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ABSTRACT

One of the long-term goals of machine learning is to develop models which will
generalize well enough that they can handle a broader range of circumstances
than what they were trained on. In the context of vision, such a model would not
get confounded by elements outside of its training distribution. To this end, we
propose a new task for training neural networks, in which the goal is to determine
if all images in a given set share the same class. We demonstrate that a model
trained with this task can classify and cluster samples from out-of-distribution
classes. This includes left out classes from the same dataset, as well as entire
datasets never trained on. Our experiments also reveal an unreported phenomenon,
which is that neural networks can overfit their training classes, leading to poorer
out-of-distribution performance. It is our belief that mitigating this effect and
improving on our task will lead to better out-of-distribution generalization as well
as behaviours more resembling those of humans.

1 INTRODUCTION

A human seeing an elephant for the first time without knowing what such animals are, would quite
likely recognize it as something new (out-of-distribution detection). And if this person ever sees
an elephant again, he or she should be able to recognize it as the same thing as the one previously
seen (out-of-distribution generalization). Designing systems that can handle such out-of-distribution
detection and generalization is an open problem in machine learning. Class incremental learning
algorithms (Rebuffi et al., 2016; Wu et al., 2019) aim to achieve OOD generalization by training
the classifier with new classes as and when they arrive. This retraining of the classifier results in
catastrophic forgetting (McCloskey & Cohen, 1989) which is often reduced by replaying examples
from previously seen classes (Rebuffi et al., 2016; Chaudhry et al., 2019).

In this paper, we propose an alternate training approach for OOD generalization which is based on
the observation that humans don’t need class labels to discern among things they have never seen
before. Our task requires the model to predict if all samples in a given set come from the same class
or not. Such a model can be used as a classifier without any retraining provided it has access to
a set of examples from each class that it needs to compare the test sample with. Furthermore, this
classifier is not constrained by just the classes used during training since it is agnostic to class labels.

Using the proposed task, we train neural networks on a subset of ImageNet classes (Russakovsky
et al., 2014) and show that the model can then correctly classify and cluster samples from the re-
maining unseen classes. We call these problem settings out-of-distribution classification and out-
of-distribution clustering respectively. We also show that the same model trained on ImageNet can
correctly classify samples of datasets such as MNIST (Lecun et al., 1998) and CIFAR (Krizhevsky,
2009). We explain how models trained in this fashion could be used in an online setting, where the
model would be able to build new classes from samples not belonging to any known class. Along-
side, we cover the known issues preventing us from getting there. One such roadblock is the problem
of overfitting. It is well known that neural networks can overfit their training data. We show that
there is an even more pernicious effect happening, which is that neural networks can overfit their
training classes. This directly affects out-of-distribution performance and seems to happen much
sooner than regular overfitting.
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2 DO CLASSIFIERS EVEN NEED RETRAINING?

Traditionally, when we want a model to be able to classify a new class, we must extend the size of the
classifier’s output and perform additional training (Rebuffi et al., 2016; Lopez-Paz & Ranzato, 2017;
Kirkpatrick et al., 2016). Given that neural network training is time consuming, many different work
aim to make this process more efficient (Santoro et al., 2016; Mishra et al., 2017; Finn et al., 2017).
Nevertheless solutions remain far from perfect. But, does a classifier actually need to be retrained
or would it be possible to generalize to new classes without retraining? To shed some light on these
questions, we trained three ResNets, each one on different subsets of ImageNet. One was trained
on 800 random ImageNet classes, another one on all classes except canines and the last one on all
classes except birds. We then asked the models to classify randomly picked images from classes they
didn’t train on and applied guided backpropagation to see what features the ResNets focused on. As
a comparison, we applied guided backpropagation to the same images with a ResNet trained on all
ImageNet classes. Results are presented in Figure 1. As we can see, the baseline and the ResNet
which was trained on 800 random classes seem to be focusing on the same features. As for the
ResNets which haven’t trained on canines and birds, they seem to be picking slightly more details
than the baseline. This suggests that a neural network might not necessarily need to be trained on a
class for it to be able to discern its features.

Figure 1: Guided backpropagation of ResNets trained on different subsets of ImageNet. First row
is original image. Middle row is the gradient of a ResNet trained on all ImageNet classes. Last row,
the first two columns are from a ResNet trained on 800 random ImageNet classes and the last two
columns from one ResNet not trained on any canine classes and one not trained on any bird classes.

Our observation that neural networks need not be retrained to recognize features in new classes is not
new though. This is precisely the motivation for few-shot meta-learning methods like prototypical
networks (Vinyals et al., 2016; Snell et al., 2017). However, prototypical networks exploited this
observation only to design classifiers that can perform few-shot classification among a small set of
new classes. On the contrary, this paper focuses on classifiers that can classify the given sample
among all the seen and unseen classes with only few examples per class.
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3 METHODOLOGY

3.1 CLASS HOMOGENEITY

Traditional classification networks output a fixed number of class predictions. This makes it impos-
sible to test their out-of-distribution classification performance. To handle any number of classes
at both training and testing time, we propose a new task for neural network training. This task
will allow us to evaluate a model for both out-of-distribution classification and out-of-distribution
clustering.

The task is defined as follows: given a set of sample-label pairs {(x1, y1), · · · , (xk, yk)}, where xi
is the i-th sample, yi is its corresponding label and k is a hyperparameter, the task is to determine,
using only the samples {x1, · · · , xk}, if all such samples share the same label (y1 = · · · = yk).
We call this binary classification task: class homogeneity. The model is not given the explicit class
label as supervision. Instead, the class label is only used to construct the binary targets representing
whether the samples are from the same distribution/class or not.

3.2 OUT-OF-DISTRIBUTION CLASSIFICATION AND CLUSTERING

We begin by defining out-of-distribution classification and out-of-distribution clustering and then
explain how these can be measured using our class homogeneity task. Given a model M trained on
a set of sample-label pairs {(x1, y1), · · · , (xn, yn)}, where n is the size of the training set and Ytrain
is the set of labels in the training set. If at test time, M is used to classify x̃ from a sample-label pair
(x̃, ỹ | ỹ /∈ Ytrain), then we consider this to be out-of-distribution classification. Similarly, if we use
M to cluster a set of samples {x1, · · · , xn} from {(x1, y1), · · · , (xn, yn) | ∃yi /∈ Ytrain} where n
is the number of samples to cluster, then we consider this to be out-of-distribution clustering.

In other words, when classifying a sample, if its label was never seen by the classifier during training,
then we consider this to be out-of-distribution classification. Likewise, when clustering samples, if
at least one of the samples’ label was never seen by the clusterer during training, then we consider
this to be out-of-distribution clustering.

Once a model M has been trained on the class homogeneity task, we can evaluate it for both out-of-
distribution classification and out-of-distribution clustering. For the former, in which we are given
x̃ from a sample-label pair (x̃, ỹ | ỹ /∈ Ytrain), we can classify x̃ by comparing it with samples of
each class. That is, we take k − 1 samples from every class and predict the label as:

ŷ = argmax
y∈Y

M(xy1, · · · , x
y
k−1, x̃), (1)

where xy1, · · · , x
y
k−1 are samples with corresponding class y and Y is the set of all classes for which

we have k − 1 samples to compare with, which also includes classes not trained on. If ŷ = ỹ, then
the model has successfully classified the out-of-distribution sample x̃.

For clustering, there are many ways to predict the labels. We consider the general case here and detail
our own setup in the experiment section 5.3. In general, given a set of samples X = {x1, · · · , xn}
to be clustered, the samples of a subset S ⊆ X : 2 ≤ |S| ≤ k should be identically labelled if
M(S) > 0.5. Once all samples are labelled, we can evaluate the clustering accuracy via:

accuracy({ŷ1, · · · , ŷn}, {y1, · · · , yn}) = max
p∈P

n∑
i=1

1 (p(ŷi) = yi) , (2)

where ŷi are the predicted labels, yi are the targets and P the set of all permutations of the interval
[1, C], with C being the number of predicted clusters.

3.3 IMPLEMENTATION FOR IMAGE CLASSIFICATION AND CLUSTERING

In past sections we’ve described the general definition of our new task and how it can be used to
measure out-of-distribution performance. We now detail the specific training setup we used for our
image classification and clustering experiments.

We first pretrain to convergence a ResNet-18 (He et al., 2015) to classify the first 800 classes of our
modified ImageNet dataset (see section 5.1). Once pretraining is over, the ResNet’s final classifica-
tion layer is discarded. We then train the ResNet and a Transformer encoder (Vaswani et al., 2017)
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with our class homogeneity task. Specifically, we train two variants, one for out-of-distribution clas-
sification and one for out-of-distribution clustering. Note that any of the two could be used for both.
Variations are used to improve performance.

For the first one, a training sample is composed of k = 25 images, where 24 images are always from
the same class and the 25-th image is equally likely to be either from the same or a different class.
Both images and classes are sampled uniformly at random. The ResNet first encodes the 25 images,
after which the representations are fed to the Transformer and finally passed through a classification
layer with a sigmoid activation function. The expected output is the probability that all the images
come from the same class. This setup is intended to be used for out-of-distribution classification.

The second variation is exactly the same as the first one, except that we vary the number of images
from the same class between 1 and 25. This number is chosen uniformly at random for each training
sample. This variation is intended to be used for out-of-distribution clustering.

Additional training details can be found in Appendix section A.1.

4 RELATED WORK

Over the years, many new fields in machine learning have emerged with the shared goal of empow-
ering neural networks with the ability to quickly learn new concepts and adapt to new environments.
One such line of work called Class Incremental Learning learns new classes while trying not to
forget previous ones. In order to avoid catastrophic forgetting, some methods propose to retrain on
a subset of already seen samples while training on the new classes (Rebuffi et al., 2016; Wu et al.,
2019; Hou et al., 2019). Another possible approach is to avoid gradient steps which would hurt per-
formance on previous tasks (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018). It has also been
proposed that a regularization term be added to the loss in order to penalize changes to parameters
important to previous tasks (Kirkpatrick et al., 2016). Our approach is different from these methods
since we can classify examples from unseen classes without any additional training.

Few-shot learning focuses on designing models that can learn new classes with just a few samples
(Santoro et al., 2016; Mishra et al., 2017; Finn et al., 2017). A more extreme version called zero-
shot learning tries to label samples of unseen classes without even training on them. Such methods
usually try to encoded images into words (Palatucci et al., 2009; Frome et al., 2013; Norouzi et al.,
2013; Socher et al., 2013) or sets of attributes (Lampert et al., 2009; Romera-Paredes & Torr, 2015).
More similar to our work, prototypical networks try to classify samples of unseen classes by com-
paring them with other samples (Koch, 2015; Vinyals et al., 2016; Snell et al., 2017). The main
difference between their work and ours is that when classifying a sample, these methods compare
it with far fewer classes, 5 to 20, instead of the whole dataset. Also, these approaches still train the
model with supervised learning loss while we train our model with the class homogeneity prediction
loss.

Recently, Ren et al. (2020) extended prototypical networks (Snell et al., 2017) to online contextual-
ized few-shot learning setting. While Ren et al. (2020) learn to acquire new classes, they are similar
to class incremental learning in the sense that they do train the model on new classes. Similarly, Gi-
daris & Komodakis (2018) also learns to acquire new classes by having an additional training phase
to learn the parameters for new classes in a few-shot way. Our approach is much simpler than both
these approaches and most importantly, we don’t need to retrain on new classes. Also related to our
work are the works that focus solely on detecting out of distribution samples (Hendrycks & Gimpel,
2016; Liang et al., 2017; Lee et al., 2017; DeVries & Taylor, 2018) and works that tries to mitigate
possible drops in performance caused by potential variance between the test and train distribution
(Carlucci et al., 2019; Arjovsky et al., 2019; Gulrajani & Lopez-Paz, 2020).

5 EXPERIMENTS

5.1 MODIFIED IMAGENET

We used ImageNet’s validation set as the test set and the first 50 training samples of each class as
the validation set. The class order was randomly shuffled. Only the first 800 classes were used for
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training, validation was done on classes 1-900 and testing on all classes. Everywhere where we
mention ImageNet, we mean our modified version.

5.2 OUT-OF-DISTRIBUTION CLASSIFICATION

After training our model on ImageNet using the class homogeneity task, we evaluated its out-of-
distribution classification performance. To do so, we sampled an image and compared it to 24 images
of each class. The highest output probability out of all 1000 ImageNet classes was considered the
predicted class. Results were averaged by classifying one thousand images from each class. Images
were always drawn uniformly at random per class, from the test set.

For comparison, we report the performance of a ResNet-18 trained to convergence as a classifier on
all ImageNet classes as well as one trained on 800 classes. This serves as an upper bound for the
performance we can achieve. We also report results for five nearest neighbor variants. In the first
nearest neighbor variant, we sampled an image and computed its distance in euclidean space with 24
images of each class. We then averaged the 24 distances and chose the closest class as the prediction.
The other four nearest neighbor variations were the same, except that images were first encoded by a
ResNet-18 with no classification layer. Respectively, one was a ResNet trained to convergence as a
classifier on the first 800 ImageNet classes and the other was the ResNet which we fine-tuned using
our class homogeneity task. For both ResNets, we measured nearest neighbors in euclidean space
and also with cosine similarity. For all nearest neighbor experiments, performance was averaged by
classifying a thousand images for each class, sampling them from the test set uniformly at random.

Table 1: Classification accuracy on our ImageNet test set for various class ranges. Images to be
classified are always compared against all thousand classes. We report mean accuracy and standard
deviation of five trials. Pretrained embeddings are from the ResNet-18 trained on 800 classes and
fine-tuned embeddings from the ResNet-18 trained with our class homogeneity task.

Method
Top-1 Accuracy

1-800 801-900 901-1000 1-1000

ResNet-18 (Trained on all classes) 69.65 ± 0.13 70.40 ± 0.25 71.99 ± 0.26 69.96 ± 0.09

ResNet-18 (Trained on 800 classes) 71.56 ± 0.19 - - -
Euclidean Nearest Neighbor (Image Space) 0.55 ± 0.00 0.13 ± 0.00 1.19 ± 0.00 0.58 ± 0.00
Euclidean Nearest Neighbor (Pretrained Embeddings) 51.09 ± 0.24 38.86 ± 0.35 41.85 ± 0.56 48.95 ± 0.17
Euclidean Nearest Neighbor (Fine-tuned Embeddings) 53.15 ± 0.09 41.51 ± 0.23 43.87 ± 0.30 51.06 ± 0.08
Cosine Nearest Neighbor (Pretrained Embeddings) 56.67 ± 0.18 37.28 ± 0.47 38.59 ± 0.21 52.93 ± 0.15
Cosine Nearest Neighbor (Fine-tuned Embeddings) 57.06 ± 0.25 35.70 ± 0.32 37.00 ± 0.34 52.92 ± 0.19
Class Homogeneity 56.78 ± 1.46 44.13 ± 0.16 47.47 ± 0.40 54.59 ± 1.15

Method
Top-5 Accuracy

1-800 801-900 901-1000 1-1000

ResNet-18 (Trained on all classes) 89.15 ± 0.09 90.13 ± 0.13 90.34 ± 0.24 89.37 ± 0.07

ResNet-18 (Trained on 800 classes) 90.04 ± 0.09 - - -
Euclidean Nearest Neighbor (Image Space) 2.34 ± 0.00 0.25 ± 0.00 3.76 ± 0.00 2.19 ± 0.00
Euclidean Nearest Neighbor (Pretrained Embeddings) 75.80 ± 0.15 71.35 ± 0.12 74.38 ± 0.22 75.21 ± 0.13
Euclidean Nearest Neighbor (Fine-tuned Embeddings) 77.29 ± 0.23 74.95 ± 0.24 76.36 ± 0.41 76.97 ± 0.20
Cosine Nearest Neighbor (Pretrained Embeddings) 81.28 ± 0.14 72.32 ± 0.24 73.92 ± 0.27 79.65 ± 0.16
Cosine Nearest Neighbor (Fine-tuned Embeddings) 82.24 ± 0.16 72.29 ± 0.15 74.05 ± 0.21 80.43 ± 0.14
Class Homogeneity 82.99 ± 0.72 76.39 ± 0.27 77.99 ± 0.36 81.83 ± 0.62

Reported results are in Table 1. The test accuracy is broken down into various class ranges: classes
seen during training (1-800), classes used for validation (801-900) and classes kept for testing (901-
1000). We also report the cumulative test accuracy (1-1000). The ResNet trained on all classes is
there to show the accuracy of a traditional classifier. For classes seen during training, our model’s
accuracy is not on par yet with a ResNet classifier trained on the same classes. Maybe there is a
trade-off to be made between seen and unseen performance as section 5.4 suggests. We hope though
that in future work this performance can be increased. As for classes not seen during training, the
model trained using our class homogeneity task performed best.
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For further analysis, we also report per class range classification accuracy, where samples to be
classified are only compared against classes in each respective range. Results can be found in Table
2. As more classes are considered, the accuracy gradually degrades. Again out of all methods, the
model trained with our class homogeneity task performed best.

Table 2: Classification accuracy on our ImageNet test set for various class ranges. This time, images
to be classified are only compared against classes in the respective range. We report mean accuracy
and standard deviation of five trials. Pretrained embeddings are from the ResNet-18 trained on 800
classes and fine-tuned embeddings from the ResNet-18 trained with our class homogeneity task.

Method
Top-1 Accuracy

901-910 901-920 901-940 901-980 901-1000

ResNet-18 (Trained on all classes) 93.80 ± 0.68 93.92 ± 0.27 93.30 ± 0.24 91.67 ± 0.21 91.04 ± 0.096

Euclidean Nearest Neighbor (Image Space) 18.36 ± 0.00 14.07 ± 0.00 6.62 ± 0.00 4.35 ± 0.00 3.65 ± 0.00
Euclidean Nearest Neighbor (Pretrained Embeddings) 85.11 ± 0.73 80.13 ± 0.64 78.67 ± 0.35 71.93 ± 0.35 71.51 ± 0.40
Euclidean Nearest Neighbor (Fine-tuned Embeddings) 83.98 ± 1.02 77.87 ± 0.47 77.44 ± 0.40 72.97 ± 0.41 72.65 ± 0.43
Cosine Nearest Neighbor (Pretrained Embeddings) 88.05 ± 0.45 83.27 ± 0.25 81.25 ± 0.25 76.82 ± 0.26 75.77 ± 0.29
Cosine Nearest Neighbor (Fine-tuned Embeddings) 88.52 ± 0.43 83.78 ± 0.29 81.17 ± 0.14 77.27 ± 0.19 76.22 ± 0.14
Class Homogeneity 88.83 ± 0.34 84.87 ± 0.28 83.14 ± 0.24 79.18 ± 0.39 78.43 ± 0.49

5.2.1 CLASSIFYING OUT-OF-DISTRIBUTION DATASETS

Using our model trained on ImageNet, we also tried to classify the test sets of MNIST (Lecun
et al., 1998), Fashion-MNIST (Xiao et al., 2017), CIFAR10 and CIFAR100 (Krizhevsky, 2009).
Performance of ResNet-18 trained on the individual datasets is reported as the upper bound. The
nearest neighbor methods used the same ResNets trained on ImageNet as in section 5.2. For each
experiment, we classified ten thousand images of each class. Mean accuracy and standard deviation
of five trials is reported in Table 3. For FashionMNIST and CIFAR100, computing cosine similarity
with ResNet embeddings fine-tuned using our task performed much better than the ResNet and
Transformer model. As for CIFAR10, our model performed best, only 7 points behind the ResNet
classifier trained on the dataset. We highly suspect that the poorer performance for MNIST and
FashionMNIST be due to Transformer overfitting the ImageNet distribution, as using our fine-tuned
ResNet embeddings scored much higher. Since CIFAR10 and CIFAR100 are closer distribution
wise to ImageNet, this might not affect them.

Table 3: Classification accuracy on the test set of several out-of-distribution datasets. The first
reported ResNet-18 was independently trained on each dataset. For all other methods, models were
trained on ImageNet. We report mean accuracy and standard deviation of five trials. Pretrained
embeddings are from a ResNet-18 trained on 800 ImageNet classes and fine-tuned embeddings
from the ResNet-18 trained with our class homogeneity task.

Method
Top-1 Accuracy

MNIST Fashion-MNIST CIFAR-10 CIFAR100

ResNet-18 (One trained on each dataset) 99.20 ± 0.06 91.51 ± 0.27 77.77 ± 0.89 48.90 ± 0.46

Euclidean Nearest Neighbor (Image Space) 63.68 ± 0.00 60.15 ± 0.00 20.11 ± 0.00 6.05 ± 0.00
Euclidean Nearest Neighbor (Pretrained Embeddings) 75.26 ± 2.49 66.45 ± 1.44 66.21 ± 0.80 37.50 ± 0.62
Euclidean Nearest Neighbor (Fine-tuned Embeddings) 72.87 ± 1.69 67.24 ± 0.69 65.40 ± 0.77 37.51 ± 0.83
Cosine Nearest Neighbor (Pretrained Embeddings) 76.24 ± 1.38 67.30 ± 1.06 66.48 ± 0.75 41.86 ± 0.27
Cosine Nearest Neighbor (Fine-tuned Embeddings) 74.14 ± 1.68 69.01 ± 0.51 69.88 ± 0.83 46.10 ± 0.49
Class Homogeneity 58.99 ± 3.49 64.88 ± 3.37 70.53 ± 0.96 42.91 ± 0.68

5.3 OUT-OF-DISTRIBUTION CLUSTERING

Using our models trained with the second variation of our class homogeneity task (see section 3.2),
we clustered from scratch images from out-of-distribution classes. Specifically, we set up five exper-
iments in which we gradually increased the number of classes, starting from ten, all the way to one
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hundred. Images to be clustered were solely from unseen classes. For each class in the experiment,
we added its 50 test samples to the pool of images to be clustered.

For clustering, we used the following algorithm. Let X = {x1, · · · , xn} be the set of samples to
cluster and L the initial empty set of labelled samples. First choose the highest pairwise prediction
between all images:

xi, xj = argmax {M (xi, xj) | ∀xi, xj ∈ X,xi, xj /∈ L, i 6= j, [M(xi, xj) > 0.5]} , (3)

and identically label both samples xi, xj . Create a new cluster Q = {xi, xj} and compute for all
images not yet labelled the highest probability that an image belongs to the cluster:

xi = argmax {M(Q, xi) | xi ∈ X,xi /∈ L, [M(Q, xi) > 0.5]} . (4)

Add xi to Q and label it accordingly. Repeat this cycle until no further images are added to the
cluster. Then compute equation 3 again and create a new cluster. Once no more clusters can be
built, we are done. Since k = 25, if a cluster gets bigger than 24 images, we compute equation 4 by
choosing uniformly at random 24 images from that cluster.

We compared our performance against five other methods. For the first one, we clustered image
embeddings using k-means. Images were encoded by a ResNet-18 trained to convergence for image
classification on all ImageNet classes. For the second method, we used these same embeddings and
reduced their dimensionality to 2 via PCA (F.R.S., 1901), then applied t-SNE (van der Maaten &
Hinton, 2008) and finally clustered them using DBSCAN (Ester et al., 1996) with ε = 1.75 and 5
samples minimum. We also tried two variants to the second method, one where the embeddings
were instead encoded by a ResNet-18 trained for classification on the first 800 classes of ImageNet
and another by the ResNet which we fine-tuned with our class homogeneity task. For the last method
that we tried, we reduced the dimensionality of the images themselves to 2 via PCA, applied t-SNE
and clustered them with DBSCAN ε = 2.3 and one minimum sample.

Table 4: Clustering accuracy on our ImageNet test set. For each class range, the set of samples to
cluster was all 50 test samples of each class in the range. We report mean accuracy and standard
deviation of five trials. The first two methods used embeddings from a ResNet-18 trained on all
ImageNet classes. Pretrained embeddings are from a ResNet-18 trained on 800 ImageNet classes
and fine-tuned embeddings from the ResNet-18 trained with our class homogeneity task. We used
k-means with k set to the number of classes in each respective range. For PCA, we reduced the
dimensionality to 2.

Method
Clustering Accuracy

901-910 901-920 901-940 901-980 901-1000

K-means (Embeddings trained on all classes) 89.04 ± 3.36 84.19 ± 2.50 81.35 ± 2.10 75.59 ± 1.59 75.32 ± 1.12
PCA + t-SNE + DBSCAN (Embeddings trained on all classes) 48.24 ± 2.80 32.74 ± 1.31 22.04 ± 0.75 16.20 ± 0.63 14.12 ± 0.35

PCA + t-SNE + DBSCAN (Images) 16.48 ± 0.80 9.65 ± 1.14 7.53 ± 0.26 5.33 ± 0.36 4.22 ± 0.21
PCA + t-SNE + DBSCAN (Pretrained Embeddings) 47.98 ± 2.95 29.22 ± 3.83 20.05 ± 1.34 14.79 ± 0.27 13.05 ± 0.31
PCA + t-SNE + DBSCAN (Fine-tuned Embeddings) 53.40 ± 4.84 33.47 ± 2.17 21.93 ± 1.32 15.25 ± 0.49 13.48 ± 0.49
Class Homogeneity 57.12 ± 1.99 41.64 ± 4.59 34.42 ± 2.99 1.00 ± 0.00 5.59 ± 9.18

We report the mean clustering accuracy and standard deviation of five trials in Table 4. We also
showcase a t-SNE plot of our clustering performance for the class range 901-910 in Appendix-
A.3. Although k-means scored quite well, the method requires the number of expected clusters as
a hyperparameter, unlike DBSCAN and our method. For class ranges up to 901-940, our model
performed best, even better than the DBSCAN method using embeddings trained on all classes.
For larger numbers of classes, our model’s performance drastically fell as it clumped every sample
into one big cluster. This might be due to the bottom-up algorithm which we chose to use. There
are many different ways that we could of cluster samples using our models. The objective here
was simply to demonstrate the ability to cluster out-of-distribution samples. In the classification
experiments, we compared against k − 1 images of each unseen class. For clustering, we start from
scratch. This makes the task much more difficult. The second variant of our class homogeneity task
with which we trained our models is also more difficult than the first. Models consistently scored
lower training and validation accuracy on that task.
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5.4 OVERFITTING TRAINING CLASSES

The usual consensus in machine-learning is that a model has overfitted its training data when the
validation performance starts to go down. We show that neural networks can overfit the training
data much sooner than that. When training our models using our homogeneity class, we noticed
that while the validation accuracy of seen classes kept going up, the validation accuracy of classes
not trained on went up initially, but then quickly degraded (see Figure 2). This means that neural
networks can overfit their training classes. Because of this overfitting, our models could only be fine-
tuned on the homogeneity task for less than 3k steps on average. This we think is a major handicap to
our model’s performance. As for work other than ours, we suspect state-of-the-art image classifiers,
despite their superhuman performance, to probably extremely overfit their training classes. For
such models to perform well out-of-distribution, we think new methods to avoid overfitting training
classes will have to be developed. In our case, we have experimented with weight-decay without
any success. It is also possible that areas other than image classification be affected.
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Figure 2: Validation accuracy when training a model using our class homogeneity task. Accuracy
is reported for both classes seen during training (1-800) and classes kept for validation (801-900).
As we can see, the accuracy drops overtime for unseen classes while the accuracy for seen classes
goes up. This indicates that the model is overfitting its training classes.

6 CONCLUSION & FUTURE WORK

In this work, we proposed a new task for training neural networks. Using this task, we showed that
we could classify and cluster samples from classes that the network was not trained on. Our work
covered the classification and clustering of images, but we see no reasons as to why our approach
could not work when applied to other domains. There are many untried variations to our approach
and potential research directions. We believe that our class homogeneity task with OOD classifi-
cation and OOD clustering evaluations could help the community to make measurable progress in
OOD generalization of neural networks.

In our classification experiments, images were compared to every class, including the target class.
In a more realistic setting, this wouldn’t necessarily be possible. A sample might be the first of a
new class that we encounter. What we can do though, is if a model is good enough to not classify
a sample from a new class with any known class, we can then set that sample aside and attribute
it a new label. Once another sample from that same new class shows up, we would compare it
with all known classes, including the new class we created. Again, if the model is good enough, it
could classify it as belonging to the new class. This example is with one new class, but there could
potentially be many new classes which the model would have to build concurrently. In a real-world
setting, a model being able to do such a task would be very useful. As of now our models do not
perform well enough to be able to do so, but by improving the out-of-distribution performance, we
believe that we can get there.
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A APPENDIX

A.1 ADDITIONAL TRAINING DETAILS

We found the following hyperparameters to work best. Our Transformer has 6 layers and 16 heads
of size 64 each. We concatenate its input with a ”positional” embedding to mark which of the 25
images is the one being compared with the rest. This ”positional” embedding is not necessary, but
slightly helps performance. Adam (Kingma & Ba, 2014) is used as the optimizer, with learning rate
3e-5 and betas (0.9, 0.999). The batch size is 2048, but smaller batch sizes also work. This only
affects convergence speed.

In practice, any of the outputs can be used as the predicted probability. We chose to apply loss on
the first k − 1 outputs:

l(ŷ, y) =
1

N

N∑
n=1

1

kn − 1

kn−1∑
i=1

−(yn log(ŷn,i) + (1− yn) log(1− ŷn,i)) (5)

where ŷ is our model’s output, y the targets and N the batch size. In the first variant with which we
trained our models, kn is always 25. For the second variation though, each element of the batch has
its own kn value chosen uniformly at random between 2 and 25.

A.2 IMAGENET RANDOMIZED CLASS ORDER

We shuffled the ImageNet classes by first setting numpy.random.seed(0) and then used
numpy.random.rand(1000).argsort() as the randomized order.

A.3 CLUSTERING VISUALIZATION
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Figure 3: t-SNE plots all test samples in each ImageNet class 901-910. Images were encoded by
a ResNet-18 trained with our class homogeneity task before being plotted by t-SNE. On the left,
samples are colored using the target labels and on the right using our model’s clustering prediction.
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