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ABSTRACT

Federated continual learning (FCL) is a typical mechanism to achieve collaborative
model training among clients that own dynamic data. While traditional FCL
methods have been proved effective, they do not consider the task repeatability and
fail to achieve good performance under this practical scenario. In this paper, we
propose a new paradigm, namely Traceable Federated Continual Learning (TFCL),
aiming to cope with repetitive tasks by tracing and augmenting them. Following
the new paradigm, we develop TagFed, a framework that enables accurate and
effective Tracing, augmentation, and Federation for TFCL. The key idea is to
decompose the whole model into a series of marked sub-models for optimizing
each client task, before conducting group-wise knowledge aggregation, such that
the repetitive tasks can be located precisely and federated selectively for improved
performance. Extensive experiments on our constructed benchmark demonstrate
the effectiveness and efficiency of the proposed framework. Source code will be
released after notification.

1 INTRODUCTION

With the popularity of federated learning (FL) (McMahan et al., 2017), more and more researchers are
devoted to applying FL to a variety of applications such as object detection (Liu et al., 2020), medical
image analysis (Liu et al., 2021c), and recommendation systems (Yang et al., 2020). Despite being
effective, most of the existing FL methods assume that client data are stable and will not be changed
over time. However, in real-world applications, data may come continuously and we cannot predict
the data variability in advance. The research community has noticed this problem and proposes a new
concept called federated continual learning (FCL) (Yoon et al., 2021; Dong et al., 2022), where each
local client receives data in a streaming manner and a central server attempts to achieve federation in
such a dynamic environment.

We notice that current FCL solutions pay more attention to the typical problems existed in CL such
as catastrophic forgetting (Dong et al., 2022). However, all of them obey the following unpractical
data setting: the upcoming task data are completely different from previous tasks. We argue that in
real-world scenarios, similar or even identical task data have a large possibility to appear many times.
On the one hand, the client itself is full of uncertainty. When the FCL process runs for a long time,
it is inevitable to encounter repetitive tasks, especially for the federated scenario that may include a
large number of clients. On the other hand, previous tasks may have limited data in that time and
cannot achieve good performance. Therefore, the developers have the motivation to further improve
the performance by collecting more data for that task in the future. In a word, the repetitive task
sequence is commonly seen and should be regarded as a default setting.

Unfortunately, to the best of our knowledge, existing FCL techniques do not take the task repeatability
into consideration and fail to achieve good performance under the condition (see in Section 3.1). To
fill the gap, in this paper, we propose a new paradigm, namely Traceable Federated Continual
Learning (TFCL), which aims at tracing the previous repetitive data features to the current one
and augmenting them before federation, in order to further boost the performance. As shown in
Figure 1, for each client, instead of treating each incoming task as equal like the traditional FCL does,
TFCL checks whether the current task is a repetitive task, which will be traced and connected to the
previous target task for further processing before federation. Intuitively, compared to the traditional
continual learning in the client side, the proposed paradigm decreases the number of tasks since the
repetitive task is not considered as a new task, which reduces the loss caused by new task learning
and benefits the overall performance.
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Figure 1: Comparison of traditional FCL and
traceable FCL in one client. Here different col-
ors denote different features. The white color
means that the neuron has no feature (i.e., un-
used). The darker color indicates the stronger
feature representation ability.
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Figure 2: Performance of the traditional FCL
method GLFC on the non-repetitive and repeti-
tive task settings. Here the accuracy refers to the
whole task performance as the learning contin-
ues.

Achieving TFCL is non-trivial and requires overcoming the following key challenges. First, the client
cannot store all the previous task data due to the limited storage, which means that the trained model
in the current state is the only resource we can utilize to infer and augment the previous features.
Considering the poor interpretability of neural networks, it is challenging to accurately trace and
optimize the corresponding data features. Second, the task repeatability in different clients may be
irregular, which suggests that we cannot directly federate them because in a certain timeline, the
feature distribution of repetitive tasks among clients might be highly heterogeneous. Therefore, a
novel federation scheme is needed to cope with the heterogeneous situation.

In this paper, we address the aforementioned challenges by proposing TagFed, a framework that
enables accurate and effective Tracing, augmentation, and Federation for TFCL. The rationale behind
TagFed is to (1) decompose the whole model into a series of marked sub-models to selectively
optimize different client task; (2) conduct group-wise knowledge aggregation for efficient federation.
Specifically, to tackle the first challenge, we present traceable task learning, where the model pruning
technique (Han et al., 2015) is utilized to iteratively generate sub-models for different client tasks.
Note that each new task can only use the neurons that are not occupied for previous tasks to learn
the corresponding features. Besides, we mark the weight of each task and save a weight copy of
previous repetitive tasks. This allows selective retraining of specific weights for the current repetitive
task, while still utilizing weight copies for non-repetitive tasks. In this way, when a repetitive task
comes, we can accurately locate its corresponding features by the marked neurons, which will be
easily retrained as augmentation, without introducing extra learning parameters like a new task.

TagFed addresses the second challenge by designing group-wise knowledge aggregation, whose key
idea is to construct several model groups in the server and federate knowledge in a client-server
transfer manner. For similar or identical repetitive tasks, their client knowledge is sequentially
transferred to a same server model (i.e., a group) as aggregation and the server model then puts the
aggregated knowledge back to each client. Here we do not use the head-to-head aggregation methods
(e.g., FedAvg (McMahan et al., 2017)) because the model parameters of previous tasks are frozen
and cannot be modified.

Considering that there is no available benchmark to conduct TFCL, we manually construct a bench-
mark based on public datasets (details in the appendix), where we simulate the repeatability range
and degree for different clients. We evaluate our framework on the benchmark and compare it to
the traditional FCL baselines. The results show that our approach significantly outperforms other
methods on accuracy performance by a large margin while using roughly 50% communication cost. In
addition, we conduct a series of in-depth theoretical analyses (details in the appendix) and empirical
experiments to prove the effectiveness of the proposed framework.
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This paper makes the following contributions:

• We propose a new FCL paradigm, called Traceable Federated Continual Learning (TFCL),
where previous tasks can be traced and further optimized to deal with the repetitive task
sequence in an FL system. To the best of our knowledge, this is the first attempt in the
literature to study and explore TFCL.

• We design and implement TagFed, a framework to enable accurate and effective TFCL.
Through feature tracing, sub-model augmentation, and group-wise knowledge federation,
TagFed can achieve higher model accuracy at a small communication cost.

• Extensive experiments on our constructed benchmark demonstrate the superiority of TagFed
over other baselines.

2 RELATED WORK

2.1 CONTINUAL LEARNING

Continual learning (CL) aims to learn deep models from the data that gradually come in a sequence
during the training phase. Recent continual learning approaches mainly include two categories:
task-based CL, where all class data come but are from a different dataset for each phase (Chaudhry
et al., 2018; 2019; Davidson & Mozer, 2020); class-based CL, which means that each phase receives
the data of a new set of classes from an identical dataset (Castro et al., 2018; Hou et al., 2019; Hu et al.,
2021). The latter one is typically called class-incremental learning (CIL) and our work follows this
data setting. Specifically, most of the related methods pay more attention to solving the problem of
forgetting old data. For instance, Mallya et al. (Mallya & Lazebnik, 2018) packed multiple tasks into
a single model by pruning the unimportant neurons. Douillard et al. (Douillard et al., 2020) proposed
a spatial-based distillation loss applied throughout the model and a representation comprising multiple
proxy vectors for each object class to enhance the performance. In our work, we are devoted to
extending traditional CL under the federation scenario and propose a new paradigm, namely traceable
federated continual learning, to address the task repeatability problem in a streaming data sequence.

2.2 FEDERATED LEARNING

Federated learning (FL) has been proposed as a privacy-preserving distributed machine learning
approach that enables training on a large corpus of decentralized user data (McMahan et al., 2017;
Hard et al., 2018; Yang et al., 2018; 2019; Oh et al., 2022). Much effort has been made in this hot
research topic, including attacks/defense on FL (Melis et al., 2019; Bhagoji et al., 2019; Li et al.,
2019; Yang et al., 2022), personalized FL (Yu et al., 2020; Yang et al., 2021; Liu et al., 2021b), data
heterogeneity on FL (Sim et al., 2019; Mansour et al., 2020; Liu et al., 2021a), communication-
efficient FL (Konečnỳ et al., 2016; Ji et al., 2020), etc. Recently a few works have begun to explore FL
on dynamic client data, which are called federated continual learning (FCL). For example, Yoon et al.
(Yoon et al., 2021) proposed FedWeIT, a framework that can achieve effective FCL by alleviating the
interference between incompatible tasks and boosting the positive knowledge transfer across clients
during learning. Dong et al. (Dong et al., 2022) proposed a practical scenario, called Federated
Class-Incremental Learning (FCIL), where each local client collects data continuously with its own
preference and allows new clients with unseen new classes to join in the FL training at any time.
Luopan et al. (Luopan et al., 2023) proposed FedKNOW, aiming at an accurate and scalable federated
continual learning via a novel signature task knowledge. Different from the above FCL approaches
assuming that the task sequence among clients is non-repetitive, our framework manages to effectively
cope with the task repeatability and achieve traceable FCL.

3 PROBLEM FORMULATION

3.1 FEDERATED CONTINUAL LEARNING

Generally, the standard FCL process is composed of the following key steps: (1) The client side
copes with the streaming tasks with a specially designed loss for typical continual learning (Shmelkov
et al., 2017; Li & Hoiem, 2017); (2) At a timestep, the continually learned models in each client
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Figure 3: Overview of the proposed TagFed framework. It mainly includes two modules: traceable
task learning and group-wise knowledge aggregation. Here different colors represent different
features and the darker the color is, the more sufficient features the neuron holds.

are uploaded to a central server, where different model aggregation methods are implemented to
generate an improved global model. We iterate this pipeline many rounds until model convergence.
Compared to traditional federated learning, FCL assumes that the overall system runs in a dynamic
data environment, which is more challenging to achieve effective federation. Recent solutions
(Yoon et al., 2021; Dong et al., 2022) attempt to address the client interference and catastrophic
forgetting problem that are widely appeared in FCL, without considering the data repeatability in a
task sequence.

To observe the influence of the repetitive task environment, we conduct a preliminary experiment,
where we employ a state-of-the-art FCL method GLFC (Dong et al., 2022) to evaluate the performance
on the non-repetitive and repetitive task settings respectively. Here CIFAR100 (Krizhevsky et al.,
2009) is used and partitioned to simulate 10 clients and we run GLFC for 50 federated rounds. As
shown in Figure 2, we can clearly see that after introducing the repetitive tasks, the performance
degradation is obvious, which means that the typical FCL methods fail to achieve effective local task
learning and global knowledge aggregation.

3.2 TRACEABLE FEDERATED CONTINUAL LEARNING

Motivated by the poor performance of current FCL solutions in the repetitive task environment, we
attempt to introduce a new paradigm, Traceable Federated Continual Learning, to achieve effective
FCL under the repetitive data stream. Specifically, our data setting differs previous ones from two
aspects: (1) For a certain time, the incoming task has ever appeared in the previous task sequence; (2)
Besides the task repeatability, the incoming task in different clients can also be various.

Formally, assuming there are N local clients, each of which contains a task sequence Si
t =

{si1, si2, ..., sin} at the time t. Here i denotes the ith client and n is the number of the task se-
quence. If Si

t−k = Si
t , we believe a repetitive task appears at the time t and should be traced back to

the time t− k for reprocessing. Based on the symbols, we define the goal of Traceable Federated
Continual Learning as follows.

Definition 3.1. (Traceable Federated Continual Learning (TFCL)). Suppose the current model
Mcur has learned P = {p1, p2, ..., pq} tasks, which are reflected by corresponding features F =
{f1, f2, ..., fq}. Here q is the number of previous tasks. When the incoming task pj ∈ P , the goal
of TFCL is to accurately trace and connect the corresponding data features fj to pj for further
processing, and then selectively federate the various clients for an improved model Mnew.

4



Under review as a conference paper at ICLR 2024

In the following sections, we will describe a series of designed techniques in detail for accomplishing
our objective.

4 FRAMEWORK DESIGN

4.1 OVERVIEW

We design and develop TagFed, a framework to achieve TFCL via tracing, strengthening and
selectively federating previous certain features, such that the learning process will not be interfered
by the repetitive task. Figure 3 depicts the key modules of TagFed, which can be briefly summarized
as follows.

• Traceable Task Learning (TTL): This module takes advantage of the pruning technique to
obtain incremental sub-models for incoming tasks. When a repetitive task comes, instead
of processing it as a new task, the designed module traces the corresponding features
of previously marked sub-models and further retrains the parameters for learning more
sufficient features (the darker neurons in the figure). The learned model in each client is
then masked to leave the current data features for later federation.

• Group-wise Knowledge Aggregation (GKA): This module constructs a client-server knowl-
edge transfer pipeline as federation. The key message between the two ends is a series of
data features and logits, which comes from different clients. Considering the variety of the
uploaded data features, we develop multiple groups in which tasks with similar or identical
features are fed into a same server model as knowledge aggregation. The output of the
aggregated server model is finally transferred back to corresponding clients to provide more
valuable knowledge.

The two modules will be operated many times until we achieve desirable performance. In the
remainder of the section, we describe in detail our approach for implementing each module.

4.2 TRACEABLE TASK LEARNING

The basic idea for our Traceable Task Learning (TTL) is employing a sub-model to train each task
data and freezing the used weights during new task training. When a new task comes, we compare
the distribution with previous ones that have been reserved to figure out whether it is a repetitive task.
If there is no clear boundary, we consider it as a new task to avoid any possible negative impact on
previous tasks.

Principle of sub-model generation. Assume that all clients begin with a shared model Mini and
the ith client is learning for task pi. The initial model is first trained via its local dataset and then
each client performs gradual pruning (Zhu & Gupta, 2017) on the model, which removes a portion
of the weights to obtain a sub-model and fine-tunes the sub-model iteratively to maintain accuracy.
Here the size of each sub-model is based on the task complexity and can be set by each client. After
obtaining the sub-model, we keep its weights unalterable to avoid forgetting and enable learning until
a repetitive task pi comes to the ith client in the future. According to the principle of the sub-model
generation, in the following parts, we respectively illustrate how to cope with non-repetitive and
repetitive new tasks.

Incremental training for non-repetitive new tasks. Suppose current model Mcur has learned
P = {p1, p2, ..., pq−1} tasks, task pq is coming and pq ̸= pi, i = 1, 2, ..., q − 1. The model weights
preserved for task p1 to task pq−1 are denoted as WP

1:q−1 (i.e., a series of sub-models). The pruned
weights associated with task pq−1 are denoted as WE

q−1 that can be used to learn new tasks. We
apply a learnable mask Bq ∈ {0, 1}D to pick the old weights WP

1:q−1, where D is the dimension of
WE

q−1. The picked weights are represented as Bq ⊙WP
1:q−1, where ⊙ is the element-wise product

between B and WP
1:q−1. We then learn a real-valued mask B̂q and applies a threshold for binarization

to generate Bq . Specifically, when training the binary mask Bq , we update the real-valued mask B̂q

in the backward pass and quantize it with a threshold on B̂q. Hence, the model can pick a part of
WP

1:q−1 to re-use for the new task via the mask. Besides, the weights WE
q−1 can be used for task pq.
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The mask B and WE
q−1 are optimized together on the training data of task pq with the loss function

via back-propagation. Then we will gradually prune the model once again. When the ratio of weights
for task pq meets the task requirement, they are represented as WP

q and frozen to get rid of the old
task’s forgetting. This incremental training process will be iterated many times until there are no
non-repetitive new tasks.

Traceable augmentation for repetitive new tasks. Suppose current model Mcur has learned
P = {p1, p2, ..., pq−1} tasks, task pq is coming and pq = pi = ... = pj , q > i > ... > j. The model
weights preserved for task pi and pj are denoted as WP

i and WP
j . The real value mask of task pi is

represented as B̂i. We achieve traceable augmentation by (1) saving a copy of WP
j to prevent the

influence from other tasks; (2) retraining the real value mask B̂i and WE
i together on the training

data of task pq with the loss function via back-propagation and finally generating B̂q and WP
q . Note

that Bq depending on B̂q picks a part of WP
1:q−1 and until the next repetitive task pq comes, we will

apply WP
q to process task pq . Otherwise, we will apply WP

j to keep the accuracy of other tasks.

Difference to other CL methods. Although the pruning-based CL methods can also be used to trace
the repetitive tasks, it can only pinpoint the relevant weights and fine-tune them, which may affect the
performance of non-repetitive tasks, as these tasks also rely on the frozen weights. In our approach,
we devise a copying mechanism to store the weights frozen previously, along with marking their
repetition frequency. This enables selective utilization for both repetitive and non-repetitive tasks.

4.3 GROUP-WISE KNOWLEDGE AGGREGATION

Group-wise Knowledge Aggregation (GKA) serves as the second step to achieve effective federation
among clients. We cannot use the traditional aggregation approach in FL (e.g., FedAvg (McMahan
et al., 2017)) because they attempt to change the weights of the whole model, which is infeasible
for our client model that is divided into several sub-models, whose weights are frozen to avoid
forgetting previous tasks when learning new tasks. Therefore, we construct a client-server bridge for
information transfer and introduce group-wise knowledge distillation to accomplish aggregation.

Information transfer. In our framework, clients require extracting the feature maps after a specific
hidden layer and related logits in their local models, which will be sent to the server during training.
Note that the feature maps may leak users’ confidential information, we can add some designed noise
to further ensure privacy (details in the appendix). The server side will then use different models to
aggregate knowledge from uploaded information according to current features of the client task and
send the corresponding predicted value back to clients as the aggregated knowledge. Based on the
knowledge, clients will further retrain and distill their models for improved performance.

Server-side knowledge distillation. In our TFCL, the feature distribution of repetitive tasks among
clients can exhibit significant heterogeneity within a given timeframe. This circumstance has driven
us to create distinct groups to facilitate selective knowledge distillation rather than blindly distilling
them together. Given a series of feature maps and logits, we first put the feature maps into different
groups based on the logits and construct a server model for each group. The number of server models
depends on the number of learning tasks. In this way, the knowledge of identical tasks can be clustered
for effective aggregation, getting rid of the interference from other irrelevant tasks. Concretely, for
each group, the server loss function is defined as:

ℓs = αsℓCE + βsℓKD

(
zs, z

(k)
c

)
= αsℓCE + βsDKL (pk∥ps)

(1)

where ℓCE is the cross-entropy loss between the predicted values and the ground truth labels. DKL is
the Kullback Leibler (KL) Divergence function. zs and z

(k)
c are the predicted values of server models

and client models. pi
k =

exp(z(k,i)
c /T)∑C

i=1 exp
(
z
(k,i)
c /T

) and pi
s =

exp(zi
s/T)∑C

i=1 exp(zi
s/T )

, where C is the number of

clients and T is a temperature parameter. They are the probabilistic prediction of the kth client model
and the server model. αs and βs are the hyperparameters to control the ratio of the cross-entropy loss
and the Kullback Leibler Divergence. Note that in each federation round, the server will receive the
message sent from clients and sequentially distill the corresponding server model based on Eq. 1 for
each group.
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Figure 4: Convergence comparison on different datasets. Here the final accuracy of different methods
is represented at the location of “10th Task” since we run 10 tasks in this FCL process. PF denotes
PackNet+FedAvg.

Client-side knowledge distillation. Different from the distillation on the server side, the client-side
knowledge distillation does not need to maintain several models for training. Instead, they connect to
the corresponding server model based on the logits and utilize its aggregated knowledge to improve
the local performance. For each client, the optimization loss can be defined as:

ℓ(k)c = αcℓCE + βcℓKD

(
zs, z

(k)
c

)
= αcℓCE + βcDKL (ps∥pk)

(2)

where most of the symbols have been formally defined in Eq. 1 except αc and βc, which are another
two hyperparameters to control the loss in the client end. As a result, each client can benefit from the
valuable knowledge aggregated by the corresponding server model.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmark. Since there is no available benchmark to evaluate the performance of our framework,
we manually construct one with three datasets that are widely used in the field of federated continual
learning: CIFAR-100 (Krizhevsky et al., 2009), ImageNetSubset (Deng et al., 2021) and TinyIm-
ageNet (Le & Yang, 2015). As stated in Section 2.1, our settings mainly follow class-incremental
learning (CIL), where each class is regarded as a task. The concrete description of the repetitive task
settings and other implementation details can be found in the appendix.

Baselines. To the best of our knowledge, there are few works targeting federated continual learning
and most of the baselines just combine continual learning and federated learning directly. Here we
select one representative combination: PackNet (Mallya & Lazebnik, 2018) + FedAvg (McMahan
et al., 2017). Besides, we choose FedWeIT (Yoon et al., 2021), GLFC (Dong et al., 2022) and
FedKNOW (Luopan et al., 2023) as baselines, which are state-of-the-art methods specially designed
for federated continual learning. In the appendix, we provide a detailed description of these baselines
and other hyperparameter settings.

5.2 PERFORMANCE COMPARISON

Accuracy comparison on our benchmark. As shown in Figure 4, we can clearly see that the
proposed framework outperforms other methods by a large margin in the final accuracy. This
demonstrates that by traceable task learning and group-wise knowledge aggregation, we can greatly
boost the accuracy performance for the task repeatability scenario. Besides, it is worth noting that:
(1) GLFC performs well at the beginning while degrading dramatically as new tasks come, which
indicates that the repetitive tasks disturb its original learning state. This phenomenon also appears in
FedWeIT and FedKNOW except the CIFAR-100 dataset. The reason may be that the two methods
can easily become overfitting when the data scale is small such as CIFAR-100; (2) It is obvious that
PackNet+FedAvg obtains poor performance in most of the learning process. We believe this is due
to the incompatibility between the weight-level aggregation and the dynamic data settings; (3) In
addition to the final accuracy, the convergence speed of TagFed is faster than others, which means
that our framework can quickly adapt to a new repetitive or non-repetitive task.

7



Under review as a conference paper at ICLR 2024

Table 1: Effect of the proposed modules of different task numbers on CIFAR-100. Ours-w/oModule
denotes the performance of our framework without using the Module. Here “Task Scale” refers to the
number of tasks.

Task Scale 2 4 6 8 10 Avg
Ours-w/oTTL 69.20% 59.05% 55.62% 55.65% 56.05% 59.11%
Ours-w/oGKA 71.00% 73.43% 75.25% 76.21% 75.76% 74.33%

Ours 71.40% 75.39% 76.36% 77.18% 78.35% 75.73%
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Figure 5: The task-specific performance on the TinyImageNet dataset.

Ablation study. TagFed mainly includes two key components: traceable task learning (TTL) and
group-wise knowledge aggregation (GKA). Here we conduct ablation studies to explore whether
each of them is beneficial to the final performance. Table 1 summarizes the results, where we record
the corresponding accuracy performance of different task scales on CIFAR-100. From the table, we
can find that both the two modules are essential to cope with the TFCL scenario.

Table 2: Results on the noise-introduced situation with
CIFAR-100. Here PF denotes PackNet+FedAvg.

Task scale 2 3 5
PF 45.30% 42.96% 31.66%

GLFC 50.10% 54.57% 62.02%
FedWeIT 18.24% 18.17% 18.86%

FedKNOW 36.17% 34.50% 31.87%

Ours(1/dFIL = 5) 70.30% 73.06% 73.38%
Ours(1/dFIL = 1) 70.50% 73.86% 73.60%

Ours(1/dFIL = 0.5) 71.20% 72.93% 74.10%
Ours(w/o noise) 71.40% 75.27% 75.99%

Task-specific performance. In addi-
tion to the overall performance on all
tasks, we are also interested in the de-
tailed performance on each task. Figure
5 records the task-specific performance
on the TinyImageNet dataset, where we
set 10 tasks and each of which includes
20 classes. From the figure, we can ob-
serve that the accuracy on different tasks
is various for all the methods. Specifi-
cally, PackNet+FedAvg has low perfor-
mance on the first several tasks while
achieving excellent performance on the
final task. We believe this is because
PackNet+FedAvg pays more attention to
the current task and federates them without considering the task forgetting problem, which will obtain
poor accuracy in the previous tasks. Other FCL baselines, however, despite addressing catastrophic
forgetting, fail to deal with the repetitive tasks and might introduce a large new task learning loss
as the repetitive task increases. As a result, they cannot reach good performance and even for some
tasks, the accuracy becomes zero. The results on other datasets can be found in the appendix.

Noise-introduced performance. Because our pipeline requires exchanging the feature maps between
the clients and the server, we introduced a designed noise to further ensure privacy. Here we adopted
diagonal Fisher information leakage (dFIL) as the privacy metric. The detailed noise setting can be
found in the appendix. As shown in Table 2, although the performance of ours decreases slightly
compared to the version without noise, it still significantly surpasses other baselines, which validates
the effectiveness of TagFed under the privacy-preserving scenario.
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Figure 6: (a) Performance on the non-iid condition. (b) Effect of the Repeatability Degree.

Table 3: The number of parameters needed for communication and computation on different methods.
Method Uploading Cost Offloading Cost Computational Cost

PackNet+FedAvg 11.70MB 11.70MB 6.33 MB * 40 rounds
GLFC 11.80MB 11.70MB 11.50 MB * 45 rounds

FedWeIT 9.70MB 26.20MB 14.70 MB * 21 rounds
FedKNOW 11.70MB 11.70MB 11.50 MB * 32 rounds

Ours 10.30MB 0.05MB 11.50 MB * 15 rounds

Performance on the non-iid condition. The non-iid degree can be represented by the backtracking
region, which decides the number of previous tasks to trace. The larger region we backtrack, the
higher heterogeneity we are in. Here we set the region size from 1 to 5, with CIFAR-100 running for
5 tasks to observe the performance. As shown in Figure 6 (a), TagFed can achieve consistently better
performance regardless of the heterogeneity degree.

5.3 EFFICIENCY OF TAGFED

In this subsection, we study the efficiency of TagFed, where we record the uploading, offloading, and
training parameters as the cost measurement. Table 3 demonstrates the results. For the uploading
cost, we can see that the difference among these methods is not obvious, which means that the
cost of uploaded feature maps is comparable to the whole model. For the offloading cost, TagFed
can show a great advantage over other methods since it only needs the computed prediction vector,
whose dimension is extremely small. Besides, we can see that TagFed does not result in increased
computation cost as most training parameters have been frozen in the later FL rounds. Moreover, due
to its fast convergence speed, we can complete FL with fewer rounds, further reducing the overall
computation cost. In general, our framework can save roughly 50% communication cost compared to
others while saving a little computational cost.

5.4 EFFECT OF THE REPEATABILITY DEGREE

This subsection explores the effect of the repeatability degree on the final performance. Here we
partition the repeatability degree into three levels: low repeatability, middle repeatability, and high
repeatability, in terms of tracing rounds and regions (details in the appendix). We evaluate different
methods on CIFAR-100 with five tasks. As shown in Figure 6 (b), unlike other baselines that are
significantly influenced by the degree of repeatability, TagFed is not affected and achieves improved
performance. This further validates the effectiveness of TagFed in handling repetitive tasks.

6 CONCLUSION

In this paper, we propose Traceable Federated Continual Learning (TFCL), where repetitive tasks
can be accurately and effectively traced and processed to boost the performance. We design and
implement TagFed, a framework to achieve TFCL through feature tracing, sub-model augmentation,
and group-wise knowledge federation. Experiments on our simulated benchmark demonstrate the
effectiveness and efficiency of TagFed, which outperforms other state-of-the-art methods while saving
communication and computational cost.
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Table 4: Statistics of our simulated benchmark.

Dataset # Simulated Clients # Training Samples # Testing Samples
CIFAR-100 10 50000 10000

ImageNetSubset 10 50000 10000
TinyImageNet 10 45000 5000

A DETAILED EXPERIMENTAL SETTINGS

A.1 CONSTRUCTED BENCHMARK

We manually construct a benchmark with public datasets used for FCL (Dong et al., 2022) to simulate
the task repeatability scenario. The detailed statistics are illustrated in Table 4 and we briefly introduce
the setting of each dataset as follows.

• CIFAR-100 (Krizhevsky et al., 2009): CIFAR-100 is a classification dataset, which owns 100
classes and each class contains 600 images. There are 500 training images and 100 testing
images per class. The 100 classes in CIFAR-100 are grouped into 20 superclasses. Each
image comes with a “fine-grained” label (the class to which it belongs) and a “coarse-grained”
label (the superclass to which it belongs).

• ImageNetSubset (Deng et al., 2021): The mini-ImageNet dataset is widely used for few-shot
learning evaluation. Its complexity is high due to the use of ImageNet images while requiring
fewer resources and infrastructures than directly running on the full ImageNet dataset. In
total, there are 100 classes with 600 samples of 84×84 color images per class.

• TinyImageNet (Le & Yang, 2015): TinyImageNet is a subset of the ILSVRC2012 classifica-
tion dataset. It consists of 200 object classes, each of which provides 500 training images,
50 validation images, and 50 test images. All images have been downsampled to 64 × 64 ×
3 pixels.

To make a fair comparison, we follow the typical client settings in FCL (Dong et al., 2022). For
the task repeatability settings, we divide federating rounds into ordinary rounds and backtracking
rounds. Client models will learn the current task in an ordinary round and learn repetitive tasks in
a backtracking round. For each backtracking round, the incoming tasks of every client might be
different. The backtracking degree is represented by two hyperparameters, backtracking region and
backtracking time. Backtracking region is an integer r, which means that the last r tasks will appear
in this backtracking process. Backtracking time is an integer t, which means there are t backtracking
rounds after an ordinary round. We apply the settings to all three datasets as the repetitive task
simulation.

A.2 BASELINES AND HYPERPARAMETER SETTINGS

TagFed is compared to PackNet+FedAvg, GLFC, FedWeIT and FedKNOW, which are briefly
summarized as follows:

• PackNet+FedAvg (PF) (Mallya & Lazebnik, 2018; McMahan et al., 2017): This baseline
is a combination of CL methods and FL methods. Concretely, we first pack multiple tasks
into a model by iterative pruning and then average the parameters of the client models as
federation.

• GLFC (Dong et al., 2022): GLFC is a state-of-the-art approach focusing on addressing the
catastrophic forgetting problem in FCL. The key idea is to implement a class-aware gradient
compensation loss and a class-semantic relation distillation loss to balance the forgetting of
old classes.

• FedWeIT (Yoon et al., 2021): This method employs weighted inter-client transfer to address
the issue of interference from irrelevant clients.
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• FedKNOW (Luopan et al., 2023): This method ensures the prevention of catastrophic
forgetting and mitigation of negative knowledge transfer by effectively combining signature
tasks identified from the past local tasks and other clients’ current tasks.

We now describe the standard implementation of TagFed, which is used throughout our experiments
unless otherwise specified. The concrete parameter settings are as follows:

We employ ResNet-18 (He et al., 2016) as the backbone and extract feature maps after the second
BasicBlock. The hyper-parameter αs and αc are set to 0.9 in Eq. 1 Eq. 2. βs and βc are set to 0.1.
The distillation temperature is set to 5. We use SGD as the optimizer for training model parameters,
and the learning rate is set to 0.2 with a momentum of 0.9. We use Adam as the optimizer for training
masks, and the learning rate is set to 1e-4. The sparsity of each layer is set to 0.1 to hold all tasks into
a model, with the purpose of making a fair comparison. All of the experiments are conducted for
roughly 80 federating rounds to guarantee convergence. Finally, we run each experiment 3 times and
average them as the reported results.

Implementation details All our experiments are simulated and conducted in a server that has 4
GeForce GTX 3090 GPUs, 48 Intel Xeon CPUs, and 128GB memory. We implement TagFed in
Python with PyTorch, and all the experiments are conducted on a ResNet-18 architecture (He et al.,
2016), which is pre-trained with the ImageNet dataset (Deng et al., 2009).

B THEORETICAL ANALYSIS

In this section, we provide theoretical analyses to support our framework. Specifically, we respectively
analyze the effectiveness of the key modules in TagFed.

Privacy analysis of information transfer. In TagFed, the information transfer is a key step to enable
local task learning and central knowledge aggregation. Although TagFed does not upload the raw data
directly, it exchanges the feature maps obfuscated with designed noise as the message. Therefore,
we attempt to analyze the privacy property of our framework. Concretely, we utilize the following
Theorem to measure privacy.

Theorem B.1. When an unbiased attacker tries to reconstruct the training data from the trained
model x̂ = Att (z′), the average mean-square error (MSE) of x̂ is bounded by:

E
[
∥x̂− x∥22

]
≥ d/Tr (Iz′(x)) (3)

where d is the dimension of x and Tr is the trace of a matrix.

Here, Tr (Iz′(x)) /d is called diagonal Fisher information leakage, or dFIL. dFIL is a strong indicator
of privacy when it comes to input reconstruction attacks for split inference. For an unbiased attacker,
dFIL indicates the reconstruction feasibility. Details can be found in (Guo et al., 2022).

In our work, TagFed allows clients to choose different variances of noise according to the client
requirement. Specifically, each client can provide a privacy and utility requirement, which will be
used to calculate the concrete noise to ensure the trade-off. Here we calculated the noise based on an
empirical value (dFIL = 1) and introduced it into our training process to obtain values in the main
text.

Effectiveness analysis of group-wise knowledge aggregation. In this part, we mainly explore
whether the group-wise scheme contributes to knowledge aggregation. To begin with, we make the
following commonly used assumptions.

Assumption B.2. The objective functions F1, F2, ..., FN in each device are all L-smooth: for all v
and w, Fk(v) ≤ Fk(w) + (v −w)T∇Fk(w) + L

2 ∥v −w∥22.

Assumption B.3. The objective functions F1, F2, ..., FN in each device are all µ-strongly convex:
for all v and w, Fk(v) ≥ Fk(w) + (v −w)T∇Fk(w) + µ

2 ∥v −w∥22.

According to a related work (Zhao et al., 2018), the weight divergence among the uploaded infor-
mation can affect the aggregation performance, which can be formally defined as the following
Theorem.
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Algorithm 1 Pipeline of TagFed
Operation:

1: Distribute a shared model Mini to each client
2: for i=1 to R do
3: Conduct these steps in Client side and Server side sequentially
4: end for
5: Obtain the final improved model Mfinal

Client side:

1: For each client, train Mini with its own task sequence St = {s1, s2, ..., sn} based on our
traceable task learning

2: Add noise to the feature maps of the hidden layers, upload them as well as the logits to the server
3: Wait for the predicted values sent back from the server
4: Conduct training based on Eq. 2

Server side:

1: Collect the uploaded feature maps {FM i
1, FM i

2, ..., FM i
N}(i = 1, 2, , , n) from n clients

2: Feed them into different server models based on the uploaded client logits
3: Conduct training based on Eq. 1

Theorem B.4. Suppose Assumption 1 and 2 hold the federation synchronization is conducted every
H steps. The weight divergence after the m-th synchronization can be bounded by

∥∆wm∥ ≤ (4)
N∑

k=1

sample(k)∑N
k=1 sample(k)

(zk)T ∥∆wm−1∥

+ η

N∑
k=1

sample(k)∑N
k=1 sample(k)

∥∥pk − pglobal
∥∥H−1∑

j=1(
zk

)j
max
i=1

∥∥∇wEx|y=i log fi(x,w)
∥∥

where zk = 1 + η
∑C

i=1 p
(k)(y = i)λx|y=i and C is the number of category. p represents the data

distribution.

Based on the inequality, we can observe that the distribution heterogeneity among uploaded informa-
tion has a large impact on the final divergence degree. Our group-wise scheme enables aggregation
on the features of the same task, which significantly mitigates the distribution heterogeneity and
benefits the final performance.

C ADDITIONAL EMPIRICAL RESULTS

Due to the page limitation of the main text, here we show our additional empirical results to further
demonstrate the superiority of TagFed.

C.1 PERFORMANCE ON THE DIFFERENT TASK SCALES

In the main text, we only test the performance on a fixed task scale. In this part, we attempt to explore
the performance on different task scales. Figure 7 - Figure 9 summarize the results. From these tables,
we can draw the following conclusions: (1) PackNet+FedAvg cannot achieve good performance no
matter how many tasks are in the sequence. This demonstrates that traditional federated aggregation
methods that modify the weights are not suitable to our scenario; (2) The performance of typical FCL
baselines, FedWeIT, FedKNOW, and GLFC will degrade significantly as we increase the number of
tasks. This suggests that it cannot cope with massive repetitive tasks; (3) Our TagFed maintains a
stable and high accuracy for all task scales. In addition, we find that usually the more tasks we have,
the superior performance we can achieve.
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Figure 7: Performance of different task scales on CIFAR-100.
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Figure 8: Performance of different task scales on ImageNetSubset.

C.2 TASK-SPECIFIC PERFORMANCE ON OTHER DATASETS

Besides the performance of TinyImageNet in the main text, here we record the task-specific per-
formance on ImageNetSubset and CIFAR-10, in order to test the generalization of our framework.
Figure 10 and Figure 11 show the detailed accuracy performance. We can clearly see that TagFed
can achieve consistent improvement on both datasets. Notably, The performance gap is higher in the
middle tasks than others. We believe this is because the repeatability interference in these locations
may have a higher impact on the baselines, leading to poor performance.

C.3 ABLATION STUDY ON OTHER DATASETS

In the main text, we conduct the ablation study on CIFAR-100. Here we record the performance of
other datasets, in order to see whether each module in TagFed is still effective. As shown in Table 5
and Table 6, both TTL and GKA play an important role in the final performance.
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Figure 9: Performance of different task scales on TinyImageNet.
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Figure 10: The task-specific performance on the CIFAR-100 dataset.

C.4 NON-IID CONDITION AND REPEATABILITY DEGREE ON OTHER DATASETS

Figure 12 and Figure 13 show the results on ImageNetSubset and TinyImageNet, focusing on the
non-iid condition and the repeatability degree. From these figures, we can find a similar conclusion
to the results in the main text: TagFed can handle the non-iid condition well and will not be affected
by the task repeatability degree.

Table 5: Effect of the proposed modules of different task numbers on ImageNetSubset. Ours-
w/oModule denotes the performance of our framework without using the Module.

Task Scale 2 4 6 8 10 Avg
Ours-w/oTTL 52.15% 40.00% 34.48% 30.60% 30.72% 37.59%
Ours-w/oGKA 62.85% 64.10% 62.42% 62.83% 64.12% 63.26%

Ours 67.15% 69.08% 69.17% 69.18% 70.97% 69.11%
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Figure 11: The task-specific performance on the ImageNetSubset dataset.

Table 6: Effect of the proposed modules of different task numbers on TinyImageNet. Ours-w/oModule
denotes the performance of our framework without using the Module.

Task Scale 2 4 6 8 10 Avg
Ours-w/oTTL 57.10% 42.40% 36.30% 35.60% 36.54% 41.59%
Ours-w/oGKA 59.50% 58.90% 61.07% 60.48% 61.06% 60.20%

Ours 66.90% 65.35% 66.73% 66.53% 68.31% 66.76%

C.5 NOISE-INTRODUCED PERFORMANCE ON OTHER DATASETS

In this subsection, we evaluate the noise-introduced performance on CIFAR-100 and ImageNetSubset
and demonstrate the results in Table 7 and Table 8. From these tables, we can clearly observe that for
any dataset, TagFed can exceed other baselines under the privacy-preserving situation.

C.6 PERFORMANCE ON LARGE-SCALE CLIENTS

In above mentioned experiments, we only operate the FL system with 10 clients. To explore whether
the proposed approach can be extended to a large-scale scenario, we add the number of clients to
30 and implement each method respectively. The experiments are conducted on CIFAR-100. As
illustrated in Figure 14, TagFed surpasses other baselines by a large margin as we increase the number
of tasks, which is consistent with our previous analysis.

D ALGORITHM AND REPRODUCTION

Algorithm 1 shows the whole pipeline of our proposed TagFed. For the client side, we mainly conduct
our traceable task learning. For the server side, we focus on the group-wise knowledge aggregation.
Note that the operations will be implemented sequentially until training convergence.

To ensure reproducibility, we have provided the overview of datasets and baselines in Appendix A.1
and Appendix A.2. Our experimental environment is presented in Section 5.1. We will make our
code and other artefacts available to the community after the notification.
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Figure 12: Results on the ImageNetSubset. Left: Performance on the non-iid condition. Right: Effect
of the Repeatability Degree.
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Figure 13: Results on the TinyImageNet. Left: Performance on the non-iid condition. Right: Effect
of the Repeatability Degree.
Table 7: Results of the noise-introduced situ-
ation on CIFAR-100. Here PF denotes Pack-
Net+FedAvg.

Task scale 2 3 5
PF 45.30% 42.96% 31.66%

GLFC 50.10% 54.57% 62.02%
FedWeIT 18.24% 18.17% 18.86%

FedKNOW 36.17% 34.50% 31.87%
Ours(1/dFIL = 1) 70.50% 73.86% 73.60%
Ours(w/o noise) 71.40% 75.27% 75.99%

Table 8: Results of the noise-introduced situa-
tion on ImageNetSubset. Here PF denotes Pack-
Net+FedAvg.

Task scale 2 3 5
PF 44.70% 29.27% 33.50%

GLFC 39.85% 30.67% 34.22%
FedWeIT 40.16% 36.72% 32.31%

FedKNOW 79.56% 74.64% 56.52%
Ours(1/dFIL = 1) 66.70% 63.90% 64.10%
Ours(w/o noise) 67.15% 65.93% 67.88%
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Figure 14: Performance on large-scale clients.
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