative probability exceeds the threshold p. 158

Issues of Homogeneous MoE. Currently, most 159

MoE work employs a homogeneous design. Each 160

expert in the MoE layer usually has the same struc- 161

ture and size. Undoubtedly, this is a simple de- 162

sign that avoids introducing more hyperparameters. 163

However, it also brings the following problems: 164

(1) Lack of Expert Specialization: Different ex- 165

perts within a homogeneous MoE show a tendency 166

towards similarity (Zhou et al., 2022). Since homo- 167

geneous experts have the same modeling capabili- 168

ties, the router may randomly distributes tokens to 169

them during pre-training. Without differentiation 170

mechanisms, multiple experts may focus on sim- 171

ilar features, resulting in low specialization. Our 172

analysis in section 3.4 shows this tendency. 173
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Figure 2: Two distinct model structures for Mixtures of Experts are compared: (a) conventional homogeneous
MoE model with all experts having identical parameter sizes; (b) our proposed heterogeneous MoE model (HMoE)
characterized by substantial variations in parameter sizes of each expert, incorporating a parameter penalty loss
during training to promote utilization of experts with smaller parameter volumes.

(2) Inefficient Parameter Allocation: Intu-174

itively, simpler inputs can be effectively handled175

by smaller experts with less computational capac-176

ity, whereas more complex inputs require the en-177

hanced capability of larger experts. However, ho-178

mogeneous MoE models use experts with identi-179

cal capacities, resulting in redundant computations180

for simple inputs and insufficient computational181

resources for complex ones. While Top-P Rout-182

ing (Huang et al., 2024) introduces dynamic rout-183

ing by assigning varying numbers of experts to184

different tokens, its reliance on fixed thresholds185

and simplistic difficulty modeling limits its ability186

to adapt effectively to diverse inputs.187

(3) Representation Collapse and Load Imbal-188

ance: Homogeneous MoE has a trend toward repre-189

sentation collapse (Chi et al., 2022), which occurs190

when the majority of input tokens are assigned to191

only a few experts. This phenomenon also leads to192

load imbalance. The interconnected nature of rep-193

resentation collapse and load imbalance hampers194

the model’s performance and efficiency.195

2.2 Heterogeneous Mixture of Experts196

To alleviate the above issues in homogeneous MoE,197

we propose Heterogeneous Mixture of Experts.198

HMoE includes a router and expert network, with199

the key distinction that the models of experts within200

the same layer are different. To achieve an HMoE,201

we could design different structures and different202

sizes for experts. However, within the transformer203

model, experts with different structures make the204

training process extremely unstable. Therefore, in205

this work, we mainly explore HMoE with different206

expert sizes, as shown in Figure 2.207
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Figure 3: Experimental results of intuitive exploration
on HMoE. (a) The left figure compares the results of
the intuitive HMoE and conventional Homogeneous
MoE. Average performance is the average score of six
evaluation benchmarks as introduced in section 3.1. The
Homogeneous MoE adapts load balancing loss while
the intuitive Hetergeneous MoE does not utilize any
auxiliary loss. (b) The right figure shows the activated
ratios of experts in the intuitive HMoE. The relative
expert sizes in HMoE are {9, 11, 13, 15, 17, 19, 21, 23},
matching experts a to h.

2.2.1 An Intuitive Exploration on HMoE 208

For each expert ei, we follow the FFN design in 209

LLaMa (Touvron et al., 2023a). The detailed com- 210

putation is as follows: 211

ei(x) = Wo,i · (SiLU(Wg,i · x)⊙ (Wp,i · x)) ,
(1) 212213

SiLU(z) = z · σ(z), σ(z) =
1

1 + e−z
, (2) 214

where Wg,i ∈ Rhinput×hffn,i , Wp,i ∈ Rhinput×hffn,i 215

and Wo,i ∈ Rhffn,i×hinput are trainable parameters 216

of expert ei. hinput and hffn,i are dim of input x and 217

hidden state in FFN. To bring in heterogeneity for 218

exploration, We intuitively change the hidden dim 219

hffn,i to control the size of each expert ei. 220

2.2.2 Results of The Intuitive HMoE 221

We implement the aforementioned intuitive HMoE 222

and conduct evaluation. Contrary to our expecta- 223
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tions, the results do not demonstrate an improve-224

ment over homogeneous MoE. Figure 3 shows the225

results and activation ratios of experts in HMoE.226

Upon investigation, we discovered that the pri-227

mary reason for this underperformance was the228

highly imbalanced load distribution among experts229

in the intuitive HMoE. Larger experts were acti-230

vated more frequently, while smaller ones were231

rarely utilized. This imbalance led to a decline in232

the model’s overall representational capacity. The233

root cause is the Matthew’s effect that the larger ex-234

perts possess stronger capabilities compared to the235

smaller ones, prompting the router to preferentially236

activate the larger experts more often, which results237

in the insufficient learning of smaller experts.238

2.3 Enhanced Heterogeneous MoE239

Considering the above-mentioned issues, we pro-240

pose the following strategies to enhance HMoE.241

2.3.1 Activating More Small Experts242

In HMoE, the presence of both large and small ex-243

perts introduces a challenge where the optimization244

goal of the language model naturally favors the fre-245

quent activation of larger experts due to their supe-246

rior performance. This tendency results in smaller247

experts being underutilized, while larger experts248

are activated more often, leading to a significant249

increase in activated parameters. This phenomenon250

diverges from the intended model objective, where251

we aim to align the tasks handled by large and small252

experts with their respective capacities. Specif-253

ically, we want larger experts to focus on more254

complex understanding and reasoning tasks, while255

smaller experts handle simpler tasks. This ensures256

that all specialized experts are effectively utilized257

and sufficiently trained according to their strengths.258

Previous work (Fedus et al., 2022) adapts load259

balancing loss Llb to eliminate load unbalancing260

among different experts in Homogeneous MoE:261

Llb = N

N∑
i=1

Ti ∗ P̂i,

Ti =
1

T

T∑
t=1

1{ei ∈ Et}, P̂i =
1

T

T∑
t=1

Pi,t,

(3)262

where Ti represents the partation of tokens assigned263

to expert ei. P̂i represents the gating probability264

assigned to ei. Pi,t represents the gating probability265

assigned to ei for token xt. Et represents the set of266

activated experts for the token xt.267

The objective of the load balancing loss is to 268

achieve experts evenly activated. Nevertheless, 269

it does not satisfy our motivation for designing 270

HMoE. Because of the disparity in expert sizes, the 271

load-balancing loss fails to stop the model from 272

preferring to activate larger experts. To address 273

the issue where larger experts are predominantly 274

utilized, leading to the underutilization of smaller 275

experts and a considerable rise in activated param- 276

eters, we introduce a novel training objective pa- 277

rameter penalty (P-Penalty) loss LP-Penalty as: 278

LP-Penalty = N

N∑
i=1

Mi ∗ P̂i,

Mi =
1

T

T∑
t=1

1{ei ∈ Et} × hffn,i.

(4) 279

Mi represents the average dimension of the hid- 280

den state of the expert ei on the entire input x. It 281

imports the influence of expert size into the loss. 282

When the model employs more large experts, the 283

loss rises. Hence, it will direct the model to more 284

economically utilize smaller experts. In contrast, 285

for harder tasks, using larger experts can yield 286

greater benefits than parameter penalties. At this 287

point, larger experts will also be activated to take 288

part in the calculation. To be noted, if all expert has 289

the same size, our parameter penalty loss is equal 290

to the classical load balancing loss. 291

Besides, with the Top-P routing strategy, we find 292

that MoE tends to activate an increasing number 293

of experts during training, which reduces the effi- 294

ciency of MoE. Therefore, we implement the router 295

entropy loss (Huang et al., 2024) to prevent the 296

model from using too many parameters, maintain- 297

ing its ability to selectively activate experts as: 298

Lentropy = N
N∑
i=1

Pi × log(Pi). (5) 299

In our HMoE, besides the original language mod- 300

eling loss, the final loss for both Top-K and Top-P 301

routing strategies further includes the parameter 302

penalty loss LP-Penalty, with Top-P additionally in- 303

corporating the router entropy loss Lentropy. 304

2.3.2 Designing More Optimal Heterogeneity 305

Intuitively, the specific sizes of each heterogeneous 306

expert have a large impact on the final results. In 307

this work, we mainly explore three types of hetero- 308

geneity structures for experts: 309
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(1) Geometric strategy. The geometric strategy310

assigns expert sizes in a geometric sequence, such311

as {1, 2, 4, 8, 16, 32, 64, 128} as relative size pro-312

portions of the experts. This design emphasizes a313

few large-scale experts, which can lead to unbal-314

anced resource allocation and neglect of smaller315

experts, potentially causing severe load imbalance316

and limiting its suitability for tasks requiring bal-317

anced processing.318

(2) Arithmetic strategy. The arithmetic strat-319

egy assigns expert sizes in an arithmetic sequence,320

such as {9, 11, 13, 15, 17, 19, 21, 23}. This ap-321

proach can ensures balanced resource allocation322

and smaller size gaps between experts, giving323

smaller experts meaningful expressive abilities and324

improving training stability. This study primarily325

adopts this strategy for research on HMoE.326

(3) Hybrid strategy. The hybrid strategy that327

jointly combines both homogeneous and heteroge-328

neous such as {1, 1, 1, 1, 2, 2, 4, 4} is also a good329

competitor. We designed this setup based on the330

assumption that the MoE model requires multiple331

experts with similar capabilities or functionalities.332

Especially in scenarios involving expert combina-333

tions, completely differentiated experts might have334

drawbacks. It has the flexibility to adjust the pro-335

portion of homogeneous and heterogeneous parts336

based on different task requirements.337

As a pioneer of HMoE, we propose three strate-338

gies of different heterogeneity levels and conduct339

extensive evaluations on different settings for more340

insights. More optimal HMoE distributions and341

structures will be explored in the future.342

3 Experiments343

3.1 Experimental Settings344

Pre-training Datasets. For our pre-training data,345

we used the RedPajama (Computer, 2023) dataset.346

It is an open-source dataset consisting of various347

sources like the common crawl, C4 (Raffel et al.,348

2020), GitHub, Wikipedia, books (Gao et al., 2020),349

arXiv, and StackExchange.350

Competitors. In our main experiment, we evalu-351

ated Dense, homogeneous MoE and our HMoE352

model: (1) Dense, which are standard Trans-353

former decoder-only models, following the design354

of LLaMa (Touvron et al., 2023a), without MoE355

layers, implemented with 0.2B and 1B parame-356

ters. (2) Homogeneous MoE, where FFN layers357

are replaced with MoE Layers including eight ho-358

mogeneous experts, implemented with 0.4B, 3B359

and 16B total parameters, using both Top-K (k=2) 360

and Top-P (p=0.6) routing strategies. (3) HMoE, 361

our proposed method with Heterogeneous MoE 362

Layers replacing FFN layers, also implemented 363

with 0.4B, 3B and 16B total parameters with both 364

Top-K (k=2) and Top-P (p=0.6) strategies. To re- 365

flect the difference in performance between pure 366

heterogeneous models and conventional homoge- 367

neous models, the expert size distribution employs 368

an arithmetic strategy (The relative expert sizes 369

are {9, 11, 13, 15, 17, 19, 21, 23}). The detailed 370

setting is introduced in the Appendix A and B. 371

Evaluation. We evaluated these models on six dif- 372

ferent benchmarks (Gao et al., 2021) including 373

PIQA (Bisk et al., 2020), hellaswag (Zellers et al., 374

2019), BoolQ (Clark et al., 2019), ARC (Clark 375

et al., 2018), winogrande (Sakaguchi et al., 2021) 376

and SIQA (Sap et al., 2019). These tasks examine 377

models’ language understanding, logical reason- 378

ing, knowledge utilization, and social awareness 379

capabilities. The average performance depicted in 380

Figures 1, 3, 5, and 6 is the average score obtained 381

across these six benchmarks. Since the activated 382

parameters of different methods are varied, we en- 383

sure a fair comparison by basing our model evalua- 384

tions on identical computational training costs 385

(FLOPs) instead of the number of training tokens. 386

3.2 Main Results 387

3.2.1 IsoFLOP Analysis 388

We conduct isoFLOP comparisons as shown in Fig- 389

ure 4. The isoFLOP analysis is a methodology 390

used to evaluate model performance and training 391

efficiency by fixing the training computation bud- 392

get (measured in FLOPs) and comparing different 393

model configurations. For this analysis, we adapt 394

TopP routing (p=0.6) strategy and trained 16 con- 395

ventional MoE models and 16 HMoE models of dif- 396

ferent sizes, ranging from 100M to 3B parameters, 397

and recorded their activation parameters and loss 398

values at different training FLOP levels. At each 399

FLOP point, the activation parameter correspond- 400

ing to the lowest loss is selected as the optimal 401

activation parameter for that specific FLOP budget. 402

This approach enables a systematic comparison of 403

model efficiency and performance under equivalent 404

computational constraints. 405

We find that if the training FLOPs are too few, 406

the loss of HMoE is not superior to traditional MoE. 407

However, from early stages of training (around 408

2.5 × 1019 FLOPs), HMoE shows a stable trend 409
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Figure 4: Analysis of isoFLOP for conventional MoE (Top-P) and our poposed HMoE (Top-P). The medium figure
shows examples of the activated model parameters and loss for three training FLOPs. The medium figure shows the
optimal activated model parameters for various training FLOPs. The right figure shows the variations in loss as
FLOPs increase, given the optimal activated parameter settings.

of outperforming its homogeneous MoE. Further-410

more, across different training costs, the optimal ac-411

tivation parameter for HMoE consistently remains412

lower than that of homogeneous MoE. As the train-413

ing cost increases, the gap in optimal activation pa-414

rameters widens, highlighting the significant model415

efficiency advantage of HMoE. This should sug-416

gest that with larger models and more data, the417

benefits of heterogeneity may become even more418

pronounced, both in performance and efficiency.419

3.2.2 Performance on Benchmarks420

Table 1 presents a comparative analysis of the re-421

sults of various models on benchmarks, we have:422

(1) The results shows MoE outperform Dense423

models across all metrics, with HMoE showing par-424

ticularly outstanding results. The HMoE models425

achieved superior performance in almost all evalu-426

ation metrics, significantly surpassing conventional427

MoE and Dense models.428

(2) For models utilizing 7 × 1019 FLOPs, the429

HMoE-0.4B model, particularly with the Top-P430

routing strategy, stands out. It achieves an average431

improvement of 1.21% compared to the Dense-432

0.2B model and 1.85% compared to the MoE-0.4B433

model. As the computational budget increases to434

2.6× 1020 FLOPs, the HMoE-3B model maintains435

its lead. With the Top-P routing strategy, it achieves436

an average performance gain of 1.50% over the437

Dense-1B model and a competitive edge of 0.91%438

over the MoE-3B model. At an even higher compu-439

tational budget of 9×1020 FLOPs, the HMoE-16B440

model continues to exhibit its effectiveness. With441

the Top-P routing strategy, it delivers improvement442

of 0.69% over the MoE-16B model.443

(3) We observe that HMoE demonstrates a444

more pronounced performance improvement on the445

ARC-Easy and HellaSwag tasks compared to con- 446

ventional MoE. The rationale could be that these 447

two tasks are comparatively easier, and P-penalty 448

loss in HMoE is employed to guarantee sufficient 449

training for the small experts. Meanwhile, because 450

HMoE allocates more parameters to the larger ex- 451

pert, the model’s performance on more challenging 452

tasks remains uncompromised. 453

(4) Furthermore, the comparison between Top- 454

K and Top-P routing within the HMoE model is 455

also insightful. The Top-P routing strategy gen- 456

erally yields better results, implying that the dy- 457

namic routing strategy cooperates well with hetero- 458

geneous experts. We attribute this to the fact that 459

both Top-P routing and heterogeneous experts are 460

designed to adapt to the complexity of the input. 461

3.3 Ablation Study 462

We conduct an ablation study to analyze auxiliary 463

losses and expert heterogeneity. All experiments 464

are based on models with 400M total parameters. 465

3.3.1 Effectiveness of Auxiliary Losses 466

Our proposed P-Penalty loss plays a key role in 467

HMoE’s performance. To better understand the 468

impact of auxiliary losses, we conduct an ablation 469

study. As shown in Figure 5 (left), the P-Penalty 470

loss helps HMoE achieve the best results among all 471

auxiliary losses. Additionally, Figures 3 (right) and 472

5 (right) illustrate how auxiliary losses influence ex- 473

pert activation. We observe that the load balancing 474

loss does not alleviate the tendency of larger ex- 475

perts being activated more frequently than smaller 476

experts. This imbalance may limit HMoE’s ability 477

to outperform conventional MoE. In contrast, the 478

P-Penalty loss appears to better align the model’s 479

objectives by encouraging the activation of smaller 480
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Method Activated Parameters PIQA hellaswag BoolQ ARC-Easy winogrande SIQA AVG

7× 1019 FLOPs Training
Dense-0.2B 176M 56.20 26.83 61.43 31.05 51.69 32.65 43.30
MoE-0.4B (Top-K) 163M 57.67 27.81 62.13 29.70 50.59 32.82 43.45
MoE-0.4B (Top-P) 173M 56.92 27.73 56.54 30.18 51.67 32.89 42.66
HMoE-0.4B (Top-K) 153M 56.67 28.26 59.80 31.93 52.49 32.91 43.68
HMoE-0.4B (Top-P) 173M 58.98 28.10 60.78 34.14 52.21 32.83 44.51

2.6× 1020 FLOPs Training
Dense-1B 1.32B 58.92 29.57 61.70 35.26 51.85 32.86 45.03
MoE-3B (Top-K) 0.77B 61.92 32.80 60.06 33.96 52.51 32.58 45.64
MoE-3B (Top-P) 1.23B 61.42 32.16 61.47 33.51 52.27 32.91 45.62
HMoE-3B (Top-K) 0.70B 61.04 32.89 60.26 36.14 52.49 32.82 45.94
HMoE-3B (Top-P) 0.68B 61.79 33.22 61.69 36.49 52.96 33.00 46.53

9× 1020 FLOPs Training
MoE-16B (Top-P) 3.83B 64.96 41.33 62.56 41.40 51.85 32.91 49.16
HMoE-16B (Top-P) 1.77B 65.12 43.03 61.40 44.21 52.09 33.27 49.85

Table 1: Results on six pre-training model evaluation benchmarks. Our HMoE consistently outperforms Homogen-
erous MoE. To be noted, in order to ensure a relatively fair comparison, in the experimental results of each block,
although the activation parameters of different models are different, they are all trained with the same training cost
(FLOPs), rather than based on the same number of training tokens.
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Figure 5: The left figure shows the effectiveness of
auxiliary losses. The right figure shows the activated
parameter ratio varying by model size across load bal-
ancing loss (above) and our P-Penalty loss (below).

experts more frequently, thereby contributing to481

improved model performance and efficiency.482

3.3.2 Analyses on Expert Heterogeneity483

The expert size distribution in HMoE significantly484

influences model performance. Figure 6 (left) com-485

pares HMoE across various distributions: geomet-486

ric, arithmetic, and hybrid. Our results show that487

the geometric distribution performs the worst. Fig-488

ure 6 (right) shows that smaller experts in the ge-489

ometric progression are less frequently activated.490

Even with P-Penalty loss, this may suggest their ca-491

pacity is insufficient because of their too-small size.492

Conversely, the hybrid model outperforms the arith-493

metic one. This finding may indicate that a mix494

of experts with both similar and varied sizes offers495
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Figure 6: Analysis of expert heterogeneity through ab-
lation. The figure on the left illustrates a performance
comparison across various expert-size design strategies.
The right figure displays the activation ratios of experts
in HMoE using a geometric strategy.

greater potential for exploration and optimization 496

within the HMoE model. 497

3.4 In-depth Analyses on HMoE Experts 498

To compare the expert specialization in our pro- 499

posed Heterogeneous Mixture of Experts (HMoE) 500

and traditional Homogeneous Mixture of Experts 501

(MoE), we analyzed the behavior of experts in both 502

setups. Figure 7 provides a similarity analysis using 503

heatmaps, where each cell represents the Wasser- 504

stein distance between the token distributions of 505

expert pairs on downstream tasks. In the Homo- 506

geneous MoE framework, the experts primarily 507

cluster into two groups, suggesting limited differ- 508

entiation among experts in this framework. This 509

indicates that homogeneous setups may struggle to 510

promote diverse expert specialization effectively. 511

In contrast, the HMoE framework demonstrates a 512

more refined expert specialization. Experts of simi- 513

lar sizes exhibit higher similarity, forming distinct 514
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Figure 7: Similarity study of the homogeneous
and heterogeneous experts. In the homogeneous
MoE, all experts have identical sizes. In the
heterogeneous MoE, the relative expert sizes are
{9, 11, 13, 15, 17, 19, 21, 23} as experts from a to h.
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Figure 8: Visualization of activated experts ratio to to-
kens with different understanding difficulty. The expert
size design is the same as Figure 7.

clusters (e.g., expert pairs a/b, c/d, and f/g). This515

clustering may suggests that experts with compara-516

ble sizes tend to develop similar capabilities. The517

heterogeneous design thus encourages specialized518

expert behavior, emphasizing the advantages of in-519

troducing heterogeneity in fostering diversity and520

differentiation among experts.521

Figure 8 shows the activation ratios of experts522

for tokens with varying difficulty levels. The acti-523

vation ratio is the frequency that a token activates524

each expert divided by the total activations. We525

observe hard tokens (tokens with multiple mean-526

ings or tokens with low frequency of occurrence)527

activate larger experts more often, while smaller528

experts are consistently activated may due to their529

general capabilities. It is noteworthy that, although530

we present only a few examples, this phenomenon531

is universally observed. This should suggests that532

our HMoE model effectively allocates tokens to533

appropriate experts.534

4 Related Work 535

The Mixture of Experts (MoE) model was first pro- 536

posed by Jacobs et al. (1991), where each expert 537

independently learns a subset of the dataset and is 538

then integrated into a unified system. Building on 539

this, (Shazeer et al., 2017) introduced the Sparsely- 540

Gated Mixture-of-Experts layer (SMoE), which 541

employs a gating network for expert selection and 542

proposes a Top-K routing strategy, where a fixed 543

number of experts are selected for each token. Fur- 544

ther advancements were made by Gshard (Lepikhin 545

et al., 2020) and SwitchTransformer (Fedus et al., 546

2022), which incorporated MoE into the Trans- 547

former architecture’s FFN layers, utilizing top-1 548

and top-2 routing, respectively. Expert-choice MoE 549

(Zhou et al., 2022) introduced Expert Choice Rout- 550

ing, allowing each expert to independently select a 551

certain number of tokens, thereby achieving load 552

balancing. AutoMoE (Jawahar et al., 2022) estab- 553

lishes a search space tailored for small-scale hetero- 554

geneous MoE utilizing the top-1 routing strategy 555

and employs Neural Architecture Search to derive a 556

sub-network. Their experiments focus on machine 557

translation tasks, and their approach is not suitable 558

for pre-trained language models. Lu et al. (2024) 559

illustrates that not all experts are equal in the MoE 560

model. They discard less important experts and 561

find the model that keeps the most performance. 562

(Huang et al., 2024) introduced the Top-P rout- 563

ing strategy, dynamically allocating the number 564

of experts to each token. To be noted, our work 565

is the first work exploring HMoE as a base lan- 566

guage model based on Top-K and Top-P routing, 567

and demonstarate the superiority of HMoE in both 568

performance and efficiency. 569

5 Conclusion 570

In this work, we propose a novel HMoE model, fea- 571

turing experts of varying sizes to handle different 572

token complexities. We enhance it by proposing 573

a new training objective and exploring expert size 574

distribution. Our experimental results show that 575

HMoE improves both performance and computa- 576

tional efficiency. We believe that our work opens 577

new avenues for the development of large language 578

models. Future research could explore further op- 579

timization techniques and broader applications of 580

heterogeneous expert architectures, potentially ex- 581

tending the benefits observed in this study to an 582

even wider array of natural language processing 583

tasks. 584
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6 Limitation585

While our study highlights the substantial benefits586

of HMoE, several pathways for enhancement and587

exploration remain.588

First, our experiments demonstrate that as train-589

ing costs increase, the efficiency and performance590

advantages of HMoE become increasingly evident.591

Beyond conducting isoFLOP analyses, we also592

pushed the experimental scale to a maximum 16B593

MoE model, aligning with the scale used in recent594

work. For example, XMoE (Yang et al., 2024)595

experiments was validated on 0.5B models; the596

Top-P routing (Huang et al., 2024) experiment597

was validated on 3B models; Deepseek MoE (Dai598

et al., 2024) was studied on 16B models. Although599

we believe HMoE would exhibit even more pro-600

nounced advantages at larger scales, we remain601

curious about the extent of these benefits. To tackle602

this, our upcoming endeavors will involve training603

more larger-scale HMoE models and making them604

available to the open-source community.605

Second, we validated our approach using two606

widely adopted and representative MoE routing607

strategies: Top-P and Top-K. The results demon-608

strated strong performance and broad applicabil-609

ity, confirming the generalizability of our method.610

However, we acknowledge the growing research in-611

terest in advanced routing strategies, such as shared612

experts (Dai et al., 2024). Notably, our proposed613

expert size configurations are highly complemen-614

tary to these advanced techniques, paving the way615

for exciting opportunities in future work.616
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A Detailed Model Setting794

All methods are based on the Transformer decoder-795

only architecture following LLaMa (Touvron et al.,796

2023a). We employ the LLaMa2 (Touvron et al.,797

2023b) tokenizer with a vocabulary size of 32,000.798

We conducted a small-scale experimental explo-799

ration to determine the setting of model parameters.800

For the Dense-0.2B model, we configure 12 Trans-801

former Blocks, with the hidden dimensions of the802

FFN layers being 3584. In the attention layer, we803

use 12 heads, each with a dimension of 64. For804

the Dense-1B model, we also configure 12 Trans-805

former Blocks, but the hidden dimensions of the806

FFN layers are set to 32,768. In the attention layer,807

there are 16 heads, each maintaining a dimension808

of 64.809

For both MoE (homogeneous MoE) and HMoE810

models, we utilize three different model sizes. (1)811

In the configuration with 0.4B total parameters, the812

total hidden dimension for all experts in each MoE813

layer sums to 12,288, and there are 12 Transformer814

Blocks. Each layer in the MoE model contains 8815

experts. All other specifications align with Dense-816

0.4B settings. (2) In the configuration with 3B817

total parameters, the aggregate hidden dimension818

for all experts in each MoE layer is 32,768 and819

there are 12 Transformer Blocks. Each layer in the820

MoE model contains 8 experts. All other specifi-821

cations match those of Dense-1B settings. (3) In822

the configuration with 16B total parameters, the823

aggregate hidden dimension for all experts in each824

MoE layer is 65536 and there are 40 Transformer825

Blocks. Each layer in the MoE model contains 16826

experts. To be noted,the distribution of expert sizes827

in HMoE follows an arithmetic progression.828

For Homogeneous MoE, we set the load balanc-829

ing loss coefficient to 1 × 10−2, as implemented830

in Huang et al. (2024). For HMoE, we set the co-831

efficient of parameter penalty loss as 0.1. For the832

Top-P routing strategy, we set the coefficient of833

router entropy loss as 3× 10−2.834

B Detailed Training Setting835

Our models are trained utilizing NVIDIA A800836

(80G memory) or H800 GPUs (80G memory).837

Models with fewer than 3 billion parameters are838

trained on a single node with 8 A800 GPUs. MoE839

with 16 billion parameters are trained using four840

nodes with a total of 32 H800 GPUs. The AdamW841

optimizer is used, with a first-moment decay of842

β1 = 0.9 and a second-moment decay of β2 =843

0.999. A weight decay of 1 × 10−5 is applied. 844

The learning rate is gradually increased from 0 to 845

1 × 10−4 over the initial 1000 steps and is main- 846

tained thereafter. The context length is set to 4096, 847

and the global accumulated batch size is 640. All 848

experiments use a unified random seed value of 849

12345. We implemented the Zero2 (Rajbhandari 850

et al., 2020) strategy to accelerate model training 851

and gradient checkpointing to save GPU memory. 852

All model and training code is developed with the 853

torch (Paszke et al., 2017) library. 854

C Efficient Training of Heterogeneous 855

MoE 856

The efficient training of heterogeneous MoE mod- 857

els presents significant challenges to existing train- 858

ing approaches, necessitating innovative solutions 859

to overcome these obstacles. One primary issue 860

stems from the fact that experts do not have uniform 861

shapes, which invalidates the traditional batched 862

matrix multiplication method for expert computa- 863

tion. To address this challenge, Megablocks (Gale 864

et al., 2022) implements efficient block sparse ma- 865

trix multiplication kernels, which effectively han- 866

dle the complexities introduced by variable-sized 867

experts. Another concern is the problem of un- 868

balanced computation and communication arising 869

from the heterogeneous nature of experts, which 870

can lead to inefficient resource utilization. To miti- 871

gate these issues, ES-MoE (Kim et al., 2024) intro- 872

duces expert-wise offoading and dynamic expert 873

placement strategy. This approach involves per- 874

forming expert computation in a serialized manner. 875

Expert parameters are offloaded to CPU memory 876

and are fetched back to GPU memory as needed, 877

based on the distribution of tokens. By doing so, 878

ES-MoE not only reduces GPU memory overhead 879

incurred by expert parameters but also alleviates the 880

computation load imbalance issue, leading to better 881

hardware resource utilization. Future research in 882

the area may focus on developing more sophisti- 883

cated load-balancing techniques and optimizing 884

memory management strategies both for model 885

states and activations. 886

D Detailed Introduction of MoE 887

D.1 Mixture of Experts 888

Different from dense models, most MoE models 889

replace the FFN layer of the transformer (Vaswani 890

et al., 2017) block with the MoE layer. The MoE 891

layer consists of a router gi(·) and multiple experts 892

11



{e1, e2, ..., eN}. The experts are composed of a893

set of independent Feed-Forward Network (FFN)894

layers. Experts are responsible for processing the895

input data according to their specialized knowledge.896

For each token, a subset of experts is activated to897

execute computations, and the router is responsible898

for generating a probability distribution. The prob-899

ability of this distribution indicates the likelihood900

of assigning the token to each expert. We obtain the901

output of MoE layer based on following process:902

MoE(x) =
N∑
i

gi(x) · ei(x),

ei(x) = FFNi(x),

(6)903

where x is the input states of current layer.904

D.2 Routing Strategy905

The routing strategy is applied to select experts to906

be activated from N experts. The Top-K Rout-907

ing (Huang et al., 2024) strategy is one of the908

most widely-used strategy, which always activates909

a fixed number of experts for each token. We first910

calculate the probability distribution P using a soft-911

max function. P represents the initial score of912

selecting each expert. Then, we keep the highest k913

scores and normalize them. The detailed computa-914

tion is as:915

P = softmax(Wr · x) =
exp (Wr · x)∑N
j=1 exp (Wr · x)

,

(7)916917

gi(x) =

{
Pi∑

j∈Top-K(P) Pj
, i ∈ Top-K(P)

0, i /∈ Top-K(P),
(8)918

where Top-K(P) returns the indices of the largest919

k elements in P, and Wr is a learnable router920

parameter.921

Recently, Top-P Routing (Huang et al., 2024)922

is proposed to dynamically activate different num-923

ber of experts for each token. Specifically, we924

first obtain P̃ by sorting P from highest to lowest.925

Then given a fixed threshold p, which is a hyper-926

parameter, if the highest probability is larger than927

threshold, we only use one expert. Otherwise, we928

progressively add additional experts until the cu-929

mulative probability exceeds the threshold p. The930

detailed computation is as:931

t = argmin
k∈{1...,N}

∑
j<=k

P̃j ≥ p, (9)932

100 101

Expert Size Ratio (Max / Min)

2.64

2.65

2.66

2.67

2.68

2.69

Lo
ss

Figure 9: Various distributions of expert sizes in HMoE
and their corresponding losses. All distributions follow
arithmetic strategy. The x-axis represents the ratio of
the size of the largest expert to the size of the smallest
expert within the distribution.

933

Top-P(P) = {Index(1), ..., Index(t)}, (10) 934

935

gi(x) =

{
Pi∑

j∈Top-P(P) Pj
, i ∈ Top-P(P)

0, i /∈ Top-P(P),
(11) 936

where t represents the minimum number of experts 937

that need to be activated. Index(j) returns the 938

indices of element P̃j in original distribution P. 939

E Further Ablation on Expert 940

Heterogeneity 941

Our experiments reveal a strong correlation be- 942

tween loss and the performance of downstream 943

tasks: lower loss generally leads to better perfor- 944

mance. With this insight, we investigated how to 945

determine Expert Heterogeneity. Figure 9 illus- 946

trates the loss obtained by training HMoE using an 947

arithmetic sequence strategy with varying levels of 948

variance, all within the same computational budget. 949

We observed that as the ratio between the largest 950

and smallest experts increases (i.e., as the variance 951

increases), the model’s performance initially de- 952

grades but then improves. This suggests that in the 953

heterogeneous design of HMoE, an optimal level 954

of heterogeneity enhances performance compared 955

to either excessive heterogeneity or complete ho- 956

mogeneity. This is consistent with the reason why 957

the geometric distribution strategy has poor results. 958

A large gap in expert ability is not conducive to 959

model training and may lead to representation col- 960

lapse. Based on these findings, we have adopted 961

a relatively balanced heterogeneous distribution in 962

our main experiment. 963
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Task Activated Parameter Ratio

ARC-Challenge 21.09
ARC-Easy 20.23

Table 2: Average Activated parameter ratios (%) in
HMoE layers for ARC (Clark et al., 2018) tasks.

Expert Dim Top Tokens

2304 the, such, your, these, most, you,
both, no, they, each

3328 tables, valley, sun, temper, places,
day, war, water, through, clean

3840 known, least, lowest, immedi-
ately, bare, heavy, known, higher,
several, independent

5376 _ly, _zen, _icker, _last, _per, _var,
_orous, _next, _end, _flat

5888 _decom, _iz, _ro, _inf, _scra,
_coord, _er, problem, _och, _foss

Table 3: Top activated tokens for each expert.

F Activated Parameter Ratio Analysis964

We present the activated parameter ratios of ARC965

tasks in HMoE layers in Table 2. Specifically, we966

observe that ARC-Challenge activates more pa-967

rameters compared to ARC-Easy. This implies968

that our model can dynamically activate parame-969

ters based on the difficulty of the task. This phe-970

nomenon is consistent with that in the MoE with971

Top-P routing strategy (Huang et al., 2024). By972

activating more parameters for more difficult tasks,973

the model achieves better performance, while for974

simpler tasks, it gains higher efficiency. This ap-975

proach balances efficiency and performance. To976

be noted, the difference in activated ratios between977

difficult and simple tasks is not very large, ensuring978

stable computational costs.979

G Expert Activation Patterns980

We have recorded the tokens with the highest activa-981

tion percentages for different sizes of experts in the982

ARC tasks. As shown in Table 3, smaller experts983

are most frequently activated by simpler words or984

words with less phonetic information. In contrast,985

larger experts are most frequently activated by suf-986

fix tokens. We believe that these suffix tokens may987

be more ambiguous and thus more difficult to un-988

derstand. Medium-sized experts, on the other hand,989

are more frequently engaged with tokens that have990

clearer semantics. 991
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