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Abstract

Learning complex functions that involve multi-step reasoning poses a significant
challenge for standard supervised learning from input-output examples. Chain-
of-thought (CoT) supervision, which augments training data with intermediate
reasoning steps to provide a richer learning signal, has driven recent advances in
large language model reasoning. This paper develops a statistical theory of learn-
ing under CoT supervision. Central to the theory is the CoT information, which
measures the additional discriminative power offered by the chain-of-thought for
distinguishing hypotheses with different end-to-end behaviors. The main theoreti-
cal results demonstrate how CoT supervision can yield significantly faster learning
rates compared to standard end-to-end supervision, with both upper bounds and
information-theoretic lower bounds characterized by the CoT information.

1 Introduction
“Chain-of-thought” (CoT) reasoning has been a driving force behind recent advances in the capa-
bilities of large language models. While chain-of-thought began as a prompting technique [1–3],
CoT-supervised training is now an important component of the post-training pipeline for large lan-
guage models, and has been found to be highly effective in recent empirical research [4–6].

This paper proposes new concepts in statistical learning theory that are aimed at gaining insight into
chain-of-thought learning. Consider the following concrete example of chain-of-thought, to ground
the theoretical framework to be developed. The input x is the sequence “Which is larger, 8.9
or 8.10?” and the intended answer y is “8.9”. When asked to answer directly, earlier systems (e.g.,
GPT-4) might respond incorrectly [e.g., 7]. However, newer models trained with chain-of-thought
supervision will typically first output a CoT z, represented as a sequence of tokens, enabling the
model to arrive at the correct answer. For example, the CoT might be, “Compare the numbers
as decimals, with 8.9 written as 8.90 and where 8.10 already has two decimal places.
Then compare them digit by digit. The numbers agree in the first digit. But 9 is
larger than 1 in the tenths place, so 8.9 is larger than 8.10.”. At test time, the CoT
z serves as an explanation of the answer. During training, however, the CoT z plays the role of a
natural language description of the execution trace of an algorithm—a step-by-step procedure that
is to be learned. In this way, CoT is used as a rich, additional supervised learning signal that goes
beyond standard input-output (“end-to-end”) supervision.

The focus of our theory is to describe how this additional information impacts the statistical com-
plexity of CoT-supervised learning. A key contribution of the paper is to identify a quantity that
we call the chain-of-thought information, denoted by ICoT

D,h⋆
(ε;H). As we show, the CoT informa-

tion characterizes the statistical complexity of CoT-supervised learning and captures the additional
discrimination power granted to the learning algorithm by observing the chain-of-thought. In par-
ticular, the CoT information governs how the end-to-end error of the learned algorithm scales with
the number of CoT training examples. Specifically, in the standard setting of PAC learning for bi-
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nary classification, the sample complexity scales as m = O (d/ε) in the realizable setting, where
d describes the size or complexity of the hypothesis space (e.g., the VC dimension), and ε is the
target classification error. In contrast, under CoT supervision, we show that the sample complexity
scales according to m = O(d/ICoT

D,h⋆
(ε;H)). A case where the chain-of-thought is highly informa-

tive will have ICoT
D,h⋆

(ε;H) � ε, which translates into favorable sample complexity. By establishing
information-theoretic lower bounds, it is shown that the CoT information thus provides a fundamen-
tal measure of the value of this type of non-classical supervision. Because the construction of CoT
training sets can be a time-consuming and expensive process, the theoretical framework developed
in this paper may ultimately be of practical relevance, contributing to a formal understanding and
quantification of the value of chain-of-thought supervision.

The remainder of the paper is organized as follows. Section 2 introduces an abstract model of chain-
of-thought supervised learning, together with formal definitions of the learning objective and the key
notions of risk, which we will use in our investigation. In Section 3, we motivate and introduce the
CoT information measure, establish its fundamental properties, and, as an initial pedagogical result,
show that it can be used to capture the improved sample complexity of CoT-supervised learning in
the setting of finite-cardinality hypothesis classes. Section 4 extends this analysis to infinite hypoth-
esis classes, as well as to the agnostic setting where the data are not assumed to be generated by a
member of the class. In Section 5, two types of information-theoretic lower bounds are established
that, together with the upper bounds, lends further support to considering the CoT information as a
fundamental characterization of the value of chain-of-thought supervision. Section 6 concludes with
a summary of further extensions that are presented in the appendix, a discussion of related work,
and directions for future research that are suggested by the results of this paper.

2 Preliminaries: A Model of Chain-of-Thought Supervised Learning

The standard statistical learning problem is formulated as the problem of selecting a distinguished
member of a function class F : X → Y , mapping from an input space X to an output space Y . The
learner observes a dataset of input-output examples {(xi, yi)}i∈[m] and seeks to identify the ground
truth function f⋆ ∈ F (in the realizable setting) or compete with its closest approximation in F
(in the agnostic setting). A learning algorithm in the standard (“end-to-end”) setting is a mapping
A : (X × Y)∗ → YX from input-output datasets to predictors.

When the target function class F is highly complex—such as functions representing multi-step
reasoning processes—learning from input-output examples alone can be statistically intractable. To
overcome this difficulty, a natural approach is to provide the learner with increased supervision
through the step-by-step execution of the target function on the input. To formulate this, we assume
that each example observed by the learner includes not only the input x and output y, but also an
auxiliary observation z that represents information about the function’s execution on x.

A chain-of-thought (CoT) hypothesis class H is a family of functions h : X → Y × Z . For each
h ∈ H, an input x ∈ X yields h(x) = (y, z), where y ∈ Y is the output and z ∈ Z is the
corresponding CoT. We denote the components of h returning only the output as its end-to-end
restriction, he2e : X → Y , and the component returning only the CoT as its CoT restriction, hCoT :
X → Z . In the chain-of-thought learning setting, the learner observes a dataset {(xi, yi, zi)}i∈[m]

and seeks to learn the underlying end-to-end function. A chain-of-thought learning algorithm is a
mapping A : (X × Y × Z)∗ → YX from CoT datasets to predictors.

A key example captured by this framework is autoregressive sequence models, generating the CoT
sequentially as zt = f(x1, ..., xn, z1, ..., zt−1) until a final output y = f(x1, ..., xn, z1, ..., zt(x)) is
generated. In this case, the spaces X ,Y,Z would correspond to spaces of variable-length sequences
over some vocabulary. Sequence models like transformers [8] are an important way to implement
such hypothesis classes in a way that allows for CoT supervision. However, the details of any such
implementation are not important for our theoretical treatment.

Types of risk. It will be crucial to distinguish between two notions of risk: End-to-end risk and the
chain-of-thought risk. Let D be a distribution over X . For a reference hypothesis h⋆ ∈ H and a
predictor h ∈ (Y × Z)X , we define these risks as follows:

Re2e
D (h) = P

x∼D

[
he2e(x) 6= he2e

⋆ (x)
]
, RCoT

D (h) = P
x∼D

[h(x) 6= h⋆(x)] .
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Table 1: A comparison of analysis techniques for studying learning with chain-of-thought.

Method Hypothesis class Sample complexity (realizable)

E2E supervision Finite H log|H|/ε
General H VC(Le2e(H))/ε

bounding CoT risk Finite H log|H|/ε
General H VC(LCoT(H))/ε

using CoT Information Finite H log|H|/ICoT
D,h⋆

(ε;H)

General H VC(LCoT(H))/ICoT
D,h⋆

(ε;H)

That is, Re2e
D (h) is the probability that the predictor’s end-to-end output is incorrect, whereas

RCoT
D (h) is the probability that either the output he2e(x) or the CoT hCoT(x) disagrees with h⋆.

A key characteristic of the chain-of-thought supervised learning setting is that the training objective
is the CoT loss, whereas the testing evaluation metric is the end-to-end risk. This asymmetry has
important information-theoretic implications, which are a main focus of this work.

2.1 Interlude: The problem of linking the end-to-end and chain-of-thought risks
Before introducing the CoT information measure and our main theoretical result, we first motivate a
key aspect of the analysis, which is specific to the CoT setting. In CoT learning, the learner observes
training examples S = {(xi, yi, zi)}i∈[m] and seeks to identify the input-output relationship using
information from both the output yi and CoT labels zi. That is, although the CoT error is used as a
signal during training, only errors in the final output y are penalized at test time. Consequently, to
derive sharp statistical rates, it is necessary to link the two risk functions precisely.

To explain, recall that standard statistical learning theory characterizes the statistical complexity of
learning from input-output examples without chain-of-thought supervision. For example, focusing
on the realizable case for clarity, standard results in PAC learning [e.g., 9] show that the sample
complexity to obtain end-to-end error ε scales as d/ε, where d is a complexity measure such as log-
cardinality or the VC dimension of the end-to-end loss class Le2e(H). Intuitively, the ε-dependence
can be understood in terms of the amount of information per sample, as O(1/ε) samples are required
to distinguish between two hypotheses whose outputs disagree on a subset of measure ε in the input
space. Matching information-theoretic lower bounds validate that these are the optimal learning
rates for the standard E2E-supervised setting.

In the CoT-supervised setting, the learning algorithm potentially has access to more information by
observing the CoT, and thus faster rates of convergence are expected. The theoretical challenge
lies in capturing this added information as improved rates in the analysis. Standard learning theory
results cannot be directly applied to the CoT setting due to the mismatch between the training objec-
tive and the evaluation metric. One approach to address this challenge, which is taken by Joshi et al.
[10], is to side-step this asymmetry by noting that the end-to-end error is always upper bounded
by the CoT error, with Re2e

D (h) ≤ RCoT
D (h), and to instead establish a guarantee on the CoT risk,

allowing the use of standard results in learning theory. In particular, one can define the CoT loss
class for the hypothesis class H as a function class over X × Y × Z according to

LCoT(H) =
{
ℓCoT
h : (x, y, z) 7→ 1{h(x) 6= (y, z)}

∣∣ h ∈ H
}
.

Then, appealing to standard results in PAC learning [e.g., Vapnik’s “General Learning” frame-
work 9], one can learn H to obtain a CoT risk of ε with a sample complexity m(ε) =
O(VC(LCoT(H))/ε), which in turn guarantees that the end-to-end risk is also bounded by ε.

This method of analysis leads to a sample complexity with the same 1/ε rate that we see in the end-
to-end supervision setting, despite the increased amount of information per sample. In particular,
this does not imply improved sample complexity over standard end-to-end supervision in the case
of finite-cardinality classes (c.f. Table 1). In the general case, improved sample complexity hinges
on whether or not the inequality VC(LCoT(H)) � VC(Le2e(H)) holds, which is a priori unclear,
even if it is possible to construct artificial classes for which this holds [10]. This suboptimality stems
from the fact that this approach does not distinguish between the two types of risk and does not
explicitly measure the amount of information encoded in the chain-of-thought. As a consequence,
this approach cannot achieve matching information-theoretic lower bounds. Moreover, it is unclear
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whether it is meaningful to apply this type of analysis to the agnostic setting, where the distribution
over input-output-CoT examples is not realizable by the CoT hypothesis class.

3 Key Idea: The CoT Information Measure
We now describe a new approach that explicitly accounts for the additional information provided in
the CoT supervision for distinguishing between hypotheses with different end-to-end behaviors.

Definition 1 (CoT information). For a CoT hypothesis class H ⊂ (Y × Z)X and distribution D
over X , we define the CoT information measures as follows:

ICoT
D (h1, h2) = − log P

x∼D

[
hCoT
1 (x) = hCoT

2 (x), he2e
1 (x) = he2e

2 (x)
]

ICoT
D,h⋆

(ε;H) = inf
h∈∆e2e

D (ε;H,h⋆)
ICoT
D (h⋆, h).

where the infimum is over ∆e2e
D (ε;H, h⋆), the set of hypotheses that disagree with the end-to-end

behavior (i.e., output) of h⋆ with probability at least ε,

∆e2e
D (ε;H, h⋆) :=

{
h ∈ H : P

x∼D

[
he2e
⋆ (x) 6= he2e(x)

]
> ε
}
.

The relative CoT information between two hypotheses ICoT
D (h1, h2) quantifies how effectively the

observed CoT behavior distinguishes the two hypotheses. In particular, the probability P[hCoT
1 (x) =

hCoT
2 (x), he2e

1 (x) = he2e
2 (x)] ∈ (0, 1) represents the proportion of inputs on which a pair of hy-

potheses have matching behavior on both the CoT and the end-to-end output, rendering them indis-
tinguishable from these observations. The relative CoT information between a pair of hypotheses is
the negative logarithm of this probability; thus, ICoT

D (h1, h2) takes values in [0,∞).

The CoT information of a hypothesis class H, relative to the reference hypothesis h⋆, is a function of
the error level ε, denoted ICoT

D,h⋆
(ε;H). It is defined as the minimal relative CoT information between

h⋆ and every alternative hypothesis h ∈ ∆e2e
D (ε;H, h⋆) which disagrees with h⋆’s end-to-end output

on more than an ε fraction of the inputs. A large ICoT
D,h⋆

(ε;H) thus ensures high distinguishability
(via CoT) between h⋆ and any such "bad" alternative.

A primary message of this work is that the CoT information characterizes the ε-dependence of
sample complexity in Chain-of-Thought supervised learning by quantifying the informativeness of
CoT supervision. The CoT information can be much larger than ε, yielding rapid learning under CoT
supervision. The intuition is that when two hypotheses differ in terms of their end-to-end behavior,
even with small probability, they will typically differ in terms of their computational traces (i.e.,
CoT) with high probability. Consequently, CoT supervision allows these differing hypotheses to be
distinguished far more rapidly than by observing input-output samples alone.

3.1 Properties of the CoT information
The following result outlines key properties of the CoT information measure. Among these, the
property ICoT

D,h⋆
(ε;H) ≥ ε is particularly important. As will be demonstrated, this implies that, in

the realizable setting, CoT supervision is never detrimental, information-theoretically. The proof of
these properties is given in Appendix A.

Lemma 1. Let H ⊂ (Y × Z)X be a CoT hypothesis class. Then the CoT information ICoT
D,h⋆

(ε;H)
satisfies the following properties:

1. ICoT
D,h⋆

(ε;H) ≥ ε.

2. ICoT
D,h⋆

(ε;H) is monotonically increasing in ε.

3. ICoT
D,h⋆

(ε;H) is monotonically decreasing in H (under the subset relation).

Before proceeding with bounding sample complexity in terms of CoT information, we note how
the measure behaves in extreme boundary conditions. First, let us consider an example where the
CoT annotations are entirely independent of the end-to-end behavior. In particular, consider a CoT
hypothesis class with a product structure H = FCoT × Fe2e, where FCoT ⊂ ZX ,Fe2e ⊂ YX .
In this case, we would expect no statistical advantage from observing the CoT—this is captured
by the CoT information measure, which coincides with the “end-to-end information” in this case.
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H H H

h⋆

E2E-Cons(Sm;H)

CoT-Cons(Sm;H)

ε � d/m

ε � (ICoT
D,h⋆

)−1(d/m)

Legend

Increasing Sample Size m

Figure 1: Illustration of the statistical advantage of CoT supervision in terms of the geometry of the
CoT consistency rule with respect to end-to-end error. CoT supervision enables the construction of
a tighter consistency set when the CoT is informative (i.e., ICoT

D,h⋆
(ε;H) > ε), which leads to smaller

end-to-end error and more sample-efficient learning.

At the other extreme, consider the case where the CoT from any single example reveals the entire
target function. For example, let F ⊂ YX and consider the CoT hypothesis class H = {hf : x 7→
(f, f(x)) : f ∈ F}. In this case, ICoT

D,h⋆
(ε;H) = ∞, which corresponds to the fact that a single

example is sufficient to attain zero error. Finally, consider the problem of learning a regular language
with CoT supervision. Here, we take the output y to indicate whether or not the string x is in the
language, but we let z be the sequence of states visited in a DFA representing the language as it
processes x; see Figure 2. Appendix B provides a more detailed discussion of these examples.

3.2 Improved sample complexity via CoT information
To illustrate the main ideas and intuitions underpinning this paper’s results, we next prove a sample
complexity bound for CoT-supervised learning with finite hypothesis classes in the realizable setting.
While other proofs are deferred to the appendix for clarity and brevity, this particular result is proven
here due to its simplicity and pedagogical value.

The learning rule we consider is chain-of-thought consistency, CoT-Cons(S;H): given a sample S,
the learner returns any hypothesis in H which is consistent with the sample S = {(xi, yi, zi)}i∈[m]

in terms of both outputs and the chain-of-thought.

Result 1 (Learning with Chain-of-Thought Supervision). Let H ⊂ (Y × Z)X be a finite CoT
hypothesis class. For any distribution D over X × Y × Z realized by some h⋆ ∈ H, the CoT
consistency learning rule has a sample complexity of

m(ε, δ) =
log |H|+ log(1/δ)

ICoT
D,h⋆

(ε;H)
.

That is, for any m ≥ m(ε, δ), with probability at least 1− δ over S ∼ Dm, any hypothesis h that is
CoT consistent on S will have end-to-end risk satisfying Re2e

D (h) ≤ ε.

Proof. We aim to bound the probability of the “bad event”

{∃h ∈ H : Re2e
D (h) > ε, R̂CoT

S (h) = 0}

over the draw of (x1, . . . , xm)
i.i.d.∼ D. We highlight that the training loss is the empirical CoT risk,

R̂CoT
S (h), whereas the test metric is the end-to-end risk Re2e

D (h).

Fix any h ∈ H with end-to-end error larger than ε, Re2e
D (h) = Px∼D[h

e2e(x) 6= e2e(h⋆)(x)] > ε
(i.e., h ∈ ∆e2e

D (ε;H, h⋆)). We bound the probability that h is CoT consistent on S, h ∈
CoT-Cons(S;H) = {h ∈ H : R̂CoT

S (h) = 0}, as follows

P
S∼D⊗m

[h ∈ CoT-Cons(S;H)] = P
S∼D⊗m

[
∀i, hCoT(xi) = hCoT

⋆ (xi), h
e2e(xi) = (e2eh⋆)(xi)

]
= P

x∼D

[
hCoT(x) = hCoT

⋆ (x), he2e(x) = he2e
⋆ (x)

]m
(a)
=
(
exp

(
−ICoT

D (h⋆, h)
))m

(b)

≤ exp
(
−m · ICoT

D,h⋆
(ε;H)

)
,
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Figure 2: Simulation results for learning regular languages, where the CoT is the sequence of states
z visited by a DFA processing an input string x. Right. CoT supervision yields a 102 to 103-fold
gain in sample efficiency. Left. This empirical gain aligns with theoretical predictions from the CoT
information measure, which for this setup yields a limiting ratio limε→0 ICoT

D,h⋆
(ε;H)/ε ≈ 600.

where step (a) is by the definition of the relative CoT information between a pair of hypotheses, and
step (b) is by the definition of ICoT

D,h⋆
(ε;H) and the fact that h ∈ ∆e2e

D (ε;H, h⋆).

Choosing m = log|H|+log(1/δ)

ICoT
D,h⋆

(ε;H)
implies that for each hypothesis h ∈ ∆e2e

D (ε;H, h⋆) with end-to-end

error larger than ε, the probability that it is in the CoT consistency set is bounded by

P
S∼D⊗m

[h ∈ CoT-Cons(S;H)] ≤ δ

|H|
.

Applying a union bound over H yields

P
S∼D⊗m

[
∃h ∈ H : Re2e

D (h) > ε, R̂CoT
S (h) = 0

]
≤ δ

to complete the proof.
This result demonstrates that, for CoT learning, the ε-dependence of the sample complex-
ity is O(1/ICoT

D,h⋆
(ε;H)), contrasting with the typical rate of O(1/ε). Intuitively, the ratio

ICoT
D,h⋆

(ε;H)/ε ≥ 1 quantifies the relative value of a CoT training example compared with an end-
to-end training example. Figure 2 previews simulation results exploring CoT information in the
context of learning a regular language, where the CoT is the sequence of states from the underlying
deterministic finite automaton (DFA). Its left panel depicts the ratio ICoT

D,h⋆
(ε;H)/ε as a function of

ε. The plot can be interpreted as follows: For this hypothesis class H and distribution D (uniform),
each CoT example is roughly 600 times more valuable than a single end-to-end example. The right
panel presents empirical learning curves for the CoT-Cons and E2E-Cons rules, illustrating the sta-
tistical advantage of CoT supervisionan advantage theoretically captured by the CoT information
measure. Further simulation results are presented in Appendix C.

4 Guarantees for CoT-Supervised Learning: Upper Bounds
This section extends our exploration of statistical upper bounds to infinite hypothesis classes and the
agnostic learning setting, thereby further elucidating the statistical advantage of CoT supervision.

4.1 The realizable setting: Extension to infinite classes
Result 1 established a sample complexity bound determined by two key factors: the term
1/ICoT

D,h⋆
(ε;H), which captures the information per CoT-supervised sample, and the log-cardinality

of the class, log |H|, which reflects its size or dimension. We now extend this result to infinite
classes, replacing the log-cardinality term with the VC dimension of the CoT loss class. As before,
the upper bound is achieved by the CoT consistency learning rule.

Result 2 (Learning infinite classes under CoT supervision). Let H ⊂ (Y×Z)X be a CoT hypothesis
class. For any distribution D over X×Y×Z realized by some h⋆ ∈ H, the CoT consistency learning
rule has a sample complexity of

m(ε, δ) = O

(( 1

ICoT
D,h⋆

(ε;H, h⋆)
+ 1
)(

VC(LCoT(H)) · log
( 1

ICoT
D,h⋆

(ε;H)
+ 1
)
+ log(1/δ)

))
.

That is, for any m ≥ m(ε, δ), with probability at least 1− δ over S ∼ Dm, any hypothesis h that is
CoT consistent on S will have end-to-end risk satisfying Re2e

D (h) ≤ ε.
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The proof is provided in Appendix D.1. The result follows from a lemma that relates the CoT risk
of any proper CoT learning rule (i.e., one that returns a predictor in the hypothesis class) to its
performance with respect to the end-to-end error.

4.2 The agnostic setting
The previous results assume that the data distribution D over X × Y × Z is realizable by the CoT
hypothesis class H. Such an assumption can be stringent, particularly in the presence of noise. This
section, therefore, addresses the agnostic setting, where no restriction is made on the distribution;
the goal, instead, is to compete with the best hypothesis in the class H in terms of end-to-end risk.

In the agnostic setting, a natural learning rule is CoT empirical risk minimization, which selects a
hypothesis that minimizes the empirical CoT risk: CoT-ERM(S;H) = argminh∈H R̂CoT

S (h).

Recall that CoT supervision never hurts in the realizable setting since ICoT
D,h⋆

(ε;H) ≥ ε for any
hypothesis class. The picture is more complicated in the agnostic setting. In particular, CoT super-
vision can be harmful or distracting, and discarding the CoT annotation and learning from only the
input-output examples can be preferable, as the following example shows. The issue arises when
the CoT hypothesis class H is not aligned with the data distribution, especially when H can fit the
end-to-end behavior but not the CoT behavior.

Example. Consider a CoT hypothesis class H : X → Y × Z and suppose D is a distribution
over X × Y × Z for which the output component is realizable by H but the CoT component is
not realizable. In particular, it is easy to construct examples for which infh∈H Re2e

D (h) = 0 while
infh∈H RCoT

D (h) = 1. Clearly, in such cases, the CoT-ERM learning rule provides no guarantees
whatsoever since CoT-ERM(S;H) = H for any S supported by D. In contrast, E2E-ERM enjoys the
standard PAC learning guarantees, with a sample complexity O

(
1/ε ·VC(Le2e(H))

)
.

Thus, CoT supervised learning in the agnostic setting requires a different notion of CoT information,
which captures how well-aligned the data distribution is to the hypothesis class, and whether fitting
the CoT aligns with fitting the end-to-end behavior. This uses an excess risk variant of the CoT
information, defined in the following result, which extends our results to the agnostic setting.

Result 3 (Agnostic learning under CoT supervision). Let H ⊂ (Y×Z)X be a CoT hypothesis class.
For any distribution D over X × Y × Z , the CoT-ERM learning rule has a sample complexity of

m(ε, δ) = O

(
VC(LCoT(H)) + log(1/δ)

ĨCoT
D (ε;H)2

)
,

where ĨCoT
D (ε;H), the agnostic CoT information, is defined via excess risks as

ĨCoT
D (ε;H) := inf

{
ECoT
D (h) : h ∈ H, Ee2e

D (h) ≥ ε
}
,

where Ee2e
D (h) := Re2e

D (h)−infh Re2e
D (h) and ECoT

D (h) := RCoT
D (h)−infh RCoT

D (h) are the excess
CoT and end-to-end risks, respectively. That is, for any m ≥ m(ε, δ), with probability at least 1− δ

over the draw of S ∼ Dm, the excess end-to-end risk is bounded as Re2e
D (ĥ) ≤ infh Re2e

D (h) + ε,
where ĥ ∈ CoT-ERM(S;H).

The proof is presented in Appendix D.2. Note that, unlike in the realizable case, we do not nec-
essarily have the lower bound ĨCoT

D (ε;H) ≥ ε. For instance, in the motivating example above,
ĨCoT
D (ε;H) = 0. However, CoT supervision yields an advantage when the excess CoT risk domi-

nates the excess end-to-end risk (i.e., RCoT
D (h)−RCoT

⋆ > Re2e
D (h)−Re2e

⋆ ).

5 Information Theoretic Lower Bounds for CoT Supervised Learning
This section establishes information-theoretic lower bounds on sample complexity, further validat-
ing the CoT information ICoT

D,h⋆
(ε;H) as a fundamental measure of statistical complexity for learning

with CoT supervision. In general, the statistical complexity of a learning problem depends on sev-
eral parameters, including the size or complexity of the hypothesis class (e.g., VC(H) in binary
classification) and the error parameter (e.g., 1/ε or 1/ε2 for the realizable and agnostic settings,
respectively). Different types of lower bounds scale accordingly with one or both of these factors.
Our main focus in this work is on the dependence of the sample complexity on the error parameter,
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which corresponds to the amount of information encoded in the CoT supervision for discriminating
between hypotheses with different end-to-end behavior.

We begin with a lower bound demonstrating that CoT information ICoT
D,h⋆

(ε;H) characterizes the ε
dependence of sample complexity. The essence of the result is to lower bound the minimum number
of samples required to reliably distinguish a pair of hypotheses with a given end-to-end disagreement,
reducing the learning problem to a binary hypothesis testing problem [11], and relating the total
variation distance between distributions over X × Y × Z induced by a pair of hypotheses to the
relative CoT information between them.

Result 4 (Lower bound via CoT information). Let H ⊂ (Y × Z)X be a CoT hypothesis class and
let D be a distribution on X . Let x1, . . . ,xm ∼ D be an i.i.d sample from D. For any h⋆ ∈ H and
ε > 0, if the sample size satisfies

m <
log(1/δ)

ICoT
D,h⋆

(ε;H)

then with probability at least δ, there exists h ∈ H with end-to-end error at least ε which is indistin-
guishable from h⋆ on the sample. Moreover, the expected error of any algorithm A satisfies

sup
h⋆∈H

E
S∼P⊗m

h⋆

[
Re2e

D,h⋆
(A(S))

]
≥ 1

2
sup
h⋆∈H
ε>0

ε · exp(−m · ICoT
D,h⋆

(ε;H)).

This result validates the CoT information as characterizing the ε-dependence of the rate. However,
a weakness of two-point methods is that they do not scale with the size of the hypothesis space.
The following result addresses this by reducing the learning problem to that of testing multiple
hypotheses, using a packing of the hypothesis space with respect to the end-to-end error. We then
use Fano’s inequality to lower bound the probability of error in terms of a mutual information, and
relate this mutual information to the CoT information. To apply Fano’s method in this way, we
extend the framework to allow the observed z to be a stochastic function of the hypothesis CoT.

Result 5 (Lower bound via Fano’s method). Let H ⊂ (Y × Z)X be a CoT hypothesis class and let
D be a distribution over X . Suppose that x1, . . . , xm ∼ D. Let Q ∈ P(Y × Z | Y × Z) be a noisy
channel from h(x) = (y, z) to observations ȳ, z̄. Let CQ = maxa,b DKL (Q(· | a)‖Q(· | b)) be the
capacity factor of the channel. The learner observes the noisy sample S = {(xi, ȳi, z̄i)}mi=1. Define
the pseudo-metric de2eD (h1, h2) = Px[h

e2e
1 (x) 6= he2e

2 (x)], and let M(ε;H, de2eD ) be the ε-packing
number of H with respect to this pseudo-metric. Then, for any algorithm A, we have that

m ≤ logM(H, de2eD , ε)

2 ·
(
CQ · supπ E

h1,h2∼π

[
ICoT
D (h1, h2)

]
+ log 2

) ,

implies large error for some h⋆ ∈ H with high probability, i.e.,

sup
h⋆∈H

P
S∼P⊗m

h⋆

[
Re2e

D,h⋆
(A(S)) ≥ ε

2

]
≥ 1/2.

Here, CQ is a bound on the capacity of the channel that adds noise to the chain-of-thought. This
lower bound relates the probability of large error to the CoT information measure, like the previous
result, but also scales with the size of the hypothesis space, as measured by its packing number. Ad-
ditionally, the result also models noise in the learning process by observing the CoT through a noisy
channel. The proofs of both results, along with further discussion, are presented in Appendix E.

6 Discussion and Related Work
6.1 Further explorations
We describe additional results not included in the main paper, and defer to the appendix for details.

Learning with mixed CoT and E2E supervision. In practice, obtaining CoT-annotated examples
can be a costly and labor-intensive process, limiting their quantity, whereas input-output examples
without CoT annotation can be relatively cheap and plentiful. This motivates a need for learning
algorithms that can make use of both types of examples. Appendix F.1 studies learning from datasets
with a mix of E2E and CoT supervision.
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CoT learning with inductive priors. Encoding prior knowledge about solution structure is critical for
learning complex functions, such as those representing multi-step reasoning processes, particularly
from limited data. Appendix F.2 explores chain-of-thought learning with inductive priors.

Transfer learning and out-of-distribution generalization. Chain-of-thought supervision has signif-
icant implications for out-of-distribution generalization, as it guides the learning algorithm toward
solutions that exhibit the correct step-by-step reasoning, potentially enabling robust generalization
to novel input instances. In Appendix F.3, we define a variant of the CoT Information measure,
ICoT
Dtr→Dtest

(ε;H), that captures transfer learning under CoT supervision. We also present a result on
learning under CoT supervision with distribution shift, supported by experimental simulations.

6.2 Related work
Early usage of the term “chain-of-thought” referred to empirical prompting techniques that condi-
tioned large language models to generate a series of intermediate reasoning steps before returning
the final answer [1–3, 12]. Such prompting often employs in-context learning, where CoT examples
are provided within the model’s context before it processes the input [3]. Today, the term chain-
of-thought takes a broader meaning, as it now comprises a core component of the training of large
language models [4–6].

Several works have sought to theoretically understand the advantages of the chain-of-thought
paradigm by analyzing the representational capacity of neural sequence models with and without
chain-of-thought [13–16]. For example, Pérez et al. [13] show that Transformers can simulate Tur-
ing machines by generating CoT tokens, and Merrill and Sabharwal [14] extend this analysis by
providing a more refined characterization of function classes in terms of the number of CoT steps.

While these studies demonstrate the existence of neural network models capable of computing a
given function via a specific chain-of-thought, they do not address the statistical question of whether
such models can be efficiently learned from data. Our work focuses on these statistical learning
aspects, a direction also pursued by a few recent studies. For example, Malach [17] studies the
problem of learning autoregressive next-token prediction on CoT datasets. The core idea of this
work is to express a CoT function as a composition of T (a fixed number) different sequence-domain
functions, H = H1 × · · · × HT , where each Ht : X × Σt−1 → Σ maps the input and CoT
generated so far (x, z1, ..., zt−1) to the next CoT symbol zt, with the T -th CoT symbol serving
as the final output. With this formulation, Malach [17] proposes learning each Ht independently
(with independent parameters), enabling the direct application of standard PAC results. While this
approach simplifies the analysis, its assumption of independently learned functions at each iteration
is a notable limitation, which does not accurately reflect real-world settings.

Building on this work, Joshi et al. [10] considers a time-invariant composition of sequence-domain
functions, where the function at each iteration remains the same. Their analysis relies on bound-
ing the CoT error using standard PAC learning tools based on the VC dimension of the CoT loss
class, noting that the CoT error provides an upper bound on the end-to-end error (cf. Section 2.1
and the second row of Table 1). Moreover, Joshi et al. [10] construct a synthetic autoregressive
class exhibiting a gap between the VC dimension of the end-to-end loss class and CoT loss class,
implying a statistical advantage for CoT supervision. While our results also involve the CoT loss
class, thus inheriting the advantages of such class complexity differences, the focus of our analysis
is on the content of information per CoT-supervised sample. This is represented in the dependence
of the sample complexity on the target error ε, captured by the CoT information measure. This
provides a more complete description of the statistical advantage of CoT supervision in statistical
learning. We contend that this information-theoretic analysis, centered on CoT information rather
than solely on loss class complexity, identifies a more fundamental source of statistical advantage in
CoT-supervised learning. This view is supported by our lower bound results and the close agreement
between our theory and simulations.

We close the discussion of related work by noting that learning with chain-of-thought supervision
can be framed as a transfer learning problem [e.g., 18–20], where the “source task” involves learning
the mapping x 7→ (z, y) that jointly predicts the output y and the auxiliary chain-of-thought signal
z, while the “target task” is the end-to-end prediction task x 7→ y. When the CoT information is
large (i.e., ICoT

D,h⋆
(ε) > ε), the source distribution allows learning the target task more rapidly than

the target distribution itself. This is sometimes referred to as super transfer [21].
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6.3 Conclusion and future work
This work provides a theoretical analysis of learning with chain-of-thought (CoT) supervision, in-
troducing the CoT information measure to characterize its statistical advantages via both upper and
lower bounds. This opens several promising directions for future theoretical study of CoT learning.

The upper bounds obtained in this work are based on analyzing natural but relatively simple learning
rules: CoT-consistency in the realizable setting, and CoT-ERM in the agnostic setting. Investigating
the optimality of these algorithms and exploring the design of optimal learning strategies remain key
open questions. This may be especially relevant in the agnostic setting, where the alignment between
the data distribution and the CoT hypothesis class is critical. For instance, future work could explore
adaptive learning rules that balance the optimization of the CoT error and end-to-end error to avoid
over-optimizing the CoT when the hypothesis class is poorly aligned with the data. While we use
the VC dimension of CoT loss class as the measure of complexity or size of the hypothesis class, it
will also be important to consider other measures of model complexity, including covering numbers,
local Radamacher complexities, and one-inclusion graphs [22–27].

Furthermore, while our current lower bound results address the realizable setting, establishing cor-
responding lower bounds for the agnostic setting remains an important open problem. Additionally,
future research could investigate the formulation of different structural conditions, such as low-noise
assumptions [28, 29] in the CoT setting, to achieve faster learning rates. Developing more sophis-
ticated probabilistic analysis, beyond the standard formulation of agnostic learning, holds promise
for more faithfully capturing the complexities of training language models with chain-of-thought
reasoning traces, which are often inherently probabilistic.
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A Proofs of Properties of the CoT Information (Section 3.1)
Lemma (Restatement: Properties of the CoT-information). Let H ⊂ (Y×Z)X be a CoT hypothesis
class.

1. The CoT information is always larger than the “end-to-end information”:
For any h1, h2 ∈ H, ICoT

D (h1, h2) ≥ Px∼D[h
e2e
1 (x) 6= he2e

2 (x)]. Moreover,
ICoT
D,h⋆

(ε;H) ≥ ε, ∀ε ∈ [0, 1], ∀h⋆ ∈ H.

2. ICoT
D,h⋆

( · ;H) is monotonically increasing in ε:
For any H, h⋆ ∈ H, and ε1 ≤ ε2, ICoT

D,h⋆
(ε1;H) ≤ ICoT

D,h⋆
(ε2;H).

3. ICoT
D,h⋆

(ε; ·) is monotonically decreasing in the hypothesis class:
For any hypothesis classes H ⊆ H′ and h⋆ ∈ H, ICoT

D,h⋆
(ε;H) ≥ ICoT

D,h⋆
(ε;H′).

Proof.

Property 1. To prove the first claim, take any h1, h2 ∈ H, and observe that

ICoT
D (h1, h2) := − log P

x∼D

[
hCoT
1 (x) = hCoT

2 (x), he2e
1 (x) = he2e

2 (x)
]

≥ − log P
x∼D

[
he2e
1 (x) = he2e

2 (x)
]

= − log
(
1− P

x∼D

[
he2e
1 (x) 6= he2e

2 (x)
])

≥ P
x∼D

[
he2e
1 (x) 6= he2e

2 (x)
]
,

where the final inequality is by the identity − log(1− x) ≥ x.

We now show the second claim,

ICoT
D,h⋆

(ε;H) := min
h∈∆e2e

D (ε;H,h⋆)
ICoT
D (h⋆, h)

≥ min
h∈∆e2e

D (ε;H,h⋆)
P

x∼D

[
he2e(x) 6= he2e

⋆ (x)
]

≥ ε

The final inequality follows because P
x∼D

[
he2e(x) 6= he2e

⋆ (x)
]
≥ ε, ∀h ∈ ∆e2e

D (ε;H, h⋆), by defi-

nition.

Property 2. This follows from the fact that ∆e2e
D (ε;H, h⋆) := {h ∈ H : P[he2e(x) 6= h̃e2e(x)] > ε}

is decreasing in ε. For ε1 ≤ ε2, we have ∆e2e
D (ε1;H, h⋆) ⊇ ∆e2e

D (ε2;H, h⋆), and hence

ICoT
D,h⋆

(ε1;H) := min
h∈∆e2e

D (ε1;H,h⋆)
ICoT
D (h, h⋆) ≤ min

h∈∆e2e
D (ε2;H,h⋆)

ICoT
D (h, h⋆) =: ICoT

D,h⋆
(ε2;H).

Property 3. This property similarly follows from the fact that ∆e2e
D (ε;H, h⋆) is increasing in H:

∆e2e
D (ε;H, h⋆) ⊂ ∆e2e

D (ε;H′, h⋆) for H ⊆ H′. Thus,

ICoT
D,h⋆

(ε;H) := min
h∈∆e2e

D (ε;H,h⋆)
ICoT
D (h, h⋆) ≥ min

h∈∆e2e
D (ε;H′,h⋆)

ICoT
D (h, h⋆) =: ICoT

D,h⋆
(ε;H′).

B Simple Examples of CoT Hypothesis classes and their CoT Information
In this section, we provide a more detailed discussion on the illustrative examples presented in Sec-
tion 2. The first two examples represent the two extremes on the informativeness of CoT supervision
and serve as sanity checks to confirm that the CoT information captures the expected statistical com-
plexity in each case. The next example considers a hypothesis class where the CoT supervision
includes T independent samples of the input-output function, and shows that the CoT information
scales linearly with T as expected. Finally, we consider CoT hypothesis classes based on models of
computation such as finite-state machines, where the CoT is taken to be the state trajectory of the
computational process.
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Example 1 (Uninformative CoT yields small CoT information). In some cases, the CoT annota-
tions may be entirely “independent” from the end-to-end behavior, and hence uninformative for the
purposes of learning with respect to the end-to-end error. We will see that the CoT information
ICoT
D,h⋆

(ε;H) captures this. We will model the “independence” between the CoT and the end-to-end
behavior via a hypothesis class with a product structure. Let Fe2e ⊂ YX be a function class from
inputs X to outputs Y and let FCoT ⊂ ZX be a function class from inputs X to the CoT space Z .
We consider a CoT hypothesis class H = FCoT ×Fe2e. where

H = {hg,f : x 7→ (g(x), f(x)) | g ∈ FCoT, f ∈ Fe2e}.

Let h⋆ = (g⋆, f⋆) ∈ H = FCoT × Fe2e. Let f̄ ∈ Fe2e be the end-to-end hypothesis with smallest
disagreement with f⋆ among hypothesis with end-to-end error at least ε:

f̄ = argmin
f∈Fe2e

{
P

x∼D
[f⋆(x) 6= f(x)] : P

x∼D
[f⋆(x) 6= f(x)] > ε

}
.

Let ε+ := min{P[f⋆(x) 6= f(x)] : P[x ∼ D]f⋆(x) 6= f(x) > ε}. By the product-structure
definition of H, there exists a hypothesis h̄ := (g⋆, f̄) ∈ ∆e2e

D (ε;H) such that P[h⋆(x) 6= h̄(x)] =
P[he2e

⋆ (x) 6= h̄e2e(x)] = ε+, and hence ICoT
D,h⋆

(ε;H, h⋆) = − log(1 − ε+). Thus, there is no
statistical advantage in observing the CoT annotations.

Example 2 (Fully Informative CoT yields infinite CoT information). Recall the definition of the
CoT information as

ICoT
D,h⋆

(ε;H) := inf
{
− logP

x
[h(x) = h⋆(x)] : h ∈ ∆e2e

D (ε;H, h⋆)
}
.

This can be infinite when ∀h ∈ ∆e2e
D (ε;H, h⋆), Px[h(x) = h⋆(x)] = 0. This occurs in the extreme

case where a single CoT annotation uniquely identifies the end-to-end behavior of the hypothesis
(i.e., on every input in the support of D, each hypothesis has a unique CoT). To illustrate this, let
Fe2e ⊂ YX be a class of functions from the input space X to the output space Y . Consider the
CoT hypothesis class H = {hf : x 7→ (f, f(x)) : f ∈ Fe2e}. In this extreme example, a single
sample is enough to learn the function perfectly. This is captured by the CoT information since
∀h1 6= h2 ∈ H, we have P[h1(x) = h2(x)] = 0 and hence ICoT

D,h⋆
(ε;H) = ∞.

Example 3 (CoT Information captures i.i.d. examples in CoT). In this example, we consider a
setting where the chain-of-thought represents i.i.d. observations from the end-to-end function, as a
toy model that allows us to vary the informativeness of the CoT supervision for a fixed end-to-end
function class. We will confirm that the CoT information implies the sample complexity rates that
we would expect. Consider the CoT hypothesis class H(T ) where the CoT encodes T independent
observations, defined as follows:

H(T ) :=

h
(T )
f : (x1, . . . , xT ) 7→ ((f(x1), . . . , f(xT ))︸ ︷︷ ︸

z=(z1,...,zT )

, f(xT )︸ ︷︷ ︸
y

)

∣∣∣∣∣∣∣ f ∈ F

 .

Here, F is a function class from X̄ to Ȳ , and X = X̄ T ,Z = ȲT ,Y = Ȳ . Let D = D̄⊗T for some
distribution D̄ over X̄ . Fix h⋆ = hf⋆ and let h = hf ∈ ∆e2e

D (ε;H, h⋆). We have

ICoT
D (h⋆, h) = − log P

x∼D
[h⋆(x) = h(x)] = − log P

x1,...,xT
i.i.d.∼D̄

[∀t ∈ [T ] : f⋆(xt) = f(xt)]

≥ − log(1− ε)T = T · (− log(1− ε)) ≥ T · ε.

This in turn implies that ICoT
D,h⋆

(ε;H) ≥ T · ε. That is, one CoT sample is worth T end-to-end
samples, and the CoT sample complexity is smaller by a factor of T . This is what we would expect
for this example since a CoT example consists of T independent samples.

Example 4 (Learning Regular Languages with State-Trajectory CoT). Let H be the class of Finite-
State Machines with common state space S and operating over an alphabet Σ. That is, H = {hδ :
δ ∈ T }, where T is the set of transition functions T = SS×Σ. The Chain-of-Thought observed
by the learner is the sequence of states visited by the DFA during its execution: for an input x =
(x1, ..., xn) ∈ Σn, the CoT of hδ is z = (z1, ..., zn), where zt+1 = δ(zt, xt). Observing the
CoT can be interpreted as providing the learner with an input-dependent partial observation of the
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DFA’s underlying transition function. Once the learner has identified all components of the transition
function (or all components that are necessary to specify the input-output behavior), the learning
objective is achieved. We can use this interpretation to lower-bound the CoT information. Let
∆(h1, h2) = {(s, x) ∈ S × Σ : δ1(s, x) 6= δ2(s, x)} be the set of state-symbol pairs on which h1

and h2’s transition functions differ. Then, we have

1− P
x∼D

[
hCoT
⋆ (x) = hCoT(x), he2e

⋆ (x) = he2e(x)
]

≥ P
x∼D

[
hCoT
⋆ (x) 6= hCoT(x)

]
= P

x∼D
[∃t ∈ [n] : zt 6= z∗t ]

= P
x∼D

[h⋆ visits any (s, a) ∈ ∆(h, h⋆)]

Suppose that h⋆’s transition graph is ℓ-connected in the sense that for every state s ∈ S which
is reachable by some input supported by D, ∃ℓ′ ≤ ℓ, a1, . . . , aℓ′ ∈ Σ such that sℓ′ = s where
st+1 = δ∗(st, at), s1 = sinit. Then, if e.g. D = Unif(Σn), n ≥ ℓ, the above calculation implies
that for all h 6= h⋆,

P
x∼D

[
hCoT
⋆ (x) = hCoT(x), he2e

⋆ (x) = he2e(x)
]
≤ 1− |Σ|−(ℓ+1).

Thus, the CoT information is lower bounded as

min
ε>0

ICoT
D,h⋆

(ε;H) ≥ |Σ|−(ℓ+1)
.

Note that this bound may be loose since it only counts a single trajectory that can be used to distin-
guish between the pair of hypotheses. But, its strength is that it lower bounds the CoT information
at all error levels ε, and hence upper bounds the sample complexity of achieving zero error. A rich
literature exists on learning regular languages [e.g. 30–35].

Example 5 (Learning Shuffle Ideals by Observing Computational Trace of Finite State Machines).
The class of shuffle ideals is a simple subclass of regular languages that has been studied in the
context of efficient PAC learning [36, 37]. For a string u ∈ Σn, the shuffle ideal generated by u is
the language Σ∗u1Σ

∗u2Σ
∗ · · ·Σ∗unΣ

∗ consisting of all strings which contain u as a subsequence.
The class of shuffle ideals of strings of length n can be represented by finite state automata with
n+ 1 states. For a string u ∈ Σn, it’s shuffle ideal is recognized by the finite state machine with the
following transition function

δ(s, a) =

{
s+ 1, if a = us

s otherwise.

The acceptance state is s = n + 1. This finite state machine has a state space with a sequential
structure, with each state “looking for” a particular symbol. When that symbol is observed, the state
progresses to the next. A string is accepted if state n + 1 is reached, signifying that all symbols in
the string u are observed in the correct order. Due to the structure of this hypothesis class, each state
has exactly one symbol that causes it to progress. Thus, to learn the FSA perfectly, it is enough to
learn which symbol each state accepts. In fact, due to the sequential structure of this class of finite-
state machines, this information is revealed on a single trajectory from a positive example. Thus,
the CoT information can be bounded in terms of the probability of observing a positive example. In
particular, for h⋆ 6= h ∈ H, we have

P
x∼D

[
hCoT
⋆ (x) 6= hCoT(x)

]
≥ P

x∼D

[
he2e
⋆ (x) = accept

]
,

and hence minε>0 ICoT
D,h⋆

(ε;H) ≥ P
x∼D

[
he2e
⋆ (x) = accept

]
.

Example 6 (Turing Machines). It is possible to consider learning Turing Machines with CoT-
supervision in a manner similar to Example 4. Recall that a Turing machine is specified by a
transition function δ : S × Σ → S × Σ × {±1}, mapping the current state s and observed
symbol σ on the current position in the tape to the next state s′, the symbol to be written γ,
and the direction to move the tape d. We may consider Turing machines with chain-of-thought-
supervision, where the CoT is the trajectory of states, written symbols, and tape movements:
z = (〈s1, γ1, d1〉, . . . , 〈st(x), γt(x), dt(x)〉), where t(x) is the halting time of the Turing machine,
and can depend on the input x and the instance h⋆. Similar to the case of DFAs, observing the
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CoT reveals an input-dependent partial specification of the underlying transition function. To lower
bound the CoT information, one can consider analogous “connectivity” conditions to those discussed
in Example 4. For example, one such condition is that for every s ∈ S , there exists an input prefix
w ∈ Σ≤ℓ such that the Turing machine h⋆ lands in state s when reading w and starting at sinit.

C Simulations
This section presents numerical simulations empirically exploring the CoT information measure
for simple CoT hypothesis classes and its ability to predict sample complexity gains from CoT-
supervised learning.

C.1 Deterministic finite automata
A deterministic finite automaton (DFA), a type of finite state machine (FSM), is a foundational
model of computation. A DFA defines a function from the space of variable-length strings to a
binary classification: accept or reject. DFAs recognize exactly the class of regular languages [38].

0

1

0

1

0

1

0

1

0 1

2

3

Figure 3: The transition graph of
h⋆. This DFA is identified with the
regular language that checks if the
final symbol is a one or a zero.

CoT learning is often used as a means of providing supervision
on the intermediate computation of a reference algorithm to
be learned. In the following experiments, we use DFAs as a
model of computation to study this type of supervision.

We consider a CoT hypothesis class H ⊂ (Y × Z)X based on
deterministic finite automata (DFA). We take the input space to
be X = Σn (or Σ∗) for some alphabet Σ. As with Example 4,
the hypothesis class H is the set of all DFAs with state space
S operating over the alphabet Σ. The output y = he2e(x) is
the acceptance or rejection of the string x ∈ X = Σn, and
the chain-of-thought z = (z1, ..., zn) = hCoT(x) ∈ Sn is the
sequence of states the DFA visits during its execution.

Recall that a DFA is specified by a transition function δ : S ×
Σ → S that maps the current state and current symbol to the
next step, an initial state sinit ∈ S , and an acceptance state
saccept ∈ S . The final output of the DFA is 1{zn = saccept}.

In these simulations, we fix the size of the state space S and
vocabulary Σ, as well as choose an initial state and acceptance
state, and generate H as the set of all automata operating on
those spaces. We place a uniform distribution over the input
space D = Unif(X ) = Unif(Σn). We then choose h⋆ ∼ Unif(H) randomly, plotted to the right,
and numerically compute ICoT

D (h⋆, h) and ICoT
D,h⋆

(ε;H). Figure 4 depicts the simulation results for
these DFA experiments.

Value of CoT example vs E2E example. Figures 4a and 4b depict the ratio between the CoT
information ICoT

D,h⋆
(ε;H) and ε as a function of ε. This ratio can be interpreted as the value of one

CoT example compared to an end-to-end example, since the learning rate for E2E-supervision scales
like log|H|/ε whereas the rate for CoT supervision scales like log|H|/ICoT

D,h⋆
(ε;H). We clip ε in this

ratio to the minimal non-zero end-to-end error ε∗ = min{Re2e
D,h⋆

(h) : Re2e
D,h⋆

(h) 6= 0}, and denote
this clipped value by ε+. This is because to achieve a target error smaller than this critical level,
ε < ε∗, we only need O(1/ε∗) samples, not O(1/ε) samples. In particular, achieving zero error is
possible with O(1/ε∗) samples. The quantity limε→0 ICoT

D,h⋆
(ε;H)/ε+ has the special interpretation

of the ratio of the number of samples needed to achieve zero error under CoT supervision compared
to E2E supervision.

Varying input length. In Figure 4a we vary the input sequence length n in the input distribution
D. That is, we take Dn = Unif(Σn), and we compute the CoT information as a function of
ε for that distribution, varying n. We observe that the CoT information is increasing relative to
ε as the input length n increases. An intuitive explanation for this is that longer inputs allow a
bigger portion of the DFA’s state transition map to be explored in a single example. Figure 4c
depicts limε→0 ICoT

Dn
(ε;H)/ε+ as a function of the sequence length n. We see that this increases

rapidly with n, suggesting that, for large n, the probability of a CoT trajectory agreeing for a pair of
hypotheses with very different end-to-end behavior is vanishingly small. For n = 10, we see that
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this value is roughly 600. By our theory (e.g., Result 1), this would suggest a 600× improvement
in sample complexity for learning with zero target error. (Indeed, this is supported by our numerical
simulations on learning with CoT-Cons and E2E-Cons, as depicted in Figures 4e and 4f, which we
will discuss further a bit later.)

Varying CoT detail level. Now, we consider fixing the input length to n = 10 and instead varying
the level of detail in the CoT annotations. We do this by varying the proportion of the state trajectory
that is revealed to the learner, denoted by T ∈ [n]. For each T , we run a simulation where the CoT
trajectory revealed to the learner is the first T symbols of the state trajectory. As expected, the CoT
information monotonically increases with T . In Figure 4b we plot the ratio of CoT information to
ε as a function of ε, varying the level of detail T , and in Figure 4d we plot limε→0 ICoT

D,h⋆
(ε;H)/ε+.

While this is monotonically increasing in T , it begins to plateau as T increases, suggesting that there
are diminishing returns when it comes to distinguishing hypotheses via their CoT trajectories—most
of the information is revealed in the earlier portions of the CoT.

Empirical sample complexity of CoT-Cons and E2E-Cons. Next, we directly evaluate the sample
complexity of CoT-supervised learning compared to E2E-supervised learning by running simula-
tions using the CoT-Cons and E2E-Cons learning rules. We vary the sample size m, randomly
draw a dataset Sm of size m, and apply each learning rule to return a predictor A(Sm), then com-
pute the generalization loss Re2e

D (A(Sm)) of the returned predictor. The CoT-Cons and E2E-Cons
learning rules are implemented by constructing the respective consistency sets and returning a pre-
dictor uniformly at random. We repeat this for 500 independent trials to estimate the distribution
of Re2e

D (A(Sm)) as a function of the sample size m for each learning rule. Figure 4e depicts the
empirical sample complexity. It is computed by computing the empirical average of the loss for
each sample size m, and plotting the first sample size at which each target error level ε is attained.
Giving a complementary view, Figure 4f plots the empirical probability (over the random draw of the
sample Sm) of returning a predictor with zero loss as a function of the sample size m. Across both
figures, we see a gain in sample efficiency from CoT supervision of the order of 102 − 103, which
agrees with the theoretical predictions via the CoT information, limε→0 ICoT

D,h⋆
(ε;H)/ε+ ≈ 600.

C.2 Iterated linear thresholds
In practice, a common way of implementing CoT supervision is to consider a sequence model class
(e.g., transformers) and to train the model to generate the CoT as a sequence token-by-token, before
returning the final output. In this section, we consider another CoT hypothesis class that simulates
a simple form of this autoregressive generation. In particular, we consider a sequence model class
that generates tokens as a linear function of a fixed-size window of the history.

Fix a window size d, and let w ∈ {−1, 0, 1}d be a set of weights over this window. For a binary
sequence x = (x1, ..., xn) ∈ {0, 1}n, we define the function fw : x 7→ (x, z) ∈ {0, 1}|x|+1 as the
function that returns a sequence with the symbol z appended to x, where z is computed by applying
a threshold to the w-weighted linear combination of the prior d symbols,

fw : x 7→ (x, z) ∈ {0, 1}|x|+1, z = 1

{
d−1∑
i=0

wi · xn−i ≥ 0

}
.

The CoT hypothesis class is defined by iterating fw T times, taking the produced sequence as the
CoT, and the final symbol as the output. That is, H = {hw : w ∈ {−1, 0, 1}d}, where hw is defined
as

hCoT
w : x 7→ (z1, ..., zT ), h

e2e
w : x 7→ zT

(x, (z1, . . . , zT )) = (fw ◦ · · · ◦ fw)︸ ︷︷ ︸
T times

(x)

This represents a simple type of autoregressive CoT hypothesis class, similar to the one studied
in Joshi et al. [10]. In this section, we carry out a series of numerical simulations to explore what the
CoT information says about CoT-supervised learning for such a class. We take the window size to be
d = 8 and the number of iterations to be T = 16. The experimental results are depicted in Figure 5.

In Figure 5c we plot the CoT information ICoT
D,h⋆

(ε;H), which depicts the monotonicity in ε

shown in Lemma 1. We observe that limε→0 ICoT
D,h⋆

(ε;H) ≈ 0.32 > ε∗ ≈ 0.05, and
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Figure 4: Numerical experiments for deterministic finite automata CoT hypothesis class.

limε→0 ICoT
D,h⋆

(ε;H)/ε+ ≈ 6. Consequently, our theory would suggest a 6× gain in sample ef-
ficiency from CoT supervision. This matches remarkably well with experimental learning results
depicted in Figures 5d to 5f. For example, Figure 5e depicts a roughly 5 fold improvement in sam-
ple complexity for CoT-Cons compared to E2E-Cons at the smallest target error levels.

D Proofs for Section 4: Upper Bounds
D.1 Proof of Result 2
Result (Restatement: Learning Infinite Classes under CoT-Supervision). Let H ⊂ (Y × Z)X be
a CoT hypothesis class. For any distribution D over X × Y × Z realized by some h⋆ ∈ H, the
CoT-consistency learning rule has a sample complexity of

m(ε, δ) = O

(( 1

ICoT
D,h⋆

(ε;H)
+ 1
)(

VC(LCoT(H)) · log
( 1

ICoT
D,h⋆

(ε;H)
+ 1
)
+ log(1/δ)

))
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That is, for any m ≥ m(ε, δ), we have that with probability at least 1− δ over S ∼ Dm,

∀h ∈ CoT-Cons(S;H), we have Re2e
D (h) ≤ ε.

The key to proving this result will be to establish the following lemma, which relates the performance
of any proper CoT learner with respect to the CoT error to its performance with respect to the end-
to-end error. As before, the intuition is that achieving small CoT error implies very small end-to-end
error, because the CoT error measures any algorithmic errors, not only errors in the answer (which
might be reachable via an incorrect algorithm). This relationship is captured by the CoT information.

Recall that a proper learner for H is defined as a learning algorithm that returns a predictor in the
hypothesis class. In general, an improper learner may return any predictor, not necessarily in the
hypothesis class (and this can have some computational advantages).

Lemma 2 (Relating CoT performance to E2E performance via CoT Information). Any proper CoT-
learner A : (X × Y × Z)∗ → H which achieves CoT-error ε with sample complexity mCoT

A (ε, δ)
also achieves end-to-end error ε with sample complexity me2e

A (ε, δ) ≤ mCoT
A (γ(ε)−, δ), where

γ : (0, 1) → (0, 1) is defined as

γ(ε) := inf
{
RCoT

D (h) : h ∈ ∆e2e
D (ε;H)

}
.

Here, m(ε−, δ) denotes the limit to ε from below. Moreover, γ can be related to the CoT information
as follows

max

(
ICoT
D,h⋆

(ε;H)

1 + ICoT
D,h⋆

(ε;H)
, ε

)
≤ γ(ε) ≤ min(ICoT

D,h⋆
(ε;H), 1).

Proof. Let A be a proper CoT learner for H (i.e., it returns a hypothesis in H) with CoT-error sample
complexity mCoT

A (ε, δ). Let m ≥ mCoT
A (γ(ε), δ) and let

S = {(x1, y1, z1), . . . , (xm, ym, zm)}i.i.d.∼ D

be an i.i.d dataset drawn from the distribution D . Note that we fold the hypothesis h⋆ into D for
notational convenience, and we have yi, zi = h⋆(xi). By the assumption on the CoT-error sample
complexity of A, we have that with probability at least 1 − δ, ĥ = A(S) satisfies RCoT

D (ĥ) ≤
γ(ε)− < γ(ε).

To show that ĥ has end-to-end error smaller than ε, we proceed by contradiction. Suppose we are
in the event {S : RCoT

D (A(S)) < γ(ε)} and that Re2e
D (ĥ) > ε. This implies ĥ ∈ ∆e2e

D (ε;H) and
hence

γ(ε) := inf
{
RCoT

D (h) : h ∈ ∆e2e
D (ε,H)

}
≤ RCoT

D (ĥ) ≤ γ(ε)− < γ(ε).

This yields a contradiction. Thus, on the event {S : RCoT
D (A(S)) < γ(ε)}, which occurs with

probability at least 1− δ, we have Re2e
D (ĥ) ≤ ε. This proves the first part of the lemma.

We now proceed to relate γ to the CoT information. Note that the CoT information can be written
in terms of γ as follows

ICoT
D,h⋆

(ε;H) := inf
h∈∆e2e

D (ε;H)

{
− log P

x,y,z
[h(x) = (y, z)]

}
= − log sup

h∈∆e2e
D (ε;H)

(
1−RCoT

D (h)
)

= − log

(
1− inf

h∈∆e2e
D (ε;H)

RCoT
D (h)

)
= − log(1− γ(ε)).

The identity − log(1 − x) ≥ x gives ICoT
D,h⋆

(ε;H) ≥ γ(ε). The identity − log(1 − x) ≤ x
1−x

gives ICoT
D,h⋆

(ε;H) ≤ γ(ε)/(1 − γ(ε)) which can be rearranged to give γ(ε) ≥ ICoT
D,h⋆

(ε;H)/(1 +

ICoT
D,h⋆

(ε;H)). Finally, note that γ(ε) ≥ ε by definition since RCoT
D (h) ≥ Re2e

D (h), ∀h.
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Note that the restriction that the CoT-learning algorithm A is proper was crucial in the proof above.
In particular, we used ĥ ∈ H in order to derive the contradiction.

For a CoT hypothesis class H ⊂ (Y × Z)X , recall that we define the CoT loss class over X × Y ×
Z → {0, 1} as the 0− 1 class

LCoT(H) :=
{
ℓCoT
h : (x, y, z) 7→ 1{h(x) 6= (y, z)} : h ∈ H

}
.

The complexity of this loss class will appear in our analysis since we will be analyzing learning
algorithms that learn with respect to the CoT loss ℓCoT.

We are now ready to prove the main result.

Proof of Result 2. By Lemma 2, a CoT learner A with a sample complexity of mCoT
A (ε, δ) with

respect to the CoT error has a sample complexity with respect to the end-to-end error of at most
me2e

A (ε, δ) ≤ mCoT
A (γ(ε)−, δ), where γ is defined in the lemma. The CoT-consistency rule enjoys

a sample complexity of

mCoT
A (ε, δ) = O

(
1

ε
·
(
VC(LCoT(H)) · log(1/ε) + log(1/δ)

))
.

For the end-to-end error, this translates to the sample complexity of

me2e
A (ε, δ) ≤ mCoT

A (γ(ε), δ) ≤ O
(

1

γ(ε)
·
(
VC(LCoT(H)) · log(1/γ(ε)) + log(1/δ)

))
≤ O

(
1 + ICoT

D,h⋆
(ε;H)

ICoT
D,h⋆

(ε;H)
·

(
VC(LCoT(H)) · log

(
1 + ICoT

D,h⋆
(ε;H)

ICoT
D,h⋆

(ε;H)

)
+ log(1/δ)

))

= O

((
1

ICoT
D,h⋆

(ε;H)
+ 1

)
·

(
VC(LCoT(H)) · log

(
1

ICoT
D,h⋆

(ε;H)
+ 1

)
+ log(1/δ)

))
.

D.2 Proof of Result 3
Result (Restatement: Agnostic Learning under CoT-Supervision). Let H ⊂ (Y × Z)X be a CoT
hypothesis class. For any distribution D over X ×Y ×Z , the CoT-ERM learning rule has a sample
complexity of

m(ε, δ) = O

(
VC(LCoT(H)) + log(1/δ)

ĨCoT
D (ε;H)2

)
,

where the agnostic version of the CoT information is defined as follows

ĨCoT
D (ε;H) := inf

{
RCoT

D (h)−RCoT
⋆ : h ∈ H,Re2e

D (h)−Re2e
⋆ ≥ ε

}
,

where RCoT
⋆ := infh∈H RCoT

D (h), Re2e
⋆ := infh∈H Re2e

D (h). That is, for any m ≥ m(ε, δ), we
have that with probability at least 1− δ over S ∼ Dm, the excess end-to-end risk is bounded as

∀h ∈ CoT-ERM(S;H), we have Re2e
D (h) ≤ Re2e

⋆ + ε.

Our aim is to analyze the performance of the CoT-ERM learning rule, which seeks to minimize the
CoT-penalized error. This is a natural learning rule to consider in the CoT-supervised setting, and
corresponds to optimization procedures that are implemented in practice in CoT learning. Similar
to the realizable setting, the key to proving this learning guarantee is to relate the CoT error of a
CoT learner to its end-to-end error. This is established in the following lemma, which is an analogue
of Lemma 2.

Recall that, for a distribution D over X × Y × Z and a CoT hypothesis class H : X → Y × Z , we
define the optimal end-to-end and CoT errors achievable by H as

RCoT
⋆ := inf

h∈H
RCoT

D (h), Re2e
⋆ := inf

h∈H
Re2e

D (h).
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Lemma 3 (Relating CoT performance to E2E performance in the Agnostic Setting). Any agnostic
proper CoT-learner A : (X × Y × Z)∗ → H which achieves excess CoT-error ε with sample
complexity mCoT

A (ε, δ) also achieves excess end-to-end error ε with sample complexity me2e
A (ε, δ) ≤

mCoT
A (γ(ε)−, δ), where γ : (0, 1) → (0, 1) is defined as

γ(ε) := ĨCoT
D (ε;H) = inf

{
RCoT

D (h)−RCoT
⋆ : h ∈ H, Re2e

D (h)−Re2e
⋆ ≥ ε

}
.

Proof. Let A be a proper CoT learner for H (i.e., it returns a hypothesis in H) with CoT-error sample
complexity mCoT

A (ε, δ). Let m ≥ mCoT
A (γ(ε)−, δ) and let

S = {(x1, y1, z1), . . . , (xm, ym, zm)}i.i.d.∼ D
be an i.i.d dataset drawn from the distribution D. By the assumption on the CoT-error sample
complexity of A, we have that with probability at least 1 − δ, ĥ = A(S) satisfies RCoT

D (ĥ) <
RCoT

⋆ + γ(ε).

To show that ĥ has end-to-end error smaller than ε, we proceed by contradiction. Suppose we are in
the event {S : RCoT

D (S(S)) < RCoT
⋆ + γ(ε)} and that the end-to-end error is larger than desired

Re2e
D (ĥ) > Re2e

⋆ + ε. This implies

γ(ε) := inf
{
RCoT

D (h)−RCoT
⋆ : h ∈ H, Re2e

D (h) ≥ Re2e
⋆ + ε

}
≤ RCoT

D (ĥ)−RCoT
⋆ < γ(ε).

This yields a contradiction. Thus, on the event {S : RCoT
D (S(S)) < RCoT

⋆ + γ(ε)}, which occurs
with probability at least 1− δ, we must have Re2e

D (A(S)) ≤ Re2e
⋆ + ε.

We can now prove our main result, which follows by a similar argument to Result 2.

Proof of Result 3. By Lemma 3, a CoT learner A with a sample complexity of mCoT
A (ε, δ) with

respect to the CoT error has a sample complexity with respect to the end-to-end error of at most
me2e

A (ε, δ) ≤ mCoT
A (γ(ε)−, δ), where γ(ε) = ĨCoT

D (ε;H) is the agnostic version of the CoT infor-
mation. The CoT-ERM rule enjoys a sample complexity of

mCoT
A (ε, δ) = O

(
1

ε2
·
(
VC(LCoT(H)) + log(1/δ)

))
.

For the end-to-end error, this translates to the sample complexity

m(ε, δ) = O

(
VC(LCoT(H)) + log(1/δ)

ĨCoT
D (ε;H)2

)
,

E Proofs of Section 5: Lower Bounds
E.1 Proof of Result 4
We will break down Result 4 into several statements and prove each separately.

Result (First Part of Result 4). Let H ⊂ (Y × Z)X be a CoT hypothesis class and let D be a
distribution on X . Let x1, . . . , xm ∼ D be an i.i.d sample from D. For any h⋆ ∈ H and ε > 0, we
have that

m <
log(1/δ)

ICoT
D,h⋆

(ε;H)

implies that with probability at least δ, there exists h ∈ H with end-to-end error at least ε which is
indistinguishable from h⋆ on this sample.

Proof. Fix h⋆ ∈ H and ε ∈ [0, 1]. Let h̄ ∈ argminh∈∆e2e
D (ε;H,h⋆) I

CoT
D (h⋆, h). (If the infimum

is not attained, let h̄ be an η-minimizer and take η → 0.) Then, by definition, we have that h̄ has
end-to-end error at least ε and ICoT

D,h⋆
(ε;H) = ICoT

D (h⋆, h̄). Thus, the probability that h⋆ and h̄
agree on a random input x with respect to both the CoT and E2E behavior can be expressed as

P
x∼D

[
h̄CoT(x) = hCoT

⋆ (x), h̄e2e(x) = he2e
⋆ (x)

]
= exp(−ICoT

D,h⋆
(ε;H)).
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Now, we compute the probability that h⋆ and h̄ are indistinguishable on the CoT-annotated sample
of m points x1, . . . , xm

i.i.d.∼ D:

P
x1,...,xm

i.i.d.∼D

[
∀i ∈ [m], h̄CoT(xi) = hCoT

⋆ (xi), h̄
e2e(xi) = he2e

⋆ (xi)
]

=
(

P
x∼D

[
h̄CoT(x) = hCoT

⋆ (x), h̄e2e(x) = he2e
⋆ (x)

])m
= exp(−m · ICoT

D,h⋆
(ε;H)).

This occurs with probability at least δ when

m ≤ log(1/δ)

ICoT
D,h⋆

(ε;H)
.

The next lower bound result is based on relating the learning problem to binary hypothesis testing
and lower bounding the sample complexity of hypothesis testing via the total variation distance. The
basic idea of relating the performance of a statistical estimator to the total variation distance is due
to LeCam [11]. We also point to Yu [39] for a classic reference on statistical lower bounds, including
Le Cam’s method, as well as Polyanskiy and Wu [40] for a modern reference.

Henceforth, for a hypothesis h ∈ H, we will denote by Ph ∈ P(X × Y × Z) the distribution over
input-CoT-output tuples where the marginal on X is the input distribution D and the distribution
over (y, z) given x is the Dirac measure at h(x).

Result (Second Part of Result 4). Let A : (X × Y × Z)∗ → H be any learning algorithm that
maps a dataset Sm = {(xi, yi, zi)}mi=1 to a predictor ĥ. Suppose there exists h1, h2 ∈ H such that
P

x∼D

[
he2e
1 (x) 6= he2e

2 (x)
]
≥ 2ε. Assume that Sm ∼ (D ⊗ δ(y,z)=h⋆(x))

⊗m the sample size m is

upper bounded as

m <
log( 1

2δ )

ICoT
D (h1, h2)

.

Then, we must have
inf

h⋆∈H
P

Sm∼h⋆

[
Re2e

D,h⋆
(A(Sm)) ≥ ε

]
> δ.

Moreover, the expected error of any CoT-learning algorithm A is lower-bounded as,

sup
h⋆∈H

E
Sm∼h⋆

[
Re2e

D,h⋆
(A(Sm))

]
≥ 1

2
sup

h1,h2∈H
P

x∼D

[
he2e
1 (x) 6= he2e

2 (x)
]
· exp(−m · ICoT

D (h1, h2))

≥ 1

2
sup
h⋆∈H
ε>0

ε · exp(−m · ICoT
D,h⋆

(ε;H)).

Proof. Let us consider the pseudometric on the hypothesis space H, defined by

de2eD (h1, h2) = P
x∼D

[
he2e
1 (x) 6= he2e

2 (x)
]
,

which measures the end-to-end disagreement. Note that Re2e
D (h) = de2eD (h, h⋆). Moreover, note

that de2eD satisfies
de2eD (h1, h3) ≤ de2eD (h1, h2) + de2eD (h2, h3).

Let A : (X × Y × Z)∗ → YX be any learning algorithm. Assume towards a contradiction that
P

S∼P⊗m
h

[
Re2e

D (A(S)) ≥ ε
]
≤ δ, ∀h ∈ H. By assumption, there exists a pair of hypotheses h1, h2

such that de2eD (h1, h2) ≥ 2ε. Consider the event that the predictor returned by A is close to h0 in
end-to-end behavior, E := {de2eD (h0,A(S)) < ε}. We will consider the probability of this event
when the data is generated by h1 and h2. By the assumption on the performance of the algorithm,
we have that the probability of this event under h1 is bounded as

P
S∼P⊗m

h1

[
de2eD (h0,A(S)) < ε

]
≥ 1− δ.
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On the other hand, under S ∼ P⊗m
h2

note that by the triangle inequality of de2eD , we have

de2eD (h1, h2) ≤ de2eD (h1,A(S))+de2eD (A(S), h1) ⇐⇒ de2eD (h0,A(S) ≥ de2eD (h1, h2)︸ ︷︷ ︸
≥2ε

− de2eD (A(S), h1)︸ ︷︷ ︸
≥ε w.p. ≤δ

,

where the first bound is by the assumption on h1, h2 and the second is by the assumption on the
performance of the learning algorithm A. This then implies that

P
S∼P⊗m

h2

[
de2eD (h0,A(S)) < ε

]
≤ δ.

By the definition of the total variation distance, this then implies that the total variation distance
between P⊗m

h1
and P⊗m

h2
must be at least

TV
(
P⊗m
h1

, P⊗m
h2

)
:= sup

A

∣∣P⊗m
h1

(A)− P⊗m
h2

(A)
∣∣ ≥ P⊗m

h1
(E)− P⊗m

h2
(E) ≥ 1− 2δ.

Thus, to derive a contradiction, we will relate the total variation distance to the relative CoT infor-
mation and choose m small enough such that TV

(
P⊗m
h1

, P⊗m
h2

)
< 1 − 2δ. We compute the total

variation distance as follows:

TV
(
P⊗m
h1

, P⊗m
h2

)
:=

1

2

∑
(x1:m,y1:m,z1:m)

|Ph1(x1:m, y1:m, z1:m)− Ph2(x1:m, y1:m, z1:m)|

=
1

2

∑
x1:m

D(x1:m)
∑

y1:m,z1:m

|1{(y1:m, z1:m) = h1(x1:m)} − 1{(y1:m, z1:m) = h2(x1:m)}|

(a)
=
∑
x1:m

D(x1:m)1{h1(x1:m) 6= h2(x1:m)}

= P
x1:m∼D⊗m

[∃i ∈ [m] : h1(xi) 6= h2(xi)]

= 1− P
x∼D

[h1(x) = h2(x)]
m

= 1− exp(−m · ICoT
D (h1, h2))

To see step (a), note that the function

∆{h1, h2}(x1:m, y1:m, z1:m) := |1{(y1:m, z1:m) = h1(x1:m)} − 1{(y1:m, z1:m) = h2(x1:m)}|

takes the value 1 either if h1(x1:m) = (y1:m, z1:m) and h2(x1:m) 6= (y1:m, z1:m) or if h2(x1:m) =
(y1:m, z1:m) and h1(x1:m) 6= (y1:m, z1:m). Thus, in the sum

∑
y1:m,z1:m

we only need to consider
values of y1:m, z1:m that agree with at least one of h1, h2.

To guarantee that TV (Ph1 , Ph2) < 1− 2δ, it is enough to have

m <
log( 1

2δ )

ICoT
D (h1, h2)

.

This proves the first statement.

The second statement, in terms of the expected error, can be proven by a an analogous argument and
related to the CoT information via the above calculation of the TV distance. In particular, fix any
h1, h2 ∈ H, and consider the predictor returned by the algorithm ĥ = A(S). Convert this predictor
to a randomized test as follows

h̃ =

h1 w.p. de2e
D (h2,ĥ)

de2e
D (h1,ĥ)+de2e

D (h2,ĥ)

h2 w.p. de2e
D (h1,ĥ)

de2e
D (h1,ĥ)+de2e

D (h2,ĥ)
.

Under h1, we can lower bound the expected error via the triangle inequality as follows

E
S∼P⊗m

h1

[
de2eD (h̃, h1)

]
= de2eD (h1, h2) E

S∼P⊗m
h1

[
de2eD (h1, ĥ)

de2eD (h1, ĥ) + de2eD (h2, ĥ)

]
≤ E

S∼P⊗m
h1

[
de2eD (ĥ, h1)

]
,
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where we used the fact that de2eD (h1, ĥ) + de2eD (h2, ĥ) ≥ de2eD (h1, h2). Similarly, under h2, we have

E
S∼P⊗m

h2

[
de2eD (h̃, h2)

]
= de2eD (h1, h2) E

S∼P⊗m
h2

[
de2eD (h2, ĥ)

de2eD (h1, ĥ) + de2eD (h2, ĥ)

]
≤ E

S∼P⊗m
h2

[
de2eD (ĥ, h1)

]
.

Now, consider the prior π = 1
2 (δh1

+ δh2
) and let h⋆ ∼ π. Then, we have

sup
h⋆∈H

E
S∼P⊗m

h⋆

[
de2eD (A(S), h⋆)

]
≥ E

h⋆∼π

[
E

S∼P⊗m
h⋆

[
de2eD (A(S), h⋆)

]]

=
1

2
·

(
E

S∼P⊗m
h1

[
de2eD (A(S), h1)

]
+ E

S∼P⊗m
h2

[
de2eD (A(S), h2)

])

≥ de2eD (h1, h2) ·
1

2
·

(
P

S∼P⊗m
h1

[
h̃ 6= h1

]
+ P

S∼P⊗m
h2

[
h̃ 6= h2

])

≥ de2eD (h1, h2)

2
·
(
1− TV

(
P⊗m
h1

, P⊗m
h2

))
,

where the last inequality follows from the minimum average probability of error in binary hypothesis
testing (or, equivalently, the supremum representation of the total variation distance). Now, using
the previous calculation of the total variation distance in terms of the CoT information, we have

sup
h⋆∈H

E
S∼P⊗m

h⋆

[
de2eD (A(S), h⋆)

]
≥ sup

h1,h2∈H
P

x∼D

[
he2e
1 (x) 6= he2e

2 (x)
]
· exp(−m · ICoT

D (h1, h2))

≥ sup
h⋆∈H

sup
ε>0

h∈∆e2e
D (ε;H)

P
x∼D

[
he2e
⋆ (x) 6= he2e(x)

]
· exp(−m · ICoT

D (h⋆, h))

(a)

≥ sup
h⋆∈H

sup
ε>0

ε · exp(−m · inf
h∈∆e2e

D (ε;H)
ICoT
D (h⋆, h))

(b)
= sup

h⋆∈H
ε>0

ε · exp(−m · ICoT
D,h⋆

(ε;H)).

In step (a) we used the fact that P
x∼D

[
he2e
⋆ (x) 6= he2e(x)

]
≥ ε, ∀h ∈ h ∈ ∆e2e

D (ε;H), and in step (b)

we used the definition of the CoT information ICoT
D,h⋆

(ε;H) := infh∈ICoT
D,h⋆

(ε;H) ICoT
D (h, h⋆).

E.2 Proof of Result 5
The next upper bound will use information-theoretic tools to establish a lower bound that scales
with the size of the hypothesis space. As with the previous lower bound result, the strategy will
be to reduce the learning problem into a hypothesis testing problem. However, unlike the previous
results, which considered binary hypothesis testing, here we will consider a reduction to multiple
hypothesis testing. The main idea is to test between a finite collection of hypotheses whose minimum
end-to-end disagreement is ε. If we can show that it is impossible to reliably distinguish between
these hypotheses with a given sample size, then this implies that the best learning algorithm must at
least incur an end-to-end error proportional to ε.

To state our result, we begin by recalling the definition of an ε-packing.

Definition. Let X be a set and let d be a (pseudo)metric. A subset {x1, . . . , xM} ⊂ X is called an
ε-packing of X with respect to d if mini ̸=j d(xi, xj) ≥ ε. The packing number is defined as the size
of the maximum packing, M(ε;X, d) := max{m : ∃ ε-packing of X of size m}.

The main information-theoretic tool we will use will be Fano’s inequality [39, 41], stated below.

Lemma (Fano’s Inequality). Let W → X → Y → Ŵ be a Markov chain, and assume W ∼
Unif([M ]). Then,

Pe := P
[
W 6= Ŵ

]
≥ 1− I(X;Y ) + hb(Pe)

logM
≥ 1− I(X;Y ) + log 2

logM
.
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Similar to the previous section, for h ∈ H, we will denote by Ph the distribution on X × Y × Z
induced by the hypothesis h. As before, the marginal over X is D for all Ph. However, unlike the
previous section, Ph(y, z | x) is not a Dirac measure since to first passes through the noisy channel
Q. The distribution Ph is defined as

Ph(x, y, z) = D(x) ·Q(y, z | h(x)).

We are now ready to prove the result.

Result (Restatement of Result 5). Let H ⊂ (Y × Z)X be a CoT hypothesis class and let D be
a distribution over X . Suppose that x1, . . . , xm ∼ D. Let Q ∈ P(Y × Z | Y × Z) be a noisy
channel from h(x) = (y, z) to observations ȳ, z̄. Let CQ = maxa,b DKL (Q(· | a)‖Q(· | b)) be the
capacity factor of the channel. The learner observes the noisy sample S = {(xi, ȳi, z̄i)}mi=1. Define
the pseudo-metric de2eD (h1, h2) = Px[h

e2e
1 (x) 6= he2e

2 (x)], and let M(ε;H, de2eD ) be the ε-packing
number of H with respect to this pseudo-metric. Then, for any algorithm A observing the CoT-
supervised sample S of size m, the probability of having large end-to-end error is lower bounded
as

sup
h⋆∈H

P
S∼P⊗m

h⋆

[
Re2e

D (A(S)) ≥ ε

2

]
≥ 1−

m · CQ · supπ E
h1,h2∼π

[
ICoT
D (h1, h2)

]
+ log 2

logM(H, de2eD , ε)
.

Proof. Let H′ := {h1, . . . , hM} ⊂ H be an ε-packing of H with respect to the end-to-end dis-
tance de2eD (h1, h2) = Px∼D[h

e2e
1 (x) 6= he2e

2 (x)], where M = M(ε;H, de2eD ). Consider the prior
distributed uniformly on this packing, π = Unif({h1, . . . , hM}). For any learning algorithm
A : (X × Y × Z)∗ → H, consider the modified algorithm A′ : (X × Y × Z)∗ → H′ which
projects A onto the packing H′. That is,

A′(S) := argmin
h∈H′

de2eD (A(S), h).

The test error of A′ can be related to the test error of A via the geometry of H under the pseudometric
de2eD . In particular, letting ĥ = A(S) and h̃ = A′(S), we have that for all h ∈ H′,

de2eD (h, h̃) ≤ de2eD (h, ĥ) + de2eD (ĥ, h̃) ≤ 2 de2eD (h, ĥ),

where we used de2eD (ĥ, h̃) ≤ de2eD (h, ĥ), ∀h ∈ H′, which follows by the definition of h̃ as the
projection of ĥ onto H′. Thus, we have that, for any h ∈ H′, de2eD (h, h̃) ≥ ε =⇒ de2eD (h, ĥ) ≥ ε/2.
Also, note that h 6= h̃ =⇒ de2eD (h, h̃) ≥ ε. Thus, we have,

P
[
h 6= h̃

]
≤ P

[
de2eD (h, h̃) ≥ ε

]
≤ P

[
de2eD (h, ĥ) ≥ ε/2

]
.

By Fano’s inequality, we can lower bound P[h 6= h̃], which in turn implies the following lower
bound on the probability of A having large end-to-end error,

P
h⋆∼π,S∼P⊗m

h⋆

[
de2eD (h⋆,A(S)) ≥ ε/2

]
≥ P

h⋆∼π,S∼P⊗m
h⋆

[
de2eD (h⋆,A′(S)) ≥ ε

]
≥ P

h⋆∼π,S∼P⊗m
h⋆

[h⋆ 6= A′(S)]

≥ 1− I(h⋆;S) + log 2

logM(ε;H, de2eD )

≥ 1−
supπ∈P(H) I(h⋆;S) + log 2

logM(ε;H, de2eD )
.

The first two inequalities are just restating the implications above, the third inequality is Fano’s
inequality, and the last inequality simply uses I(h⋆;S) ≤ supπ I(h⋆;S). That is, we bound the
mutual information under the uniform prior over the packing, π = Unif(H′), by the supremum of
the mutual information over all priors (i.e., the capacity).

Now, we compute the mutual information I(h⋆;S) and relate it to the CoT information. First, let
P̄ = E

h∈π
[Ph] denote the mixture of Ph under π, and note that

I(h⋆, S) = E
h∼π

[
DKL

(
P⊗m
h

∥∥P̄⊗m
)]

≤ E
h1,h2∼π

[
DKL

(
P⊗m
h1

∥∥P⊗m
h2

)]
= m· E

h1,h2∼π
[DKL (Ph1‖Ph2)] ,

26



where the inequality follows from the convexity of the KL divergence in the second argument and
Jensen’s inequality, and the last equality is by the chain rule for the KL divergence.

Now, let us compute the KL divergence between the distributions induced by a pair of hypotheses
and relate it to the relative CoT information between them. For convenience, let us fold in the output
into the CoT and use a bold z to denote z = (y, z).

DKL (Ph1
‖Ph2

) = E
x,z∼Ph1

[
log

Ph1
(x, z)

Ph2
(x, z)

]
= E

x,z∼Ph1

[
log

D(x)Q(z | h1(x))

D(x)Q(z | h2(x))

]
= E

x∼D

[ ∑
z∈Y×Z

Q(z | h1(x)) log
Q(z | h1(x))

Q(z | h2(x))

]

= E
x∼D

[
1{h1(x) = h2(x)}

∑
z∈Y×Z

Q(z | h1(x)) log
Q(z | h1(x))

Q(z | h2(x))

]

+ E
x∼D

[
1{h1(x) 6= h2(x)}

∑
z∈Y×Z

Q(z | h1(x)) log
Q(z | h1(x))

Q(z | h2(x))

]
(a)
= E

x∼D

[
1{h1(x) 6= h2(x)}

∑
z∈Y×Z

Q(z | h1(x)) log
Q(z | h1(x))

Q(z | h2(x))

]
(b)

≤ E
x∼D

[
1{h1(x) 6= h2(x)} max

z1,z2∈Y×Z

∑
z∈Y×Z

Q(z | z1) log
Q(z | z1)
Q(z | z2)

]
(c)
= CQ · P

x∼D
[h1(x) 6= h2(x)]

(d)

≤ CQ · − log P
x∼D

[h1(x) = h2(x)]

(d)
= CQ · ICoT

D (h1, h2).

Step (a) follows by noting that
∑

z Q(z | h1(x)) log
Q(z) | h1(x)
Q(z | h2(x))

= 0 when h1(x) = h2(x). Steps
(b) and (c) are simply bounding the KL divergence between the observations under two different
hypotheses that differ by the capacity of the channel, CQ := maxz1,z2

DKL (Q(· | z1)‖Q(· | z2)).
Step (d) uses the identity x ≤ − log(1 − x), and step (d) is the definition of the relative CoT
information between two hypotheses.

Plugging this into the previous bound proves the result.

sup
h⋆∈H

P
S∼P⊗m

h⋆

[
Re2e

D (A(S)) ≥ ε

2

]
≥ P

h⋆∼π,S∼P⊗m
h⋆

[
de2eD (h⋆,A(S)) ≥ ε/2

]
≥ 1−

m · CQ · supπ E
h1,h2∼π

[
ICoT
D (h1, h2)

]
+ log 2

logM(H, de2eD , ε)
.

In particular, this result implies that when

m ≤ logM(H, de2eD , ε)

2 ·
(
CQ · supπ E

h1,h2∼π

[
ICoT
D (h1, h2)

]
+ log 2

) ,

the probability that the error is more than ε/2 is at least 1/2,

sup
h⋆∈H

P
S∼P⊗m

h⋆

[
Re2e

D (A(S)) ≥ ε

2

]
≥ 1

2
.

Now, let us discuss the role of the noisy channel in the setting of this result. The noisy channel
models noise in the learning process. For example, errors in human-created CoT annotations, errors
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in the output labels, or any other type of noise. For simplicity, let us consider a symmetric channel
over Y × Z parameterized by an error level e and defined as

Q(· | z) = (1− e) · δx + e ·Unif(Y × Z).

We can compute the channel capacity factor CQ for this channel. Let x 6= y,x,y ∈ Y × Z be
two different symbols to be transmitted through the channel, and suppose the error level is non-zero,
e ∈ (0, 1]. For convenience, denote |Y × Z| = N .

DKL (Q(· | x)‖Q(· | y))

=
∑
z

Q(z | x) log Q(z | x)
Q(z | y)

= Q(x | x) log Q(x | x)
Q(x | y)

+Q(y | x) log Q(y | x)
Q(y | y)

+
∑

z ̸=x,z ̸=y

Q(z | x) log Q(z | x)
Q(z | y)

=
(
1− e+

e

N

)
log

1− e+ e/N

e/N
+
( e

N

)
log

e/N

1− e+ e/N
+

∑
z ̸=x,z ̸=y

( e

N

)
log

e/N

e/N

=
(
1− e+

e

N

)
log

(
1− e+ e/N

e/N

)
−
( e

N

)
log

(
1− e+ e/N

e/N

)
= (1− e) log

(
1 +

N(1− e)

e

)
Intuitively, this is a decreasing function in the error level e, decreasing towards 0 as e → 1. This
corresponds to the fact that it is harder to distinguish between hypotheses when the observations are
more noisy. For e = 1/100 and |Y ×Z| = 1, 000, the capacity factor is approximately CQ ≈ 11.39.

10−4 10−3 10−2 10−1 100
0

5

10

15

e

C
Q

Figure 6: Capacity factor of Q as a function of error level for |Y × Z| = 1, 000

F Other Topics
F.1 Learning with Mixed Supervision
In many situations, CoT training examples may be difficult or expensive to obtain, for example,
because they require manual human annotation. On the other hand, input-output examples without
CoT annotation might be much more readily available. In such cases, one might have a dataset that
includes a large number of end-to-end input-output examples and a small number of CoT-annotated
examples. What types of learning guarantees can we establish in such a setting?

The following result, an extension of Result 1, analyzes the sample complexity of the consistency
rule when applied to me2e end-to-end examples and mCoT CoT examples.

Result 6 (Learning with Mixed Datasets). Let H ⊂ (Y × Z)X be a finite CoT hypothesis class,
and let D be a distribution over X . Consider an i.i.d dataset, S = Se2e ∪ Scot, consisting of me2e
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input-output examples and mcot CoT-annotated examples

Se2e = {(xe2e
i , he2e

⋆ (xe2e
i ))}i∈me2e , Scot = {(xe2e

i , hCoT
⋆ (xcot

i ), he2e
⋆ (xcot

i ))}i∈mcot ,

where xe2e
1 , . . . , xe2e

me2e
, xcot

1 , . . . , xcot
mcot

i.i.d.∼ D. Suppose the number of end-to-end examples is γ times
the number of CoT examples, so me2e = γ·mcot and let mcot ≡ m. Then, the e2e−CoT-consistency
rule has sample complexity with respect to the end-to-end error of

m(ε, δ) =
log |H|+ log(1/δ)

γ · ε+ ICoT
D,h⋆

(ε;H)
.

That is, for m ≥ m(ε, δ), with probability at least 1− δ over the draw of S = Se2e ∪ Scot,

∀h ∈ H such that R̂e2e/CoT
S (h) = 0, we have Re2e

D (h) ≤ ε.

Proof. We would like to bound the probability of the bad event

{∃h ∈ H : Re2e
D (h) > ε, R̂e2e/CoT

S (h) = 0}

over xe2e
1 , . . . , xe2e

me2e
, xcot

1 , . . . , xcot
mcot

i.i.d.∼ D. Fix any h ∈ H with end-to-end error Re2e
D (h) =

P
x∼D

[
he2e(x) 6= e2e(h⋆)(x)

]
> ε (i.e., h ∈ ∆e2e

D (ε;H, h⋆)). We bound the probability that h is

consistent with S = Se2e ∪ Scot, h ∈ CoT-Cons(S;H) = {h ∈ H : R̂e2e/CoT
S (h) = 0}, as follows

P
S=Se2e∪Scot

[h ∈ CoT-Cons(S;H)]

= P
Se2e

[
∀i ∈ [me2e], h

e2e(xe2e
i ) = he2e

⋆ (xe2e
i )
]

· P
Scot

[
∀i ∈ [mcot], h

CoT(xcot
i ) = hCoT

⋆ (xcot
i ), he2e(xcot

i ) = he2e
⋆ (xcot

i )
]

= P
x∼D

[
he2e(xi) = he2e

⋆ (x)
]me2e · P

x∼D

[
hCoT(x) = hCoT

⋆ (xi), h
e2e(xi) = he2e

⋆ (x)
]mcot

(a)

≤ (1− ε)
me2e ·

(
exp

(
−ICoT

D (h⋆, h)
))mcot

(b)

≤ exp (−me2e · ε) ·
(
exp

(
−ICoT

D (h⋆, h)
))mcot

(c)

≤ exp (−me2e · ε) · exp
(
−mcot · ICoT

D,h⋆
(ε;H)

)
= exp

(
−me2e · ε−mcot · ICoT

D,h⋆
(ε;H)

)
,

where step (a) applies Re2e
D (h) > ε (since h ∈ ∆e2e

D (ε;H, h⋆)) for the first factor and uses the
definition of ICoT

D (h⋆, h) for the second factor, step (b) is the identity log(1−x) ≤ −x for x ∈ (0, 1),
and step (c) is by the definition of ICoT

D,h⋆
(ε;H) and the fact that h ∈ ∆e2e

D (ε;H, h⋆).

Now, we write me2e = γ · m, mcot = m, and set m = log|H|+log(1/δ)

γ·ε+ICoT
D,h⋆

(ε;H)
. This guarantees that the

probability that any fixed hypothesis with error larger than ε is consistent with S = Se2e ∪Scot is at
most

P
S=Se2e∪Scot

[h ∈ CoT-Cons(S;H)] ≤ δ

|H|
.

Applying a union bound over H then shows that

P
S=Se2e∪Scot

[
∃h ∈ H : Re2e

D (h) > ε, R̂e2e/CoT
S (h) = 0

]
≤ δ.

F.2 CoT Learning with Inductive Priors
Encoding prior knowledge about solution structure is critical for learning complex functions, such as
those representing multi-step reasoning processes, particularly from limited data. This is especially
relevant in chain-of-thought settings, which are often applied to learning such reasoning processes.
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The chain-of-thought trajectories can be viewed as additional supervision for the intermediate steps
of an algorithm, helping to align the learner to the ground-truth algorithm, which may otherwise be
very difficult to learn if only input-output examples are observed.

A key idea in learning algorithms is the so-called Minimum Description Length (MDL) principle.
This encodes a prior or an inductive bias in the learner that favors hypotheses that have a small
description length (e.g., thought of as the length of program code or the size of a Turing machine’s
state space). This is also related to the notion of algorithmic complexity in algorithmic information
theory [42, 43].

In this section, we consider a minimum description length type of learning rule for the chain-of-
thought setting. This also provides an extension of Result 1 to CoT hypothesis classes that are
countably infinite.

For a prior p over a hypothesis class H, we define the chain-of-thought MDL rule corresponding to
the prior p as

MDLCoT
p (S;H) = argmax

h∈CoT-Cons(S;H)

p(h). (1)

That is, given a CoT dataset S, MDLCoT
p (S;H) selects the hypothesis that maximizes the prior

p among hypotheses that are CoT-consistent with S. One way to define such a prior p over H is
through a prefix-free description language d : H → {0, 1} which maps a hypothesis to a bitstring
description. The prior p can then be defined as p(h) = 2−|d(h)|, in which case MDLCoT

p (S;H) =
argminh∈CoT-Cons(S;H) |d(h)| selects the minimum-description CoT-consistent hypothesis.

The following result provides a learning guarantee for MDLCoT
p in terms of the likelihood of h⋆

under the prior p and the CoT-information metric ICoT
D,h⋆

(ε;H).

Result 7 (Learning with Chain-of-Thought and MDL). Let H be a countable autoregressive hypoth-
esis class and consider a prior p over H. Let S be an i.i.d. dataset of m examples drawn from a
distribution D over X . Then, with probability at least 1δ over the draw of S, any CoT-consistent
hypothesis h ∈ CoT-Cons(S;H) has its end-to-end error bounded by

Re2e
D (h) ≤ εh := inf

{
ε > 0 : ICoT

D,h⋆
(ε;H) ≥ log(1/p(h)) + log(1/δ)

m

}
This in turn implies a sample complexity with respect to the end-to-end error for the autoregressive
MDL rule MDLCoT

p of

m(ε, δ) = O

(
log 1

p(h⋆)
+ log 1

δ

ICoT
D,h⋆

(ε;H)

)
.

That is, for m ≥ m(ε, δ), with probability at least 1− δ over S = {x1, . . . ,xm}i.i.d.∼ D,

∀h ∈ MDLCoT
p (S;H) we have Re2e

D (h) ≤ ε.

Proof. Following the argument in the proof of Result 1, for any fixed h ∈ H and any εh > 0, the
probability that h is CoT-consistent on S, h ∈ CoT-Cons(S;H) = {h ∈ H : R̂CoT

S (h) = 0} yet has
end-to-end error Re2e

D (h) > εh, is bounded by

P
S∼D⊗m

[
R̂CoT

S (h) = 0,Re2e
D (h) > εh

]
≤ exp(−m · ICoT

D (h⋆, h)) ≤ exp(−m · ICoT
D,h⋆

(εh;H)).

For each h ∈ H, we will target an end-to-end error εh in a prior-dependent manner such that

P
S∼D⊗m

[
R̂CoT

S (h) = 0,Re2e
D (h) > εh

]
≤ δp(h).

This occurs if εh is chosen such that

exp(−m · ICoT
D,h⋆

(εh;H)) ≤ δp(h)

⇐⇒ ICoT
D,h⋆

(εh;H) ≥ log(1/p(h)) + log(1/δ)

m
.
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Thus, we define the target error εh for h as

εh := inf

{
ε > 0 : ICoT

D,h⋆
(ε;H) ≥ log(1/p(h)) + log(1/δ)

m

}
.

Note that this can be viewed in terms of the generalized inverse (ICoT
D,h⋆

(·;H))−, where the general-
ized inverse of a function f is defined as f−(x) = inf{y : f(y) > x}. This is well-defined since
ICoT
D,h⋆

(·;H) is an increasing function by Lemma 1.

Now, by a union bound, we have that the probability that any CoT-consistent hypothesis exceeds its
target end-to-end error is bounded by

P
S∼D⊗m

[
∃h ∈ H : R̂CoT

S (h) = 0,Re2e
D (h) > εh

]
≤
∑
h∈H

P
S

[
h ∈ CoT-Cons(S;H),Re2e

D (h) > εh
]

≤
∑
h∈H

δp(h) = δ.

Since h⋆ ∈ CoT-Cons(S;H), we have that p(h⋆) ≤ p(MDLCoT
p (S;H)) by definition of MDLCoT

p .
This, in turn, implies that

Re2e
D (MDLCoT

p (S;H)) ≤ inf

{
ε > 0 : ICoT

D,h⋆
(ε;H) ≥ log(1/p(h⋆)) + log(1/δ)

m

}
,

with probability at least 1− δ. Noting the property that f(x) ≥ y =⇒ x ≥ f−(y) for generalized
inverses, we obtain a sample complexity of

m(ε, δ) = O

(
log 1

p(h⋆)
+ log 1

δ

ICoT
D,h⋆

(ε;H)

)
.

Corollary 1. If the prior p is defined as p(h) = 2−|d(h)| in terms of a prefix-free description lan-
guage d : H → {0, 1}∗ satisfying Kraft’s inequality

∑
h 2

−|d(h)| ≤ 1, then the sample complexity
of autoregressive MDL rule MDLCoT

p satisfies

m(ε, δ) = O

(
|d(h⋆)|+ log 1

δ

ICoT
D,h⋆

(ε;H)

)
.

One advantage of such MDL-style analysis is obtaining a sample complexity that is instance-
dependent (i.e., h⋆-dependent). In the standard end-to-end setting, we obtain a sample complexity of
O(log(1/p(h⋆))/ε). In the CoT setting, we obtain an instance-dependent description of the sample
complexity in both the numerator and denominator through the CoT information ICoT

D,h⋆
(ε;H).

F.3 Transfer Learning & Out-of-Distribution Generalization Under CoT Supervision
In many applications where chain-of-thought learning is applied, out-of-distribution generalization
is a key aspect. This type of generalization requires compositional reasoning abilities, for example,
learning a set of generally applicable atomic skills that can be recombined to generalize system-
atically to novel combinations of known elements. Of particular interest is learning from simple
problem instances and generalizing to larger and more complex instances. This is sometimes re-
ferred to as length-generalization when the notion of increased complexity corresponds to longer
inputs.

Chain-of-thought learning has important implications for this type of generalization. In particular, it
allows direct supervision on the “atomic skills” and how to combine them to solve problems. This
can, in principle, enable systematic generalization by transforming the learning problem from one
of learning input-output patterns to one of learning general principles that can be applied beyond the
training distribution.
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In this section, we explore how the CoT information measure can be extended to analyze generaliza-
tion under distribution shift.

The following generalized definition of CoT information captures the amount of information re-
vealed about the end-to-end behavior on a test distribution Dtest from observing a CoT-annotated
sample drawn from a training distribution Dtr.

Definition 2 (Relative CoT Information Between a Pair of Distributions). For a CoT hypothesis
class H ⊂ (Y × Z)X , we define the relative CoT-Information between a distribution Dtr and Dtest

as

ICoT
Dtr→Dtest

(ε;H, h⋆) = inf
h∈∆e2e

Dtest
(ε;H,h⋆)

{
− log P

x∼Dtr

[
hCoT(x) = hCoT

⋆ (x), he2e(x) = he2e
⋆ (x)

]}
.

where the infimum is over ∆e2e
Dtest

(ε;H, h⋆), the set of hypotheses that disagree with h⋆’s end-to-end
behavior (i.e., output) on the test distribution with probability greater than ε,

∆e2e
Dtest

(ε;H, h⋆) :=

{
h ∈ H : P

x∼Dtest

[
he2e
⋆ (x) 6= he2e(x)

]
> ε

}
.

Unlike the in-distribution setting (where Dtest = Dtr), ICoT
Dtr→Dtest

(ε;H, h⋆) ≥ ε does not necessar-
ily hold for arbitrary CoT hypothesis classes and pairs of distributions. However, we do have

ICoT
Dtr→Dtest

(ε;H, h⋆) ≥ inf
h∈∆e2e

Dtest
(ε;H,h⋆)

{
Re2e

Dtr
(h)
}
.

With strong CoT supervision on a sufficiently diverse training distribution, we would expect the
relative CoT information to be large.

Analogous results to those presented in the main text in terms of the (standard) CoT information
also apply in the transfer learning setting via the relative CoT information measure between two
distributions defined above. For example, in the finite hypothesis class case, we have the following
analogue of Result 1.

Result 8 (Transfer Learning with Chain-of-Thought Supervision). For any finite CoT class H and
distributions Dtr (training) and Dtest (test) over X„ the CoT consistency rule has sample complexity
with respect to the Dtest-end-to-end error of

m(ε, δ) =
log |H|+ log(1/δ)

ICoT
Dtr→Dtest

(ε;H, h⋆)
.

That is, for m ≥ m(ε, δ), we have that with probability at least 1−δ over S = {x1, . . . , xm}i.i.d.∼ Dtr,

∀h ∈ CoT-Cons(S;H), we have Re2e
Dtest

(h) ≤ ε.

Proof. Fix any h ∈ H with end-to-end error under Dtest larger than ε, i.e., Re2e
Dtest

(h) > ε (so h ∈
∆e2e

Dtest
(ε;H, h⋆)). We bound the probability that h is CoT-consistent on S, h ∈ CoT-Cons(S;H) =

{h ∈ H : R̂CoT
S (h) = 0}, as follows

P
S∼D⊗m

tr

[h ∈ CoT-Cons(S;H)] = P
S∼D⊗m

tr

[
∀i, hCoT(xi) = hCoT

⋆ (xi), h
e2e(xi) = he2e

⋆ (xi)
]

= P
x∼Dtr

[
hCoT(x) = hCoT

⋆ (xi), h
e2e(xi) = he2e

⋆ (x)
]m

≤ exp
(
−m · ICoT

Dtr→Dtest
(ε;H, h⋆)

)
,

where we use the definition of the relative CoT information and the fact that h ∈ ∆e2e
Dtest

(ε;H, h⋆).

Choosing m ≥ m(ε, δ) in the theorem statement guarantees that

P
S∼D⊗m

tr

[
∃h ∈ H : Re2e

Dtest
(h) > ε, R̂CoT

S (h) = 0
]
≤ δ.
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(a) ICoT
Dtr→Dtest

(ε;H, h⋆) with fixed test distribution
at length L = 5, and varying the training distribu-
tion.
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(b) ICoT
Dtr→Dtest

(ε;H, h⋆) with fixed training distri-
bution at length L = 5, and varying the test distribu-
tion.

Figure 7: Simulations exploring ICoT
Dtr→Dtest

(ε;H, h⋆)

An analogous result also holds for the infinite hypothesis class setting.

Example 7 (Length-Generalization in Finite-State Machines). Example 4 shows that

min
ε>0

ICoT
D,h⋆

(ε;H) ≥ |Σ|−(ℓ+1)

for the class of finite-state machines when h⋆’s transition graph is ℓ-connected and D is a uniform
distribution over inputs of length n ≥ ℓ. In fact, the same line of reasoning shows that

min
ε>0

ICoT
Dtr→Dtest

(ε;H, h⋆) ≥ |Σ|−(ℓ+1)

for any distribution Dtest (i.e., of arbitrary length). The chain-of-thought annotations allow each
component of the FSM’s transition function to be identified and hence enable generalization to
arbitrary test distributions.

Figure 7 depicts simulation results with the DFA example presented in Appendix C, exploring the
relative CoT information between a pair of distributions, ICoT

Dtr→Dtest
(ε;H, h⋆) as defined above. Fig-

ure 7a depicts the CoT information for a fixed test-distribution, varying the input length in the train-
ing distribution, showing that the CoT information curves are increasing with the input length. This
suggests that longer, more complex inputs reveal more information about the underlying hypothesis
and its input-output behavior. On the other hand, Figure 7b depicts the CoT information for fixed
training distribution, with input length L = 5, varying the test distribution. We see that the CoT in-
formation remains relatively large, even for longer and more complex test inputs. This suggests that,
under CoT supervision, the observations reveal enough about the hypothesis to identify its behavior
beyond the training distribution.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are theoretical, and correspond to specific results whose proofs
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Guidelines:
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◦ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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◦ Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

◦ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes empirical simulation results exploring the proposed the-
oretical quantities. The simulation section in the appendix includes details on the experi-
mental set up, and code for reproducing the results will be made available.

Guidelines:

◦ The answer NA means that the paper does not include experiments.

◦ If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

◦ If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

◦ Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

◦ While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper is mainly theoretical, but does include a few empirical simulation
results. The code will be made publicly available.

Guidelines:

◦ The answer NA means that paper does not include experiments requiring code.

◦ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

◦ While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

◦ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

◦ The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

◦ The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

◦ At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

◦ Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: There are no data splits, hyperparameters, etc.

Guidelines:

◦ The answer NA means that the paper does not include experiments.
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◦ The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

◦ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The empirical learning curves are estimated from several trials and include
confidence intervals.

Guidelines:

◦ The answer NA means that the paper does not include experiments.

◦ The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

◦ The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

◦ The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

◦ The assumptions made should be given (e.g., Normally distributed errors).

◦ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

◦ It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

◦ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

◦ If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The simulations are simple and require modest computational resources.

Guidelines:

◦ The answer NA means that the paper does not include experiments.

◦ The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

◦ The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

◦ The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).
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9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work is theoretical in nature and conforms with the NeurIPS Code of
Ethics.

Guidelines:

◦ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

◦ If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

◦ The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Due to the theoretical nature of this work, we find such a discussion to be
unnecessary.

Guidelines:

◦ The answer NA means that there is no societal impact of the work performed.

◦ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

◦ Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

◦ The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

◦ The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

◦ If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data or models will be released as part of this work.
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Guidelines:

◦ The answer NA means that the paper poses no such risks.

◦ Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

◦ Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

◦ We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No external assets were used as part of this work.

Guidelines:

◦ The answer NA means that the paper does not use existing assets.

◦ The authors should cite the original paper that produced the code package or dataset.

◦ The authors should state which version of the asset is used and, if possible, include a
URL.

◦ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

◦ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

◦ If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

◦ For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

◦ If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

◦ The answer NA means that the paper does not release new assets.

◦ Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

◦ The paper should discuss whether and how consent was obtained from people whose
asset is used.
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◦ At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

◦ The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

◦ Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

◦ According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

◦ The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

◦ Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

◦ We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

◦ For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper methods do not involve LLMs.

Guidelines:

◦ The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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◦ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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