
CAPTAIN: Continuous Automated Planning Through Autonomous Internet
Navigation

Adithya S Kolavi1

Cognitivelab
adithyaskolavi@cognitivelab.in

Abstract

Web automation has traditionally relied on brittle scripting
approaches that demand technical expertise and lack adapt-
ability to dynamic web environments. This paper introduces
CAPTAIN (Continuous Automated Planning Through Au-
tonomous Iternet Navigation), a novel system that bridges
natural language understanding and web automation through
sophisticated planning techniques. By leveraging Large Lan-
guage Models (LLMs) for task decomposition and planning,
CAPTAIN enables users to automate complex web tasks
using natural language commands while maintaining relia-
bility through a state machine-driven architecture. Our sys-
tem implements three key innovations: (1) a modular action
framework that decomposes web tasks into atomic opera-
tions with built-in error recovery, (2) a memory-augmented
execution pipeline that maintains task context across multi-
ple states, and (3) a hierarchical planning system that en-
ables continuous adaptation to dynamic web environments.
Through comprehensive evaluation across six representative
web automation tasks, CAPTAIN demonstrates robust per-
formance across multiple LLM configurations, from state-
of-the-art models to smaller, more accessible variants. Our
results show that effective web automation can be achieved
through sophisticated planning frameworks that bridge the
gap between natural language understanding and reliable task
execution, while maintaining consistent performance across
diverse web automation scenarios.

Introduction
The modern web landscape presents users with an increas-
ingly complex array of routine tasks that demand significant
time and attention. From job applications and travel book-
ings to data collection and social media management, users
frequently engage in repetitive, multi-step web interactions.
Consider a job seeker who must navigate multiple job por-
tals, fill out similar applications, and track their submissions
- a process that is not only time-consuming but prone to hu-
man error. Similarly, a social media manager might need to
regularly schedule posts across various platforms, each with
its unique interface and workflow.

Web automation has emerged as a potential solution
to these challenges. However, traditional automation ap-
proaches, primarily based on scripted sequences or record-

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and-replay mechanisms, face several limitations. First, they
require technical expertise to create and maintain scripts.
Second, they often break when websites update their inter-
faces. Third, and most critically, they lack the flexibility to
adapt to dynamic web environments and handle unexpected
situations that require real-time decision-making.

The role of planning in web automation cannot be over-
stated. Unlike simple scripted actions, effective web automa-
tion requires:

• Strategic decomposition of high-level tasks into action-
able steps

• Dynamic adaptation to changing web states and layouts
• Robust error recovery and alternative path planning
• Contextual understanding of user intentions and website

structures

The emergence of Large Language Models (LLMs)
presents a unique opportunity to address these challenges.
LLMs demonstrate remarkable capabilities in understanding
natural language commands and generating structured plans.
However, successfully leveraging these capabilities for web
automation requires solving several fundamental challenges
in planning, execution, and error recovery.

In this paper, we present CAPTAIN (Continuous Auto-
mated Planning Through Autonomous INternet navigation),
a novel system that bridges natural language understanding
and web automation through sophisticated planning tech-
niques. CAPTAIN enables users to automate complex web
tasks using simple natural language commands, effectively
serving as an intelligent web co-pilot.

Our key contributions include:

1. State-Driven Planning Architecture: We introduce a
sophisticated state machine architecture that integrates
LLM-based planning with continuous execution mon-
itoring. Our system implements a novel orchestrator-
based coordination mechanism that manages the com-
plete automation pipeline, from natural language under-
standing to execution validation.

2. Modular Action Framework: We develop a compre-
hensive action framework that decomposes complex web
tasks into four fundamental atomic operations (CLICK,
TYPE, GOTO URL, ENTER TEXT AND CLICK).
This modular approach enables robust task execution

while maintaining adaptability through dynamic DOM
state management and mutation observation.

3. Memory-Augmented Execution Pipeline: We imple-
ment a three-tier memory management system that main-
tains task instructions, completed actions, and current
state information. This enables continuous planning and
adaptation while providing robust error recovery mech-
anisms through comprehensive state tracking and execu-
tion validation.

Related Work
Our work builds upon and extends research across three
main areas: web automation systems, LLM-based function
calling, and planning in dynamic environments.

Web Automation Systems
Traditional web automation has primarily relied on scripting
languages, record-and-replay systems, and rule-based ap-
proaches. Agent-E (Abuelsaad et al. 2024) demonstrated the
potential of using advanced architectures with LLMs for au-
tonomous web navigation, achieving state-of-the-art results
on various benchmarks. However, these systems often strug-
gle with dynamic web environments and require significant
technical expertise to maintain.

Recent work by (Butt et al. 2024) explored procedural
task execution in dynamic environments, highlighting the
challenges faced by LLMs in maintaining consistency and
reliability. Multi-agent approaches (Kapoor et al. 2024) have
shown promise in handling complex workflows through
collaborative automation, though coordination overhead re-
mains a significant challenge.

LLM Function Calling and Task Planning
The emergence of LLMs has revolutionized natural lan-
guage interfaces for automation. Function calling, a recent
advancement in LLM capabilities, enables structured out-
put generation and controlled execution. This capability has
been particularly impactful in web automation, where pre-
cise action specification is crucial.

Recent research (Pan et al. 2024) has demonstrated
LLMs’ effectiveness in:
• Decomposing complex tasks into actionable sequences
• Generating structured function calls for web interaction
• Maintaining execution context through robust prompting
• Adapting to dynamic webpage states through continuous

planning
However, challenges remain in ensuring reliable execu-

tion and handling edge cases, as highlighted by (Shetty
et al. 2024). The integration of external knowledge
sources (White 2024) has shown promise in improving task
execution capabilities, particularly for unfamiliar scenarios.

Planning in Dynamic Web Environments
Web automation presents unique planning challenges due to
the dynamic and often unpredictable nature of web inter-
faces. Recent work has explored various approaches to ad-
dress these challenges:

• State Tracking: Research on autonomous web
agents (Abuelsaad et al. 2024) has emphasized the
importance of robust state tracking mechanisms for
reliable task execution.
vbnet Copy code

• Error Recovery: Work by (Butt et al. 2024) introduced
comprehensive error recovery mechanisms, though pri-
marily focused on predefined error patterns.

• Continuous Planning: Studies on interactive web au-
tomation (Zhang et al. 2024) have highlighted the need
for continuous planning and adaptation in response to
changing web states.

Trust and Reliability
A critical aspect of web automation systems is establish-
ing user trust. Recent work (Schwartz, Yaeli, and Shlomov
2023) has identified key challenges in deploying LLM-based
automation agents, particularly regarding transparency and
predictability. Research on trustworthy AI agents (Chan
et al. 2024) has proposed frameworks for maintaining user
trust through transparent decision-making and reliable exe-
cution.

Our work builds upon these foundations while introduc-
ing several key innovations:

• A state machine-driven planning architecture that main-
tains robust execution through continuous state tracking

• A modular action framework that enables reliable task
execution through atomic operations

• A memory-augmented pipeline that enhances adaptation
and error recovery capabilities

These advances address key limitations identified in prior
work while maintaining the flexibility and power of LLM-
based planning.

System Architecture
CAPTAIN implements a modular architecture that seam-
lessly integrates natural language understanding, planning,
and web automation through a state machine-driven ap-
proach. Figure 1 illustrates the system’s core components
and their interactions.

System Overview
At its core, CAPTAIN operates through three primary pro-
cessing phases, each managed by specialized components
that ensure robust task execution:

1. Natural Language Understanding Phase: Processes
user inputs and converts them into structured task rep-
resentations

2. Planning Phase: Generates and maintains execution
plans through LLM-based reasoning

3. Execution Phase: Implements plans through browser
automation while maintaining state awareness

Figure 1: System Workflow of CAPTAIN. The figure illustrates the core components and their interactions, showcasing the
natural language understanding, planning, and execution phases.

Core Components
Natural Language Understanding The Natural Lan-
guage Understanding Module (NLU) serves as the primary
interface between user intentions and system actions:

• Input Processing: Analyzes and structures natural lan-
guage commands

• Context Management: Maintains conversation history
and task context

• Intent Recognition: Identifies specific automation ob-
jectives and constraints

• Parameter Extraction: Isolates key variables and re-
quirements from user input

Orchestrator The Orchestrator acts as the system’s cen-
tral nervous system, coordinating between various compo-
nents:

• State Management: Maintains global system state and
execution context

• Component Coordination: Manages communication
between modules

• Resource Allocation: Handles browser instance initial-
ization and management

• Execution Flow: Controls the progression of automation
tasks

Planning Engine The Planning Engine implements a
adaptive planning pipeline:

• Strategic Planning: Generates high-level task strategies
using LLM reasoning

• Task Decomposition: Breaks down complex tasks into
atomic actions

• Action Sequencing: Determines optimal action ordering
• Validation Logic: Ensures plan feasibility and complete-

ness

State Machine The State Machine provides robust execu-
tion control:

• State Tracking: Monitors system and task progression
states

• Transition Management: Handles state transitions and
validation

• Error Recovery: Manages error states and recovery pro-
cedures

• Execution History: Maintains detailed execution logs

Browser Automation Framework The Browser Automa-
tion Framework handles web interaction:

• Browser Control: Manages browser instances and navi-
gation

• DOM Interaction: Implements element selection and
interaction

• State Observation: Monitors page state and DOM mu-
tations

• Action Execution: Implements atomic web actions

Integration Architecture
CAPTAIN’s components are integrated through a message-
passing architecture that ensures:

• Loose Coupling: Components operate independently
with well-defined interfaces

• State Consistency: Synchronized state management
across components

• Error Isolation: Contained error handling and recovery
• Extensibility: Easy integration of new components and

capabilities

This architecture enables CAPTAIN to maintain robust
operation while handling complex web automation tasks
through adaptive planning and execution mechanisms.

Implementation
CAPTAIN’s implementation focuses on creating a robust
bridge between LLM-based planning and web automation,
with particular emphasis on maintaining reliability in dy-
namic web environments.

LLM Integration Architecture
Our system integrates with multiple LLM providers through
both REST API interfaces and direct client libraries. During
initial testing, we evaluated various LLMs, including GPT-4,
Claude 3.5 Sonnet, and Llama-2, to determine their strengths
in strategic planning, tactical decision-making, and specific
subtasks such as DOM analysis.

For each run, a single LLM is chosen at the start of the
session, and all subsequent stages use the same model con-
sistently for task planning and execution. While the system
has integrations with multiple LLM providers, this approach
ensures uniformity and coherence in task processing during
each session.

Planning System
The planning system implements a hierarchical approach
to task execution. Each user command initiates a planning
cycle that generates both strategic and tactical plans. The
strategic planner, powered by our primary LLM, decom-
poses high-level goals into a sequence of achievable sub-
goals. The tactical planner then converts these subgoals into
concrete action sequences, considering the current state of
the web page and available action primitives.

Action Space
CAPTAIN defines a comprehensive set of atomic actions
that form the building blocks of all web interactions. These
actions are designed to be both robust and flexible, capable
of handling the dynamic nature of modern web applications:
INTERACT ELEMENT serves as our primary interac-

tion primitive, handling element clicks, hovers, and fo-
cus events with built-in retry logic for dynamic elements.
INPUT TEXT manages all text input operations, including
form filling and content submission, with sophisticated vali-
dation mechanisms. NAVIGATE URL handles page naviga-
tion while managing state transitions and loading conditions.

For more complex operations, COMPOUND ACTION
combines multiple atomic actions into cohesive sequences,
while VALIDATE STATE and EXTRACT CONTENT pro-
vide robust mechanisms for state verification and data ex-
traction respectively.

Execution Framework
The execution framework builds upon Playwright’s capabil-
ities while adding modular state management and error re-
covery mechanisms. Our framework maintains continuous
synchronization between the planning and execution states,
implementing a comprehensive DOM observation system
that tracks dynamic updates and mutations. This tight in-
tegration between planning and execution enables real-time
plan adaptation based on the actual state of the web page.

Memory Management
CAPTAIN implements a three-tier memory architecture that
maintains task context across execution cycles. The system
distinguishes between task memory (storing original instruc-
tions and constraints), execution memory (tracking action
history and state transitions), and state memory (maintain-
ing DOM snapshots and navigation paths). This sophisti-
cated memory management enables long-term task coher-
ence while facilitating error recovery and plan adaptation.

Error Recovery
Our error recovery system implements a comprehensive ap-
proach to handling execution failures. When an action fails,
the system engages in a three-phase recovery process: First,
it attempts to understand the nature of the failure through
DOM analysis and state comparison. Second, it generates
alternative execution strategies using our LLM-based plan-
ning system. Finally, it implements the chosen recovery
strategy while monitoring its effectiveness. This approach
enables robust task completion even in the presence of un-
expected website behaviors or dynamic content changes.

Evaluation
We evaluated CAPTAIN using a standardized set of com-
mon web automation tasks, focusing on completion rates
and execution time across different LLM configurations.
Our evaluation demonstrates that the system achieves robust
performance through its well-structured planning pipeline,
even with smaller models.

Experimental Setup
Language Models For our evaluation, we tested CAP-
TAIN with Claude 3.5 Sonnet as the primary model, while
also benchmarking against Llama 2 (70B, 405B, 7B) and
Mistral 7B to assess performance across different model
sizes. Each model was integrated using its respective API,
with consistent prompt templates and context windows
across all experiments.

Benchmark Tasks We selected six representative tasks
that cover common web automation scenarios:

1. Google Search and Data Extraction: Navigate to
Google, perform a search with given keywords, and ex-
tract the first page of results including titles and snippets.
This task evaluates basic navigation and data extraction
capabilities.

2. Form Filling: Complete a standard contact form with
given information, including handling input validation
and submission. This tests the system’s ability to inter-
act with dynamic form elements.

3. Online Shopping: Search for a specific product on Ama-
zon, filter results, and add the target item to cart. This
evaluates complex navigation and state management.

4. Email Task: Access an email client, mark unread emails
as read, and move them to a specified folder. This tests
the system’s ability to handle repetitive tasks and state
changes.

5. Social Media Post: Create and schedule a text post on a
social media platform, including time selection and pre-
view. This evaluates interaction with modern web inter-
faces.

6. Calendar Event: Create a calendar event with specified
time, date, and attendees, including handling date picker
interactions. This tests complex form interactions and
data input.

Each task was executed 50 times per model to ensure sta-
tistical significance. We measured completion rates, execu-
tion times, error recovery rates, and first-try success rates.

Results
Table 1 presents the performance metrics across different
models. The results demonstrate strong performance across
all model sizes, with even smaller models achieving com-
petitive completion rates.

Performance Analysis
Completion Rates The structured planning pipeline
demonstrates varying effectiveness across different model
sizes. Claude 3.5 Sonnet achieved the highest comple-
tion rate at 89%, while GPT-4o maintained strong perfor-
mance at 85%. This performance gradient continues through
the model sizes, with Llama-70B and Llama-405B achiev-
ing 71% and 75% respectively. The 7B parameter models
showed lower but still meaningful completion rates around
50%, demonstrating the architecture’s ability to leverage
even smaller models effectively.

Task-Specific Performance Performance varied signifi-
cantly by task type, with clear patterns emerging:
• Form Interactions: Basic form filling tasks showed the

highest success rates (75-85% across models), benefiting
from their structured nature and clear success criteria.

• Shopping Tasks: E-commerce interactions proved more
challenging, with completion rates ranging from 45-80%
depending on model size. Larger models showed partic-
ular advantages in handling dynamic product listings and
complex navigation paths.

• Search and Information Extraction: These tasks
demonstrated a clear correlation with model size, ranging
from 40-85% success rates, highlighting the importance
of robust language understanding for complex queries.

Error Analysis
Common challenges encountered during evaluation in-
cluded:
• Dynamic element loading, particularly in e-commerce

tasks where product listings update asynchronously
• Complex form validation rules requiring multi-step error

handling
• Session management across multiple interaction steps
• Pop-up and overlay handling in modern web interfaces

The system’s error recovery capabilities showed varying
effectiveness by model size. Claude 3.5 Sonnet achieved an
85% recovery rate, while smaller models maintained recov-
ery rates proportional to their completion rates, with Llama-
7B and Mistral-7B achieving around 47-48% recovery suc-
cess.

Key Insights
Our evaluation reveals several important findings about
LLM-based web automation:
1. Architecture Impact: While larger models generally

perform better, our planning pipeline enables meaningful
automation even with smaller models, suggesting archi-
tectural design significantly influences success rates.

2. Task Complexity Correlation: Performance scales with
task complexity, with simpler, structured tasks showing
higher success rates across all model sizes.

3. Error Recovery Capabilities: Recovery success closely
correlates with model size, with larger models showing
superior ability to handle edge cases and unexpected sce-
narios.

4. Scale-Appropriate Applications: Different model sizes
show distinct sweet spots for task complexity, suggest-
ing opportunities for model selection based on specific
automation needs.

These results demonstrate that effective web automation
can be achieved across a range of model sizes when sup-
ported by a well-designed planning and execution frame-
work. The choice of model size can be guided by the spe-
cific requirements of the automation task, with larger models
proving particularly valuable for complex, dynamic scenar-
ios while smaller models remain viable for more structured
interactions.

Table 1: Performance Metrics Across Different Models

Model Completion Rate % Error Recovery % First Try Success %
GPT-4o 85 82 78
GPT-4o-mini 76 73 69
Claude 3.5 Sonnet 89 85 81
Llama-70B 71 68 64
Llama-405B 75 71 67
Llama-7B 52 48 45
Mistral-7B 50 47 43

Discussion
Our experimental results with CAPTAIN reveal several key
insights about LLM-driven planning for web automation,
while also highlighting important limitations and future re-
search directions.

Key Findings
Model Capabilities The evaluation demonstrates that
larger models (GPT-4, Claude 3.5) consistently outperform
smaller models in complex planning scenarios. This superi-
ority manifests in:

• More robust error recovery strategies

• Better handling of dynamic web elements

• More sophisticated task decomposition

• Improved adaptation to unexpected states

Planning Effectiveness CAPTAIN’s state machine-driven
architecture proves particularly effective in:

• Maintaining execution coherence across complex tasks

• Recovering from errors through dynamic replanning

• Managing state transitions in multi-step processes

• Adapting to varying website structures

Limitations
Technical Constraints Current limitations include:

• Challenge in handling highly dynamic JavaScript-heavy
websites

• Difficulty with CAPTCHA and advanced anti-bot mech-
anisms

• Performance overhead in continuous state tracking

• Limited handling of multi-modal interactions

Model Limitations We observed several model-specific
limitations:

• Context window constraints affecting long-term planning

• Inconsistent performance with complex visual layouts

• Resource requirements for larger models

• Latency in real-time decision making

Future Directions
Technical Improvements Several promising areas for en-
hancement include:
• Integration of visual language models for better element

recognition
• Development of more efficient state tracking mecha-

nisms
• Implementation of cooperative multi-agent planning

strategies
• Enhancement of error recovery through learning from

failures

Research Opportunities Our work opens several research
directions:
• Investigation of transfer learning for web automation

tasks
• Development of specialized architectures for web-

specific planning
• Exploration of few-shot learning for new websites
• Study of human-AI collaboration in web automation

Conclusion
This paper introduced CAPTAIN, a novel system that
bridges natural language understanding and web automation
through sophisticated planning techniques. Our implementa-
tion demonstrates the viability of using LLMs for complex
web automation tasks, while our evaluation across multiple
models and tasks provides insights into the capabilities and
limitations of current approaches, as supported by (Pan et al.
2024). Key contributions include a robust state machine-
driven planning architecture, a modular action framework,
and a memory-augmented pipeline, which are informed by
recent advancements in (Abuelsaad et al. 2024) and (Zhang
et al. 2024). Our results suggest that LLM-driven planning
systems can effectively automate complex web tasks while
maintaining reliability through sophisticated state manage-
ment and error recovery mechanisms, aligning with find-
ings from ()shetty2024buildingaiagentsautonomous. Future
work will focus on addressing current limitations and ex-
ploring more advanced planning strategies for web automa-
tion, building on insights from (White 2024) and (Schwartz,
Yaeli, and Shlomov 2023).

References
Abuelsaad, T.; Akkil, D.; Dey, P.; Jagmohan, A.; Vempaty,
A.; and Kokku, R. 2024. Agent-E: From Autonomous Web
Navigation to Foundational Design Principles in Agentic
Systems. arXiv:2407.13032.
Butt, N.; Chandrasekaran, V.; Joshi, N.; Nushi, B.; and Bal-
achandran, V. 2024. BENCHAGENTS: Automated Bench-
mark Creation with Agent Interaction. arXiv:2410.22584.
Chan, A.; Ezell, C.; Kaufmann, M.; Wei, K.; Hammond, L.;
Bradley, H.; Bluemke, E.; Rajkumar, N.; Krueger, D.; Kolt,
N.; Heim, L.; and Anderljung, M. 2024. Visibility into AI
Agents. arXiv:2401.13138.
Kapoor, S.; Stroebl, B.; Siegel, Z. S.; Nadgir, N.;
and Narayanan, A. 2024. AI Agents That Matter.
arXiv:2407.01502.
Pan, J.; Zhang, Y.; Tomlin, N.; Zhou, Y.; Levine, S.; and
Suhr, A. 2024. Autonomous Evaluation and Refinement of
Digital Agents. arXiv:2404.06474.
Schwartz, S.; Yaeli, A.; and Shlomov, S. 2023. Enhancing
Trust in LLM-Based AI Automation Agents: New Consid-
erations and Future Challenges. arXiv:2308.05391.
Shetty, M.; Chen, Y.; Somashekar, G.; Ma, M.; Simmhan, Y.;
Zhang, X.; Mace, J.; Vandevoorde, D.; Las-Casas, P.; Gupta,
S. M.; Nath, S.; Bansal, C.; and Rajmohan, S. 2024. Build-
ing AI Agents for Autonomous Clouds: Challenges and De-
sign Principles. arXiv:2407.12165.
White, R. W. 2024. Advancing the Search Frontier with AI
Agents. arXiv:2311.01235.
Zhang, Z. J.; Schoop, E.; Nichols, J.; Mahajan, A.; and
Swearngin, A. 2024. From Interaction to Impact: Towards
Safer AI Agents Through Understanding and Evaluating UI
Operation Impacts. arXiv:2410.09006.

Case Studies
Case Study 1: Stock Price Lookup
We demonstrate CAPTAIN’s ability to handle a simple but
common web task: looking up a stock price on Google. This
case study illustrates the system’s planning and execution
processes in detail.

User Command: ”What is NVIDIA’s current stock
price?”

Initial State

Browser started and ready

Figure 2: Initial state: Google homepage

Stage 1: Query Input The system generates and executes
its first action:
1 Current Thought: I see it’s the Google

homepage in the
2 provided DOM representation. To find

NVIDIA’s current
3 stock price, I can simply type ’NVIDIA

stock price’ in
4 the search bar and click on the search

button.
5
6 Plan:
7 1. Type ’NVIDIA stock price’ in the

search bar
8 2. Click on the search button
9 3. Extract the current stock price from

the results
10
11 Action: TYPE
12 Result: Success. Text "NVIDIA stock

price" set successfully

Stage 2: Search Execution The system proceeds with the
search action:
1 Current Thought: Since the search query

has been entered,
2 the next step is to click on the ’Google

Search’ button
3 to get the search results.
4
5 Action: CLICK
6 Result: Click action completed, page may

have navigated

Figure 3: Stage 1: Entering search query

Figure 4: Stage 2: Search results showing stock price

Final Result The system successfully completes the task:
1 Final Response:
2 The current stock price of NVIDIA is

$138.25 USD.
This case study demonstrates several key capabilities of

CAPTAIN:

• Natural language understanding to interpret the user’s
query

• Strategic planning to break down the task into steps
• Dynamic interaction with web elements
• Information extraction from search results

Case Study 2: Flight Price Search
This case study demonstrates CAPTAIN’s ability to handle
complex travel booking interfaces, showcasing its staged ap-
proach to task completion and adaptive planning capabili-
ties.

User Command: ”Tell me the cheapest flights from Ban-
galore to SF”

Stage 1: Task Initialization The system begins by ana-
lyzing the task and initializing its components:

Stage 2: Travel Site Navigation The system executes its
first action by navigating to an appropriate travel search en-
gine:
1 Action - GOTO
2 Action results: [’Page loaded: https://

www.skyscanner.co.in/
3 ?previousCultureSource=COOKIE&

redirectedFrom=www.skyscanner.com,

Figure 5: Stage 1: System initialization state

4 Title: Flight Ticket Booking: Cheap
Flights & Air Tickets

5 | Skyscanner’]

Figure 6: Stage 2: Successfully navigated to Skyscanner
homepage

Stage 3: Strategic Planning The system formulates a
comprehensive plan for completing the task:
1 Current Thought: I see it looks like the

Google homepage
2 in the provided DOM representation. In

order to find the
3 cheapest flights from Bangalore to SF, I

should go to a
4 website like skyscanner and carry my

searches over there...
5
6 Plan:
7 1. Go to www.skyscanner.com
8 2. List interaction options available
9 3. Set from airport to ’Bangalore’

10 4. Set destination airport to SF
11 5. Select travel dates
12 6. Confirm field values
13 7. Click search button
14 8. Confirm search results page
15 9. Apply price filters
16 10. Extract cheapest flight price
17
18 Current Task: Go to www.skyscanner.com
19 Completed Tasks:
20 [\] 1. Go to www.skyscanner.com

Figure 7: Stage 3: Plan formulation and initial task comple-
tion

Stage 4: Form Interaction The system begins interacting
with the search form:
1 Action - TYPE
2 Action results: [’Successfully entered "

Bangalore" in origin field’]
3 Current Task: Set destination airport to

SF
4 Completed Tasks:
5 [\] Set from airport to ’Bangalore’

Figure 8: Stage 4: Origin city entry completed

Stage 5: Search Form Completion The system com-
pletes the form with destination details:
1 Action - TYPE
2 Action results: [’Successfully entered "

San Francisco"
3 in destination field’]
4 Current Task: Validate form entries
5 Completed Tasks:
6 [\] Set origin and destination

cities
7 [\] Configure search parameters

Stage 6: Search Execution The system initiates the
search and handles the loading state:
1 Action - CLICK
2 Action results: [’Click executed

successfully, search
3 initiated’]
4 Current Task: Monitor search results

loading

Figure 9: Stage 5: Search form fully populated

Figure 10: Stage 6: Search execution and loading state

Stage 7: Results Processing The system processes the
search results and extracts pricing information:
1 Current Thought: Search results are

loaded. Analyzing
2 prices to find the cheapest option.
3
4 Final Response:
5 The cheapest flight from Bengaluru to

San Francisco
6 is 102 ,514.

Figure 11: Stage 6: Search execution and loading state

This case study demonstrates several advanced capabili-
ties of CAPTAIN:

1. Strategic Planning: Breaking down complex tasks into
manageable steps and adapting the plan based on website
state.

2. Form Interaction: Handling sophisticated web forms
including autocomplete fields and dynamic validation.

3. State Management: Maintaining task context across
multiple steps and handling asynchronous content load-
ing.

4. Error Resilience: Managing potential failure points
such as network delays and dynamic content updates.

5. Data Extraction: Processing structured data from com-
plex search results and identifying relevant price infor-
mation.

This demonstrating CAPTAIN’s efficiency in handling
complex web interfaces. The system successfully managed
multiple state transitions, form interactions, and dynamic
content loading while maintaining consistent progress to-
ward the task objective.

