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Abstract

The rise of digital misinformation has heightened interest in using multilingual
Large Language Models (LLMs) for fact-checking. This study systematically
evaluates translation bias and the effectiveness of LLMs for cross-lingual claim
verification across fifteen languages from five language families: Romance, Slavic,
Turkic, Indo-Aryan, and Kartvelian. Using the XFACT dataset to assess their
impact on accuracy and bias, we investigate two distinct translation methods: pre-
translation and self-translation. We use mBERT’s performance on the English
dataset as a baseline to compare language-specific accuracies. Our findings reveal
that low-resource languages exhibit significantly lower accuracy in direct inference
due to underrepresentation in the training data. Furthermore, larger models demon-
strate superior performance in self-translation, improving translation accuracy and
reducing bias. These results highlight the need for balanced multilingual train-
ing, especially in low-resource languages, to promote equitable access to reliable
fact-checking tools and minimize the risk of spreading misinformation in different
linguistic contexts.

1 Introduction

Multilingual Large Language Models (LLMs), such as GPT-4 and Llama 3.1, have shown remarkable
capabilities in various languages and tasks [Ahuja et al., 2024]. Thus, there has been increasing
interest in possible usages of LLMs for claim verification across languages [Panchendrarajan and
Zubiaga, 2024].

However, recent studies have revealed significant disparities in their performance and bias in different
languages [Xu et al., 2024, Huang et al., 2024]. This variability is especially concerning given
the importance of claim verification in combating misinformation [Sundriyal et al., 2023]. The
performance discrepancies observed in LLMs often favor resource-rich languages like English,
French, and German over resource-poor languages such as Kannada and Occitan [Robinson et al.,
2023, Bawden and Yvon, 2023, Quelle and Bovet, 2024]. These differences stem from variations
in accuracy and translation quality between languages. Although LLMs demonstrate impressive
average performance in a wide range of languages, Li et al. [2024] highlights persistent gaps between
high-resource and low-resource languages, emphasizing the need for more balanced data collection
and training approaches.

Addressing misinformation for claim verification tasks is critical, as ineffective claim verification can
spread false information between languages and vulnerable populations [Thorne and Vlachos, 2018].
Although advances in LLMs, such as Meta’s Llama 3.1 models [Dubey et al., 2024], have improved
multilingual capabilities, reliance on external translation methods in some contexts—especially by
users or systems that use third-party services such as Google Translate or that rely on the LLM
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in use and its multilingual capabilities—can still introduce biases. These biases can undermine
the improvements made by LLMs and contribute to the spread of misinformation, particularly in
resource-poor languages. Ensuring fair and accurate fact-checking in multiple languages is essential
for equitable access to reliable information worldwide [Zhang et al., 2024].

This study evaluates pre-translation and self-translation methods across 15 languages, grouped into
five language families—Romance, Slavic, Turkic, Indo-Aryan, and Kartvelian—spanning both high-
and low-resource languages. We use mBERT’s performance on the English dataset as a baseline to
measure language-specific accuracy and the effectiveness of translation. The translation techniques are
further explained in Section 3.4 and are evaluated against the XFACT dataset by Gupta and Srikumar
[2021]. Our analysis aims to inform the development of more balanced LLMs and guide future efforts
in claim verification, helping to close the performance gap between high- and low-resource languages
and creating more equitable language technologies.

2 Related Works

2.1 English and Multilingual Fact-Checking

The application of LLMs for fact-checking tasks has emerged as a promising area of research. Quelle
and Bovet [2024] demonstrated that the GPT-3.5 and GPT-4 models can achieve high accuracy in En-
glish fact-checking tasks when provided with adequate context. However, the challenge of extending
these capabilities across multiple languages has driven research towards multilingual approaches. For
example, Huang et al. [2022] enhanced mBERT with cross-lingual retrieval techniques, improving
fact-checking performance in the X-Fact dataset. Hu et al. [2023] further evaluated the factual
knowledge of ten different LLMs in 27 languages, revealing insights into the multilingual capabilities
of these models. Despite these advances, many studies have grouped non-English languages into
a single category without detailed analysis, leaving a gap for users who wish or need to use other
under-researched languages.

2.2 Bias in Multilingual Language Models

Wealthier countries often support more LLM research, leading to an uneven distribution of training
data favoring their languages [Dong et al., 2024, HAI, 2023]. LLMs also exhibit political and
informational biases, emphasizing claims spread by the media in wealthy countries over those in
low-income countries. Shafayat et al. [2024] highlighted a significant bias toward Western-centric
political information in the factual accuracy of LLMs across nine languages. Moreover, these models
tend to produce more factual content in high-resource languages and longer responses in English.

3 Experimental Setup

3.1 Datasets

Our study uses the X-Fact dataset1 developed by Gupta and Srikumar [2021] as the primary source of
claims in selected language families. We systematically source 600 claims for each language family,
ensuring a balanced representation of languages within each family and an equal distribution across
the dataset’s five veracity labels: "True", "Mostly True", "Half True", "Mostly False", and "False".
The claims were selected to maintain an even distribution across both languages and veracity labels.
This allowed for a diverse corpus encompassing both political and non-political topics. A detailed
breakdown of the languages included in each family and the final dataset distribution is provided in
Appendix A.1.

1X-Fact dataset under MIT License on GitHub (https://github.com/utahnlp/x-fact)

2

https://github.com/utahnlp/x-fact


Figure 1: Flowchart illustrating the process for evaluating the claim verification performance of
LLMs using Direct Inference, Self-Translation, and Pre-Translation.

3.2 Multilingual Language Models

Each of the LLMs used in our experiments is instruction-tuned. We conduct our experiments
on OpenAI’s GPT-4o2 and GPT-4o Mini3 models, Mistral’s Mistral Large 24 model with 123B
parameters, Meta’s Llama 3.1 models with 8B, 70B, and 405B parameters [Dubey et al., 2024], and
a fine-tuned version of Google’s mBERT multilingual model, following the same training process
used by Gupta and Srikumar [2021]. All of the models are pre-trained on multilingual corpora. For
each model, we set the temperature to 0 for reproducibility. Each model automatically determined
the default token length based on the number of tokens required to complete its output according to
its respective context length.

3.3 Evaluation

For each experiment, we record the number of correct, incorrect, and inconclusive responses returned
by the model. We express the accuracy score of the LLM as the percentage of correct answers.

3.4 Translation Techniques

We employ the following translation methods when evaluating each model’s performance on a
language family:

Direct Inference is completing a task in the native language of the prompt without performing any
translations. This method is intended to measure the model’s ability to understand and generate text
in the target language without relying on cross-linguistic skills, thereby isolating its performance
on monolingual tasks. Inconclusive outputs in this method occur when the model fails to provide a
conclusive answer (e.g., "True," "Mostly True," etc.) as required by the prompt, though the risk of
faulty translations is minimized since no external translations are involved.

Self-Translate Etxaniz et al. [2023] involves an LLM performing a translation task itself without
relying on external translation services. This technique allows the model to leverage its inherent

2https://openai.com/index/hello-gpt-4o/
3https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
4https://mistral.ai/news/mistral-large-2407/
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multilingual capabilities, effectively using its own understanding of multiple languages to translate
text autonomously. For consistent comparisons, we translate into English. This decision reflects the
fact that most LLMs are trained predominantly on English data, making it a reasonable default for
translation tasks, since translation into less well-trained languages is unlikely to yield better results
due to the scarcity of high-quality training data in those languages [Dong et al., 2024, HAI, 2023].
The translation and claim verification steps are conducted in two separate chat sessions, ensuring that
context is not preserved between them. This approach allows us to consistently assess the LLM’s
inherent translation ability, independent of any contextual memory. Inconclusive responses in this
method occur if the model fails to properly translate the claim or does not follow the prompt’s
instructions, resulting in incorrect or incomplete outputs.

Pre-Translate Intrator et al. [2024] involves the use of third-party translation services external to
the model, rather than relying on the model’s own translation capabilities. Following the approach
outlined by Intrator et al. [2024], we use the Google Translate API5 for this purpose. For consistent
comparisons, we translate into English. In this method, inconclusive outputs can arise when there
are inaccuracies in translation, which may lead the model to misinterpret the claim and provide an
unclear or incorrect answer.

The process for evaluating claim verification performance using Direct Inference, Self-Translation,
and Pre-Translation is outlined in the flowchart shown in Figure 1.

3.5 Translation Bias

We assess translation bias using the COMETKIWI model from Rei et al. [2022], which allows for the
evaluation of machine translations without requiring reference translations. A reference translation
is a pre-existing human translation of a source text that serves as a benchmark for evaluating the
accuracy and quality of a machine translation.

The Translation Bias (TB) quantifies the overall quality of machine translations by leveraging the
scores from the COMETKIWI model. Given a set of M COMET scores, scores = {s1, s2, . . . , sM},
the Translation Bias is calculated as:

TB = 1− 1

M

M∑
j=1

sj

4 Results and Discussion

4.1 Language-Specific Trends

4.1.1 High- and Low-Resource Languages

Direct inference demonstrated significantly higher accuracy in the Romance, Slavic, and Turkic
language families compared to other translation techniques. These families generally consist of high-
or moderately high-resource languages, which have abundant data and represent a larger portion of
the training data for the models. In contrast, for the Kartvelian and Indo-Aryan language families—
mostly low-resource languages—the performance of direct inference was consistently equal to or
worse than other translation methods. This suggests that direct inference may be less effective for
low-resource languages due to limited training data, resulting in poorer model understanding and
higher error rates.

4.1.2 Performance of English

Despite being the most represented language in the training data, English was sometimes outperformed
by other languages, possibly because the English claims in the evaluation dataset are more niche
and complex—often including a higher proportion of political claims—which may lower accuracy
as models struggle with more intricate statements. For instance, Llama 3.1 405B showed higher
accuracy for Slavic languages (36.00%) compared to English (33.50%), even though English is
typically better resourced.

5https://py-googletrans.readthedocs.io/en/latest/
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Figure 2: Accuracy performance of Llama 3.1 models across different language families using
Self-Translation and Pre-Translation techniques.

4.2 Translation Techniques

While self-translation and pre-translation techniques generally yielded lower accuracy compared to
direct inference, they reduced the number of inconclusive results by enhancing LLM comprehension
and likely reducing misinterpretations, particularly for complex or nuanced claims. Nonetheless, the
accuracy of both translation methods remained lower than that of direct inference.

4.2.1 Self-Translation vs. Pre-Translation

Self-translation performs slightly better than pre-translation which we believe is attributed to the
model maintaining internal consistency between generating and verifying translations. When the
LLM handles both tasks, its linguistic patterns are more likely to align, reducing interpretation errors.
Pre-translation, however, relies on external services that can introduce inconsistencies, leading to
more misinterpretations during the verification phase. As a result, pre-translation produced more
inconclusive outputs and had lower accuracy than self-translation.

4.3 Model Scale

Looking at Figure 2, smaller models like Llama 3.1 8B perform poorly for both self-translation
and pre-translation across all language families, with self-translation slightly outperforming pre-
translation. However, as model size increased, the accuracy of self-translation improved significantly.
For instance, Llama 3.1 405B demonstrated improved performance across Romance, Slavic, Turkic,
and Indo-Aryan languages, surpassing pre-translation in all cases.

Interestingly, although self-translation performed better with larger models, the translation bias scores
remained relatively stable, suggesting that increased model size improves accuracy but not fairness
across languages. For example, Llama 3.1 405B maintained similar bias scores to smaller models like
Llama 3.1 8B, indicating that the increased size of the model improves accuracy but not fairness in
translation. A detailed breakdown of the translation bias scores for each method, model, and language
family is provided in Appendix A.3.

5



5 Conclusion

This study examines the translation bias and accuracy of multilingual Large Language Models (LLMs)
in cross-language claim verification tasks across five language families. Our findings demonstrate
that direct inference performs better in high-resource languages, while self-translation and pre-
translation techniques handle low-resource languages more effectively, though with reduced accuracy.
Furthermore, as model size increases, the accuracy of self-translation improves, yet translation
bias remains consistent across all models, showing that larger models do not necessarily ensure
fairness across languages. These results highlight the persistent challenges in achieving equitable
multilingual capabilities in LLMs. By identifying specific areas where translation biases occur, we
lay the groundwork for developing more balanced and fair language technologies.

Limitations

Our study of language and translation biases in LLMs for cross-lingual claim verification has several
limitations. We used the 2021 X-Fact dataset, which may not reflect the most recent language trends or
advancements in model capabilities as of 2024. Additionally, the LLMs tested may have been trained
on datasets overlapping with X-Fact, potentially inflating performance metrics. While we focused on
15 languages from diverse families, this selection might not fully represent the linguistic diversity
needed to capture trends in low-resource languages. Our evaluation was limited to translations
from non-English languages into English, and while examining other language pairs might provide
valuable insights, it is unlikely that these pairings would outperform English due to the prevalent
training bias toward English data in most LLMs. We used a lighter, older version of the COMETKIWI
model to assess translation bias due to computational limitations, which may affect the robustness
of our bias measurements. Moreover, we did not compare baseline models with instruction-tuned
versions, which could have reduced inconclusive translations and offered further insights into model
performance. We also did not incorporate reference translations or employ evidence retrieval, which
could have provided a more holistic evaluation of translation quality. Future work should expand to
include more recent datasets, evaluate other language pairs, and refine the methods to enhance bias
detection and accuracy.

Ethics Statement

This study investigates translation bias in multilingual Large Language Models (LLMs), focusing
on disparities across high- and low-resource languages. Our findings highlight that these biases
disproportionately affect low-resource languages, potentially leading to misinformation propagation
in underrepresented linguistic communities. We acknowledge the potential ethical risks associated
with the reliance on LLMs for cross-language claim verification, particularly the unequal access to
accurate information. Future work should focus on more balanced model training to mitigate these
risks, ensuring fairer outcomes for all language speakers. Additionally, we emphasize the need for
collaboration with native speakers and ethical oversight in model development to ensure inclusivity
in global language technologies.
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A Appendix

A.1 Dataset Distribution

Table 1: Distribution of Romance language family claims.

Language False Half True Mostly False True Total Claims
French (fr) 30 30 0 21 109
Italian (it) 34 36 0 37 139
Spanish (es) 34 34 0 37 136
Portuguese (pt) 80 43 1 50 216

Table 2: Distribution of Slavic language family claims.

Language False Half True Mostly False True Total Claims
Serbian (sr) 70 42 44 45 234
Russian (ru) 50 51 1 42 153
Polish (pl) 64 50 0 99 213

Table 3: Distribution of Turkic language family claims.

Language False Half True Mostly False True Total Claims
Turkish (tr) 60 63 82 96 407
Azerbaijani (az) 60 57 38 24 193

Table 4: Distribution of Indo-Aryan language family claims.

Language False Half True Mostly False True Total Claims
Bengali (bn) 36 35 91 1 163
Hindi (hi) 89 57 118 0 264
Marathi (mr) 26 26 0 0 52
Punjabi (pa) 25 40 0 0 65
Gujarati (gu) 27 29 0 0 56

Table 5: Distribution of Kartvelian language family claims.

Language False Half True Mostly False True Total Claims
Georgian (ka) 120 120 120 120 600
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A.2 Model Performance Across Language Families

Table 6: Performance distribution of LLMs using direct inference on English claims.

Model Total Correct Total Incorrect Total Inconclusive Accuracy
GPT-4o 215 377 8 35.83%
GPT-4o Mini 185 413 2 30.83%
Mistral Large 2 183 403 14 30.50%
Llama 3.1 8B 95 278 227 15.83%
Llama 3.1 70B 166 353 81 27.67%
Llama 3.1 405B 201 386 13 33.50%
mBERT 95 340 165 15.83%

Table 7: Performance distribution of LLMs using direct inference, self-translate, and pre-translate on
Romance claims.

Model Technique Total Correct Total Incorrect Total Inconclusive Accuracy
GPT-4o Direct Inference 185 381 34 30.83%
GPT-4o Self-Translation 174 396 30 29.00%
GPT-4o Pre-Translation 150 413 37 25.00%
GPT-4o Mini Direct Inference 197 388 15 32.83%
GPT-4o Mini Self-Translation 165 434 1 27.50%
GPT-4o Mini Pre-Translation 154 445 1 25.67%
Mistral Large 2 Direct Inference 155 405 40 25.83%
Mistral Large 2 Self-Translation 123 422 55 20.50%
Mistral Large 2 Pre-Translation 97 386 117 16.17%
Llama 3.1 8B Direct Inference 126 389 85 21.00%
Llama 3.1 8B Self-Translation 52 236 312 8.67%
Llama 3.1 8B Pre-Translation 60 296 244 10.00%
Llama 3.1 70B Direct Inference 172 398 30 28.67%
Llama 3.1 70B Self-Translation 122 303 175 20.33%
Llama 3.1 70B Pre-Translation 122 301 177 20.33%
Llama 3.1 405B Direct Inference 191 404 5 31.83%
Llama 3.1 405B Self-Translation 135 422 43 22.50%
Llama 3.1 405B Pre-Translation 123 427 50 20.50%
mBERT Direct Inference 166 255 179 27.67%
mBERT Pre-Translation 106 444 50 17.67%
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Table 8: Performance distribution of LLMs using direct inference, self-translate, and pre-translate on
Slavic claims.

Model Technique Total Correct Total Incorrect Total Inconclusive Accuracy
GPT-4o Direct Inference 199 315 86 33.17%
GPT-4o Self-Translation 195 384 21 32.50%
GPT-4o Pre-Translation 161 404 35 26.83%
GPT-4o Mini Direct Inference 206 334 60 34.33%
GPT-4o Mini Self-Translation 135 465 0 22.50%
GPT-4o Mini Pre-Translation 139 461 0 23.17%
Mistral Large 2 Direct Inference 177 298 125 29.50%
Mistral Large 2 Self-Translation 123 439 38 20.50%
Mistral Large 2 Pre-Translation 102 423 75 17.00%
Llama 3.1 8B Direct Inference 121 250 229 20.17%
Llama 3.1 8B Self-Translation 59 253 288 9.83%
Llama 3.1 8B Pre-Translation 64 280 256 10.67%
Llama 3.1 70B Direct Inference 177 290 133 29.50%
Llama 3.1 70B Self-Translation 128 357 115 21.33%
Llama 3.1 70B Pre-Translation 119 388 93 19.83%
Llama 3.1 405B Direct Inference 216 353 31 36.00%
Llama 3.1 405B Self-Translation 124 468 8 20.67%
Llama 3.1 405B Pre-Translation 132 454 14 22.00%
mBERT Direct Inference 79 251 270 13.17%
mBERT Pre-Translation 130 411 59 21.67%

Table 9: Performance distribution of LLMs using direct inference, self-translate, and pre-translate on
Indo-Aryan claims.

Model Technique Total Correct Total Incorrect Total Inconclusive Accuracy
GPT-4o Direct Inference 150 425 25 25.00%
GPT-4o Self-Translation 180 360 60 30.00%
GPT-4o Pre-Translation 157 346 97 26.17%
GPT-4o Mini Direct Inference 190 431 0 28.17%
GPT-4o Mini Self-Translation 144 434 0 27.67%
GPT-4o Mini Pre-Translation 171 429 0 28.50%
Mistral Large 2 Direct Inference 85 281 234 14.17%
Mistral Large 2 Self-Translation 173 364 63 28.83%
Mistral Large 2 Pre-Translation 146 300 154 24.33%
Llama 3.1 8B Direct Inference 95 278 227 15.83%
Llama 3.1 8B Self-Translation 73 192 335 12.17%
Llama 3.1 8B Pre-Translation 93 222 285 15.50%
Llama 3.1 70B Direct Inference 127 426 47 21.17%
Llama 3.1 70B Self-Translation 130 344 126 21.67%
Llama 3.1 70B Pre-Translation 148 321 131 24.67%
Llama 3.1 405B Direct Inference 166 358 76 27.67%
Llama 3.1 405B Self-Translation 143 379 76 24.17%
Llama 3.1 405B Pre-Translation 166 358 76 27.67%
mBERT Direct Inference 81 279 240 13.50%
mBERT Pre-Translation 83 281 216 17.17%
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Table 10: Performance distribution of LLMs using direct inference, self-translate, and pre-translate
on Turkic claims.

Model Technique Total Correct Total Incorrect Total Inconclusive Accuracy
GPT-4o Direct Inference 159 437 4 26.50%
GPT-4o Self-Translation 150 416 34 25.00%
GPT-4o Pre-Translation 141 427 32 23.50%
GPT-4o Mini Direct Inference 130 469 1 21.67%
GPT-4o Mini Self-Translation 147 452 1 24.50%
GPT-4o Mini Pre-Translation 135 462 3 22.50%
Mistral Large 2 Direct Inference 129 469 2 21.50%
Mistral Large 2 Self-Translation 123 418 59 20.50%
Mistral Large 2 Pre-Translation 111 396 93 18.50%
Llama 3.1 8B Direct Inference 106 454 40 17.67%
Llama 3.1 8B Self-Translation 59 247 294 9.83%
Llama 3.1 8B Pre-Translation 63 307 230 10.50%
Llama 3.1 70B Direct Inference 131 443 26 21.83%
Llama 3.1 70B Self-Translation 120 359 121 20.00%
Llama 3.1 70B Pre-Translation 115 379 106 19.17%
Llama 3.1 405B Direct Inference 154 445 1 25.67%
Llama 3.1 405B Self-Translation 149 432 19 24.83%
Llama 3.1 405B Pre-Translation 145 439 16 24.17%
mBERT Direct Inference 98 331 171 16.33%
mBERT Pre-Translation 109 478 13 18.17%

Table 11: Performance distribution of LLMs using direct inference, self-translate, and pre-translate
on Kartvelian claims.

Model Technique Total Correct Total Incorrect Total Inconclusive Accuracy
GPT-4o Direct Inference 28 503 69 4.67%
GPT-4o Self-Translation 131 423 46 21.83%
GPT-4o Pre-Translation 127 442 31 21.17%
GPT-4o Mini Direct Inference 38 559 3 6.33%
GPT-4o Mini Self-Translation 138 459 3 23.00%
GPT-4o Mini Pre-Translation 132 465 3 22.00%
Mistral Large 2 Direct Inference 42 303 255 7.00%
Mistral Large 2 Self-Translation 118 404 78 19.67%
Mistral Large 2 Pre-Translation 107 386 107 17.83%
Llama 3.1 8B Direct Inference 29 135 436 4.83%
Llama 3.1 8B Self-Translation 71 236 293 11.83%
Llama 3.1 8B Pre-Translation 80 267 253 13.33%
Llama 3.1 70B Direct Inference 55 511 34 9.17%
Llama 3.1 70B Self-Translation 109 336 155 18.17%
Llama 3.1 70B Pre-Translation 85 313 202 14.17%
Llama 3.1 405B Direct Inference 0 598 0 0.00%
Llama 3.1 405B Self-Translation 138 435 27 23.00%
Llama 3.1 405B Pre-Translation 124 439 37 20.67%
mBERT Direct Inference 133 463 4 22.17%
mBERT Pre-Translation 99 398 103 16.50%

A.3 Translation Bias Scores

Table 12: Translation bias scores across Romance, Slavic, Turkic, Indo-Aryan, and Kartvelian
language families using the pre-translation technique (Google Translate API).

Language Family Translation Bias Score
Romance 0.33
Slavic 0.35
Turkic 0.11
Indo-Aryan 0.22
Kartvelian 0.22
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Table 13: Translation bias scores for LLMs across Romance, Slavic, Turkic, Indo-Aryan, and
Kartvelian language families using the self-translation technique.

Model Language Family Translation Bias Score
GPT-4o Romance 0.16
GPT-4o Slavic 0.16
GPT-4o Turkic 0.17
GPT-4o Indo-Aryan 0.16
GPT-4o Kartvelian 0.16
GPT-4o Mini Romance 0.16
GPT-4o Mini Slavic 0.16
GPT-4o Mini Turkic 0.17
GPT-4o Mini Indo-Aryan 0.17
GPT-4o Mini Kartvelian 0.16
Mistral Large 2 Romance 0.16
Mistral Large 2 Slavic 0.16
Mistral Large 2 Turkic 0.17
Mistral Large 2 Indo-Aryan 0.17
Mistral Large 2 Kartvelian 0.17
Llama 3.1 8B Romance 0.18
Llama 3.1 8B Slavic 0.19
Llama 3.1 8B Turkic 0.20
Llama 3.1 8B Indo-Aryan 0.19
Llama 3.1 8B Kartvelian 0.21
Llama 3.1 70B Romance 0.16
Llama 3.1 70B Slavic 0.17
Llama 3.1 70B Turkic 0.18
Llama 3.1 70B Indo-Aryan 0.18
Llama 3.1 70B Kartvelian 0.19
Llama 3.1 405B Romance 0.16
Llama 3.1 405B Slavic 0.16
Llama 3.1 405B Turkic 0.17
Llama 3.1 405B Indo-Aryan 0.16
Llama 3.1 405B Kartvelian 0.16

A.4 Code Repository

The code used in our experiments and for generating the results presented in this paper can be
accessed at the following GitHub repository:
https://github.com/3x-dev/Comparative-Study-of-Bias-and-Accuracy-in-
Multilingual-LLMs-for-Cross-Language-Claim-Verification

14

https://github.com/3x-dev/Comparative-Study-of-Bias-and-Accuracy-in-Multilingual-LLMs-for-Cross-Language-Claim-Verification
https://github.com/3x-dev/Comparative-Study-of-Bias-and-Accuracy-in-Multilingual-LLMs-for-Cross-Language-Claim-Verification


A.5 Compute Resources

The experiments were conducted using a combination of MacBook Pros and a dedicated GPU cluster
for pre-training the mBERT model. Below are the general specifications for each setup:

GPU Resources: The mBERT pre-training was performed on a GPU cluster equipped with NVIDIA
A100 Tensor Core GPUs (40 GB VRAM) for high performance training. Inference and other
experiments performed on MacBook Pros did not use GPUs because MacBook Pros do not have
discrete GPUs suitable for machine learning tasks.

CPU Resources: Experiments run on MacBook Pros used Apple’s M1 Pro or M1 Max processors
(8- to 10-core CPUs), and some collaborators used Intel Core i9 processors (8-core) in older
MacBook Pro models. These CPU configurations were sufficient for smaller experiments and model
inference tasks.

Memory: MacBook Pro memory capacity ranged from 16GB to 64GB of unified memory on
Apple Silicon (M1) models to 32GB of DDR4 RAM on Intel-based MacBook Pros. These configura-
tions were sufficient for model inference, but could limit performance with larger models and datasets.

Storage: Experiments conducted on MacBook Pros used SSD storage ranging from 512GB to
2TB. Local storage was used to manage smaller datasets and model checkpoints. For larger datasets
and models, external storage or cloud services were used to mitigate local storage limitations.

Pre-training and Inference Times:

• Pre-training: Pre-training mBERT on the GPU cluster with NVIDIA A100 GPUs took
approximately 12 hours using 4 GPUs in parallel. This was essential to ensure the mBERT
model was fine-tuned for multilingual tasks.

• Inference: Inference on the MacBook Pros varied depending on model size. For smaller
models like GPT-4 Mini, inference times ranged between 3 to 5 hours per language family.
However, larger models like Llama 3.1 405B were run in a distributed fashion, with inference
times extending to 8 to 10 hours due to limited hardware.

Total Computing Time: The total computation time for all experiments, including pre-training,
tuning, and inference, was approximately 150 GPU hours on the cluster for pre-training and 100
CPU hours on MacBook Pros for inference and evaluation.

Considerations for Reproducibility: Replicating these results on similar hardware, such as Mac-
Book Pros with M1/M2 chips or Intel processors, should result in longer computation times, especially
for larger models. For pre-training or large-scale fine-tuning, access to a GPU cluster or cloud-based
GPU services is recommended.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the focus on evaluating language
and translation biases in LLMs for cross-lingual claim verification. The claims align with the
experiments and analysis conducted, and the scope of the study is appropriately represented.
See Abstract and Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper contains a dedicated limitations section, which outlines key con-
straints such as dataset recency, reliance on English-centric training data, the exclusion of
non-English language pairs, and the use of an older COMETKIWI model for bias evaluation.
See the Limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper focuses on empirical results and does not present theoretical results
or proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setup is well documented with details on datasets, models,
evaluation techniques, and hyperparameters. The methods section (Section 3) provides
enough information to reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper links to a GitHub repository containing the code and scripts used in
the experiments. See Appendix A.4.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper outlines the datasets, models, evaluation techniques, and hyperpa-
rameters, allowing a clear understanding of the experimental results. Details on the dataset
splits, language families, and claim distribution are provided in Section 3 and Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report error bars or confidence intervals. While the
results are based on accuracy measurements, the paper does not include formal statistical
significance tests.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the compute resources used, including MacBook Pros
with Apple M1 Pro/Max and Intel Core i9 processors for inference, and a GPU cluster with
NVIDIA A100 GPUs for pre-training mBERT, along with estimates of compute time (150
GPU-hours for pre-training and 100 CPU-hours for inference). Please see Appendix A.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms to the NeurIPS Code of Ethics. It addresses the impact of
translation bias on low-resource languages and emphasizes the importance of fairer language
technologies. The paper’s conclusions are in line with ethical guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper highlights the positive societal impact of reducing bias in multilin-
gual LLMs, which can improve the accessibility of accurate information. It also discusses
the risks of spreading misinformation in low-resource languages. See Ethics Statement.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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to point out that an improvement in the quality of generative models could be used to
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from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of potentially harmful models or data,
and thus this question does not apply.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: The paper references all datasets and models used, such as the X-Fact dataset
and pre-existing LLMs (e.g., GPT-4, mBERT), with proper citations. See Section 3.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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