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ABSTRACT

Although mixed-precision quantization (MPQ) achieves a remarkable accuracy-
complexity trade-off, conventional gradient-based MPQ methods are susceptible
to input noise, which leads to suboptimal bit-width allocation strategies. Through
saliency analysis, we indicate that treating sample feature regions as equally sig-
nificant exacerbates the quantization error in MPQ. To mitigate this issue, we pro-
pose saliency-aware MPQ (SAMPQ), a novel framework designed to dynamically
evaluate the sample saliency. In particular, SAMPQ is formulated as a three-stage
cascade-optimized training procedure. At the first stage, the neural network (NN)
weights are trained on vanilla samples with its bit-width configuration tentatively
fixed. At the second stage, saliency maps are generated by one-step optimized
weights. At the third stage, the bit-width allocation is optimized on saliency-
reweighted samples while freezing NN weights. By iteratively alternating these
optimization phases, SAMPQ enables the quantized NN modules to focus on fine-
grained features. Experiments conducted on the benchmark demonstrate the ef-
fectiveness of our proposed method within existing MPQ frameworks.

1 INTRODUCTION

The development of deep neural networks (DNNs) has driven breakthroughs in critical fields, includ-
ing autonomous driving (Zhu et al., [2024; Zhou et al.l 2024} Sun et al.| [2025)), medical diagnosis
(L1 et al.l 2023a; [Huang et al., 2024), and beyond. Despite state-of-the-art performance in down-
stream tasks, widespread deployment of DNNs in edge applications (e.g., mobile devices) remains
challenging due to high computational and memory cost. Thus, an urgent need exists for hardware
and environment-friendly model optimization to reduce complexity, accelerate inference, and min-
imize energy consumption. Unlike other compression methods that focus on optimizing network
(Liu et al, |2018; Molchanov et al., 2019) or tensor structures (Gu et al., 2014} Sugiyama et al.
2018)), quantization (Wu et al., 2016; Jacob et al., [2018; |[Krishnamoorthi, 2018 Xia et al.l 2024;
Sui et al.l [2024; [Zeng et al., 2025)) targets hardware storage optimization by constraining network
weights or activations to limited precision. Unlike fixed-precision quantization, MPQ (Sun et al.
2022; |Li et al.l |2023b) is proposed to allocate the heterogeneous bit-width of each layer, aiming to
achieve the optimal balance between precision and computational complexity.

Although MPQ considers the importance of different NN modules to the output, it remains a coarse-
grained bit-width allocation scheme. Main MPQ methods treat all data elements of an input sample
(e.g., pixels of pictures) as equally important without considering the varying saliency (or impor-
tance) of individual elements, which will lead to suboptimal bit allocation. Taking the image recog-
nition task as an example, the feature regions of an input sample are composed of grid-structured
pixel matrices. Crucially, these feature regions exhibit hierarchical semantic characteristics, where
foreground areas demonstrate significantly greater predictive importance than background regions
as evidenced by Figure Beyond pixel-level visual distinctions manifested in intensity varia-
tions, our analysis must further account for the photometric composition mechanism: each pixel’s
color perception arises from the contribution of three primary color intensities (RGB channels).
Thus, channel components exert more profound influence on model predictions than pixel dif-
ferences. However, existing MPQ methods fail to adequately exploit this input saliency informa-
tion. Since DNNs are inherently over-parameterized (Xu et al.|[2018)), the gradient noise introduced
by non-salient channel components will generate extra error through redundant parameter spaces,
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(a) Vanilla Sample (b) ROAD Mask (c) Adversarial Attack  (d) Channel Mask (ours)

Figure 1: (a) Vanilla sample; (b) ROAD feature masking on (a). (b) utilizes the ROAD attribution
metric to eliminate low-contribution pixels based on gradient confidence analysis; (c) Adversarial
pixel perturbation on (a). (c) generates human-imperceptible adversarial noise to induce model
misclassification. (d) Channel-wise binary masking on (a); (d) deploys channel-wise binary masks
to enable the model to focus on more salient feature regions.
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Figure 2: Annotation of salient and redundant regions.

which may misguide parameter update directions during the backward propagation. Moreover, low-
precision networks are more sensitive to the input noise than full-precision (FP) networks. Thus,
if we treat all input data elements equally, that noise stemming from uneven distribution of input
samples will aggravate the quantization error.

To investigate the influence of sample characteristics on MPQ bit-width allocation strategies, we
conducted a saliency analysis on the image samples. In this preliminary experiment, we perturbed
redundant and saliency regions of images separately (visualized in Figure[2) and quantified their im-
pact on model predictions using cross-entropy (CE) loss. We randomly selected four images from
the ImageNet validation set, with manually annotated saliency regions in foreground and redundant
regions in background. For these annotated regions, we construct a 15-level bivariate perturbation
grid within +0.1 range, evaluate the CE loss of model predictions on perturbed images, and visu-
alize perturbation effect through 3D surface with contour projections. As illustrated in Figure [3]
perturbing redundant regions while preserving saliency regions does not affect model predictions,
whereas perturbing saliency regions degrades prediction accuracy. Based on this theoretical founda-
tion, the SAMPQ framework generates AA-driven channel-wise binary masks with extremely low
GPU computational overhead, maintaining the channel-wise entropy and the Structural Similarity
(SSIM) metric between salient binary mask reweighted images and original images at similar levels
to rectify misclassified categories in mixed-precision models. Therefore, it is essential to conduct
sample saliency analysis in MPQ.

In this paper, we propose a saliency-aware MPQ training strategy that automatically identifies the
saliency of data elements and leverages this saliency to search for better bit-width combinations. As
the novel attempt to enhance MPQ search via sample saliency, our SAMPQ framework is formulated
as a three-level cascade optimization problem. In the first level, the bit-width parameters of the
network are frozen, while the network weights are trained. In the second level, the trained model
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Figure 3: Impact of salient and redundant region perturbations on CE Loss.

applies an adversarial attack (AA) approach to generate saliency maps. The saliency scores derived
from these maps are then employed to assign weights to the input data elements. In the third level,
the network weights are frozen, and the saliency map reweighted samples are used to search for
optimal network bit-width parameters. Within each epoch, the three-level optimization process is
iteratively performed. The major contributions of this paper are as follows:

* We propose a sample-aware three-stage QAT framework. By formulating a three-level
cascaded optimization problem, we design a tandem alternating optimization mechanism
to jointly optimize network weights and quantization parameters, which dynamically learn
saliency regions of the sample feature distributions to refine bit-width decision boundaries.

* We propose a channel-wise binary mask-based (CWBM) saliency detection algorithm.
Leveraging AA algorithms, pixel-channel adversarial perturbations are generated and
mapped to a binary domain to construct a channel-wise binary saliency matrix.

* We propose a saliency-aware MPQ framework. Based on the three-stage QAT framework,
SAMPQ reweights vanilla samples in the second stage via our proposed saliency detec-
tion method with weak supervision, then optimizes quantization parameters in the third
stage using a saliency-weighted loss function, achieving multi-objective trade-offs among
classification accuracy and computational complexity on ImageNet.

2 RELATED WORK

2.1 MIXED-PRECISION QUANTIZATION

Existing MPQ frameworks are categorized into three mainstream methods based on different bit-
width allocation strategies: differentiable optimization based on gradient descent (Uhlich et al.,
2019; [Van Baalen et al.; |2020; |(Cai & Vasconcelos, 2020; |Yu et al., |2020), policy search based
on reinforcement learning (RL) (Wang et al., 2019} [Elthakeb et al.| [2020), and computation based
on heuristic proxy metrics (Dong et al.| 2019; 2020; [Yao et al., 2021} Tang et al. 2022). RL-
based MPQ frameworks guide agents to optimize quantization policies in the action space according
to environmental feedback by maximizing the reward function. In contrast, gradient-based MPQ
frameworks relax the discrete bit-width selection problem into a continuous optimization problem,
leveraging gradient information to directly or indirectly optimize the quantization parameters that
determine bit-width configurations. Compared with the iterative search methods of gradient and RL,
heuristic-based methods transform the bit-width search task into analytical linear programming to
reduce computation complexity from exponential to polynomial.
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2.2  SALIENCY DETECTION

The saliency detection methods (Selvaraju et al.; 2017; Rieger et al.,2020; |Pillai & Pirsiavashl[2021])
aims to produce saliency maps as post-hoc explanations for the classifier prediction based on inputs.
Several works (Ross et al.l [2017; |Ghaeini et al., [2019; [Ismail et al.l [2021; [Hosseini & Xie, [2022)
have shown that leveraging saliency of input samples can enhance model’s performance. |[Ismail,
Corrada Bravo, and Feizi| (2021) introduces a saliency guided training procedure for neural net-
works to produce sparse and less noisy gradients used in predictions while maintaining the predic-
tive performance of the model. Hosseini and Xie| (2022) proposes an end-to-end framework which
leverages saliency-reweighted data to enhance neural architecture search. These saliency methods
can be grouped into gradient-based algorithms (Simonyan et al.l [2013; |Smilkov et al., 2017} [Sun-
dararajan et al., 2017) that estimate the saliency of sample region using derivative of output score
w.r.t the input sample and perturbation-based algorithms (Ribeiro et al.l 2016)) that determine the
importance of the sample region after observing the effect of perturbations on the model’s output. In
this paper, we focus on MPQ tasks with the sample saliency detection through a weakly supervised
manner in our learning procedures.

3 PRELIMINARIES

3.1 IMAGE CHANNEL-WISE INFORMATION ENTROPY

Based on Shannon’s entropy model |Shannon| (1948) in information theory, we propose a first-order
discrete channel-wise image entropy defined as:

Cc G
Hi=- 23S piclogie 1)

e=1i=1
where C' denotes the total number of channels, p; . is the probability of the gray-scale value 7 in
the c-th channel, and G represents the total number of gray levels in n-bit images. However, first-
order entropy fails to consider the joint distribution of pixel features, hence we need to introduce
second-order discrete channel-wise image entropy Ha:
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Hy= =2 S STS pling) -logy G ) @

d=1c=1 i=1 j=1

where d indexes the four directional relationships between adjacent pixels: left-to-right, right-to-
left, top-to-bottom, and bottom-to-top. For each direction d in the c-th channel, the joint probability
distribution of adjacent pixel pairs (4, j) is calculated as:

count?(i, §)
Ny ’
where count? (i, j) denotes the number of occurrences of the pixel pair (i, j) in direction d within
the c-th channel, and Ny is given by H - (W — 1) for horizontal directions and (H — 1) - W for
vertical directions. H and W represent the height and width of the image, respectively. While high
entropy values indicate pixel-level diversity, they are unable to discriminate between meaningful

information and noise. Nevertheless, the disparity in Hs between the processed and the original
image effectively quantifies the information gain.

pii,j) = 3)

3.2 CHANNEL-WISE BINARY MASK-BASED SALIENCY DETECTION

In the process of generating adversarial perturbations, we achieve channel-wise saliency binarization
through the following mathematical operations. Firstly, the initial perturbation tensor 9; is derived
from the adversarial sample:

0 = 2t — z, 4)
where 9 denotes the adversarial sample for the i-th original sample z;. Then, d; is performed on
absolute value quantization thresholding to construct a discretized mask matrix as follows:

|6 ]

€

Mask = round (clip ( 0, 1) + 9) . st.0€[0,05). (5)

4
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Figure 4: The framework of our proposed SAMPQ. Each convolution layer of the MPQ NN consists
of the weight fake quantizer, the activation fake quantizer, and the convolution kernel at the K-
th layer. The fake quantizer performs quantization and dequantization to simulate the effect of
quantization during inference.
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where | - | represents the absolute-value operation and e denotes the maximum perturbation bound.
Crucially, the sparsity factor 6 controls the sparsity level of the binary pixel importance matrix. The
clip(+, 0, 1) function ensures the input to the rounding operation lies within [0, 1], which guarantees
the output is binary {0, 1}. After n steps generation of adversarial perturbations, the optimal saliency
map Mask; of z; project continuous perturbations to the binary space through Eq The saliency
sample x3* is generated through the Hadamard product:

2 = x; © Mask}. (6)

This design strategy confines perturbations to non-salient regions within the channel dimension
while preventing pixel-level sparse matrix generation. By preserving both salient image features
and the SSIM, channel-level sparsification effectively mitigates extraneous input noise.

4 SAMPQ FRAMEWORK

The Figure[]depicts the framework of SAMPQ. As shown, our method is guided by sample saliency
analysis, which consists of three stages performed end-to-end within the same iteration without
pretraining.

4.1 FROZEN BIT-WIDTH ARCHITECTURE

In the first stage, freeze weight and activation quantizer parameters. The MPQ model trains its
network weights W by minimizing both the bit-width complexity loss £p¢ and the CE loss Lo
on training dataset D", with the bit-width allocation B tentatively fixed:

W*(B) = argminy, £(D"; Wg, B)

N
_ @)
= argminy,, SLpc (B;f_l) + Z Lck (f(iEn W3)7t1)7

i=1

where N is the sample size, /3 represents the computational complexity penalty, and B denotes the
fixed bit-width configuration. The CE loss Lcg(+, -) is computed as CE(a, b) = — Zszl by log ay,
where a and b are K-dimensional vectors representing the predicted and ground-truth distribution
respectively. The model complexity penalty term £ g adopts the bit operations (BitOps) metric.

Specifically, f(xz;; W) depends on the quantized weights . To formulate the training loss,
L(D"; Wg, B) is defined as the loss calculated for the D" with the Wy, which are derived by quan-
tizing the FP weights W according to 3. Thus, W*(5) denotes that the optimal quantized weights
W depends on B directly. However, Wy cannot be optimized by only minimizing the £. Other-
wise, a degenerate solution for B will emerge. If B depends on redundant features, it will overfit to

the training data but fail to generalize and produce inaccurate predictions on unseen data samples.
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4.2 GENERATE SALIENCY MAPS

In the second stage, the trained W generates saliency maps. Specifically, given an input image z;,
we first use W to predict the class label (denoted by f(zi; W) of x;). Then, our AA-based saliency
method is leveraged to calculate channel-wise saliency scores. The adversarial perturbation strategy
adds small-magnitude random perturbations ¢, to x; so that the prediction outcome on the adversarial
sample x; + &; is no longer f(x; W). A larger absolute value of § implies that the corresponding
pixel channel, which has a stronger correlation with the prediction outcome f(z;; W), is more
salient. This procedure amounts to solving the following optimization problem:

{5* W) }Z . _argmaXZ£CE( (xi; Wg), flx; + 6 W5 )) (8)

ll9illoc <& 5=4

where §; is the i-th perturbation term added to x;, and ¢ denotes small norm-bound. Assume that the
total number of classes in the classification task is K, the predictions f(x; +6;; Wj) and f(xi; W)
made by Wi for z; + 0; and z; respectively are both K'-dimensional tensors encoding the probabil-
ities of each predicted class. In this optimization problem, we aim to identify optimal perturbation
values for each pixel channel by maximizing the deviation between the prediction outcomes of the
perturbed and original images. Finally, the saliency map is generated by applying an element-wise
weighting operation [6to the vanilla image.

4.3 LEARN BIT-WIDTH ALLOCATION

In the last stage, the class labels predicted by the model from saliency maps are utilized to guide
the optimization of bit-width configuration parameters through CE loss computed against ground-
truth labels. We freeze the weight updates of the network after introducing saliency samples, while
directing the bit-width configuration search via a composite loss function that combines saliency
map loss and model complexity loss. This strategy enables gradient backpropagation to update the
quantization parameters without compromising the stability of the trained network weights.

{B*}EPOCh = argminlg ﬁﬂBC + o Z [fCE Zal, f), ti) , 9)

Specifically, « is the salient sample weighting coefficient. As stated in EqI0} W and B; is evalu-
ated on a human-labeled validation set. The optimal bit-width architecture B* is selectedj via mini-
mizing the validation loss:

B* = L Dval B* * 10
ooty £ 0B 10

4.4 THREE-LEVEL CASCADE OPTIMIZATION FRAMEWORK

To sum up, we combine the three stages into a unified three-level cascade optimization framework
and obtain the following formulation:

min L (DVal B, W Wg)
Be{B;}
s.t. B* = argming L (x sal, ;W5) an
0" (Wg) = argmaxgL(x + 6, z; Wg)
W*(B) = argminy, £(D"; Wg, B).

In our SAMPQ framework, it aims to slove three-level cascade optimization problems, correspond-
ing to a learning stage respectively. From the lower to the higher stage, these optimization problems
lead to hierarchical dependencies represented as the three simplified equations (corresponding to
Eqs[7H9) in Eq[T1] The first two optimization problems are nested on the constraint of the third
one and the second optimization problem relies on the first one. The algorithm [I]in Appendix A
elaborates the pseudocode implementation of SAMPQ.
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(a) Spearman’s correlation coefficient analysis. (b) Layer-wise random initialization of weights.

Figure 5: Sanity check of saliency maps. “Init Layer 4-1” denotes that initialization proceeds
sequentially from the fourth group of residual modules to the first group.

Table 1: The sparsity factor-based saliency sample analysis on seed 16. Note that Top-1 and Top-5
accuracies are in %. Entropy is measured in bits.

9 Vanilla Sample Adversarial Sample Saliency Sample
Hy,  Top-1/Top-5 SSIM  Hy  Top-1/Top-5 SSIM  Hs  Top-1/Top-5
0.49 0.84 11.88 54/77
0499 11.82 63/85 0.90 12.51 0/3 097 11.84 64/79
0.4999 098 11.83 58/88

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

The experimental settings are provided in Appendix A.

5.2 SANITY CHECK OF SALIENCY MAPS

This section validates the correlation between the CWBM-based saliency detection algorithm and
model parameters through cascading parameter randomization (Adebayo et al [2018)). Based on
the pre-trained ResNet-18 model, we implement a depth-first initialization strategy (applying Kaim-
ing initialization from deep to shallow residual modules). By comparing the Spearman coefficients
between saliency maps generated from vanilla and randomized models in Figure [5(a)] we reveal
the algorithm’s intrinsic dependencies: deep-layer randomization induces correlation decline (prov-
ing CWBM’s reliance on optimized parameters), while stable 0.8-0.9 correlations post-initialization
demonstrate inherent utilization of the model architecture’s low-level features. The experiments
prove that our proposed saliency detection algorithm effectively mitigates structural biases in edge
feature extraction, validating the rationality of the saliency map generation mechanism through pa-
rameter sensitivity verification.

5.3 COMPARATIVE AND ABLATION STUDIES

As depicted in Figure[6] we first conduct two controlled experiments to evaluate the impact of adver-
sarial and saliency sample processing methods on BitOps. For adversarial samples, we use the PGD
algorithm (Madry et al.} 2017) to iteratively apply perturbations to vanilla samples at fixed frequency
intervals (with perturbation injection every 5 iterations). For saliency samples, we leverage the ¢;
in Eq] from the PGD algorithm and applied the weighting operations defined in Eq[5H| to vanilla
samples. In SAMPQ), the prioritized optimization of weights over quantization parameters leads to
lower bit-width compression rates compared to conventional quantization frameworks.
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Table 2: Ablation Experiments on ResNet-18: Impact of SAMPQ Framework. Notably, “Memory”
denotes the MPQ policy memory consumption, while “Time” denotes the MPQ policy search time
measured by GPU-hours.

Method Sample Optimization 0 BitOps A-Bit/W-Bit Memory(G) Time(h)

EdMIPS  Vanilla Joint - 6.8 2.47/2.16 17.4 16.2
EdMIPS  Saliency Joint 0.499 6.8 2.47/2.16 18.2 31.8
EdMIPS Saliency Joint 0.4 6.7 2.53/2.11 18.2 31.8
EdMIPS  Vanilla Cascaded - 6.2 2.53/1.95 17.5 16.7

BitOps

—e— EdMIPS (adversarial sample)

—e— EAMIPS (vanilla sample)

—e— SAEAMIPS (saliency sample)
SA-EAMIPS (vanilla sample)

T B 35 3 1
Epochs

Figure 6: Comparing BitOps metric during the bit-width search phase based on EAMIPS.

Secondly, we analyze saliency samples on 100 ImageNet validation images selected randomly with
a random seed, taking adversarial samples as a reference. We measure the Top-1/Top-5 classifica-
tion accuracy via the pre-trained quantized ResNet-18 model based on EAMIPS (Cai & Vasconcelos,
2020). As demonstrated in Table (I} the saliency samples enhance the model’s feature region local-
ization capability when the sparsity factor § = 0.499. Although saliency samples can improve the
classification accuracy of classifiers for misclassified or high-standard-deviation vanilla samples,
their Top-5 classification accuracy is significantly lower than that of vanilla samples, indicating that
model weights still need to leverage vanilla samples to calibrate the feature distribution.

Finally, Table [2| presents our ablation experiments on three configurations: vanilla-sample-only
bit-width search policy, saliency-sample-only search policy, and three-stage cascaded optimization
search policy based on vanilla samples. Figure[7]further illustrates how different o values affect the
searched bit-width configurations of SA-EdMIPS. Unless otherwise specified, the PGD parameters
in the experiments are consistent with those listed in Appendix Table

5.4 PERFORMANCE COMPARISON ON IMAGENET

As Table [3| shows, all experiments are conducted using the optimal sparsity factor listed in Table
For gradient-based MPQ baselines, we validate the effectiveness of our method on EAMIPS and
GMPQ (Wang et al, 2021). As FigureB]shows, we also use the Grad-CAM method (Selvaraju et al.}
2017) to perform a visual comparison of mixed-precision models after fine-tuning the weights. To
understand what SAMPQ learns, we visualize the optimal bit allocation per layer in Figure[9]

BitOps Comparison Across Epochs Loss Comparison Across Epochs S-Top-1 Comparison Across Epochs

—=— a=08
35 =085
70004 —=— a=09
—=— =095
30 —=— a=10
60004

BitOps

5000 4

4000 4

1234567 891011121314151617181RR 22425 12345678 910111213141516171819202122232425 12345678 910111213141516171819202122232425
Epoch Epoch Epoch

Figure 7: Comparative experiments on saliency loss decay « for ResNet-18. Notably, “S-Top-1”
denotes the Top-1 accuracy in the search phase.
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Table 3: Experimental results on different NN architectures. Note that BitOps are in billion. A-Bit
and W-Bit denote the average values of activation and weight bit-width combinations, respectively.

Architecture Method BitOps Top-1/Top-5 A-Bit/W-Bit

FP 4198.4 76.4/93.1 32/32
ResNet-50 EdMIPS 15.6 72.1/90.6 2.63/1.58
SA-EAMIPS 148 72.3/90.6 2.62/1.52

FP 1536 72.7/91.0 32/32
GoogLeNet EdMIPS 5.7 67.8/88.0 2.73/2.71
SA-EdMIPS 54 67.9/88.0 2.77/2.54

FP 1843.2 70.2/89.5 32/32
EdMIPS 6.8 66.1/86.7 2.47/2.16
ResNet-18 SA-EdMIPS 6.6 66.5/87.0 247211
GMPQ 2.95 56.4/79.9 2.95/2.79

SA-GMPQ 2.86 56.6/79.9 2.89/2.79

ResNet-18 (SA-EAMIPS) ResNet-50 (SA-EAMIPS)

Weight Bit

Weight Bit Width

R R R By

Layer Index Layer Index

Activation Bit Width
Activation Bit

Figure 9: SA-EdMIPS bit allocation for ResNet-18 and ResNet-50.

5.5 LIMITATIONS
SAMPQ is only compatible with sample-sensitive MPQ frameworks. Additionally, we only explore

low-precision bit-width configurations, leading to limited performance improvement.

6 CONCLUSION

This paper addresses overfitting-induced sample feature distribution bias in MPQ bit-width alloca-
tion, enhancing accuracy while reducing computation. We propose SAMPQ framework to decouple
parameter optimization and CWBM algorithm to improve saliency-guided localization.
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A APPENDIX

A.1 ALGORITHM

Algorithm [T]elaborates the pseudocode implementation of SAMPQ.

A.2 EXPERIMENTAL SETTINGS
A.2.1 DATASETS

This section conducts systematic experiments on the ILSVRC 2012 version of the ImageNet dataset,
which comprises 1,000 object categories. The training set contains approximately 1.2 million im-
ages, while the validation set consists of 50,000 samples. Our SAMPQ optimization framework is
evaluated on three network architectures: GoogleNet, ResNet-18, and ResNet-50.

A.2.2 EXPERIMENTAL SETUP

Initially, experiments were performed on two NVIDIA Tesla V100 32GB GPUs. We implement
distributed data parallelism using the Distributed Data Parallel module of PyTorch 2.6.0 on the
Ubuntu 18.04.5 system to synchronize gradients across devices. Later, we switched to a single
NVIDIA A100-SXM4-80GB GPU for subsequent stages.
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Algorithm 1 Saliency-aware Mixed-Precision Quantization Framework

1: Given: A mixed-precision NN with initial parameters of weights W and dataset D.
2: Input: Training samples x.
3: Output: The optimal bit-width allocation 5.
4: for j + 1 to epochs do
for ¢ < 1 to iterations do
Update W each iteration by gradient descend:

5
6
7: W*(B) = argminy,, SLpc(B;_,) + vazl Leg (f (zi; Wg), ti>.
8: if W updated then

9 1. Use W to generate saliency scores:

N

10: {67 (Wg)}i:1 = ﬁ;g‘lmax Ef\il Lcog (f(a:l, WE), f(xi + di; Wg))

7 ooS‘S
11: 2. Use 6* to generate saliency maps:
12: 2 = ¢ © round (12l + 6).
13: end if
14: if 2% are generated then
15: Update parameters of B by gradient descend:

.\ Epoch . %

16: {Bj }jiolc = argming BLpc (B;) + « Zivzl LcE (f(xzal; Wg), ti).
17: end if
18:  end for

19:  Derive the final bit allocation 53 based on D%
. * . val. Rx* *

20: B —mlnB*e{B;}ﬁ(D 4By, Wi).

21: end for

Table 4: Hyperparameter settings in the bit-width search phase for ResNet-18.

Parameter Category Parameter Name Configuration Meaning
batch_size 256 Input batch size
Trainin seed 3 Random seed
& epoch 25 Training epochs
step_epoch 10 Learning rate (LR) decay interval
Loss Function alpha 0.85 Salient weighting coefficient
complexity_decay  0.00335 Computational complexity penalty
Ir_weights 0.1 Initial LR for weights
SGD Optimizer Ir_quant 0.01 Initial LR for quantized parameters
momentum 0.9 Momentum parameter
weight_decay 0.0001 L2 regularization strength
step_size 2/255 Single-step perturbation magnitude
Saliency Detection epsilon 8/255 Perturbation bound
y num_steps 3 Attack iteration count
theta 0.499 Sparsity factor

A.2.3 HYPERPARAMETERS

During the bit-width search phase, the seed is set to 3, and ResNet-50 employs a batch size of 64;
during the weight fine-tuning phase, the number of epochs is set to 150 with the same seed retained.
Specifically, « is set to 0.8-0.85 for ResNet-18, 0.9-1 for ResNet-50, and 1 for GoogLeNet. All
other unspecified parameters remain consistent with those specified in Tables ] and [5]

A.3 LLM USAGE DISCLOSURE

This research employs GPT-4 as a linguistic assistive tool to refine the fluency and grammatical
accuracy of draft text. The LLM is exclusively used for minor revisions (e.g., rephrasing awkward
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Table 5: Hyperparameter settings in the weight fine-tuning phase for ResNet-18.

Parameter Category Parameter Name Configuration Meaning
batch_size 256 Input batch size

Trainin seed 3 Random seed

& epoch 150 Training epochs

step_epoch 30 Learning rate decay interval
Ir_weights 0.1 Initial LR for weights

SGD Optimizer Ir_quant 0.01 Initial LR for quantized parameters
momentum 0.9 Momentum parameter
weight_decay 0.0001 L2 regularization strength

sentences, correcting punctuation) and does not contribute to study design, data analysis, or core
conclusions. All original research ideas, experimental execution, and interpretive insights remain
the sole work of the authors.
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