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Image segmentation by generalized
hierarchical fuzzy C-means algorithm
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Abstract. Fuzzy c-means (FCM) has been considered as an effective algorithm for image segmentation. However, it still suffers
from two problems: one is insufficient robustness to image noise, and the other is the Euclidean distance in FCM, which is sensitive
to outliers. In this paper, we propose two new algorithms, generalized FCM (GFCM) and hierarchical FCM (HFCM), to solve these
two problems. Traditional FCM can be considered as a linear combination of membership and distance from the expression of its
mathematical formula. GFCM is generated by applying generalized mean on these two items. We impose generalized mean on
membership to incorporate local spatial information and cluster information, and on distance function to incorporate local spatial
information and image intensity value. Thus, our GFCM is more robust to image noise with the spatial constraints: the generalized
mean. To solve the second problem caused by Euclidean distance (l2 norm), we introduce a more flexibility function which
considers the distance function itself as a sub-FCM. Furthermore, the sub-FCM distance function in HFCM is general and flexible
enough to deal with non-Euclidean data. Finally, we combine these two algorithms to introduce a new generalized hierarchical
FCM (GHFCM). Experimental results demonstrate the improved robustness and effectiveness of the proposed algorithm.

Keywords: Fuzzy C-means, generalized mean, hierarchical distance function, image segmentation, spatial constraint

1. Introduction

Image segmentation is one of the most important
and difficult problems in many applications, such as
robot vision, object recognition and medical image pro-
cessing. Although different methodologies [1–4] have
been proposed for image segmentation, it remains a
challenge due to overlapping intensities, low contrast
of images, and noise perturbation. In the last decades,
fuzzy segmentation methodologies, and especially the
fuzzy c-means algorithms (FCM) [5], have been widely
studied and successfully applied in image clustering and
segmentation. Their fuzzy nature makes the clustering

∗Corresponding author. Hui Zhang, E-mail: nrzhanghui@
gmail.com.

procedure able to retain more original image informa-
tion than the crisp or hard clustering methodologies
[6, 7].

Although the FCM algorithm usually performs well
with non-noise images, it is still weak in imaging noise,
outliers and other imaging artifacts. This may be caused
by two aspects: one is the usage of the non-robust,
Euclidean distance function which is not robust under
noise perturbations, and the other does not pertain to any
information about spatial context. Thus, two following
questions are presented:

(1) How to choose the proper distance function to
make the standard FCM more robust to image
noise and outliers?

1064-1246/15/$27.50 © 2015 – IOS Press and the authors. All rights reserved

mailto:nrzhanghui@penalty -@M gmail.com


962 Y. Zheng et al. / Image segmentation by generalized hierarchical fuzzy C-means algorithm

(2) How to adopt the local spatial information to
make the standard FCM more robust to image
noise?

Several attempts have been made to compensate for
these drawbacks of FCM. For example, in [8–11, 27,
28], various more robust alternatives for the distance
function of the FCM algorithm have been proposed.
Some researchers suggested replacing the Euclidean
distance (l2) with the city block distance (l1) in FCM [8].
In [9], Bobrowski et al. used l1 and l∞ norm instead of
Euclidean distance l2 in FCM. A more general study
using lp norm distances can be found in [10]. The
modified distance and kernel distance function were
proposed in [11, 6], respectively.

To overcome the second shortcoming, a wide variety
of approaches have been proposed to incorporate spatial
information in the image [12]. A common approach is
the use of a Markov Random Field (MRF) [13]. Such
method aims to impose spatial smoothness constraints
on the image pixel labels. Recently, a special case of the
MRF model—the Hidden MRF (HMRF) Model—has
been proposed [14, 15].

In this paper, we propose two simple and effective
algorithms, generalized FCM (GFCM) and hierarchical
FCM (HFCM), to overcome these two limitations.

The idea of HFCM is inspired by the hierarchi-
cal mixture of experts (HME) [21–24]. An additional
feature of the hierarchical mixture classifier is that it
provides class conditional density estimates as flat mix-
tures. In our HFCM, we assume the distance function is
estimated by a sub-FCM in order to allow a more gen-
eral setting. In standard FCM, this distance function is
represented by Euclidean distance, l2 norm. However,
in our algorithm, each distance function is represented
by a sub-FCM of two or three sub-components, which
allows us to approximate non-Euclidean distance func-
tions (such as gamma or logarithmic gamma distance
for Synthetic Aperture Radar (SAR) image processing).
Moreover, the idea of HFCM can be extended to various
distance functions, such as lp norm and kernel distance
functions, etc. Thus, our algorithm is more flexible and
general than standard FCM.

We incorporate generalized mean into FCM, called
GFCM, to overcome the second shortcoming men-
tioned above. In fact, FCM can be considered as a
linear combination of membership and distance func-
tion from the expression of its mathematical formula.
We impose generalized mean on this two items to
make the labeling of a pixel influenced by the labels
in its immediate neighborhood. We impose general-

ized mean on membership to combine local spatial
information and component information, and on dis-
tance function to combine local spatial information
and observation information. We then combine our
two proposed algorithms (GFCM and HFCM) and
introduce Generalized Hierarchical Fuzzy C-Means
(GHFCM). The performance of proposed approach,
compared with state-of-the-art technologies, demon-
strates its improved robustness and effectiveness.

The remainder of this paper is organized as follows:
In Section 2, we provide a brief review of the gener-
alized mean and the FCM algorithm. In Section 3, we
introduce our GFCM algorithm which adopts gener-
alized means as the spatial constraints. We introduce
our HFCM which represents each distance function
in standard FCM by a single sub-FCM in Section 4
and GHFCM in Section 5. The experimental results are
given in Section 6. Finally, some concluding remarks
are provided.

2. Mathematical backgrounds

2.1. Generalized mean (GDM)

In mathematics, a generalized mean is an abstraction
of the Pythagorean means including arithmetic, geo-
metric, and harmonic means. The generalized mean of
a1, a2, . . . , an is defined as

Mp (a1, a2, . . . , an) =
(

1

n

n∑
i=1

ai

)1/p

, (1)

where ai ≥ 0, p ∈ [−∞, +∞] and
∑n

i=1 ai = 1.
For p−→0, (1) approaches the geometric mean

MG (a1, a2, . . . , an) =
(

n∏
i=1

ai

)1/n

. (2)

For p = 1, (1) results in the arithmetic mean

MA (a1, a2, . . . , an) = 1

n

n∑
i=1

ai. (3)

There are some other special cases of GDM
based on different p values. For example, if p = −1,
M is harmonic mean; for p = 2, M is quadratic
mean; under the condition p−→ −∞, M−∞ =
min (a1, a2, . . . , an) and the condition p−→ ∞,M∞ =
max (a1, a2, . . . , an).
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2.2. Fuzzy c-means algorithm

To deal with the problem of clustering N multivariate
data points into J clusters, Dunn [16] introduced and
later Bezdek [6] extended the fuzzy c-means clustering
algorithm. In the standard FCM algorithm, the fuzzy
objective function that needs to be minimized is given
by

Jm =
N∑

i=1

J∑
j=1

um
ij dij. (4)

where yi , i = (1,2, . . . ,N), denotes the data set in the D-
dimensional vector space, N is the total number of data
points, J is the number of clusters, uij is the degree of
membership of yi in the j-th cluster, m is the weighting
exponent on each fuzzy membership function uij , dij

is a distance (similarity) measure between point yi and
cluster center µj , called distance function. The squared
Euclidean distance is usually used in standard FCM,
given as

dij = ∥∥yi − µj

∥∥2
. (5)

where µj is the prototype (mean) center of cluster j.
With the distance function in (5), the FCM algorithm is
iterated through the necessary conditions for minimiz-
ing Jm with the following update equations:

µj =
N∑

i=1

um
ij yi

/ N∑
i=1

um
ij . (6)

uij = (
dij

)1/(1−m)
/ J∑

h=1

(dih)1/(1−m). (7)

with the constraint
∑J

j=1 uij = 1.

3. Generalized FCM

3.1. Model establishment

Let us first consider (4). It can be easily seen that
the objective function is composed of two items: mem-
bership uij and distance function dij . Our algorithm is
simple, easy and straightforward to modify these two
items with local generalized mean. This modification
incorporates more local spatial information to make the
model more robust to image noise. After modification
of (1), the local generalized mean is given as

Mp =
⎛
⎝ 1

Ni

∑
c∈Ni

ac

⎞
⎠

1/p

. (8)

where Ni is the neighborhood of the i-th pixel, including
the i-th pixel. Considering weighted factor and local
generalized arithmetic mean with distance measure, a
new objective function can be given as

Jm =
N∑

i=1

J∑
j=1

um
ij

∑
c∈Ni

wcdcj. (9)

where wc is the weighted factor to control the influ-
ence of the neighborhood pixels depending on their
distance from the central pixel i. Generally, the strength
of wc should decrease as the distance between pixel
c and i increases. One possible selection of wc is the

Gaussian function: wc = 1/
(
2πδ2

)1/2
exp
(−d2

ci/2δ2
)
,

where dci , is the spatial Euclidean distance between
pixels c and i, and δ = (window size − 1)/4. By apply-
ing the optimization way similar to the standard FCM,
the parameters in GFCM can be calculated iteratively
as

µj =
N∑

i=1

∑
c∈Ni

wcu
m
ij yc

/ N∑
i=1

∑
c∈Ni

wcu
m
ij . (10)

uij =
⎛
⎝∑

c∈Ni

wcdcj

⎞
⎠

1/(1−m)/ J∑
h=1

⎛
⎝∑

c∈Ni

wcdch

⎞
⎠

1/(1−m)

.

(11)
The membership function uij in (11) represents the

probability that an image pixel i belongs to the j-th clus-
ter. However, it can be seen that the spatial information
of the membership function in the neighborhood of each
pixel is not under consideration in (11). By applying
local weighted generalized mean on membership, the
modified membership uij can be re-calculated as

uij =
∑
c∈Ni

wcucj

/ J∑
h=1

∑
c∈Ni

wcuch. (12)

where wc is the weighted factor defined in (9). The “old”
membership uij (on the right side of (12)) is calculated
by (11). We then use “new” membership (on the left
side of (12)) instead of “old” membership in our pro-
posed fuzzy system. It is noted that “new” membership
incorporates more image spatial information according
to the help of local weighted generalized mean. Thus,
our algorithm is more robust to image noise.
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For a deep understanding of our algorithm, let us give
some analysis for usage of generalized mean in detail.
Distance function dij is a measure between point yi and
cluster center µj in standard FCM. In our GFCM, this
distance is influenced by the distance in its immediate
neighborhood to incorporate local spatial information
and observation information (image intensity value).
The new distance function in our model can be modified
as (ignoring constant item)

dij =
∑
c∈Ni

wc

∥∥yc − µj

∥∥2 = ∥∥ȳi − µj

∥∥2
. (13)

Equation (13) may explain why our method is more
robust to image noise. Assuming image intensity yi is
corrupted by image noise, in this case, calculation of
dij in standard FCM may be far away from the “true”
distance function. However, in our model, this distance
is calculated by modified ȳi which is obtained by its
immediate neighborhood.

The membership function uij represents the proba-
bility that image pixel i belongs to the cluster j. Similar
to distance function, we also use generalized mean
to make the membership of image pixel i influenced
by the membership in its immediate neighborhood
for incorporating local spatial information and cluster
information, as shown in (12). That means the proba-
bility of i-th pixel belongs to the cluster j is not decided
by the pixel i (uij ), but by the neighborhood of pixel i
(
∑

c∈Ni
wcucj).

In short, our algorithm is based on an obvious fact.
A single image pixel i is easy to be corrupted by noise.
However, image pixels in the local neighborhood of i-
th pixel are hard to be all corrupted by noise. As long
as the “signal” pixels are more than “noise” pixels in
this neighborhood, the correct function (membership or
distance function) can always be calculated. This is the
reason why we use the generalized mean to calculate
“average” functions for eliminating the noise effect.

3.2. Connection to existing methods

In this subsection, we discuss the relationship and
difference between our algorithm and existing methods
as follows:

(1) Compared to Ahmed’s method

Ahmed et al. [4] proposed modified FCM (MFCM)
where the objective function of the classical FCM is
modified in order to compensate the intensity inhomo-
geneity and allow the labeling of a pixel to be influenced

by the labels in its immediate neighborhood. In [4], the
objective function is given as

Jm =
N∑

i=1

J∑
j=1

um
ij

⎛
⎝d

(
yi, µj

)+ a

NR

∑
c∈Ni

d
(
yc, µj

)⎞⎠.

(14)
where Ni is the neighborhood of the i-th pixel including
the i-th pixel itself, and NR represents its cardinality.
The parameter a is used to control the effect of the
neighbor’s term.

Compared (9) with (14), it can be easily seen that
Ahmed’s method is a special case of our algorithm when
we set

wc =
{

1, c = i
a

NR
, c ∈ Ni and c /= i

(15)

In other words, our algorithm degrades to the
Ahmed’s method under condition (15). Furthermore,
Ahmed’s method only considers the neighborhood’s
effect on distance function but not on the membership
function. In fact, one important image characteristic
is that neighboring pixels are highly correlated. These
neighboring pixels possess similar membership, and the
probability that they belong to the same cluster is great
[17].

(2) Compared to Global generalized FCM

Yu et al. [1] proposed a general FCM model which
combines (weighted) generalized mean and FCM. The
(weighted) generalized mean defined in [1] as

Mf (Y ) = f

⎛
⎝ J∑

j=1

αjg
(
yj

)⎞⎠ . (16)

Yu et al. separate the membership uij into two inde-
pendent items ai and �j , and then apply generalized
mean (function f) on whole component j

Jy = 1

N

N∑
i=1

aif (Si), where Si =
J∑

j=1

αjg
(
dij

)
. (17)

Karayiannis et al. [2] proposed a generalized FCM
model by modifying the membership constraint in
standard FCM with weighted generalized mean. The
modified constraint in [2] has the form⎛

⎝ J∑
j=1

βj

(
uij

)α

⎞
⎠

1/α

= 1. (18)

and then the membership uij can be estimated as
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uij = 1

J

(
J∑

h=1

βh

(
dij

dih

)α/(1−m)
)−1/α

. (19)

It is noted that models in [1, 2] degrade to the standard
FCM when p = 1 in (17) and � = 1 in (18–19). Compared
to our local GFCM algorithm, none local spatial infor-
mation is taken into account in global generalized FCM
methods in [1, 2].

(3) Compared to MRF/HMRF

Both generalized mean and MRF/HMRF [12–15]
can be considered as spatial constraints to incorporate
some local spatial information, and to make the model
more robust to image noise. In this paper, we adopt
GDM instead of MRF/HMRF for three reasons: (1)
MRF/HMRF is complex and time consuming. In con-
trast, GDM is simple, easy and fast for implementation.
(2) MRF/HMRF resorts to the additional parameter
β to keep a balance between robustness to noise and
image sharpness and details. However, our model is
fully free of the empirically adjusted parameter β. (3) In
MRF/HMRF, for a 2-D image, the definition of neigh-
bors (i–1 and i+1) extends to horizontal, vertical and
diagonal pixels, which become a 3 × 3 square window.
In our model, the neighborhood window size of GDM
can be selected as 3 × 3, 5 × 5, 7 × 7, etc. Moreover,
although a square window is used in this paper, win-
dows with other shapes (e.g. diamonds or circles) can
also be suitable.

(4) Extension of our algorithm

Let us consider another type of fuzzy algorithm
called conditional fuzzy c-means (CFCM) which is
introduced by [18]. CFCM is very similar as standard
FCM except the membership constraint. The constraint
in CFCM is

uij ∈ [0, 1] , and
∑J

j=1
uij = fi. (20)

where fi describes a level of involvement of yi in the
constructed cluster.

Recently, Wei et al. [19] modified the FCM objective
function and present a novel FCM (NFCM)

Jm =
N∑

i=1

J∑
j=1

um
ij dij + λ

N∑
i=1

J∑
j=1

uij log uij. (21)

where λ ≥ 0. It can be seen that our model is general
enough and the idea of usage of generalized mean can
also be applied to distance function and membership in
CFCM and NFCM.

In [20], Yang proposed a new FCM generalization,
called a penalized FCM (PFCM), based on the modified
fuzzy objective function as follows

Jm =
N∑

i=1

J∑
j=1

um
ij dij + ω

N∑
i=1

J∑
j=1

um
ij log αj. (22)

where ω, αj ≥ 0 and
∑J

j=1 αj = 1. It can be seen that
our generalized mean algorithm can be extended and
then be applied to the penalized item �ij in PFCM.

From the discussion above, we can conclude that
although our algorithm focus on standard FCM, it can
also be easily extended to improve the performance of
other FCM-like algorithms based on adding some type
of penalty terms to the original FCM objective func-
tion. However, to clearly demonstrate our idea, here we
impose generalized mean on standard FCM.

4. Hierarchical fuzzy c-means

In this subsection, we introduce a more flexible
fuzzy algorithm called hierarchical fuzzy c-means
(HFCM). Our idea is straightforward, simple and easy
to implementation. We assume the distance function
in traditional fuzzy model itself is a sub-fuzzy model.
Thus, our algorithm is general enough and can be
applied to various distance functions, whatever the
function type (Euclidean distance, l1, lp, l∞ norm,
or kernel distance function, etc.). However, to clearly
demonstrate our idea, we introduce our algorithm based
on the standard FCM (Euclidean distance) in this paper.
In this case, the distance function in standard FCM can
be defined as

dij =
K∑

k=1

vn
ijkd̄ijk. (23)

where d̄ijk is the sub-distance function and vijk is the

sub-membership which satisfies
∑K

k=1 vijk = 1. It is
noted that the exact expression of sub-membership
is vik|j which represents the sub-cluster k belongs to
cluster j. Here, we use vijk instead of vik|j for simple
expression.

In fact, our HFCM can also be considered as a two-
level FCM: (1) the data are generated by J clusters in the
first level and (2) within each cluster j; the data are gen-
erated by class-labeled sources that form sub-clusters
of the large cluster in the second level. Substitution of
(23) into (4), the objective function of HFCM is given
as
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Jmn =
N∑

i=1

J∑
j=1

K∑
k=1

um
ij vn

ijkd̄ijk. (24)

It can be seen that at the second level of the hierarchy,
information is provided about the data along with their
class labels. It is noted that we have J classes; K sub-
classes correspond to each class j of the first level.

The objective function Jmn can be minimized in a
fashion similar to the standard FCM algorithm. Tak-
ing the first derivatives of Jmn with respect to uij , vijk
and µjk and then setting them to zero results in three
necessary but not sufficient conditions for Jmn to be at
a local extreme. Let us first consider the derivation of
the fuzzy membership (and sub-membership) function
values. This can be obtained by minimizing the objec-
tive function Jmn over uij and vijk under the constraints∑J

j=1 uij = 1 and
∑K

k=1 vijk = 1. Then, we have

J ′
mn = Jmn + α

⎛
⎝1 −

J∑
j=1

uij

⎞
⎠+ β

(
1 −

K∑
k=1

vijk

)
.

Taking the derivative of J ′
mn with respect to uij and

setting the result to zero, we have

uij =
(

K∑
k=1

vn
ijkd̄ijk

)1/(1−m)/ J∑
h=1

(
K∑

k=1

vn
ihkd̄ihk

)1/(1−m)

.

(25)
Similar processing on sub-membership vijk , we have

vijk =
(
um

ij d̄ijk

)1/(1−n)
/ K∑

h=1

(
um

ij d̄ijh

)1/(1−n)
. (26)

According to previous analysis, our algorithm is gen-
eral enough and can be applied to various distance
functions. To clearly demonstrate our idea, we still
adopt Euclidean distance in this paper. Thus, we define

d̄ijk = ∥∥yi − µjk

∥∥2. To minimize the objective function
by solving ∂Jmn/∂µjk = 0, we have

µjk =
N∑

i=1

um
ij vn

ijkyi

/ N∑
i=1

um
ij vn

ijk. (27)

It is noticed that according to (23), each distance
function exhibits a FCM form. This suggests that we
can contrast the proposed HFCM against the traditional
FCM. In addition, the HFCM with J components in
its first level can be considered as an extension of the
standard FCM that employs J components in total. The
proposed HFCM degrades to standard FCM when we
set the sub-component k equal to 1 and sub-membership
vijk = 1. Particularly, in standard FCM, all data points
belong to component j depend on there distance func-
tion dij . In contrast, the HFCM assumes that the data
generated by the component j are explained in a way that
depends on their sub-component labels k (for each com-
ponent j, a different distance function d̄ijk is provided).
The HFCM can also be derived to a standard FCM with
KJ components in total which each distance function is
modeled by a FCM with J components (parameters K
and J are exchangeable).

Let us take two clustering examples to demonstrate
the effectiveness of HFCM. In the first example, the
synthetic data consists of 1800 data point from two
Gaussian components where each component contains
900 samples. These two Gaussian distributions have the
following parameters (mean µj and covariance matri-
ces �j): µ1 = (0, 5)T, µ2 = (0, −5)T, �1 = �2 = diag(2,
2). The test data is further augmented by 200 outliers,
which are drawn from a Gaussian distribution, located
in the middle-left of the test data. The test data and out-
liers are shown in Fig. 1(a). The solution by FCM and
HFCM are shown in Fig. 1(b), drawn by blue ellipse
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Fig. 1. Classification for the synthetic data by two different methods. (a) Original data distribution (black ellipse) (b) The solution by FCM (blue
ellipse); the solution by HFCM (red ellipse).
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Table 1
Estimated center for two different methods

FCM HFCM

Component 1 [−0.52 4.76] [0.02 5.11]
Component 2 [−0.43 −4.81] [0.05 −5.08]

and red ellipse, respectively. It can be seen that out-
liers pull estimated cluster center away from the true
cluster center in the standard FCM. However, HFCM
seems to fit the test data well and be not affected by
outliers. The estimated center by FCM and HFCM are
given in Table 1. It can be seen that HFCM estimates
more accurate center than FCM.

In the second example, the synthetic data consists
of 1800 data point from three Gaussian components
where each component contains 600 samples. These
three Gaussian distributions have the following param-
eters: µ1 = (0, 0)T, µ2 = (3, 2)T, µ3 = (0, 5)T, �1 =
�3 = diag(1/2, 1/2), �2 = diag(1/8, 1/8). The test data
is further augmented by 1800 outliers, which are drawn
from a uniform distribution on the interval [−6, 6].
The test data and outliers are shown in Fig. 2(a). The
three clusters are shown by green stars (first com-
ponent), red diamonds (second component) and blue
circles (third component). The outliers are shown by
black points. The classification results by FCM and
HFCM are shown in Fig. 2(b) and (c) respectively.
From Fig. 2(b), it can be seen that FCM can not clas-
sify them well. Some green, red and blue points are
mixed together in the center of the figure due to the
effect of the outliers. FCM also misclassify some red
points which should belong to the green one (first com-
ponent). However, HFCM obtains nearly perfect results
shown in Fig. 2(c). The misclassification ratio (MCR) is
5.33% for FCM compared to 0.72% for HFCM. Thus,
we can conclude that the additional flexibility in HFCM
resolves a serious data representation drawback of the

standard FCM and improves classification performance
significantly.

5. Generalized hierarchical FCM

It is easy to combine HFCM and GFCM to gener-
ate a new generalized hierarchical FCM (GHFCM).
GHFCM combines the merits of GFCM and HFCM
to take into account more local spatial information,
more flexible and general distance function. Substitut-
ing (23) into (9), the objective function of GHFCM can
be given as

Jm =
N∑

i=1

J∑
j=1

K∑
k=1

um
ij vn

ijk

∑
c∈Ni

wcdcjk

=
N∑

i=1

J∑
j=1

K∑
k=1

∑
c∈Ni

um
ij vn

ijkwc

∥∥yc − µjk

∥∥2
. (28)

where wc is the weighted factor defined in (9). The
membership uij and sub-membership vijk satisfies the
constraint

∑J
j=1 uij = 1 and

∑K
k=1 vijk = 1, respec-

tively. In this paper, the sub-distance function dcjk is
simply selected as Euclidean distance. In fact, it can
be easily extended to many other complex distance
functions. By applying the optimization way similar
to the standard FCM, the parameters in GHFCM can
be calculated iteratively as

uij =
⎛
⎝ K∑

k=1

∑
c∈Ni

wcv
n
ijkdcjk

⎞
⎠

1/(1−m)

/

J∑
h=1

⎛
⎝ K∑

k=1

∑
c∈Ni

wcv
n
ihkdcjk

⎞
⎠

1/(1−m)

. (29)
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Fig. 2. Classification for the three-class data by two different methods. (a) Original data with outliers. (b) The solution by FCM, misclassification
ratio is 5.33%. (c) The solution by HFCM, misclassification ratio is 0.72%.
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vijk =
⎛
⎝∑

c∈Ni

wcu
m
ij dcjk

⎞
⎠

1/(1−n)

/

K∑
h=1

⎛
⎝∑

c∈Ni

wcu
m
ij dcjk

⎞
⎠

1/(1−n)

. (30)

The cluster center µjk is evaluated as

µjk =
N∑

i=1

∑
c∈Ni

um
ij vn

ijkyc/

N∑
i=1

um
ij vn

ijk. (31)

By applying local weighted generalized mean to
incorporate spatial information and cluster information,
the modified membership uij and sub-membership vijk
can be re-calculated as

uij =
∑
c∈Ni

wcucj/

J∑
h=1

∑
c∈Ni

wcuch. (32)

vijk =
∑
c∈Ni

wcvcjk/

K∑
h=1

∑
c∈Ni

wcvcjh. (33)

GHFCM Algorithm:
Step 1. Fix the cluster number J, the sub-cluster number
K, initialize fuzzy membership, sub-membership and
then select initial cluster center.
Step 2. Set the loop counter l = 0.
Step 3. Update the new cluster center using (31).
Step 4. Update the fuzzy membership function using
(29) and (32).
Step 5. Update the fuzzy membership function using
(30) and (33).
Step 6. Terminate the iterations if the object function
converges; otherwise, increase the iteration (l = l+1) and
repeat steps 3 through 6.

6. Experimental results and discussion

In this section, we experimentally evaluate our pro-
posed GHFCM in a set of synthetic images and real
images. The neighborhood window size of GHFCM is
set as 5 × 5. The fuzzy membership weighting is set
m = 2. The sub-class is set k = 2 in GHFCM. We also
evaluate GGFCM [2], MFCM [4], FCM S [6], FLICM
[3], FRFCM [29] and HMRF-FCM [12] for experi-
mental comparison. The compared methods are based
on different types of models, and were published in

different journals recently; thus it is more significant
to compare our algorithm with these state-of-the-art
technologies. Our experiments have been developed in
Matlab R2009b, and are executed on an Intel Pentium
Dual-Core 2.2 GHZ CPU, 2 G RAM.

6.1. Synthetic images

In the first experiment, a three-class synthetic image
(246 × 246, shown in Fig. 3(a)) is used to compare
the performance of the proposed method with others.
Figure 3(b) and (c) show the same image corrupted
by Gaussian noise with zero mean and 0.12 variance,
and by Speckle noise with noise density = 0.18, respec-
tively. In order to evaluate the segmentation results, we
employ the misclassification ratio (MCR) [15] in our
experiments. The value of MCR is in the [0%–100%]
range, where lower values indicate better segmentation
performance. The segmentation results of the Gaus-
sian noised image (Fig. 3(b)) by GGFCM, MFCM,
FCM S, FLICM, HMRF-FCM, FRFCM and the pro-
posed methods are shown in Fig. 4(a) through (g). The
class number J is set to 3, based on previous experience.
As we observe, GGFCM, MFCM and FCM S do not
segment images well. Although FLICM, HMRF-FCM
and FRFCM can reduce the effect of noise to some
extent, they are still sensitive to heavy noise and mis-
classify some portions of pixels, as shown in Fig. 4(d),
(e) and (g). However, we observe that the proposed
GHFCM yields outstanding segmentation results com-
pared to the poor performance of their competitors,
as seen in Fig. 4(f). We also segment Speckle noised
image (Fig. 3(c)) to evaluate the performance of var-
ious methods. Similar results are obtained and shown
in Fig. 5(a) through (g). The results obtained by differ-
ent noise densities are given in Table 2. As we observe,
the proposed methods obtains the best results compared
to the other methods, and especially for heavy noised
image segmentation.

Fig. 3. (a) Original three-class image (b) Corrupted by Gaussian noise
(zero mean, 0.12 variance) (c) Corrupted by Speckle noise (noise
density = 0.18).
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Fig. 4. Segment synthetic image with Gaussian noise. (a) GGFCM, MCR = 54.69% (b) MFCM, MCR = 29.7% (c) FCM S, MCR = 13.11% (d)
FLICM, MCR = 9.39% (e) HMRF-FCM, MCR = 11.3% (f) GHFCM, MCR = 3.66% (g) FRFCM, MCR = 5.58%.

Fig. 5. Segment synthetic image with Speckle noise. (a) GGFCM, MCR = 28.57% (b) MFCM, MCR = 15.05% (c) FCM S, MCR = 5.48% (d)
FLICM, MCR = 9.05% (e) HMRF-FCM, MCR = 7.94% (f) GHFCM, MCR = 2.36% (g) FRFCM, MCR = 30.09%.

Table 2
The misclassification ratio (MCR %) of synthetic image with additive Gaussian noise for different methods

GGFCM MFCM FCM S FLICM HMRF-FCM GHFCM FRFCM

(G) noise = 0.06 28.88 15.57 3.02 3.03 4.25 2.51 3.62
(G) noise = 0.08 33.84 16.26 5.73 5.62 4.49 2.77 3.93
(G) noise = 0.10 36.99 22.77 9.12 8.82 6.17 3.14 5.42
(G) noise = 0.12 54.69 29.7 13.11 9.39 11.30 3.66 5.58
(S) speckle = 0.12 22.31 14.83 1.14 3.06 3.61 1.81 24.49
(S) speckle = 0.14 24.96 14.87 1.82 4.67 6.02 1.91 24.67
(S) speckle = 0.16 26.70 14.93 2.98 8.90 7.11 2.12 25.29
(S) speckle = 0.18 28.57 15.05 5.48 9.05 7.94 2.36 30.09
Average computation time 2.43s 1.03s 1.53s 22.79s 75.18s 1.84s 2.64

We also evaluate the computation time for all meth-
ods in the previous experiment. The average computa-
tion time of the different methods is presented on the last
line of Table 2. It is noted that the computation of our
method, GHFCM, is slower than MFCM and FCM S,
but is still much faster than other methods. Compared
to other methods, our algorithm can be calculated more
quickly and achieves the best segmentation result.

6.2. Real images

In this experiment, we evaluate the performance of
the proposed method based on a subset of the Berke-
ley image dataset [25], which is comprised of a set of
real-world color images along with segmentation maps
provided by different individuals. We employ the Prob-
abilistic Rand (PR) index to evaluate the performance
of the proposed method, with the multiple ground truths
available for each image within the dataset. It has been

shown that the PR index possesses the desirable prop-
erty of being robust to segmentation maps that result
from splitting or merging segments of the ground truth
[26]. The PR index takes values between 0 and 1, with
values closer to 0 (indicating an inferior segmentation
result) and values closer to 1 (indicating a better result).

Figure 6 shows the original Berkeley images used for
the image segmentation experiment. These images with
and without Gaussian noise are segmented by the pro-
posed method, illustrated in Fig. 7. For fair comparison,
we also evaluate the performance of GGFCM, FCM S,
FLICM, FRFCM and HMRF-FCM in addition to our
methods. Table 3 presents the average PR values for
all methods, corresponding to each of the test images
in Fig. 6. Compared to other methods, the proposed
algorithm yields the best segmentation results with the
highest PR values.

We also evaluate the computation time for different
methods in this experiment. The average computation
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(a) 135069            (b) 12003            (c) 58060            (d) 55067          (e) 353013            (f) 310007          (g) 61060            (h) 24063 

(i) 239007               (j) 46076               (k) 15088              (l) 302003 

Fig. 6. Original image from the Berkeley image segmentation dataset.

Fig. 7. Image segmentation results by GHFCM.

Table 3
Comparison of different methods for Berkeley image dataset, Probabilistic Rand (PR) Index

Image # Class GGFCM FCM S FLICM HMRF-FCM GHFCM FRFCM

135069 2 0.985 0.981 0.983 0.984 0.985 0.983
124084 3 0.708 0.510 0.510 0.526 0.756 0.499
69020 3 0.567 0.535 0.552 0.559 0.572 0.489
12003 3 0.622 0.608 0.614 0.618 0.673 0.576
58060 3 0.570 0.573 0.584 0.615 0.607 0.584
239007 3 0.665 0.633 0.645 0.668 0.659 0.658
46076 4 0.808 0.715 0.725 0.826 0.828 0.815
55067 4 0.887 0.879 0.879 0.888 0.890 0.870
353013 + 0.01 noise 3 0.702 0.633 0.663 0.741 0.751 0.661
310007 + 0.01 noise 7 0.620 0.664 0.708 0.677 0.709 0.640
61060 + 0.01 noise 3 0.546 0.617 0.625 0.575 0.650 0.627
15088 + 0.02 noise 2 0.698 0.656 0.717 0.855 0.864 0.835
24063 + 0.02 noise 3 0.777 0.819 0.826 0.834 0.840 0.766
374067 + 0.02 noise 4 0.695 0.711 0.729 0.744 0.761 0.658
302003 + 0.02 noise 3 0.704 0.705 0.713 0.715 0.718 0.708
Mean 0.704 0.683 0.698 0.722 0.751 0.691
Average computation time 9.97s 4.77s 56.71s 78.64s 9.13s 8.53s
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(a)                              (b)                                (c) 

Fig. 8. (a) Original RGB image (b) Corrupted by Gaussian noise (zero mean, 0.15 variance) (c) Corrupted by Speckle noise (noise density = 0.15).

Fig. 9. Segment RGB Image with Gaussian noise. (a) GGFCM, PR = 0.667, t = 9.28 s (b) FCM S, PR = 0.759, t = 4.23 s (c) FLICM, PR = 0.779,
t = 28.18 s (d) HMRF-FCM, PR = 0.843, t = 167.53 s (e) GHFCM, PR = 0.851, t = 8.83 s (f) FRFCM, PR = 0.6167, t = 9.22 s.

Fig. 10. Segment RGB Image with Speckle noise. (a) GGFCM, PR = 0.789, t = 8.63 s (b) FCM S, PR = 0.849, t = 4.19 s (c) FLICM, PR = 0.796,
t = 28.09 s (d) HMRF-FCM, PR = 0.85, t = 159.09 s (e) GHFCM, PR = 0.851, t = 8.43 s (f) FRFCM, PR = 0.6664, t = 10.09 s.

time of the different methods is presented on the last
line of Table 3. It is noted that the computation of our
method, GHFCM, is slower than FCM S and FRFCM,
but is still much faster than other methods. It is noted
that MFCM is invalid for this RGB image segmentation
application. Compared to other methods, our algorithm
can be calculated more quickly and achieves the best
segmentation result.

6.3. Multidimensional images

In this experiment, we try to segment the multidi-
mensional RGB color image into three classes: the blue
sky, the red roof and the white wall. The original image
(481 × 321) shown in Fig. 8(a) is corrupted by heavy
Gaussian noise with mean = 0 and covariance = 0.15,
and by heavy Speckle noise with noise density = 0.15.
The Gaussian noised image is shown in Fig. 8(b) and
the segmentation results of GGFCM, FCM S, FLICM,
HMRF-FCM, FRFCM and our proposed methods are
shown in Fig. 9(a) through (f), respectively. The accu-
racy of segmentation for GGFCM and FRFCM is quite
poor. This is expected that no spatial constraints are

taken into account in GGFCM. FCM S, FLICM and
HMRF-FCM obtain better results, but they are still sen-
sitive to heavy noise. The accuracy of the segmentation
results from GHFCM, as shown in Fig. 9(e), is bet-
ter than that of other methods, obtaining the highest
PR values. It is worth pointing out that the PR value
of HMRF-FCM (0.843) is just a little lower than the
PR value of GHFCM (0.851); however, the segmen-
tation result of HMRF-FCM, shown in Fig. 9(d), is
much poorer than GHFCM (Fig. 9(e)). We also segment
speckle noised image, shown in Fig. 8(c), to evaluate
the performance of various methods. Similar results are
obtained and shown in Fig. 10(a) through (f). We can
observe that the proposed GHFCM again obtains the
best segmentation results.

We also evaluate the computation time for all meth-
ods in the previous experiment. The computation time
t of the different methods is also presented in Figs. 9
and 10. It is noted that the computation of our meth-
ods is much faster than that of other methods except
for FCM S methods. Compared to other methods, our
models can be calculated more quickly and achieve the
best segmentation results.
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Fig. 11. SAR Image Segmentation. (a) Original SAR image (b) GGFCM (c) MFCM (d) FCM S (e) FLICM (f) HMRF-FCM (g) GHFCM (h)
FRFCM.

6.4. SAR images

Synthetic aperture radar (SAR) data are often
affected by speckle noise, which originates in the SAR
system’s coherent nature. In this experiment, we evalu-
ate various methods based on real RADARSAT-1 SAR
image which is shown in Fig. 11(a). RADARSAT-1
is a sophisticated Earth observation satellite developed
by Canada to monitor environmental changes and the
planet’s natural resources.

Our purpose is to distinguish the Mountains and
the River. Thus we set the component number J = 2.
The segmentation results of GGFCM, MFCM, FCM S,
FLICM, HMRF-FCM, FRFCM and our proposed
methods are shown in Fig. 11(b) through (h), respec-
tively. Existence of noise has led to a “spotty”
result using GGFCM, FCM S, and FRFCM shown
in Fig. 11(b), (d) and (h), respectively. FLICM and
HMRF-FCM are failed to segment the SAR image,
shown in Fig. 11(e) and (f), respectively. FLICM mixed
the mountain and the river together and HMRF-FCM
misclassifies some river parts. The MFCM shown in
Fig. 11(c) gives an improved result; however, it loses
some image details and is still not robust enough to
image speckle. From Fig. 11(g), it can be seen that the
proposed GHFCM obviously overcomes these short-

comings and preserve more details of mountain’s ridges
and river’s tributaries. Through discussion above, we
can conclude that the proposed GHFCM is more robust
to image speckle and can preserve more image details
simultaneously.

7. Conclusions

In this paper, we propose a novel simple and effective
fuzzy clustering approach for image segmentation. The
GHFCM is introduced by incorporating the hierarchical
distance function and spatial constraints into the fuzzy
objective function. Thus, our model can be considered
as an extension of standard FCM and can degrade to
FCM by setting the proper parameters. Although the
idea of generalized mean and hierarchical model is
adopted for standard FCM, it can be easily extended
to many other modified FCM models. Compared to
the standard FCM, HFCM improves data representa-
tion in sub-distance relevant to classification. Moreover,
HFCM exhibits robustness with respect to the sub-
cluster number K at the second level, and this constitutes
a great advantage over the standard FCM. In GFCM, the
distance function of an image pixel is influenced by the
distance function of pixels in its immediate neighbor-
hood with the help of the generalized mean.
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