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ABSTRACT

Unlearning techniques have been proposed as a cost-effective post-training way
to remove undesired knowledge learned by large language models (LLMs). How-
ever, existing methods often fail to effectively unlearn the targeted information
or cause a significant drop in model performance. In this paper, we frame ma-
chine unlearning as a multi-task optimization problem to balance this tradeoff –
one task maximizes forgetting loss, while the other minimizes retaining loss. We
introduce a novel unlearning method, Normalized Gradient Difference (NGDiff),
which guarantees Pareto optimality upon convergence. Specifically, NGDiff dy-
namically normalizes task gradients, enabling the model to unlearn targeted for-
getting data while preserving utility on the retaining set. We also identified that
unlearning methods are sensitive to learning rate and integrate an automatic learn-
ing rate scheduler that selects the locally optimal learning rate to stabilize and
accelerate the convergence. Experiments with various LLMs demonstrate that
NGDiff outperforms state-of-the-art unlearning methods on the TOFU and MUSE
datasets.

1 INTRODUCTION

Large language models (LLMs) are trained on a huge collection of data from various sources, such
as books and websites. For example, LLAMA3 is pre-trained on over 15T tokens Dubey et al.
(2024), while Falcon Penedo et al. (2023b), OLMo Groeneveld et al. (2024) are each pre-trained
on over 1T tokens. However, this extensive data pre-training raises serious concerns about data
risks for the following reasons: (1) Certain data sources, despite being publicly available, contain
potentially harmful or sensitive content, such as nudity, personal information, copyright-protected
information, etc. (2) LLMs can memorize these data during training, and then re-generate them.
For example, Exhibit J from The New York Times Times (2023) shows examples of outputs from
GPT-4 that “contain large spans that are identical to the actual text of the article from The New
York Times,” which are copyrighted; some attacks can extract an individual’s name, email address,
phone number, and physical address from LLMs Carlini et al. (2021). Furthermore, the risk of
memorization increases with the size of the model (see Figure 1 and 3 in Carlini et al. (2022)),
exposing bigger models with higher utility to greater risks of data memorization.

Although retraining the models by removing the problematic data can resolve this issue, this ap-
proach is not feasible given that LLMs cost millions of dollars and take months to train, and the cost
escalates each time new data are identified as problematic. Recently, researchers have developed
a number of machine unlearning methods, which are applied after the models have completed the
training and memorized the data. Specifically, we divide the data into two classes: the retaining
set (R), on which the model can memorize and have high performance, and the forgetting set (F),
which the model should not memorize. The goal of unlearning is to continue training the model in a
way, so that knowledge from the forgetting set is effectively removed, and that the unlearned model
behaves similarly to one that is retrained solely on the retaining set.

Existing machine unlearning methods are formulated primarily as optimization techniques aimed
at minimizing memorization through the language model loss Liu et al. (2023); Chen et al. (2024);
Liu et al. (2024b). For instance, the Gradient Ascent (GA) method seeks to maximize the language
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Figure 1: Loss values and ROUGE scores on the forgetting and retaining data from the TOFU
dataset using different unlearning methods on the Phi-1.5 language model. We apply the extended
GDiff with various coefficients (see (2), 0 ≤ c ≤ 1) and connect the results with a blue dashed line.
We denote MTO methods as different markers, and use a grey dashed line to represent the loss of
random guess.

model loss on the forgetting data (i.e., minimize the negative language model loss). However, this
approach can also negatively affect the utility of the model. To address this, the Gradient Difference
(GDiff) method selects a subset of the training data as a retaining set, minimizing the sum of the neg-
ative language model loss on the forgetting set and the standard language model loss on the retaining
set. This approach has been empirically shown to effectively preserve the model’s performance Liu
et al. (2022); Maini et al. (2024). Similarly, Negative Preference Optimization (NPO) Zhang et al.
(2024) assigns a lower likelihood to forgetting data, thereby balancing the unlearning process while
maintaining model utility.

However, in our preliminary experiments, we observe two key issues preventing these methods from
being practically applied. First, balancing retaining and forgetting losses is difficult. In Figure 1,
we observe a trade-off between the performance on R and F, where some methods fail to unlearn
F (points in the upper-right corner of the left figure), and some do not maintain utility in R (points
in the bottom-left corner of the left figure). The blue dotted line in Figure 1 further illustrates the
trade-off in GDiff by sweeping a hyper-parameter c ∈ [0, 1], which is used to balance the losses on
the forgetting and retaining data (see Eq. (2)). Picking an appropriate c to balance the two terms
is often challenging. Secondly, the optimization methods for unlearning are usually sensitive to the
learning rate. As illustrated in Figure 2, even for the same algorithm, various learning rates lead to
substantial changes in the ROUGE scores and loss values, making the unlearning methods unstable
and difficult to use in practice.

Figure 2: ROUGE scores and loss values during unlearning with vanilla GDiff (equally weighted),
under different learning rates to which the unlearning performance is highly sensitive.

In this paper, we formulate the unlearning as a multi-task optimization (MTO) problem Chen et al.
(2021); Xin et al. (2022): we aim to minimize the loss (or maximize the utility) on the retaining
set and maximize the loss on the forgetting set, simultaneously. To solve this two-task problem, we
leverage the rich literature of multi-task methods to achieve the Pareto optimality of two tasks, e.g.
IMTL Liu et al. (2021), GradNorm Chen et al. (2018a), RLW Lin et al., PCGrad Yu et al. (2020),
and scalarization Boyd & Vandenberghe (2004). In particular, we leverage the linear scalarization as
a simple and strong candidate among all multi-task methods, which minimizes a linearly weighted
average of the task losses (see (2)). This is motivated by two reasons: theoretically, linear scalariza-
tion is guaranteed to be Pareto optimal (see Lemma 2); empirically, it outperforms or at least is on
par with other MTO methods in a variety of language and vision experiments Xin et al. (2022).
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Contributions We focus on and extend the linear scalarization for machine unlearning as follows:

• We formally formulate machine unlearning as a multi-task optimization problem and es-
tablish the Pareto optimality for scalarization-based unlearning methods (including ours),
as demonstrated in Theorem 3.

• Through the lens of multi-task optimization (two-task specifically), we propose a novel
unlearning method NGDiff, which leverages the gradient norms to dynamically balance the
forgetting and retaining tasks. In particular, NGDiff improves both tasks simultaneously
and monotonically under the proper learning rate, as demonstrated in Theorem 5.

• We integrate the automatic learning rate from GeN Bu & Xu (2024), which adaptively
and dynamically selects the learning rate based on the Hessian information, and thereby
achieving stable convergence.

• We empirically showcase the effectiveness of our method through extensive experiments on
multiple datasets, different LLMs and vision models. For example, on the TOFU dataset,
our method achieves 40% higher model utility while maintaining comparable unlearning
performance with the Llama2-7B model.

1.1 RELATED WORK

This work is closely related to machine unlearning methods, multi-task optimization, and learning-
rate-free techniques, which are discussed in Section 2.2 and Appendix D with more details.

2 UNLEARNING AS MULTI-TASK OPTIMIZATION

In this section, we connect machine unlearning to multi-task optimization (MTO), specifically the
two-task optimization: denoting the retaining set as R and the forgetting set as F, we study

min
θ

LR(θ)&max
θ

LF(θ)

where L is the cross-entropy loss and θ is the model parameters.

To optimize two tasks, it is critical to consider the Pareto optimality in Definition 1 as MTO may
have infinitely many solutions.
Definition 1 (Pareto optimality in unlearning). For two models θ and θ′, if LR(θ) ≥ LR(θ

′) and
LF(θ) ≤ LF(θ

′) with at least one inequality being strict, then θ is dominated by θ′. The model θ is
Pareto optimal if it is not dominated by any other models.

In practice, the machine unlearning solutions generally exhibit a trade-off between the performance
on R and F (see Figure 1): without the unlearning, both R and F have high performance and high
memorization; in order to forget F, one may unlearn other general knowledge such as grammar rules,
which oftentimes sacrifices the performance on R.

We will illustrate several MTO methods and show that the Pareto optimality is guaranteed upon the
convergence of these methods.

2.1 STATIC LINEAR SCALARIZATION

The scalarization method — linearly combining multiple tasks into a single reweighted task, is
arguably the most widely-used MTO method. It defines the linear scalarization problem (LSP) as

LSP(θ; c) = c · LR(θ)− (1− c) · LF(θ) (1)

where at each iteration, c is fixed and gstatic(c) lies within the linear span of per-task gradients as
shown in Figure 3 (yellow area),

gstatic(c) =
∂LSP
∂θ

= cgR − (1− c)gF. (2)

Remark 2.1. We term the static linear scalarization as the extended GDiff in this work. Some
special cases in unlearning are GD (c = 1), GA (c = 0), and vanilla GDiff (c = 0.5, equally
weighted), which is proposed in Liu et al. (2022).
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A nice property of linear scalarization is the Pareto optimality at the convergence, which we state in
Lemma 2 for the static c and later extend to Theorem 3 for the dynamic ct in Section 2.2.

Lemma 2 (restated from Xin et al. (2022)). For any 0 < c < 1, the model θ∗
LSP(c) =

argminθLSP(θ; c) is Pareto optimal.

Proof of Lemma 2. We show that the solution of LSP cannot be a dominated point, and therefore it
must be Pareto optimal. Consider a solution θ∗ = argminθLSP(θ; c), and suppose it is dominated
by some θ′, i.e. LF(θ

∗) ≤ LF(θ
′), LR(θ

∗) ≥ LR(θ
′) with at least one inequality being strict. This

contradicts that θ∗ is minimal as cLR(θ
∗)− (1− c)LF(θ

∗) > cLR(θ
′)− (1− c)LF(θ

′).

Lemma 2 suggests1 that we can sweep through c ∈ [0, 1] and construct the Pareto frontier after
sufficiently long training time as in Figure 1. However, while any c leads to a Pareto optimal point,
the solution may be useless: e.g. perfect memorization on (R,F) that fails to unlearn is also Pareto
optimal. Next, we investigate different choices of c by extending the static scalarization in (2)

2.2 DYNAMIC SCALARIZATION

In deep learning, the loss is minimized iteratively by the gradient method:

θt+1 = θt − ηt[cgR(θt)− (1− c)gF(θt)]

which extends (2) to a broad range of methods if we set c = ct,

θt+1 = θt − ηtgUN(θt; ct) where gUN(θ; ct) := ctgR(θ)− (1− ct)gF(θ) (3)

Importantly, instead of defining θ∗ = argminθLSP at the loss level, we can define it at the gradient
level based on the stationary condition of the training dynamics, i.e. gUN(θ

∗) = 0.

In light of (3), we summarize some unlearning and MTO methods below

1. Gradient descent (GD on R), c = 1

2. Gradient ascent (GA on F), c = 0

3. Gradient difference (vanilla GDiff), c = 0.5

4. Loss normalization (LossNorm), ct
1−ct

= LF
LR

5. RLW, ct = eλ1

eλ1+eλ2
with λi ∼ N(0, 1)

6. PCGrad, ct
1−ct

= 1 +
g⊤

F gR

|gR|2

7. IMTL-G, ct = g⊤
F ( gF

||gF|| −
gR

||gR|| )/(gF − gR)
⊤( gF

||gF|| −
gR

||gR|| )

Despite the different designs of {ct}, we show in Theorem 3 that all θ∗({ct}) are Pareto optimal,
including our NGDiff to be introduced in Section 3.2.

Theorem 3. For any {ct} with 0 ≤ ct ≤ 1 that converges as t → ∞, the model θ∗({ct}) =
limt→∞ θt in (3) is Pareto optimal.

Proof of Theorem 3. Denoting c = limt ct, then (3) gives that gUN(θt) = ctgR(θt) − (1 −
ct)gF(θt) → cgR(θ

∗) − (1 − c)gF(θ
∗) = 0 as t → ∞. Note θ∗({ct}) is equivalent to the LSP

solution θ∗
LSP(c) = argminθLSP(θ; c) as the latter has the same stationary condition, which is Pareto

optimal by Lemma 2.

1We note that Lemma 2 is only applicable to the global minimum of LSP, which is not always achievable in
deep learning. Therefore, this result has its limitations and requires empirical validation.
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3 UNLEARNING WITH NORMALIZED GRADIENT DIFFERENCE

While Theorem 3 shows the Pareto optimality of θ∗ as t → ∞, it does not shed insight on the
convergence through intermediate steps θt. Put differently, although many MTO and unlearning
methods are all Pareto optimal upon convergence, they may converge to different Pareto points at
different convergence speed. Therefore, it is important to understand and control their algorithm
dynamics in order to maintain high performance for R throughout the training. To be specific, the
dynamics is determined by their choices of gUN ∈ Rd and ηt ∈ R in (3).

In this section, we propose to use gradient normalization for gUN and automatic learning rate for ηt,
so as to achieve stable convergence, effective unlearning, high retaining utility, without manually
tuning the learning rate.

3.1 LOSS LANDSCAPE OF UNLEARNING

Applying the Taylor expansion on (3), we can view the local loss landscape as a quadratic function.

LR(θt+1)− LR(θt) = −ηtg
⊤
R gUN(ct) +

η2t
2
g⊤

UNHRgUN + o(η2t )

LF(θt+1)− LF(θt) = −ηtg
⊤
F gUN(ct) +

η2t
2
g⊤

UNHFgUN + o(η2t )

(4)

Here H = ∂2L
∂θ2 is the Hessian matrix, which empirically gives g⊤

UNHgUN > 0 and renders LR and
LF locally and directionally convex along the gradients. This allows the existence of a minimizing
learning rate to be characterized in Section 3.3. We visualize the loss landscape in Figure 4 and
observe that the quadratic functions in (4) are well-fitted in most iterations.

Figure 3: Demonstration of gradient space
in 2-dimension. gF is the forgetting gradient
and gR is the retaining gradient, each with a
perpendicular dashed line. Yellow area is the
linear span (2) by scalarization. Green area
is positively correlated to gR and negatively
correlated to gF by (5), whereas NGDiff al-
ways stays within at each iteration.

Figure 4: Loss values of retaining and for-
getting sets with respect to different learn-
ing rates. Markers are LR(θt − ηgR) and
LF(θt − ηgF) using the TOFU dataset on
Phi-1.5 at step 10, on which the curves are
fitted as quadratic functions.

3.2 NORMALIZED GRADIENT DIFFERENCE

In order for LF to increase as well as LR to decrease, we want to construct gUN such that
g⊤

R gUN(ct) ≥ 0 ≥ g⊤
F gUN(ct). (5)

To satisfy (5) , we propose to dynamically set

ct =
1/||gR||

1/||gR||+ 1/||gF||
=⇒ gNGDiff(gR, gF) :=

gR

||gR||
− gF

||gF||
where a common factor is omitted. In words, we normalize the retaining and forgetting gradients2,
respectively, and state that (5) is satisfied at all iterations in Lemma 4.

2We illustrate in Appendix A that NGDiff is critically different and simpler than GradNorm (Chen et al.,
2018a).
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Lemma 4. gNGDiff(gR, gF) satisfies (5) for any gR ∈ Rd and gF ∈ Rd.

In Theorem 5 (see proof in Appendix F), we can leverage Lemma 4 to claim the the local loss
improvement under appropriate learning rate, which will be implemented adaptively in Section 3.3.
Theorem 5. Consider θt+1 = θt − ηgNGDiff. (1) Unless gR is exactly parallel to gF, for any
sufficiently small learning rate η, there exist two constants ϵR,1 = o(η), ϵF,1 = o(η) such that

LR(θt+1)− LR(θt) < ϵR,1, and LF(θt+1)− LF(θt) > ϵF,1.

(2) If additionally g⊤
NGDiffHRgNGDiff > 0 and g⊤

NGDiffHFgNGDiff > 0, then for any learning rate

0 < η <
2g⊤

R gNGDiff

g⊤
NGDiffHRgNGDiff

, there exist two constants ϵR,2 = o(η2), ϵF,2 = o(η2) such that

LR(θt+1)− LR(θt) < ϵR,2, and LF(θt+1)− LF(θt) > ϵF,2.

Remark 3.1. The condition that g⊤
NGDiffHgNGDiff > 0 in part (2) of Theorem 5 may not always hold

in deep learning. However, it empirically holds in most iterations across models and datasets in our
experiments (c.f. our Figure 4 and Figure 2 in Bu & Xu (2024)), and we can stablize the training by
not updating η when the condition fails.

To interpret Theorem 5, we view ϵ ≈ 0 as η is generally small (say η ∼ 10−4 in our experiments),
and hence NGDiff is optimizing on R and F simultaneously. Visually speaking, Lemma 4 constrains
NGDiff’s gradient to stay in the green area in Figure 3 unless gF ∥ gR, whereas other methods do
not explicitly enforce (5) and may consequently harm the retaining utility.

3.3 AUTOMATIC LEARNING RATE ADAPTION FOR UNLEARNING

In order for NGDiff to work as in Theorem 5, the learning rate schedule needs to be carefully selected
so that 0 < ηt <

2g⊤
R gNGDiff

g⊤
NGDiffHRgNGDiff

at each iteration. In Algorithm 1, we adapt GeN (or AutoLR) in (Bu

& Xu, 2024) to the unlearning setting and dynamically set the learning rates3 as the minimizer of
(4): to locally optimize LR and to monotonically increase LF, we use

η∗t = g⊤
R gNGDiff/g

⊤
NGDiffHRgNGDiff. (6)

We devote Appendix B to explain how GeN works and how we have modified GeN for the unlearn-
ing problem, such as only forward passing on R but not F in (6). At high level, GeN estimates two
scalars – the numerator and denominator of (6) by analyzing the difference of loss values, thus the
high-dimensional Hessian matrix HR is never instantiated.
Remark 3.2. There is a computational overhead to use GeN, as it requires additional forward
passes to estimate η∗t . Nevertheless, we only update the learning rate every 10 iterations so that the
overhead is averaged out and thus negligible in practice.

Figure 5: Gradient norms and learning rates during the un-
learning on TOFU dataset using NGDiff and Phi-1.5 model.
The AutoLR scheduler assigns a smaller learning rate to the
forgetting gradient, effectively preserving model utility on
the retaining set.

We monitor the gradient norms and
the learning rate in Figure 5 when ap-
plying Algorithm 1. We observe that
the automatic learning rate is indeed
effective, picking up from 5e − 5 to
around 2e− 4, and that NGDiff tends
to assign a smaller learning rate to the
forgetting gradient, not perturbing the
model too much to maintain the high
utility on the retaining set.

3We note other parameter-free methods such as D-adaptation, Prodigy, and DoG can also set the learning
rate automatically. However, these methods need to be tailored for different gradient methods, hence not
compatible to NGDiff or the unlearning algorithms in general. We give a detailed explanation in Appendix D.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Learning-rate-free NGDiff
1: for t = 1, 2, ... do
2: —-NGDiff—-
3: Compute retaining loss LR(θt) by one forward pass on R
4: Compute retaining gradient gR(θt) by backward propagation
5: Compute forgetting loss LF(θt) by one forward pass on F
6: Compute forgetting gradient gF(θt) by backward propagation
7: Construct unlearning gradient gNGDiff = gR/||gR|| − gF/||gF||
8: —-AutoLR—-
9: if t mod 10 == 0: then

10: Compute L±
R = LR(θt ± ηg) by two forward passes on R

11: Fit the quadratic function in (4) from (−η, 0, η) → (L−
R , LR, L

+
R )

12: Derive the optimal learning rate η∗t by (6) and set η = η∗t
13: Update θt+1 = θt − ηgNGDiff

4 EXPERIMENTS

4.1 DATASETS

We evaluate the empirical performance of our proposed method on the following datasets (see more
dataset details in Section E.1):

• Task of Fictitious Unlearning (TOFU) (Maini et al., 2024). TOFU consists of 20 question-
answer pairs based on fictitious author biographies generated by GPT-4 (Achiam et al.,
2023). In our experiments, we use the forget10 (10% of the full training set) as the forget-
ting set and retain90 (90% of the full training set) as the retaining set.

• MUSE-NEWS (Shi et al., 2024). This dataset consists of BBC news articles (Li et al.,
2023b) published since August 2023. We use its train split to finetune a target model, and
then the raw set, which includes both the forgetting and retaining data, for the target model
unlearning. Finally, the verbmem and knowmem splits are used to evaluate the unlearned
model’s performance.

4.2 UNLEARNING METHODS

We compare our method with four baseline methods. The first baseline method is the target model
without any unlearning, while the remaining three are the state-of-the-art unlearning methods.

No-unlearn. This method utilizes the full training dataset to fine-tune the base model without any un-
learning. The trained model is then used as the target model for subsequent unlearning approaches.

Gradient Difference (GDiff) (Liu et al., 2022). As discussed in Section 2.2, GDiff applies gradient
descent on the cross-entropy loss of the retaining data and gradient ascent on the cross-entropy loss
of the forgetting data with c = 0.5. For a thorough comparison, we also test the extended GDiff
method, with c = 0.1 (close to GA) or c = 0.9 (close to GD).

Loss Normalization (LossNorm). As discussed in Section 2.2, this approach computes and normal-
izes the forget loss and retain loss separately, with the overall loss being LR/|LR| − LF/|LF|.
Negative Preference Optimization (NPO) (Zhang et al., 2024). GA method often struggles to ef-
fectively unlearn the forgetting data, thus resulting in significant degradation in the model’s perfor-
mance on the retaining data. The NPO approach addresses this issue based on preference optimiza-
tion (Ouyang et al., 2022), and the NPO loss is defined as:

LNPO,β(θ) = − 2

β
EF

[
log σ

(
− β log

f(S,w)

fNo-unlearn(S,w)

)]
, (7)

where S is randomly sampled from F, β > 0 is the inverse temperature, f is the unlearned model,
and fNo-unlearn is the model before unlearning.

7
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4.3 FOUNDATION MODELS

We test multiple models: LLAMA2-7B (Touvron et al., 2023), Phi-1.5(Li et al., 2023a), Falcon-1B
(Penedo et al., 2023a), GPT2-XL (Radford et al., 2019) and Mistral-7B (Jiang et al., 2023). These
models are pre-trained and then fine-tuned on datasets in Section 4.1, with AdamW optimizer and
carefully tuned learning rates as described in Appendix E.

4.4 EVALUATION METRICS

Following the existing work (Shi et al., 2024), we evaluate the unlearning performance based on
model’s output quality. We expect a good performance should satisfy the following requirements:

No verbatim memorization. After the unlearning, the model should no longer remember any
verbatim copies of the texts in the forgetting data. To evaluate this, we prompt the model with the
first k tokens in F and compare the model’s continuation outputs with the ground truth continuations.
We use ROUGE-L recall scores for this comparison, where a lower score indicates more effective
unlearning.

No knowledge memorization. After the unlearning, the model should not only forget verbatim
texts, but also the knowledge in the forgetting set. For the MUSE-NEWS dataset, we evaluate knowl-
edge memorization using the KnowmemF split, which consists of generated question-answer pairs
based on the forgetting data. Similar to verbatim memorization, we use ROUGE-L recall scores for
the evaluation.

Maintained model utility. An effective unlearning method must maintain the model’s performance
on the retaining set. We prompt the model with the question from R and compare the generated
answer to the ground truth. We use ROUGE-L recall scores for these comparisons. Additionally,
we evaluate the model using the Truth Ratio metric. We use the Retain10-perturbed split from
the TOFU dataset, which consists of five perturbed answers created by modifying the facts in each
original answer from R. The Truth Ratio metric computes how likely the model generates a correct
answer versus an incorrect one, where a higher value indicates better model utility.

4.5 MAIN RESULTS

The results for Verbatim memorization (Verbmem), Model utility (Utility), TruthRatio, and Knowl-
edge memorization (Knowmem) using different unlearning methods are presented in Table 1, 2 and
6. We evaluate these metrics using the TOFU and MUSE-NEWS datasets across large language
models. In summary, our NGDiff consistently achieves the best results across all models on both
datasets, highlighting its superior performance. In sharp contrast, the baseline unlearning methods
(1) either effectively forget R by reducing Verbmem and Knowmem but fail maintain the Utility and
TruthRatio, such as GDiff with c ≤ 0.5, NPO; (2) or cannot unlearn F on Phi-1.5 and Mistral-7B,
such as LossNorm and GDiff with c = 0.9. We highlight that the effectiveness of these unlearning
methods are highly model-dependent and dataset-dependent, unlike NGDiff.

For the TOFU dataset, we observe that some unlearning methods fail to unlearn the forget data
effectively. For example, GDiff-0.9 and LossNorm do not unlearn effectively when applied to Phi-
1.5, Llama2-7B and Mistral-7B. In fact, GDiff-0.9 has 80% ∼ 100% Verbmem and LossNorm has
> 40% Verbmem on Phi-1.5. However, they are effective on Falcon-1B and GPT2-XL, even though
these models have similar sizes (≈ 1B parameters) to Phi-1.5. On the other hand, some methods
fail to preserve the model utility after unlearning. For example, GDiff-0.1 has close to 0 Utility on
Phi-1.5, Falcon-1B, GPT2-XL and Llama2-7B; similarly, NPO also experiences a significant drop
in Utility on Phi-1.5 model, Falcon-1B and GPT2-XL, but not so on Llama2-7B. In contrast, our
NGDiff remains effective in unlearning F and maintaining R across the models. In addition, NGDiff
achieves the best TruthRatio on all models except Llama2-7B (which is still on par with the best),
indicating that the model’s answers remain factually accurate for questions in the retaining data.

For the MUSE-NEWS dataset, our NGDiff also outperforms the baseline methods on Llama2-7B and
Mistral-7B models by achieving a lower Verbmem and a higher Utility. Furthermore, the Knowmem
results indicate that NGDiff not only unlearns the verbatim copies of the forgetting texts, but also
successfully removes the associated knowledge. The model capacities of Phi-1.5 and Falcon-1B
are smaller, limiting their ability to learn knowledge effectively after fine-tuning on the full dataset,
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as shown in Table 6. Despite this, our method still successfully unlearns the forgetting data while
preserving model utility.

Table 1: Verbatim memorization, Model utility, and TruthRatio on TOFU dataset (forget10/retain90)
with different unlearning methods and different models. Lower Verbmem along with higher Utility
and TruthRatio indicate a more superior unlearning strategy.

Base Model Metric Method
No-unlearn GDiff-0.9 GDiff-0.5 GDiff-0.1 NPO LossNorm NGDiff

Phi-1.5
Verbmem ↓ 1.000 0.805 0.027 0.000 0.000 0.432 0.024

Utility ↑ 1.000 0.992 0.308 0.000 0.000 0.752 0.747
TruthRatio ↑ 0.385 0.205 0.216 0.221 0.179 0.214 0.353

Falcon-1B
Verbmem ↓ 1.000 0.041 0.001 0.000 0.017 0.055 0.021

Utility ↑ 1.000 0.434 0.305 0.000 0.114 0.521 0.428
TruthRatio ↑ 0.408 0.237 0.244 0.217 0.184 0.252 0.354

GPT2-XL
Verbmem ↓ 1.000 0.029 0.001 0.000 0.031 0.022 0.046

Utility ↑ 0.999 0.381 0.250 0.000 0.136 0.376 0.792
TruthRatio ↑ 0.412 0.186 0.278 0.133 0.179 0.196 0.399

Llama2-7B
Verbmem ↓ 1.000 0.810 0.011 0.000 0.709 0.010 0.002

Utility ↑ 1.000 0.851 0.324 0.000 0.682 0.264 0.724
TruthRatio ↑ 0.490 0.340 0.364 0.161 0.329 0.329 0.334

Mistral-7B
Verbmem ↓ 1.000 1.000 0.945 0.410 0.385 0.259 0.009

Utility ↑ 1.000 0.999 0.944 0.517 0.341 0.925 0.996
TruthRatio ↑ 0.344 0.345 0.366 0.374 0.364 0.358 0.379

Table 2: Verbatim memorization, Model utility, and Knowledge memorization on the MUSE-NEWS
dataset with different unlearning methods on Llama2-7B and Mistral-7B models. Lower Verbmem
and Knowmem along with higher Utility indicate a more superior unlearning strategy.

Base Model Metric Method
No-unlearn GDiff-0.9 GDiff-0.5 GDiff-0.1 NPO LossNorm NGDiff

Llama2-7B
Verbmem ↓ 0.561 0.555 0.043 0.004 0.000 0.388 0.036

Utility ↑ 0.646 0.641 0.275 0.000 0.000 0.506 0.556
Knowmem ↓ 0.755 0.717 0.287 0.000 0.000 0.514 0.455

Mistral-7B
Verbmem ↓ 0.578 0.177 0.000 0.000 0.113 0.196 0.098

Utility ↑ 0.411 0.339 0.000 0.000 0.316 0.343 0.354
Knowmem ↓ 0.416 0.257 0.000 0.000 0.343 0.293 0.165

To further illustrate the performance of our proposed method during the training, in addition to
the last iterate results, we plot the ROUGE scores and loss terms during the unlearning process in
Figure 6. We apply the extended GDiff, LossNorm, and NGDiff methods, to the Phi-1.5 model using
the TOFU dataset. While GDiff with c = 0.5 and c = 0.7, and NGDiff are effective in unlearning,
only NGDiff preserve the model utility above 75% ROUGE score. A closer look at the second and
the fourth plots of Figure 6 shows that NGDiff exhibits the fastest and most stable convergence on
F while maintaining a low retaining loss ≤ 0.1.

4.6 ABLATION STUDY

Effectiveness of NGDiff. In our experiments, we utilize the automatic learning rate scheduler (Au-
toLR) for NGDiff method. To investigate the impact of NGDiff alone, we compare all methods with
or without AutoLR in Table 3. With AutoLR or not (where we use manually tuned learning rates),
NGDiff, GDiff (c = 0.1 or 0.5) and NPO can effectively unlearn in terms of Verbmem. However,
among these four methods, NGDiff uniquely retains a reasonable Utility between 60 ∼ 75%, while
other methods retains only 0 ∼ 30% Utility. A similar pattern is observed in terms of TruthRatio as
well. Overall, NGDiff significantly outperforms other baseline methods with or without AutoLR.

Impact of automatic learning rate. To evaluate the impact of AutoLR scheduler, we see in Table 3
all methods exhibit an increase in the TruthRatio metric and a decrease in Verbmem, though with
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Figure 6: Comparison of different unlearning methods on TOFU dataset. The figures show the
ROUGE scores and loss terms during unlearning process with different methods, which includes
GDiff, LossNorm, and NGDiff. We observe that NGDiff effectively unlearns the forgetting data
while maintaining the performance on the retaining data.

Figure 7: Comparison between AutoLR and different learning rates on NGDiff. The figures show
the ROUGE scores and loss values during the unlearning process on TOFU dataset using Phi-1.5
model. We observe that AutoLR outperforms the static learning rates with better model utility and
more stable convergence.

some loss in the Utility. For instance, LossNorm benefits significantly from AutoLR with ≈ 20%
decrease in Verbmem, and NGDiff increases its retaining Utility and TruthRatio by > 22%. We
specifically demonstrate the impact of AutoLR on NGDiff in Figure 7. Without AutoLR, the model’s
performance is highly sensitive to the static learning rates: when η = 10−5, the model fails to
unlearn F as indicated by the low loss and high ROUGE score; in contrast, when η = 10−4, there is
a significant drop in ROUGE score on the retain data, falling from 100% to around 50%. However,
with the AutoLR scheduler, we observe a steady reduction in the Verbmem (with the ROUGE forget
close to 0 at convergence) while maintaining high utility (the ROUGE retain is 0.747, which is
19.5% higher than the best results without AutoLR).

Table 3: Results of Verbmem, Utility, and TruthRatio using different unlearning methods with Au-
toLR on the Phi-1.5 model. AutoLR improves the TruthRatio and reduces Verbmem across all
methods. With or without AutoLR, NGDiff can significantly outperform other baseline methods.

Method TOFU (wo → w/ AutoLR)
Verbmem ↓ Utility ↑ TruthRatio ↑

No-unlearn 1.000 1.000 0.385
GDiff c=0.9 0.805 → 0.200 0.992 → 0.422 0.205 → 0.308
GDiff c=0.5 0.027 → 0.001 0.308 → 0.032 0.216 → 0.297
GDiff c=0.1 0.000 → 0.000 0.000 → 0.000 0.221 → 0.229

NPO 0.000 → 0.000 0.000 → 0.000 0.179 → 0.223
LossNorm 0.432 → 0.231 0.752 → 0.725 0.214 → 0.336

NGDiff 0.024 → 0.012 0.607 → 0.747 0.289 → 0.353

5 DISCUSSION

We have formulated the machine unlearning problem as a two-task optimization problem, which
can be provably (under Pareto optimality) and effectively solved by our novel unlearning method
NGDiff. We also adapt GeN to set an automatic and adaptive learning rate scheduler but we believe
other learning-rate-free methods can serve as alternatives, maybe after some modifications. While
NGDiff is applicable to general problems, most experiments in this work focus on LLMs except
one in Appendix C. It would be desirable to test NGDiff on more modalities, and test more MTO
methods for machine unlearning (see a list of methods in Appendix D).
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A COMPARING NGDIFF WITH GRADNORM

Algorithm 2 NGDiff
1: for t = 1, 2, ... do
2: Compute retaining loss LR(θt) by one forward pass
3: Compute retaining gradient gR(θt) = ∇θLR
4: Compute forgetting loss LF(θt) by one forward pass
5: Compute forgetting gradient gF(θt) = ∇θLF
6: Construct unlearning gradient gNGDiff = gR/||gR|| − gF/||gF||
7: Update θt+1 = θt − ηgNGDiff

Algorithm 3 GradNorm for two-task
1: Initialize the scalaring coefficients wR(θ0) = 1 and wF(θ0) = 1
2: Pick value for α > 0 and pick the weights θLS (the last shared layer of θt)
3: for t = 1, 2, ... do
4: Compute retaining loss LR(θt) by one forward pass
5: Compute retaining gradient gR(θLS) = ∇θLSLR
6: Compute forgetting loss LF(θt) by one forward pass
7: Compute forgetting gradient gF(θLS) = ∇θLSLF
8: Compute loss L(θt) = wR(θt)LR(θt) + wF(θt)LF(θt)
9: Compute ḡ(θLS) by averaging gR and gF

10: Compute GradNorm loss

LGN (θt) = |gR − ḡ × [rR(t)]
α|1 + |gF − ḡ × [rF(t)]

α|1

11: Compute GradNorm gradients ∇wRLGN and ∇wFLGN ∈ R
12: Compute the full gradient ∇θtL
13: Update wR(θt) → wR(θt+1) and wF(θt) → wF(θt+1) using ∇wRLGN and ∇wFLGN

14: Update θt+1 = θt − η∇θtL
15: Renormalize wR(θt+1) and wF(θt+1) so that wR(θt+1) + wF(θt+1) = 2

We compare the GradNorm algorithm Chen et al. (2018b) with our proposed method, NGDiff. We
highlight some steps of GradNorm in red to indicate the differences than NGDiff:

• NGDiff sets the scalaring coefficient as 1/||gR|| and 1/||gF||, while GradNorm uses gradi-
ent descent to learn these coefficients as wR and wF.

• NGDiff is model-agnostic while GradNorm contains specific designs for multi-task archi-
tecture. In unlearning, there are 2 data splits (i.e. F and R) and each data split defines one
task. Hence all model parameters are shared. However, in the original form of GradNorm,
there is 1 data split on which multiple tasks are defined (can be more than 2). Hence the
model parameters are partitioned into [shared layers, task 1 specific layers, task 2 specific
layers].

• NGDiff computes the full per-task gradients whereas GradNorm only computes the last
shared layer’s gradients.

• NGDiff requires 2 back-propagation at each iteration but GradNorm requires 3 (2 for per-
task gradients, 1 for ∇θL), which may translate to more training time for large models.

• GradNorm introduces additional hyperparameters that can be difficult and costly to tune,
and may cause instability of training if not properly tuned. These hyperparameters include
α and two learning rates to update wR and wF in Line 13 of Appendix A. In contrast,
NGDiff is hyperparameter-free when equipped with GeN (AutoLR).

• NGDiff are theoretically supported by Theorem 5, while the choice of hyperparameters
and the use of a heuristic ri(t) by GradNorm may require further justification. Here
ri(t) = L̃i(θt)/Etask[L̃i(θt)] is the ”relative inverse training rate” of task i, where
L̃i(θt) = Li(θt)/Li(θ0), i ∈ {F,R}.

In summary, NGDiff is remarkably simpler and more well-suited than GradNorm for unlearning,
with stable performance and theoretical ground.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B DETAILS RELATED TO GEN

B.1 BRIEF INTRODUCTION OF GEN

GeN (Bu & Xu, 2024) is a method that sets the learning rate for any given gradient d as

ηGeN =
G⊤d

d⊤Hd

where G is the gradient and H is the Hessian matrix of some loss L. One only needs to access
the scalars G⊤d and d⊤Hd, without computing the high-dimensional G and H (or Hessian-vector
product). To do so, two additional forward passes are needed: given a constant (say ξ = 0.001),
we compute L(θ + ξd) and L(θ − ξd). Then by curve fitting or finite difference as demonstrated
below, we can estimate up to arbitrary precision controlled by ξ:

G⊤d ≈ L(θ + ξd)− L(θ − ξd)

2ξ

and

d⊤Hd ≈ L(θ + ξd)− 2L(θ) + L(θ − ξd)

ξ2

Notice that the regular optimization requires 1 forward pass and 1 back-propagation; GeN requires
in total 3 forward passes and 1 back-propagation. Given that back-propagation costs roughly twice
the computation time than forward pass, the total time increases from 3 units of time to 5 units.
Nevertheless, GeN needs not to be applied at each iteration: if we update the learning rate every 10
iterations as in Remark 3.2, the total time reduces to 3 + 2/10 = 3.2 units, and the overhead is less
than 10% compared to the regular optimization.

B.2 ADAPTING GEN TO UNLEARNING

Naively applying GeN to the unlearning will result in

ηGeN =
G⊤gUN

g⊤
UNHgUN

which minimizes the loss over all datapoints, in both F and R. This is against our goal to maximize
the forgetting loss. We must consider the learning rate separately for F and R, as shown in Ap-
pendix F (Proof of Theorem 5). When both losses have a convex curvature in Figure 4, the optimal
learning rate is only well-defined for LR and we do not claim to maximize LF. In other words, if
we minimize LR, we get to worsen LF (though not maximally); if we choose to maximize LF, we
will use infinite learning rate that also maximizes LR. Therefore, our learning rate in (6) only uses
R instead of the whole dataset.

C COMPUTER VISION EXPERIMENTS

Table 4: Results of Forget Acc and Retain Acc using different unlearning methods on the CIFAR-10
dataset. Compared to other baseline methods, NGDiff has the best performance on the model utility.

Method CIFAR-10 CIFAR-100
Forget Acc ↓ Retain Acc ↑ Forget Acc ↓ Retain Acc ↑

No-unlearn 0.926 0.956 0.745 0.750
GDiff c=0.9 0.000 0.817 0.000 0.664
GDiff c=0.5 0.000 0.830 0.000 0.609
GDiff c=0.1 0.000 0.825 0.000 0.667
LossNorm 0.000 0.753 0.000 0.432

NGDiff 0.000 0.931 0.000 0.701

To demonstrate the effectiveness of unlearning across other modalities, we also evaluate our method
on the image classification task. Specifically, we choose the CIFAR-10 and CIFAR-100 dataset

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Krizhevsky et al. (2009) and train a ResNet-50 He et al. (2015) model from scratch. For the CIFAR-
10 dataset, we sample 500 images from the class dog as the forgetting data, and use images from the
remaining 9 classes as the retaining data. For the CIFAR-100 dataset, we sample 500 images from
the class bed as the forgetting data, and use images from the remaining 99 classes as the retaining
data. After training, the initial forget data accuracy is 0.926, and the retain data accuracy is 0.956
on the CIFAR-10 dataset. The initial forget data accuracy is 0.745, and the retain data accuracy
is 0.750 on the CIFAR-100 dataset. Then we apply different unlearning methods to the trained
models. As shown in Table 4, all methods successfully reduce the forget accuracy to 0. However,
the retaining accuracy of NGDiff remains the highest, which shows its effectiveness in preserving
the model utility in image classification tasks.

D RELATED WORKS

Machine unlearning Machine unlearning is oftentimes viewed as a continual learning approach,
that removes specific data points after a model has been trained to memorize them. Such removal
is light-weighted in contrast to re-training, especially when the forgetting set is much smaller than
the retaining. In addition to the methods already introduced in Section 2.2 (namely GA, GDiff and
NPO), other methods include SISA Bourtoule et al. (2021), influence functions Ullah et al. (2021),
differential privacy Gupta et al. (2021) and so on. However, these methods could be difficult to scale
on large models and large datasets due to the algorithmic complexity. To our best knowledge, this is
the first work that formulate the unlearning problem as a two-task problem, which can be solved by
a number of well-known MTO methods.

Multi-task optimization MTO is a paradigm where one model is trained to perform multiple tasks
simultaneously, so as to significantly improve the efficiency in contrast to training multiple models,
one for each task. The key challenge of MTO is the performance trade-off among tasks, where the
multi-task model is worse than single-task model if trained on each task separately. Therefore, the
core idea is to balance different tasks by modifying the per-task gradients, e.g. with normalization
(LossNorm and NGDiff), PCGrad Yu et al. (2020), RLW Lin et al., IMTL Liu et al. (2021), MGDA
Désidéri (2012), CAGrad Liu et al. (2024a), GradVaccine Wang et al. (2020), GradDrop Chen et al.
(2020), RotoGrad Javaloy & Valera (2022), etc.

Learning-rate-free methods Parameter-free or learning-rate-free methods automatically set the
learning rate scheduler without the hyperparameter tuning, which is computationally infeasible for
LLMs, e.g. LLAMA2 pre-training uses 3 hyperparameters just for the learning rate: warmup steps,
peak learning rate, and minimum learning rate. At high level, there are two approaches to learning-
rate-free methods.

On one hand, GeN Bu & Xu (2024) leverages the Taylor expansion and convex-like landscape of
deep learning, which is applicable for the general purpose, even if the gradient is modified like in
the unlearning.

On the other hand, methods like D-adaptation Defazio & Mishchenko (2023), Prodigy Mishchenko
& Defazio (2024), DoG Ivgi et al. (2023), DoWG Khaled et al. (2024) are based on the convex and
G-Lipschitz conditions: L(θ̄T ) − L(θ∗) ≤ |θ0−θ∗|2

2ηT + ηG2

2 where θ∗ is the unknown minimizer
of L and θ̄T is an averaging scheme of {θ0, ..., θT }. With the same theoretical foundation, these
methods propose different ways to approximate the initial-to-final distance |θ0 − θ∗|. There are
two main issues to apply these methods on the unlearning. Firstly, the assumption of G-Lipschitz
is hard to verify and the minimizer θ∗ is not well-defined in multi-objective (see our discussion
on Pareto optimality under Lemma 2). Secondly, the optimal learning rate |θ0−θ∗|

G
√
T

is defined in a
manner to minimize the loss, whereas MTO methods operate on the gradient level. Hence MTO is
incompatible to such parameter-free methods given that we cannot derive a corresponding loss (e.g.
there exists no LNGDiff such that ∂LNGDiff

∂θ = gNGDiff).
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Table 5: Statistics of the TOFU and MUSE-NEWS datasets. For the TOFU dataset, we use Full
split for training the target model, Forget10 and Retain90 as the forgetting and retaining split for
unlearning experiments. For the MUSE-NEWS dataset, we utilize Train split for training, Raw split
for unlearning. For evaluation, we use VerbmemF and KnowmemF splits from forgetting data, and
KnowmemR split from the retaining data.

Dataset TOFU MUSE-NEWS
Full Forget10 Retain90 Train Raw VerbmemF KnowmemF KnowmemR

# samples 4, 000 400 3, 600 7, 110 2, 669 100 100 100

E EXPERIMENTS

E.1 DATASETS

To evaluate the empirical performance of our proposed method, we experiment on the following
datasets in Table 5.

• Task of Fictitious Unlearning (TOFU) Maini et al. (2024). This dataset consists of question-
answer pairs based on fictitious author biographies generated by GPT-4 Achiam et al.
(2023). Initially, predefined attributes, such as birthplace, gender, and writing genre, are
assigned to 200 distinct authors. GPT-4 is then prompted to generate detailed information
about each author. Following the synthesized data, 20 question-answer pairs are created
for each fictitious author. The dataset is then divided into distinct datasets: the retaining set
and the forgetting set. In our experiments, we use the forget10 and retain90 split, which
excludes 10% of the original dataset.

• MUSE-NEWS Shi et al. (2024). This dataset consists of BBC news articles Li et al. (2023b)
from August 2023. It includes seven subsets of news data: raw, verbmem, knowmem,
privleak, scal, sust, and train. We utilize the train split to finetune a target model, and then
the raw set, which includes both the forget and retain data, for the target model unlearning.
Then, we use verbmem, knowmem split to evaluate the unlearned model’s performance.

E.2 EVALUATION METRICS

Following the existing work Shi et al. (2024), we evaluate the unlearning performance based on the
quality of outputs from the model after unlearning. We expect a good performance should satisfy
the following requirements:

No verbatim memorization We evaluate this metric by prompting the model with the first l tokens
of the news data in the forget set and compare the model’s continuation outputs with the ground
truth continuation. Specifically, for each input x ∈ F , we choose x[:l] as input, and compare the
output f(x[:l]) with the ground truth continuation x[l+1:] with the ROUGE-L recall score:

Verbmem(f, F ) =
1

||F ||
Σx ROUGE-L(f(x[:l]), x[l+1:]) (8)

No knowledge memorization To evaluate this metric, we use the generated question-answer pair
based on each example x ∈ F . We prompt the model with the question part q and compare the
output answer f(q) to the ground truth answer a using ROUGE-L recall scores:

Knowmem(f, F ) =
1

||F ||
Σx ROUGE-L(f(q), a) (9)

Maintained model utility An effective unlearning method should also maintain the model’s perfor-
mance on the retain data. For the MUSE-NEWS dataset, we use the Knowmemr split, which consists
of the generated question-answer pairs based on the retain data. For the TOFU dataset, we prompt
the model with the question from the retain set and compare the generated answer with the ground
truth. We use ROUGE-L recall scores for evaluation:
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Utility(f,R) =
1

||R||
Σx ROUGE-L(f(q), a) (10)

Additionally, we evaluate the model using the Retain10-perturbed split from the TOFU dataset. It
consists of five perturbed answers for each original answer, keeping original template but modifying
the facts. We compute the Truth Ratio metric, which compares the likelihood of the model generat-
ing a correct answer versus an incorrect one for each question in the retain set. A higher Truth Ratio
indicates better model utility that effectively remembers knowledge from the retain data.

E.3 HYPER-PARAMETER SETTINGS

To finetune a targeted model with the full dataset, we use the optimizer Adam with a learning rate
of η = {10−5, 2 ∗ 10−5}, a training batch size of {16, 32}, and train 25 epochs for all language
models. For the unlearning process, we use the optimizer Adam with a learning rate η = {10−5, 5 ∗
10−5, 10−4}, and train 15 epochs for all unlearning methods.

E.4 OTHER UNLEARNING RESULTS

Table 6: Results of Verbatim memorization, Model utility, and TruthRatio on MUSE-NEWS dataset
with different unlearning methods on Phi-1.5, and Falcon-1B models. Lower Verbmem along with
higher Utility and TruthRatio indicate a more superior unlearning strategy.

Base Model Metric Method
No-unlearn GDiff-0.9 GDiff-0.5 GDiff-0.1 NPO LossNorm NGDiff

Phi-1.5
Verbmem ↓ 0.018 0.000 0.012 0.000 0.000 0.012 0.004

Utility ↑ 0.372 0.277 0.061 0.000 0.000 0.061 0.001
Knowmem ↓ 0.030 0.000 0.002 0.000 0.000 0.002 0.023

Falcon-1B
Verbmem ↓ 0.204 0.132 0.000 0.000 0.000 0.126 0.000

Utility ↑ 0.386 0.214 0.000 0.000 0.000 0.142 0.025
Knowmem ↓ 0.232 0.078 0.000 0.000 0.000 0.130 0.087

F PROOFS

Proof of Lemma 4. We firstly show g⊤
R gUN ≥ 0 for gUN = gNGDiff. We write

g⊤
R gNGDiff = g⊤

R

(
gR

||gR||
− gF

||gF||

)
= ||gR|| −

g⊤
R gF

||gF||
≥ ||gR|| −

||gR||||gF||
||gF||

= 0

where the inequality is the Cauchy-Schwarz inequality. Similarly, g⊤
F gUN ≤ 0 easily follows.

Proof of Theorem 5. Applying (4) with gNGDiff gives

LR(θt+1)− LR(θt) = −ηg⊤
R gNGDiff +

η2

2
g⊤

NGDiffHRgNGDiff + o(η2) (11)

For part (1), note that Lemma 4 gives g⊤
R gNGDiff > 0 unless gF ∥ gR. Hence for any η > 0, we have

LR(θt+1)− LR(θt) = −ηg⊤
R gNGDiff + o(η) < o(η)

and similarly for LF.

For part (2), now that g⊤
NGDiffHRgNGDiff > 0, we have

−ηg⊤
R gNGDiff +

η2

2
g⊤

NGDiffHRgNGDiff < 0 ⇐⇒ 0 < η <
2g⊤

R gNGDiff

g⊤
NGDiffHRgNGDiff

and similarly

−ηg⊤
F gNGDiff +

η2

2
g⊤

NGDiffHFgNGDiff > 0 ⇐= 0 < η

We complete the proof by substituting the inequalities into (11).
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