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Abstract001

An increasing number of companies have be-002
gun providing services that leverage cloud-003
based large language models (LLMs), such as004
ChatGPT. However, this development raises005
substantial privacy concerns, as users’ prompts006
are transmitted to and processed by the model007
providers. Among the various privacy protec-008
tion methods for LLMs, those implemented009
during the pre-training and fine-tuning phrases010
fail to mitigate the privacy risks associated011
with the remote use of cloud-based LLMs by012
users. On the other hand, methods applied013
during the inference phrase are primarily ef-014
fective in scenarios where the LLM’s infer-015
ence does not rely on privacy-sensitive infor-016
mation. In this paper, we outline the process017
of remote user interaction with LLMs and,018
for the first time, propose a detailed defini-019
tion of a general pseudonymization framework020
applicable to cloud-based LLMs. Building021
upon the framework, we have designed var-022
ious pseudonymization methods and further023
propose a method that achieves pseudonymiza-024
tion through a controllable text generation pro-025
cess. The experimental results demonstrate026
that the proposed framework strikes an opti-027
mal balance between privacy protection and028
utility. The code for our method is avail-029
able to the public at https://github.com/030
Mebymeby/Pseudonymization-Framework.031

1 Introduction032

Large Language Models (LLMs) have demon-033

strated considerable promise in advancing the field034

of artificial intelligence, showcasing remarkable035

capabilities in instruction following and excelling036

across a wide range of tasks, including writing, cod-037

ing, and other text-based activities (Bubeck et al.,038

2023; Touvron et al., 2023; OpenAI et al., 2024).039

Consequently, an increasing number of companies040

have begun providing cloud-based LLM services,041

such as ChatGPT1. However, the widespread use042

1https://chatgpt.com/

Cloud-Based
LLM Service

User
Output Summary:
Clean-up operations are continuing 
across the Scottish Borders and 
Dumfries and Galloway after flooding.

Input Text:
The full cost of damage in Newton 
Stewart, one of the areas worst 
affected, is still being assessed.
… … 
Have you been affected by flooding in 
Dumfries and Galloway or the Borders?

privacy breach risks
in the sending process

privacy breach risks
in the receiving process

privacy breach risks
in LLM services

(from XSum (Narayan et al., 2018))

Figure 1: Potential privacy breach risks in using cloud-
based LLM services

of cloud-based LLM services has raised substantial 043

privacy concerns: the transmission and storage of 044

user data on cloud infrastructures pose significant 045

risks of data breaches and unauthorized access to 046

private information, as illustrated in Figure 1. 047

Current privacy-preserving techniques for cloud- 048

deployed LLMs either prevent untrustworthy cus- 049

tomers from accessing privacy-sensitive informa- 050

tion in pre-trained datasets (Carlini et al., 2019; Pan 051

et al., 2020; Brown et al., 2022), or safeguard users’ 052

pre-training and fine-tuning datasets from untrust- 053

worthy cloud service providers (Chi et al., 2018; 054

Jegorova et al., 2022). However, these methods 055

face significant challenges in addressing the unique 056

issues arising from remote access to cloud-based 057

LLMs. On the other hand, researchers have devel- 058

oped various strategies to ensure privacy security 059

during the inference phrase, including Multi-Party 060

Computation (Goldreich, 1998), homomorphic en- 061

cryption (Acar et al., 2018), differential privacy in 062

inference (Majmudar et al., 2022). However, these 063

methods are not suitable for scenarios in which 064

the cloud-based LLM’s inference relies on privacy- 065

sensitive information. 066

The data pseudonymization technique, which en- 067

sures privacy protection by appropriately replacing 068

privacy-sensitive information, has since attracted 069

the attention of researchers. (Kan et al., 2023; 070

Chen et al., 2023; Lin et al., 2024) However, re- 071

search on applying pseudonymization techniques 072
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during the inference phase for privacy protection073

remains limited. Currently, a detailed definition of074

a pseudonymization framework for the inference075

phase of cloud-based LLMs is lacking. For exam-076

ple, Yermilov et al. (2023) divides pseudonymiza-077

tion into two parts: recognizing and replacing pri-078

vacy entities. However, Chen et al. (2023) argues079

that pseudonymization should consist of two stages:080

concealing privacy entities for anonymization and081

restoring them for de-anonymization. We argue082

that these methods integrate certain steps of the083

pseudonymization process and, therefore, cannot084

be regarded as a general pseudonymization frame-085

work.086

In this paper, we outline the process of re-087

mote user interaction with LLMs and, for the first088

time, propose a detailed definition of a general089

pseudonymization framework applicable to cloud-090

based LLMs. We define the pseudonymization091

framework as comprising three components: the de-092

tection of privacy-sensitive information, the gener-093

ation of replacement terms, and the replacement of094

privacy information to achieve pseudonymization.095

We further propose a pseudonymization method096

based on a controllable text generation process,097

ensuring that the replaced text preserves maximal098

semantic correctness after replacement. Further-099

more, to evaluate the practical effectiveness of the100

proposed framework in real-world LLM services,101

we specifically assessed its performance in text gen-102

eration tasks, including summarization, question103

answering, text generation, and machine transla-104

tion, in addition to classification tasks. The exper-105

imental results indicate that the proposed frame-106

work achieves an optimal balance between privacy107

protection and utility.108

To summarize, our contributions are as follows:109

(1) We propose a general pseudonymization110

framework applicable to cloud-based LLMs.111

(2) We propose a pseudonymization method lever-112

aging a controllable text generation process to113

preserve the semantic integrity of the replaced114

text.115

(3) We evaluate the proposed framework across116

various text generation tasks and demonstrate117

that it achieves the optimal balance between118

privacy and performance.119

2 Related Works120

Privacy protection for large language models121

(LLMs) can be categorized according to the phase122

in which it is implemented: during the pre-training 123

and fine-tuning phases, and during the inference 124

phase (Yan et al., 2024). Privacy protection during 125

the pre-training and fine-tuning phases of LLMs 126

is essential for safeguarding sensitive data while 127

preserving model effectiveness. Techniques such 128

as differential privacy (Li et al., 2021; Wu et al., 129

2022; Xu et al., 2024), data cleaning (Bai et al., 130

2022; Kandpal et al., 2022), and federated learn- 131

ing (Yu et al., 2023; Xu et al., 2024; Zhang et al., 132

2024a) can be utilized to mitigate privacy risks dur- 133

ing these phases. As previously discussed, these 134

methods primarily aim to protect the privacy of 135

information within LLMs. However, they do not 136

fully address the privacy concerns associated with 137

remote access to LLM services. Additionally, pri- 138

vacy protection measures implemented by model 139

providers may not completely alleviate users’ con- 140

cerns regarding the potential misuse of their private 141

data by these providers. 142

On the other hand, the issue of privacy leak- 143

age during the inference phase of LLMs has gar- 144

nered significant attention. To address this issue, 145

researchers have developed numerous strategies to 146

ensure privacy security during the inference phase. 147

These include encryption-based privacy protection 148

approaches such as Multi-Party Computation (Gol- 149

dreich, 1998; Dong et al., 2022), homomorphic 150

encryption (Acar et al., 2018; Hao et al., 2022; 151

Lu et al., 2023), and differential privacy in infer- 152

ence (Dwork, 2006, 2008; Majmudar et al., 2022). 153

For example, Huang et al. (2022) proposed a spe- 154

cialized encoding method, Cheetah, which encodes 155

vectors and matrices into homomorphic encryption 156

polynomials. However, these homomorphic en- 157

cryption methods are challenging to apply to cloud- 158

based black-box LLMs, as they require access to 159

the model’s internal structures. Additionally, Du 160

et al. (2023) introduced DP-Forward, which ap- 161

plies differential privacy during inference by per- 162

turbing embedding matrices in the forward pass 163

of language models. However, these differential 164

privacy approaches are mainly effective when the 165

LLM’s decision-making does not rely on sensitive 166

information, which differs from the focus of our 167

research. 168

In addition to the aforementioned methods, 169

pseudonymization techniques focus on safeguard- 170

ing the privacy of the prompt by identifying and 171

removing privacy-sensitive information. For exam- 172

ple, Kan et al. (2023) and Chen et al. (2023) pro- 173

posed anonymizing sensitive terms before inputting 174
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Cloud-
Based
LLM 

Service
Output Summary:
Clean-up operations are 
continuing across the Scottish 
Borders and Dumfries and 
Galloway after flooding.

Input Text:
The full cost of damage in 
Newton Stewart, one of the 
areas worst affected, is still being 
assessed.  … … Have you been 
affected by flooding in Dumfries 
and Galloway or the Borders?

Pseudonymized 
Input Text:
The full cost of damage in 
Port Glasgow, one of the 
areas worst affected, is still 
being assessed. … … Have 
you been affected by 
flooding in Glenrothes and 
Buchanan or the Borders?

Pseudonymized Output 
Summary:
Clean-up operations are 
continuing across the Welsh 
Marches and Glenrothes 
and Buchanan after 
flooding.

Detect Privacy Entities

Generate Replacement 
Mapping Set

Replace Privacy 
Entities in Text

[“Newton Stewart”, 
…,“Scottish Borders ”, …, 
“Dumfries”, “Galloway”]

{“Newton Stewart”: “Port 
Glasgow”, …, “Dumfries”:
“Glenrothes”, “Galloway”: 
“Buchanan”}

{…, “Welsh Marches”: 
“Scottish Borders”, …, 
“Glenrothes”: “Dumfries”, 
“Buchanan”: “Galloway”}

[…, “Port Glasgow”, …, 
“Welsh Marches”, …, 
“Glenrothes”, Buchanan”]

Generate Replacement 
Mapping Set

Detect Privacy Entities

Pseudonymization Framework

Local computation process Remote process

Figure 2: Overview of pseudonymization framework for cloud-based LLMs

them into the LLM and restoring them after the out-175

put. Lin et al. (2024) proposed a pseudonymization176

method to safeguard user privacy by converting177

user input from natural language into a sequence of178

emojis. Zhang et al. (2024b) introduced a mixed-179

scale model collaboration approach that combines180

the strengths of a large cloud-based model with a181

smaller, locally deployed model. However, there is182

currently no general definition of a pseudonymiza-183

tion framework for the inference phase of cloud-184

based LLMs. Additionally, these methods have185

primarily been tested on classification tasks, which186

differ from the core task of text generation in LLMs.187

Therefore, their results may not fully capture their188

effectiveness in text generation.189

3 Pesudonymization Framework190

As shown in Figure 2, a privacy-preserving cloud-191

based LLM access process consists of two steps:192

pseudonymizing the privacy information in the in-193

put text, as indicated by the blue arrow, and restor-194

ing the privacy information in the output results,195

as indicated by the red arrow. It is clear that the196

pseudonymization and restoration processes are197

logically identical, involving the detection of infor-198

mation to be replaced (e.g., privacy entities or enti-199

ties to be restored), the generation of replacement200

candidates for detected entities, and the execution201

of the replacement process. Furthermore, the detec-202

tion and candidate generation in the restoration pro-203

cess can refer to the results of the pseudonymiza-204

tion process, while the replacement operation it-205

self is identical to that in the pseudonymization206

process. Therefore, we propose that a general207

pseudonymization framework should include only208

the three components of detection, generation and209

replacement. In the following sections, we will 210

provide a detailed definition of the tasks for each 211

component and discuss several viable approaches 212

for each stage. 213

3.1 Detecting Privacy Information 214

Given a user’s input X , which may contain multi- 215

ple pieces of private information, we denote these 216

pieces as P = {pjAi
|pjAi

∈ X, 1 ≤ i ≤ n, 1 ≤ j ≤ 217

Ni}. Here, Ai represents the i-th privacy attribute 218

(e.g., name, location), and each pjAi
represents the 219

j-th instance of private information related to the 220

attribute Ai. The total number of private informa- 221

tion entries related to Ai is denoted as Ni. The 222

goal of the privacy information detection method 223

is to collect P ′ = {p′jAi
|p′jAi

∈ X, 1 ≤ i ≤ n, 1 ≤ 224

j ≤ Ni}, where P ′ represents the collection of de- 225

tected private information. To maximize security, 226

P ′ should closely approximate P , ensuring that all 227

relevant private information is correctly identified 228

while minimizing the risk of missing any sensitive 229

data. The three detection methods employed in our 230

experiments are described as follows. 231

NER-based Detection uses an off-the-shelf 232

NER system to identify spans of named entities 233

that correspond to privacy information categories. 234

In this work, we utilize the publicly available 235

BERT model, bert-large-cased-finetuned-conll03- 236

english 2. We refer to this method as DETNER. 237

Prompt-based Detection employs a locally de- 238

ployed, small-scale instruction-tuned LLM to iden- 239

tify named entities. We denote this method as 240

DETprompt. 241

Seq2Seq Detection is developed by fine-tuning 242

2https://huggingface.co/dbmdz/
bert-large-cased-finetuned-conll03-english
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Input John Edward Bates, formerly of
Spalding, is now living in London.

Output <ENT>John Edward Bates</ENT>,
(mark) formerly of <ENT>Spalding</ENT>,

is now living in <ENT>London</ENT>.
Output <ENT>, formerly of <ENT>, is now
(replace) living in <ENT>.

Table 1: Example output of Seq2Seq detection with
entity marking and replacement

a small-scale base LLM on a parallel corpus of243

pseudonymized texts generated using the NER-244

based detection method. This method generates245

sentences that maintain consistency with the in-246

put text while marking or replacing privacy enti-247

ties with designated tags, as illustrated in Table 1.248

We denote the two Seq2Seq detection variants as249

DETtag_mark and DETtag_rep.250

3.2 Generating Replacement Candidates251

Based on the detected privacy entities P ′, the next252

step is to generate candidate entities Q that do253

not contain any privacy information to replace P ′.254

Specifically, the goal of generation is to obtain a255

replacement mapping set P = {(p′jAi
, qjAi

)|p′jAi
∈256

X, 1 ≤ i ≤ n, 1 ≤ j ≤ Ni}, where qjAi
represents257

the generated candidate for p′jAi
. To ensure that258

the meaning of the original sentence remains intact259

after replacement, the replaced entities should gen-260

erally share certain common characteristics (e.g.,261

gender and language for names) with the original262

entities. Building on the aforementioned require-263

ment, the semantics of p′jAi
and qjAi

should be as264

distinct as possible, ensuring that privacy informa-265

tion cannot be easily inferred from qjAi
. The two266

candidate generation methods employed in our ex-267

periments are described as follows.268

Random Sampling utilizes the entities identi-269

fied in Section 3.1 as a candidate set. From this set,270

an entity belonging to the same category as the pri-271

vacy entities to be replaced is randomly selected as272

the replacement candidate. We denote this method273

as GENrand.274

Prompt-based Generation employs a locally275

deployed, small-scale instruction-tuned LLM to276

generate replacement candidates for the privacy277

entities. We denote this method as GENPrompt.278

3.3 Replace Privacy Entities279

Given the input text X and the replacement map-280

ping set P obtained from the previous sections, the281

next step is to replace the entity p′jAi
in X with the 282

corresponding replacement entity qjAi
. The result- 283

ing text after replacement is denoted as X ′. To 284

ensure that the meaning of the original text is pre- 285

served after the replacement, the remaining content 286

in the text, aside from the replaced entities, should 287

be appropriately adjusted. In other words, the goal 288

of privacy entity replacement is to ensure that X ′ 289

retains as much semantic correctness as possible. 290

X ′ is then processed through a prompt template 291

function and input into cloud-based LLMs, gener- 292

ating the output Y ′. As mentioned earlier, for Y ′, 293

there is no need to perform privacy entity detection 294

and replacement candidate generation. Instead, the 295

restoration process of Y ′ involves directly replac- 296

ing qjAi
in Y ′ with p′jAi

, similar to the replacement 297

process in X , resulting in the final output Y . The 298

three entity replacement methods employed in our 299

experiments are described as follows. 300

Direct Replacement refers to the process of 301

directly replacing p′jAi
with qjAi

without modifying 302

other parts of the text X . This method is denoted as 303

REPdirect. As previously mentioned, this approach 304

may introduce semantic errors. 305

Prompt-based Replacement employs a locally 306

deployed, small-scale instruction-tuned LLM to 307

perform the replacement of entity names. We de- 308

note this method as REPprompt. 309

Replacement through Text Generation exe- 310

cutes replacement during a controllable text gener- 311

ation process to ensure the semantic correctness of 312

the text after replacement. When the detected pri- 313

vacy entity term p′jAi
is encountered during the text 314

generation process, it is replaced by the correspond- 315

ing entity qjAi
, and the generation of the subsequent 316

token proceeds accordingly. The specific technical 317

details of this method will be discussed in Section 4. 318

We denote this method as REPgen. 319

4 Pesudonymization Through 320

Controllable Text Generation 321

We propose a pseudonymization replacement 322

method based on a controllable text generation 323

process, ensuring that the replaced text preserves 324

maximum semantic correctness. In this section, 325

we provide a detailed explanation of the method’s 326

process. 327

Given X = (x1, x2, . . . , xL), the generation 328

process of the LLM can be formulated as a se- 329

quential prediction of the next token, expressed as 330

4



The full cost of damage in Newton Stewart, one of … …

Input:

The full cost of damage in

Controllable Text Generation:

, one of … … 

Newton Stewart

Port Glasgow

(1) detect privacy 
entities during text 

generation

(2) generat 
replacement 
candidates

(3) replace privacy entities

(4) continue text generation

Figure 3: Workflow of pesudonymization through con-
trollable text generation

follows:331

ŷi = argmax P (yi | g(X), ŷ1, . . . , ŷi−1)332

Here, g(X) represents the prompt text generated333

from X using a predefined prompt template, and ŷi334

(where 1 ≤ i ≤ N ) denotes the predicted token at335

the i-th time step. As illustrated in Figure 3, during336

the pseudonymization process, the majority of the337

output text Ŷ = (ŷ1, . . . , ŷN ) remains identical to338

the input text X , except for a small portion where339

privacy entities is replaced.340

Note that when using NER-based or prompt-341

based detection methods to identify privacy entities,342

we first employ a model capable of generating text343

identical to the input. During the text generation344

process, we compare each generated token ŷi with345

elements in P ′ to determine whether ŷi corresponds346

to a privacy entity. Therefore, depending on the347

privacy entity detection method used, ŷi can take348

the following forms:349

(1) ŷi = xi, where xi /∈ P ′. Here, P ′ represents350

a set of identified privacy entities collected351

using NER-based or prompt-based detection352

methods, as described in Section 3.1.353

(2) ŷi = xi, where xi ∈ P ′. In this case, xi is354

recognized as a privacy entity by the NER-355

based or prompt-based detection methods.356

(3) ŷi = xi when utilizing the Seq2Seq detection357

method described in Section 3.1.358

(4) ŷi = <ENT>xi</ENT> or ŷi = <ENT>. In this359

case, xi is recognized as a privacy entity by360

the Seq2Seq detection method.361

Next, for privacy entity xi in cases (2) or (4),362

we generate the replacement candidate x′i corre-363

sponding to xi, based on the method described in364

Section 3.2. Then, we set ŷ′i = x′i. As shown in365

Figure 3, ŷ′i will be incorporated into the above366

formula, and the prediction for the output at the367

(i+ 1)-th time step will proceed as follows:368

ŷi+1 = argmaxP (yi+1| g(X), ŷ1, . . . , ŷi−1, ŷ
′
i) 369

This process continues until the entire sequence has 370

been generated. 371

The main contribution of this method lies in its 372

ability to decouple the end-to-end pseudonymiza- 373

tion text generation process3 into the three dis- 374

tinct stages described in Section 3. Addition- 375

ally, it achieves better pseudonymization results 376

by integrating different methods. By performing 377

pseudonymization through the controllable text 378

generation process, this approach ensures compre- 379

hensive coverage of privacy information detection 380

and the correctness of replacement candidate gen- 381

eration by integrating various detection and genera- 382

tion methods. Furthermore, this approach leverages 383

the strengths of LLMs and Seq2Seq generation pro- 384

cesses, maximizing the semantic correctness of the 385

text after replacement. 386

5 Experiment 387

5.1 Experiment Settings 388

Datasets We conduct experiments on several pub- 389

licly available real-world datasets across various 390

NLP tasks, including SQuAD 2.0 (Rajpurkar et al., 391

2016) for question answering, XSum (Narayan 392

et al., 2018), CNN/Dailymail (See et al., 2017), 393

and SAMSum (Gliwa et al., 2019) for summariza- 394

tion, GLUE (MNLI) (Williams et al., 2017; Wang 395

et al., 2019) for natural language inference, and 396

WMT14 (de-en) (Bojar et al., 2014) for machine 397

translation. For experimental efficiency, we ran- 398

domly sampled 1,000 samples from the test sets of 399

each dataset to serve as the test set. In this study, we 400

focus our analysis on three primary categories of 401

named entities: person, location, and organization. 402

Evaluation Metrics For different datasets, we 403

will use distinct performance evaluation metrics. 404

For SQuAD 2.0, we use the F1 score and Ex- 405

act Match (EM) (Rajpurkar et al., 2018) as the 406

evaluation metrics. For XSum, CNN/Dailymail, 407

and SAMSum, we use ROUGE-1, ROUGE-2, and 408

ROUGE-L (Lin, 2004) as the evaluation metrics. 409

For GLUE (MNLI), we use the accuracy score as 410

the evaluation metric. For WMT14 (de-en), we use 411

3In our preliminary experimental results, methods for
pseudonymization through end-to-end text generation, such
as those proposed by Yermilov et al. (2023) and Chen et al.
(2023), yielded catastrophic results when trained with a lim-
ited amount of training data.
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methods SQuAD XSum CNN/ SAMSum GLUE WMT14
2.0 Dailymail (MNLI) (de-en)

Qwen2.5-14B F1 = 79.1 ROUGE- ROUGE- ROUGE- ACC = BLEU =
-Instruct EM = 75.5 1/2/L = 1/2/L = 1/2/L = 84.3 12.2

25.4/7.0/17.8 30.8/10.2/20.5 41.9/15.8/32.8
Qwen2.5-1.5B F1 = 58.6 ROUGE- ROUGE- ROUGE- ACC = BLEU =
-Instruct EM = 55.4 1/2/L = 1/2/L = 1/2/L = 69.9 8.0

18.9/3.8/13.2 23.7/7.8/16.5 36.4/13.0/28.5
DETNER F1 = 76.6 ROUGE- ROUGE- ROUGE- ACC = BLEU =
+GENrand EM = 73.0 1/2/L = 1/2/L = 1/2/L = 81.6 9.9
+REPdirect 22.5/4.5/15.3 28.3/8.7/18.9 41.0/15.2/32.1
DETNER F1 = 75.7 ROUGE- ROUGE- ROUGE- ACC = BLEU =
+GENprompt EM = 71.2 1/2/L = 1/2/L = 1/2/L = 83.0 9.5
+REPdirect 23.0/4.9/15.8 28.8/8.7/19.2 40.7/15.2/31.9
DETprompt F1 = 74.8 ROUGE- ROUGE- ROUGE- ACC = BLEU =
+GENprompt EM = 70.9 1/2/L = 1/2/L = 1/2/L = 80.0 9.2
+REPprompt 22.9/5.7/15.9 24.4/7.1/16.3 32.3/11.3/25.5
DETNER F1 = 66.5 ROUGE- ROUGE- ROUGE- ACC = BLEU =
+GENrand EM = 61.7 1/2/L = 1/2/L = 1/2/L = 78.2 10.1
+REPgen 19.0/3.6/13.1 23.0/6.1/15.6 34.7/12.0/27.1
DETNER F1 = 67.9 ROUGE- ROUGE- ROUGE- ACC = BLEU =
+GENprompt EM = 62.8 1/2/L = 1/2/L = 1/2/L = 81.6 10.5
+REPgen 19.6/3.8/13.6 24.1/6.6/16.1 34.3/11.6/26.7
DETtag_mask F1 = 74.1 ROUGE- ROUGE- ROUGE- ACC = BLEU =
+GENprompt EM = 70.6 1/2/L = 1/2/L = 1/2/L = 80.8 6.9
+REPgen 21.9/4.7/15.2 29.7/9.7/20.1 40.8/15.0/31.7
DETtag_rep F1 = 71.3 ROUGE- ROUGE- ROUGE- ACC = BLEU =
+GENprompt EM = 66.8 1/2/L = 1/2/L = 1/2/L = 81.6 8.0
+REPgen 20.5/3.8/14.0 19.8/5.0/13.8 40.4/14.9/31.5

Table 2: Performance of various pseudonymization methods across different NLP tasks and datasets. The bolded
parts in the table represent the best results excluding the large-scale LLM.

the BLEU-4 (Papineni et al., 2002) score as the412

evaluation metric. In addition to these performance413

evaluation metrics, we also calculate the distance414

between the original text X and the replaced text415

X ′, defined as 1 − s(X,X ′), to assess the effec-416

tiveness of the pseudonymization method. Here,417

s(X,X ′) represents the cosine similarity between418

the sentence embedding vectors of X and X ′, both419

of which are computed using a pretrained model,420

All-Mpnet-Base-V2 4.421

Baseline Methods We designed two baseline422

methods and compared the pseudonymization423

method described in this paper with these base-424

lines: (1) directly using a cloud-based LLM (simu-425

lated using a locally deployed large-scale LLM) to426

perform experimental NLP tasks, and (2) directly427

4https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

using a local small-scale instruction-tuned LLM to 428

perform experimental NLP tasks. 429

Implementation Details For the efficiency of 430

the experiments, we locally deployed the Qwen2.5- 431

14B-Instruct5 as the large-scale LLM to simulate 432

the cloud-based LLMs. We used the Qwen2.5- 433

1.5B-Instruct6 as the local small-scale instruction- 434

tuned LLM for the prompt-based detection, gener- 435

ation, and replacement methods. As described in 436

Section 4, we then fine-tuned the Qwen2.5-1.5B 437

model7 to output either a repetition of the input 438

text or the results of the Seq2Seq detection method 439

for executing the replacement approach through 440

controllable text generation. A total of 20,000 sam- 441

5https://huggingface.co/Qwen/Qwen2.
5-14B-Instruct

6https://huggingface.co/Qwen/Qwen2.5-1.
5B-Instruct

7https://huggingface.co/Qwen/Qwen2.5-1.5B
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Figure 4: Performance metrics and pseudonymization effectiveness of various methods across different datasets

ples were randomly selected from the training sets442

of each dataset. Following the procedure outlined443

in Table 1, these samples were preprocessed and444

subsequently used as fine-tuning data. We fine-445

tuned the Qwen2.5-1.5B model for 3 epochs using446

a learning rate of 1.0e-4.447

5.2 Main Result448

Notably, each component of the proposed449

pseudonymization framework is decoupled, allow-450

ing the methods described in Section 3 to be451

freely combined. We evaluate the majority of452

possible method combinations and present the re-453

sults of several representative approaches, compar-454

ing them against the baselines. The results are455

shown in Table 2. It is evident that across var-456

ious NLP tasks and datasets, pseudonymization457

methods based on the proposed framework achieve458

results comparable to those of the large-scale LLM459

baseline. Specifically, these methods achieve over460

95% of the large-scale LLM baseline’s perfor-461

mance on SQuAD 2.0, CNN/DailyMail, SAMSum,462

and GLUE (MNLI), over 90% on XSum, and ap-463

proximately 85% on WMT14 (de-en). Across all464

datasets, the proposed methods significantly outper-465

form the small-scale LLM baseline. It is important466

to note that, in real-world scenarios, the parameter467

scale of cloud-based models is expected to be sig-468

nificantly larger than that of the locally deployed469

large-scale LLM baseline. This further highlights470

the necessity of the pseudonymization framework471

proposed in this paper for enabling the secure re-472

mote use of cloud-based large-scale LLMs.473

We further compared the key performance met- 474

rics and pseudonymization effectiveness of each 475

method across different NLP tasks and datasets, 476

with the results visualized in Figure 4. An in- 477

teresting finding is that, in tasks like QA and 478

summarization, which are less reliant on the se- 479

mantic details of the text, the combination of 480

DETNER + GENrand + REPdirect achieves the 481

best overall results in both performance metrics 482

and pseudonymization effectiveness. However, in 483

tasks like MNLI and MT, where text details sig- 484

nificantly impact the results, the combination of 485

DETNER+GENrand+REPgen and DETtagmask+ 486

GENprompt +REPgen consistently yields the best 487

overall performance. 488

Table 3 presents an example of the correct out- 489

put generated by the proposed method. In this 490

example, entities in the premise and hypothesis 491

texts, such as “Vosges” and “Rhine Valley”, were 492

replaced with other entities, like “Eifel Mountain” 493

and “Danube River Basin”, using the combina- 494

tion of DETNER + GENrand + REPgen. This 495

effectively protects the potential privacy informa- 496

tion contained within those entities. Meanwhile, 497

when the pseudonymized text was processed by a 498

large-scale LLM, it generated the correct inference, 499

whereas the small-scale model failed to do so. 500

5.3 Discussion 501

We further evaluated the effectiveness of various 502

methods in achieving the stage-specific objectives 503

throughout the different stages of the proposed 504

pseudonymization framework. 505
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Premise The vineyards hug the gentle slopes between the Vosges and the Rhine Valley
along a single narrow 120-km (75-mile) strip that stretches from Marlenheim,
just west of Strasbourg, down to Thann, outside Mulhouse.

Hypothesis The slopes between the Vosges and Rhine Valley are the only place appropriate
for vineyards.

Answer neutral
Large-scale LLM neutral (correct)
small-scale LLM contradiction (incorrect)

DETNER

+GENrand

+REPgen

Premise: The vineyards hug the gentle slopes between the Eifel Moun-
tains and the Danube River Basin along a single narrow 120-
km (75-mile) strip that stretches from Marsden, just west of
Erlangen, down to Thompson, outside Lyon City.

Hypothesis: The slopes between the Eifel Mountains and Danube River
Basin are the only place appropriate for vineyards.

Answer: neutral (correct)

Table 3: Example of correct output by the proposed method on GLUE (MNLI) dataset compared to baselines

NER prompt tag_mask tag_rep
PRR 65.7 47.9 33.5 43.1

(a)

rand prompt
PPS 74.9 45.2

(b)

direct prompt gen
SCS 20.9 19.7 19.2

(c)

Table 4: (a) Privacy Removal Rate (PRR) for each de-
tection method. (b) Privacy Preservation Score (PRS)
for each generation method. (c) Semantic Correctness
Score (SCS) for replacement method.

First, we calculate the Privacy Removal Rate506

(PRR) for each privacy entity detection method507

using the formula PRR = card(P ′∩P )
card(P ) × 100(%),508

where card(·) denotes the cardinality of the corre-509

sponding set. The results are shown in Table 4 (a).510

Notably, the NER-based detection method yielded511

the highest PRR.512

We compute the Privacy Preservation Score513

(PPS) for each replacement candidate generation514

method as the average distance between p′jAi
and515

qjAi
, following the formula PPS = avg(1 −516

s(p′jAi
, qjAi

)) × 100(%). It is evident that a higher517

PPS score indicates greater difficulty in inferring518

the privacy entity from the replacement entity,519

thereby offering better protection for privacy in-520

formation. The results are presented in Table 4 (b). 521

Notably, the random sampling generation method 522

achieved the highest PPS. 523

We compute the Semantic Correctness Score 524

(SCS) to assess the effectiveness of each entity 525

replacement method by measuring the perplexity 526

of X ′ using Qwen2.5-1.4B-Instruct. The SCS is 527

calculated as SCS = avg(loss(f(x′<i), x
′
i)) (x′i ∈ 528

X ′), where f(·) represents the next-token predic- 529

tion function, and loss(·) denotes the loss function 530

of the language model. A lower SCS indicates that 531

X ′ better aligns with the probability distribution 532

of the language model, thereby exhibiting higher 533

semantic correctness. The results are presented in 534

Table 4 (c). Notably, replacement through control- 535

lable text generation achieved the lowest SCS. 536

6 Conclusion 537

In this paper, we outline the process of remote user 538

interaction with LLMs and propose a comprehen- 539

sive definition of a pseudonymization framework 540

applicable to cloud-based LLMs. We believe that 541

this framework provides a universally applicable 542

approach to the text pseudonymization process and 543

can serve as a guide for future research in this 544

area. Additionally, we introduce a pseudonymiza- 545

tion method based on a controllable text generation 546

process, which ensures that the replaced text main- 547

tains maximal semantic correctness. Experimental 548

results demonstrate that the proposed framework 549

strikes an optimal balance between privacy protec- 550

tion and utility. 551
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Limitations552

The primary limitation of this work is that the553

pseudonymization process is implemented through554

three relatively independent processing stages555

rather than an end-to-end machine learning ap-556

proach. However, even end-to-end pseudonymiza-557

tion methods must inherently incorporate the three558

stages outlined in this paper: detection, genera-559

tion, and replacement. Given that these stages have560

distinct problem definitions and task objectives, in-561

tegrating them into a unified end-to-end framework562

presents a significant challenge. Addressing this563

challenge will be a key focus of our future research.564

In addition, we utilized straightforward methods565

to accomplish the objectives of each stage, such as566

NER and prompt-based approaches. However, the567

primary contribution of this work lies in propos-568

ing a general pseudonymization framework. Within569

this framework, incorporating more advanced meth-570

ods at each stage is expected to enhance overall571

performance.572

For the sake of experimental efficiency, this work573

employs the same entity replacement method in574

both the restoration and pseudonymization pro-575

cesses. However, in practical applications, different576

replacement methods could be utilized for these577

two processes, potentially enhancing the overall578

effectiveness of the approach.579

Although this work has validated the effective-580

ness of the proposed framework and methods on581

multiple NLP tasks across different datasets, cer-582

tain tasks, such as text continuation, remain un-583

explored. Text continuation presents unique chal-584

lenges for pseudonymization and restoration, as it585

may generate entities not present in the input text.586

Future work will include experiments to address587

this aspect.588

References589

Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and590
Mauro Conti. 2018. A survey on homomorphic en-591
cryption schemes: Theory and implementation. ACM592
Computing Surveys (Csur), 51(4):1–35.593

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda594
Askell, Anna Chen, Nova DasSarma, Dawn Drain,595
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.596
2022. Training a helpful and harmless assistant with597
reinforcement learning from human feedback. arXiv598
preprint arXiv:2204.05862.599

Ondrej Bojar, Christian Buck, Christian Federmann,600
Barry Haddow, Philipp Koehn, Johannes Leveling,601

Christof Monz, Pavel Pecina, Matt Post, Herve Saint- 602
Amand, Radu Soricut, Lucia Specia, and Ale s Tam- 603
chyna. 2014. Findings of the 2014 workshop on 604
statistical machine translation. In Proceedings of the 605
Ninth Workshop on Statistical Machine Translation, 606
pages 12–58. 607

Hannah Brown, Katherine Lee, Fatemehsadat 608
Mireshghallah, Reza Shokri, and Florian Tramèr. 609
2022. What does it mean for a language model 610
to preserve privacy? In Proceedings of the 2022 611
ACM conference on fairness, accountability, and 612
transparency, pages 2280–2292. 613

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, 614
Johannes Gehrke, Eric Horvitz, et al. 2023. Sparks 615
of artificial general intelligence: Early experiments 616
with gpt-4. arXiv preprint arXiv:2303.12712. 617

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej 618
Kos, and Dawn Song. 2019. The secret sharer: Eval- 619
uating and testing unintended memorization in neu- 620
ral networks. In 28th USENIX security symposium 621
(USENIX security 19), pages 267–284. 622

Yu Chen, Tingxin Li, Huiming Liu, and Yang Yu. 623
2023. Hide and seek (has): A lightweight frame- 624
work for prompt privacy protection. arXiv preprint 625
arXiv:2309.03057. 626

Jianfeng Chi, Emmanuel Owusu, Xuwang Yin, Tong Yu, 627
William Chan, et al. 2018. Privacy partitioning: Pro- 628
tecting user data during the deep learning inference 629
phase. arXiv preprint arXiv:1812.02863. 630

Caiqin Dong, Jian Weng, Jia-Nan Liu, Yue Zhang, Yao 631
Tong, Anjia Yang, Yudan Cheng, and Shun Hu. 2022. 632
Fusion: Efficient and secure inference resilient to 633
malicious servers. arXiv preprint arXiv:2205.03040. 634

Minxin Du, Xiang Yue, Sherman SM Chow, Tianhao 635
Wang, Chenyu Huang, and Huan Sun. 2023. Dp- 636
forward: Fine-tuning and inference on language mod- 637
els with differential privacy in forward pass. In Pro- 638
ceedings of the 2023 ACM SIGSAC Conference on 639
Computer and Communications Security, pages 2665– 640
2679. 641

Cynthia Dwork. 2006. Differential privacy. In Inter- 642
national colloquium on automata, languages, and 643
programming, pages 1–12. Springer. 644

Cynthia Dwork. 2008. Differential privacy: A survey 645
of results. In International conference on theory and 646
applications of models of computation, pages 1–19. 647
Springer. 648

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek- 649
sander Wawer. 2019. SAMSum corpus: A human- 650
annotated dialogue dataset for abstractive summariza- 651
tion. In Proceedings of the 2nd Workshop on New 652
Frontiers in Summarization, pages 70–79. 653

Oded Goldreich. 1998. Secure multi-party computation. 654
Manuscript. Preliminary version, 78(110):1–108. 655

9



Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing,656
Guowen Xu, and Tianwei Zhang. 2022. Iron: Pri-657
vate inference on transformers. Advances in neural658
information processing systems, 35:15718–15731.659

Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jian-660
sheng Ding. 2022. Cheetah: Lean and fast secure661
{Two-Party} deep neural network inference. In 31st662
USENIX Security Symposium (USENIX Security 22),663
pages 809–826.664

Marija Jegorova, Chaitanya Kaul, Charlie Mayor, Ali-665
son Q O’Neil, Alexander Weir, et al. 2022. Survey:666
Leakage and privacy at inference time. IEEE Trans-667
actions on Pattern Analysis and Machine Intelligence,668
45(7):9090–9108.669

Zhigang Kan, Linbo Qiao, Hao Yu, Liwen Peng, Yifu670
Gao, and Dongsheng Li. 2023. Protecting user pri-671
vacy in remote conversational systems: A privacy-672
preserving framework based on text sanitization.673
arXiv preprint arXiv:2306.08223.674

Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022.675
Deduplicating training data mitigates privacy risks676
in language models. In International Conference on677
Machine Learning, pages 10697–10707. PMLR.678

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori679
Hashimoto. 2021. Large language models can be680
strong differentially private learners. arXiv preprint681
arXiv:2110.05679.682

Chin-Yew Lin. 2004. Rouge: A package for automatic683
evaluation of summaries. In Text summarization684
branches out, pages 74–81.685

Guo Lin, Wenyue Hua, and Yongfeng Zhang. 2024.686
Emojicrypt: Prompt encryption for secure commu-687
nication with large language models. arXiv preprint688
arXiv:2402.05868.689

Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian690
Liu, Cheng Hong, Kui Ren, Tao Wei, and WenGuang691
Chen. 2023. Bumblebee: Secure two-party inference692
framework for large transformers. Cryptology ePrint693
Archive.694

Jimit Majmudar, Christophe Dupuy, Charith Peris, Sami695
Smaili, Rahul Gupta, and Richard Zemel. 2022. Dif-696
ferentially private decoding in large language models.697
arXiv preprint arXiv:2205.13621.698

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.699
2018. Don’t give me the details, just the summary!700
topic-aware convolutional neural networks for ex-701
treme summarization. ArXiv, abs/1808.08745.702

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,703
Lama Ahmad, et al. 2024. Gpt-4 technical report.704
Preprint, arXiv:2303.08774.705

Xudong Pan, Mi Zhang, Shouling Ji, and Min Yang.706
2020. Privacy risks of general-purpose language707
models. In 2020 IEEE Symposium on Security and708
Privacy (SP), pages 1314–1331. IEEE.709

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 710
Jing Zhu. 2002. Bleu: a method for automatic evalu- 711
ation of machine translation. In Proceedings of the 712
40th annual meeting of the Association for Computa- 713
tional Linguistics, pages 311–318. 714

Pranav Rajpurkar, Jian Zhang, and Percy Liang. 2018. 715
Know what you don’t know: Unanswerable questions 716
for squad. In ACL 2018. 717

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 718
Percy Liang. 2016. SQuAD: 100,000+ questions 719
for machine comprehension of text. In Proceedings 720
of the 2016 Conference on Empirical Methods in 721
Natural Language Processing, pages 2383–2392. 722

Abigail See, Peter J. Liu, and Christopher D. Manning. 723
2017. Get to the point: Summarization with pointer- 724
generator networks. In Proceedings of the 55th An- 725
nual Meeting of the Association for Computational 726
Linguistics (Volume 1: Long Papers), pages 1073– 727
1083. 728

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 729
Martinet, Marie-Anne Lachaux, et al. 2023. Llama: 730
Open and efficient foundation language models. 731
arXiv preprint arXiv:2302.13971. 732

Alex Wang, Amanpreet Singh, Julian Michael, Felix 733
Hill, Omer Levy, et al. 2019. GLUE: A multi-task 734
benchmark and analysis platform for natural lan- 735
guage understanding. In Proceedings of the 2018 736
EMNLP Workshop BlackboxNLP: Analyzing and In- 737
terpreting Neural Networks for NLP. In the Proceed- 738
ings of ICLR. 739

Adina Williams, Nikita Nangia, and Samuel R Bow- 740
man. 2017. A broad-coverage challenge corpus for 741
sentence understanding through inference. arXiv 742
preprint arXiv:1704.05426. 743

Xinwei Wu, Li Gong, and Deyi Xiong. 2022. Adap- 744
tive differential privacy for language model training. 745
In Proceedings of the First Workshop on Federated 746
Learning for Natural Language Processing (FL4NLP 747
2022), pages 21–26. 748

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, 749
and Shangguang Wang. 2024. Fwdllm: Efficient 750
fedllm using forward gradient. arXiv. Available 751
at: hjp://arxiv. org/abs/2308.13894 (Accessed: 11 752
March 2024). 753

Biwei Yan, Kun Li, Minghui Xu, Yueyan Dong, 754
Yue Zhang, Zhaochun Ren, and Xiuzhen Cheng. 755
2024. On protecting the data privacy of large lan- 756
guage models (llms): A survey. arXiv preprint 757
arXiv:2403.05156. 758

Oleksandr Yermilov, Vipul Raheja, and Artem Chern- 759
odub. 2023. Privacy-and utility-preserving nlp with 760
anonymized data: A case study of pseudonymization. 761
arXiv preprint arXiv:2306.05561. 762

10

https://arxiv.org/abs/2303.08774


Sixing Yu, J Pablo Muñoz, and Ali Jannesari. 2023.763
Federated foundation models: Privacy-preserving764
and collaborative learning for large models. arXiv765
preprint arXiv:2305.11414.766

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan767
Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and Yiran768
Chen. 2024a. Towards building the federatedgpt:769
Federated instruction tuning. In ICASSP 2024-2024770
IEEE International Conference on Acoustics, Speech771
and Signal Processing (ICASSP), pages 6915–6919.772
IEEE.773

Kaiyan Zhang, Jianyu Wang, Ermo Hua, Biqing Qi,774
Ning Ding, and Bowen Zhou. 2024b. Cogenesis: A775
framework collaborating large and small language776
models for secure context-aware instruction follow-777
ing. arXiv preprint arXiv:2403.03129.778

11


	Introduction
	Related Works
	Pesudonymization Framework
	Detecting Privacy Information
	Generating Replacement Candidates
	Replace Privacy Entities

	Pesudonymization Through Controllable Text Generation
	Experiment
	Experiment Settings
	Main Result
	Discussion

	Conclusion

