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Abstract

Stochastic heavy ball momentum (SHB) is commonly used to train machine learning models,
and often provides empirical improvements over stochastic gradient descent. By primarily
focusing on strongly-convex quadratics, we aim to better understand the theoretical advantage
of SHB and subsequently improve the method. For strongly-convex quadratics, Kidambi et al.
(2018) show that SHB (with a mini-batch of size 1) cannot attain accelerated convergence,
and hence has no theoretical benefit over SGD. They conjecture that the practical gain of
SHB is a by-product of using larger mini-batches. We first substantiate this claim by showing
that SHB can attain an accelerated rate when the mini-batch size is larger than a threshold
b∗ that depends on the condition number κ. Specifically, we prove that with the same
step-size and momentum parameters as in the deterministic setting, SHB with a sufficiently
large mini-batch size results in an O (exp(−T/

√
κ) + σ) convergence when measuring the

distance to the optimal solution in the ℓ2 norm, where T is the number of iterations and
σ2 is the variance in the stochastic gradients. We prove a lower-bound which demonstrates
that a κ dependence in b∗ is necessary. To ensure convergence to the minimizer, we design a
noise-adaptive multi-stage algorithm that results in an O

(
exp (−T/

√
κ) + σ√

T

)
rate when

measuring the distance to the optimal solution in the ℓ2 norm. We also consider the general
smooth, strongly-convex setting and propose the first noise-adaptive SHB variant that
converges to the minimizer at an O(exp(−T/κ) + σ2

T ) rate when measuring the distance to
the optimal solution in the squared ℓ2 norm. We empirically demonstrate the effectiveness
of the proposed algorithms.

1 Introduction
Heavy ball (HB) or Polyak momentum (Polyak, 1964) has been extensively studied for minimizing smooth,
strongly-convex quadratics in the deterministic setting. In this setting, HB converges to the minimizer at an
accelerated linear rate (Polyak, 1964; Wang et al., 2021) meaning that for a problem with condition number
κ (see definition in Section 2), T iterations of HB results in the optimal O (exp(−T/

√
κ)) convergence. For

general smooth, strongly-convex functions, Ghadimi et al. (2015) prove that HB converges to the minimizer at
a linear but non-accelerated rate. In this setting, Wang et al. (2022) prove an accelerated linear rate for HB,
but under very restrictive assumptions (e.g. one-dimensional problems or problems with a diagonal hessian).
Recently, Goujaud et al. (2023) showed that HB (with any fixed step-size or momentum parameter) cannot
achieve accelerated convergence on general (non-quadratic) strongly-convex problems, and consequently has
no theoretical benefit over gradient descent (GD).

While there is a good theoretical understanding of HB in the deterministic setting, the current understanding
of stochastic heavy ball momentum (SHB) is rather unsatisfactory. SHB is commonly used to train machine
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learning models and often provides empirical improvements over stochastic gradient descent (SGD). Further-
more, it forms the basis of modern adaptive gradient methods such as Adam (Kingma & Ba, 2014). As such, it
is important to better understand the theoretical advantage of SHB over SGD. Previous works (Defazio, 2020;
You et al., 2019) have conjectured that the use of momentum for non-convex minimization can help reduce
the variance resulting in faster convergence. Recently, Wang et al. (2023) analyze stochastic momentum in
the regime where the gradient noise dominates, and demonstrate that in this regime, momentum has limited
bene�ts with respect to both optimization and generalization. However, it is unclear whether momentum can
provably help improve the convergence in other settings. In this paper, we primarily focus on the simple
setting of minimizing strongly-convex quadratics, with the aim of better understanding the theoretical bene�t
of SHB and subsequently improving the method.

We �rst consider the general smooth, strongly-convex setting and aim to design an SHB variant that matches
the theoretical convergence of SGD. In this setting, Sebbouh et al. (2020); Liu et al. (2020) use SHB with
a constant step-size and momentum parameter, obtaining linear convergence to the neighborhood of the
minimizer. In order to attain convergence to the solution, Sebbouh et al. (2020) use a sequence of constant-
then-decreasing step-sizes to achieve anO

�
� 2=T 2 + � 2=T

�
rate, where � 2 is the variance in the stochastic

gradients and the sub-optimality is measured in the squared̀ 2 norm. In contrast, in the same setting, SGD
can attain an O

�
exp (� T=� ) + � 2=T

�
convergence to the minimizer. To the best of our knowledge, in this

setting, there is no variant of SHB that can converge to the minimizer at a rate matching SGD.

Contribution 1: Noise-adaptive, non-accelerated convergence to the minimizer for smooth,
strongly-convex functions. In Section 3, we propose an SHB method that combines the averaging
interpretation of SHB (Sebbouh et al., 2020) and the exponentially decreasing step-sizes (Li et al., 2021;
Vaswani et al., 2022) to achieve anO

�
exp (� T=� ) + � 2=T

�
convergence rate that matches the SGD rate.

Importantly, the proposed algorithm is noise-adaptive meaning that it does not require the knowledge of
� 2, but recovers the non-accelerated linear convergence rate (matching Ghadimi et al. (2015)) when� = 0 .
Moreover, the algorithm provides an adaptive way to set the momentum parameter, alleviating the need to
tune this additional hyper-parameter.

Next, we focus on minimizing strongly-convex quadratics, and aim to analyze the conditions under which SHB
is provably better than SGD. A number of works (Kidambi et al., 2018; Paquette & Paquette, 2021; Loizou
& Richtárik, 2020; Bollapragada et al., 2023; Lee et al., 2022) have studied SHB for minimizing quadratics.
In this setting, Kidambi et al. (2018) show that SHB (with batch-size 1 and any choice of step-size and
momentum parameters) cannot attain an accelerated rate. They conjecture that the practical gain of SHB is
a by-product of using larger mini-batches. Similarly, Paquette & Paquette (2021) demonstrate that SHB
with small batch-sizes cannot obtain a faster rate than SGD. While Loizou & Richtárik (2020) prove an
accelerated rate for SHB (for any batch-size) in the �L1 sense�, this does not imply acceleration according to
the standard sub-optimality metrics. Recently, Bollapragada et al. (2023); Lee et al. (2022) use results from
random matrix theory to prove that SHB with a constant step-size and momentum can achieve an accelerated
rate when the mini-batch size is su�ciently large. Compared to these works, we use the non-asymptotic
analysis standard in the optimization literature, and prove stronger worst-case results.

Contribution 2: Accelerated convergence to the neighborhood for quadratics. Our result
in Section 4.1 substantiates the claim by Kidambi et al. (2018). Speci�cally, for strongly-convex quadratics,
we prove that SHB with a mini-batch size larger than a certain threshold b� (that depends on � ) and constant
step-size and momentum parameters can achieve anO (exp(� T=p

� ) + � ) non-asymptotic convergence up to
a neighborhood of the solution where the sub-optimality is measured in thè 2 norm. For problems such
as non-parametric regression (Belkin et al., 2019; Liang & Rakhlin, 2020) or feasible linear systems, where
the interpolation property (Ma et al., 2018; Vaswani et al., 2019) is satis�ed, � = 0 and SHB with a large
batch-size results in accelerated convergence to the minimizer.

Contribution 3: Lower Bound for SHB. Our result in Section 4.2 shows that there exist quadratics for
which SHB (with a constant step-size and momentum) diverges when the mini-batch size is below a certain
threshold. Moreover, the lower-bound demonstrates that a� dependence inb� is necessary.

The result in Section 4.1 only demonstrates convergence to the neighbourhood of the solution. Next, we aim
to design an SHB algorithm that can achieve accelerated convergence to the minimizer.
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Contribution 4: Noise-adaptive, accelerated convergence to the minimizer for quadratics.
In Section 4.3, we design a multi-stage SHB method (Algorithm 1) and prove that for strongly-convex
quadratics, Algorithm 1 (with a su�ciently large batch-size) converges to the minimizer at an accelerated

O
�

exp (� T=p
� ) + �p

T

�
rate where the sub-optimality is measured in the`2 norm. Algorithm 1 is noise-

adaptive and has a similar structure as the algorithm proposed for incorporating Nesterov acceleration in
the stochastic setting (Aybat et al., 2019). In comparison, both Bollapragada et al. (2023); Lee et al. (2022)
only consider accelerated convergence to a neighbourhood of the minimizer. In concurrent work, Pan et al.
(2024) make a stronger bounded variance assumption in order to analyze SHB for minimizing strongly-convex
quadratics. They propose a similar multi-stage algorithm and under the bounded variance assumption, prove
that it can converge to the minimizer at an accelerated rate for any mini-batch size. In Section 4.3, we argue
that the bounded variance assumption is problematic even for simple quadratics and the algorithm in Pan
et al. (2024) can diverge for small mini-batches (see Fig. 2).

In settings where T � n, the batch-size required by the multi-stage approach in Algorithm 1 can be quite
large, a�ecting the practicality of the algorithm. In order to alleviate this issue, we design a two phase
algorithm that combines the algorithmic ideas in Sections 3 and 4.1.

Contribution 5: Partially accelerated convergence to the minimizer for quadratics. In Section 4.4,
we propose a two-phase algorithm (Algorithm 2) that uses a constant step-size and momentum in Phase 1,
followed by an exponentially decreasing step-size and corresponding momentum in Phase 2. By adjusting the
relative length of the two phases, we demonstrate that Algorithm 2 (with a su�ciently large batch-size) can
obtain a partially accelerated rate.

Contribution 6: Experimental Evaluation . In Section 5, we empirically validate the e�ectiveness
of the proposed algorithms on synthetic benchmarks. In particular, for strongly-convex quadratics, we
demonstrate that SHB and its variants can attain an accelerated rate when the mini-batch size is larger
than a threshold. While SHB with a constant step-size and momentum converges to a neighbourhood of the
solution, Algorithms 1 and 2 are able to counteract the noise resulting in smaller sub-optimality.

2 Problem Formulation

We consider the unconstrained minimization of a �nite-sum objective f : Rd ! R, f (w) := 1
n

P n
i =1 f i (w). For

supervised learning,n represents the number of training examples andf i is the loss of examplei . Throughout,
we assume thatf and eachf i are di�erentiable and lower-bounded by f � and f �

i , respectively. We also
assume that each functionf i is L i -smooth, implying that f is L -smooth with L := maxi L i . Furthermore, f is
considered to be� -strongly convex while eachf i is convex1. We de�ne � := L

� as the condition number of the
problem, and denotew� to be the unique minimizer of the above problem. We primarily focus on strongly-
convex quadratic objectives wheref i (w) := 1

2 wT A i w � h di ; wi and f (w) = 1
n

P n
1 f i (w) = wT Aw � h d; wi ,

where A i are symmetric positive semi-de�nite matrices. Here,L = � max [A] and � = � min [A] > 0, where
� max and � min refer to the maximum and minimum eigenvalues.

In each iteration k 2 [T] := f 0; 1; ::; Tg, SHB samples a mini-batchBk (b := jBk j) of examples and uses
it to compute the stochastic gradient of the loss function. The mini-batch is formed by sampling without
replacement. We denoter f ik (wk ) to be the average stochastic gradient for the mini-batchBk , meaning that
r f ik (wk ) := 1

b

P
i 2 B k

r f i (wk ) and E[r f ik (wk )jwk ] = r f (wk ). At iteration k, SHB takes a descent step in
the direction of r f ik (wk ) together with a momentum term computed using the previous iterate. Speci�cally,
the SHB update is given as:

wk+1 = wk � � k r f ik (wk ) + � k (wk � wk � 1) (1)

where wk+1 , wk , and wk � 1 are the SHB iterates andw� 1 = w0; f � k gT � 1
k=0 and f � k gT � 1

k=0 is the sequence of
step-sizes and momentum parameters respectively. In the next section, we analyze the convergence of SHB
for general smooth, strongly-convex functions.

1We include de�nitions of these properties in App. A.
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3 Non-accelerated linear convergence for strongly-convex functions

We �rst consider the non-accelerated convergence of SHB in the general smooth, strongly-convex setting.
Following Loizou et al. (2021); Vaswani et al. (2022), we de�ne� 2 := Ei [f � � f �

i ] as the measure of stochasticity.
We develop an SHB method that (i) converges to the minimizer at theO

�
exp (� T=� ) + � 2=T

�
rate, (ii) is

noise-adaptive in that it does not require the knowledge of� 2 and (iii) does not require manual tuning the
momentum parameter. In order to do so, we use an alternative form of the update (Sebbouh et al., 2020) that
interprets SHB as a moving average of the iterateszk computed by stochastic gradient descent. Speci�cally,
for z0 = w0,

wk+1 =
� k+1

� k+1 + 1
wk +

1
� k+1 + 1

zk ; zk := zk � 1 � � k r f ik (wk ) ; (2)

where f � k ; � k g are parameters to be determined theoretically. For anyf � k ; � k g sequence, if� k = � k
1+ � k +1

,

� k = � k
1+ � k +1

, then the update in Eq. (2) is equivalent to the SHB update in Eq. (1) (Sebbouh et al.,
2020, Theorem 2.1). The proposed SHB method combines the above averaging interpretation of SHB and
exponentially decreasing step-sizes (Li et al., 2021; Vaswani et al., 2022) to achieve a noise-adaptive non-
accelerated convergence rate. Speci�cally, following Li et al. (2021); Vaswani et al. (2022), we set� k = � 
 k ,
where � is the problem-dependent scaling term that captures the smoothness of the function and
 k is the
problem-independent term that controls the decay of the step-size. By settingf � k ; 
 k g appropriately, the
following theorem (proved in App. B) shows that the proposed method converges to the minimizer at an
O

�
exp (� T=� ) + � 2=T

�
rate. In contrast, Sebbouh et al. (2020) use constant-then-decaying step-sizes to obtain

a sub-optimal O
�

� 2=T 2 + � 2=T
�

rate.

Theorem 1. For L-smooth, � strongly-convex functions, SHB (Eq. (2)) with � � 1, � = 1
4L , 
 =

�
�
T

� 1=T
,


 k = 
 k+1 , � k = � 
 k , � = � 0 and � k := 1� 2�L
� k �

�
1 � (1 � � k � )k

�
converges as:

E kwT � 1 � w� k2 � C4 kw0 � w� k2 exp
�

�
T
�



4 ln(T=� )

�
+ C4 C5

� 2

T

where � =
q

n � b
(n � 1) b and C4; C5 are polynomial in � and poly-logarithmic in T.

Figure 1: Variation in � k := � k
1+ � k +1

and � k := � k
1+ � k +1

where � k := ( � =T )
k +1

T

4L , � k := 1� 2� 0 L
� k �

�
1 � (1 � � k � )k

�

for T = 100, L = 10, � = 1

This rate matches that of SGD with an exponentially
decreasing step-size (Li et al., 2021; Vaswani et al.,
2022). In the deterministic setting, when b = n,
then by Lemma 7, � = 0 , and SHB matches the
non-accelerated linear rate of GD and HB (Ghadimi
et al., 2015). Non-parametric regression (Belkin
et al., 2019; Liang & Rakhlin, 2020) or feasible lin-
ear systems (Loizou & Richtárik, 2020) satisfy the
interpolation (Ma et al., 2018; Vaswani et al., 2019)
property. For these problems, the model is able to
completely interpolate the data meaning that the
noise at the optimum vanishes and hence� = 0 .
For this case, SHB matches the convergence rate of
constant step-size SGD (Vaswani et al., 2019). Com-
pared to Sebbouh et al. (2020), the rate in Theorem
1 has the same optimal ~O(1=T) dependence on the
variance term, but results in a worse dependence on
the constants. On the other hand, our algorithm
results in a better dependence on the bias term:
O(exp(� T)) in Theorem 1 versus theO(1=T2) rate obtained by Sebbouh et al. (2020). Consequently, when
using the full dataset or under the interpolation setting, the rate in Theorem 1 recovers that of deterministic
HB (Ghadimi et al., 2015), while that in Sebbouh et al. (2020) does not. For general strongly-convex
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functions, Goujaud et al. (2023) prove that HB (with any step-size or momentum parameter) cannot achieve
an accelerated convergence rate on general (non-quadratic and with dimension greater than 1) smooth,
strongly-convex problems. Furthermore, we know that the variance term (depending on� 2) cannot be
decreased at a faster rate than
( 1=T ) (Nguyen et al., 2019). Hence, the above rate is the best-achievable for
SHB in the general strongly-convex setting.

We reiterate that the method does not require knowledge of� 2 and is hence noise-adaptive. Furthermore,
all algorithm parameters are completely determined by the� , L and 
 k sequence. Hence, the resulting
algorithm does not require manual tuning of the momentum. In Fig. 1, we show the variation of the(� k ; � k )
parameters, and observe that the method results in a more aggressive decrease in the step-size (compared to
the standard O(1=k) rate). This compensates for the increasing momentum parameter. The above theorem
requires knowledge ofL and � which can be di�cult to obtain in practice. Hence in App. C, we consider the
e�ect of misestimating L and � on the convergence rate of SHB. These are the �rst results that consider the
e�ect of parameter misspeci�cation for SHB.

Next, we focus on strongly-convex quadratics where SHB can obtain an accelerated convergence rate.

4 Accelerated linear convergence for strongly-convex quadratics
In this section, we focus on strongly-convex quadratics and in Section 4.1, we prove that SHB with a large
batch-size attains accelerated linear convergence to a neighbourhood determined by the noise. In Section 4.2,
we prove a corresponding lower-bound that demonstrates the necessity of a large batch-size to attain
acceleration. The exponentially decreasing step-sizes in Section 3 are too conservative to obtain an accelerated
rate to the minimizer. Consequently, in Section 4.3, we design a multi-stage SHB algorithm that achieves
accelerated convergence to the minimizer. Finally, in Section 4.4, we design a two-phase SHB algorithm that
has a simpler implementation, but can only attain partially accelerated rates.

4.1 Upper Bound for SHB

In the following theorem (proved in App. D), we show that for strongly-convex quadratics, SHB with a batch-
sizeb larger than a certain problem-dependent thresholdb� , constant step-size and momentum parameter
converges to a neighbourhood of the solution at an accelerated linear rate. We note that the measure of
suboptimality in this section is expressed as the norm, whereas in the previous section, it was represented
as the squared norm. By Jensen's inequality, an upper-bound onE kwT � w� k2 implies an upper-bound on
E kwT � w� k.

Theorem 2. For L-smooth, � strongly-convex quadratics, SHB (Eq. (1)) with � k = � = a
L for a � 1,

� k = � =
�
1 � 1

2
p

��
� 2

, batch-sizeb s.t. b � b� := n max
�

1
1+ n � 1

C � 2
; 1

1+ ( n � 1) a
3

�
converges as:

E kwT � w� k �
6
p

2
p

�
p

a
exp

�
�

p
a T

2
p

�
max

�
3
4

; 1 � 2
p

�
p

�
��

kw0 � w� k +
12

p
a�

�
min

�
1;

�
p

a

�

where � :=
q

E kr f i (w� )k2, � =
q

3 n � b
(n � 1) b and C := 3 526.

The �rst term in the convergence rate represents the bias. Since1 � 2
p

�
p

� > 3
4 when b � b� , the

initial sub-optimality kw0 � w� k is forgotten at an accelerated linear rate proportional to exp(� T=
p

� ).
Moreover, since the bias term depends on� , using a larger batch-size (aboveb� ) leads to a smaller �
resulting in faster convergence. We note thata is a constant independent ofT to avoid the dependence
of b� on T. In the deterministic case, whenb = n and � = 0 , we recover the non-asymptotic accelerated
convergence for HB (Wang et al., 2021). Similar to the deterministic case, the accelerated convergence
requires a �warmup� number of iterations meaning that T needs to be su�ciently large to ensure that
exp

�
� Tp

�

p
a

2 max
�

3
4 ; 1 � 2

p
�

p
�
	 �

� 6
p

2�p
a . The second term represents the variance, and determines the

size of the neighbourhood. The above theorem uses� 2 = E kr f i (w� )k2 as the measure of stochasticity, where
� 2 � 2L� 2 because of theL-smoothness of the problem. Compared to constant step-size SGD that achieves
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an O(exp(� T=� ) + � ), SHB with a su�ciently large batch-size results in an accelerated O(exp(� T=
p

� ) + � )
rate. We observe that if � is large, a larger batch-size is required to attain acceleration. Likewise, using a
smaller step-size requires a proportionally larger batch-fraction to guarantee an accelerated rate. On the
other hand, asn increases, the relative batch-fraction (equal tob=n) required for acceleration is smaller. The
proof of the above theorem relies on the non-asymptotic result for HB in the deterministic setting (Wang
et al., 2021), coupled with an inductive argument over the iterations.

The above result substantiates the claim that the practical gain of SHB is a by-product of using larger
mini-batches. In comparison to the above result, Loizou & Richtárik (2020) also prove an accelerated rate
for SHB, but measure the sub-optimality in terms of kE[wT � w� ]k. This does not e�ectively model the
problem's stochasticity and only shows convergence in expectation, a weaker form of convergence compared
to our mean-square result. In contrast to Bollapragada et al. (2023, Theorem 3.1) which results in an
O (T exp(� T=p

� ) + � log(d)) rate where d is the problem dimension, we obtain a faster convergence rate
without an additional T dependence in the bias term, nor an additionallog(d) dependence in the variance

term. In order to achieve an accelerated rate, our thresholdb� scales asO
�

1
1=n + 1=� 2

�
. When n >> O (� 2),

our result implies that SHB with a nearly constant (independent of n) mini-batch size can attain accelerated
convergence to a neighbourhood of the minimizer. In contrast, (Bollapragada et al., 2023, Theorem 4) require
a batch-size of
( d � 3=2) to attain an accelerated rate in the worst-case. This condition is vacuous in the
over-parameterized regime whend > n . Hence, compared to our result, Bollapragada et al. (2023) require
a more stringent condition on the batch-size whend >

p
� . On the other hand, Lee et al. (2022) provide

an average-case analysis of SHB asd; n ! 1 , and prove an accelerated rate whenb � n ��p
� where �� is the

average condition number. In the worst-case (for example, when all data points are the same and�� = � = 1 ),
Lee et al. (2022) requireb = n in order to attain an accelerated rate.

In the interpolation setting described in Section 3, the noise at the optimum vanishes and� = 0 implying that
� = 0 . In this setting, we prove the following Corollary 1 in App. D. Hence, under interpolation, SHB with a
su�ciently large batch-size results in accelerated convergence to the minimizer, matching the corresponding
result for SGD with Nesterov acceleration (Vaswani et al., 2022, Theorem 6) and ASGD (Jain et al., 2018).

Corollary 1. For L-smooth, � strongly-convex quadratics, under interpolation, SHB (Eq. (1)) with the
same parameters as in Theorem 2 and batch-sizeb s.t. b � b� := n 1

1+ n � 1
C � 2

(where C is de�ned in Theorem 2)
converges as:

E kwT � w� k �
6
p

2
p

a

p
� exp

�
�

T
p

�

p
a

2
max

�
3
4

; 1 � 2
p

�
p

�
��

kw0 � w� k

When the noise� 6= 0 but is assumed to be known, Corollary 4 (proved in App. D) shows that the step-size
and momentum parameter of SHB can be adjusted to achieve an� sub-optimality (for some desired � > 0)
at an accelerated linear rate. In the above results, the batch-size threshold depends on� . In the following
section, we prove a lower-bound showing that a dependence on� is necessary.

4.2 Lower Bound for SHB

For SHB with the same step-size and momentum as Corollary 1, we show that there exists quadratics for
which SHB with a batch-size lower than a certain threshold diverges.
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Theorem 3. For a �L -smooth, �� strongly-convex quadratic problem f (w) := 1
n

P n
i =1

1
2 wT A i w with n

samples and dimensiond = n = 100 such that w� = 0 and eachA i is an n-by-n matrix of all zeros except
at the (i; i ) position, we run SHB (1) with � k = � = 1

�L
, � k = � =

�
1 � 1

2

p
� ��

� 2
. If b < 1

1+ n � 1
e3 : 3 � 0 : 6

n and

� k :=
�

wk

wk � 1

�
, for a c > 1, after 6T iterations, we have that:

E
h
k� 6T k2

i
> c T k� 0k2 :

The above lower-bound demonstrates that the dependence on� is necessary in the thresholdb� for the
batch-size. We note that the designed problem withn = d corresponds to a feasible linear system and
therefore satis�es interpolation. Intuitively, Theorem 3 shows that in order to attain an accelerated rate for
SHB, it is necessary to have a large batch-size to e�ectively control the error between the empirical Hessian
1
b

P
i 2 B k

A i at iteration k and the true Hessian. When the batch-size is not large enough, the aggressive
updates for accelerated SHB increase this error resulting in divergence. Importantly, the above lower-bound
also holds for the step-size and momentum parameters used in Bollapragada et al. (2023). We note that
our lower-bound result still leaves open the possibility that there are other (less aggressive) choices of the
step-size and momentum that can result in an (accelerated) convergence rate with a smaller batch-size. The
proof of the above theorem in App. E takes advantage of symbolic mathematics programming (Meurer et al.,
2017), and maybe of independent interest. In contrast to the above result, the lower bound in Kidambi et al.
(2018) shows that there exist strongly-convex quadratics where SHB with a batch-size of 1 and any choice of
step-size and momentum cannot result in an accelerated rate.

We have shown that for strongly-convex quadratics (not necessarily satisfying interpolation), SHB (with large
batch-size) can result in accelerated convergence to the neighbourhood of the solution. Next, we design a
multi-stage algorithm that ensures accelerated convergence to the minimizer.

Algorithm 1: Multi-stage SHB
Input : T (iteration budget), b (batch-size)
Initialization : w0, w� 1 = w0, k = 0

I =
j

1
ln(

p
2)

W
�

T ln(
p

2)
384

p
�

�k
(W (:) is the Lambert W function 2 )

T0 = T
2

8i 2 [1; I ], Ti =
l

4 2i= 2 p
�

(2 �
p

2)
(( i=2 + 5) ln(2) + ln(

p
� ))

m

for i = 0 ; i < I + 1 ; i = i + 1 do
Set ai = 2 � i , � i = a i

L , � i =
�
1 � 1

2
p

� i �
� 2

x0 = wi

for k = 0 ; k < T i ; k = k + 1 do
Sample batchBk and calculate r f ik (xk )
xk+1 = xk � � i r f ik (xk ) + � i (xk � xk � 1)

end
wi +1 = xT i

end
return wI +1

Algorithm 2: Two-phase SHB
Input : T (iteration budget), b
(batch-size), c 2 (0; 1) (relative phase
lengths)

Initialization : w0, w� 1 = w0, k = 0
Set T0 = c T
for k = 0 ; k � T0; k = k + 1 do

Choosea = 1 , set �; � according to
Theorem 2

Use Update 1
end
for k = T0 + 1 ; k � T; k = k + 1 do

Set � k ; � k according to Theorem 1
Use Update 2

end
return wT

4.3 Multi-stage SHB

In this section, we propose to use a multi-stage SHB algorithm (Algorithm 1) and analyze its convergence
rate. The structure of our multi-stage algorithm is similar to Aybat et al. (2019) who studied Nesterov
acceleration in the stochastic setting. For a �xed iteration budget T, Algorithm 1 allocates T=2 iterations
to stage zero and divides the remainingT=2 iterations into I stages. The length for each of theseI stages

2The Lambert W function is de�ned as: for x; y 2 R, y = W (x) = ) y exp(y) = x.
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increases exponentially, while the step-size used in each stage decreases exponentially. This decrease in
the step-size helps counter the variance and ensures convergence to the minimizer. Theorem 4 (proved in
in App. F) shows that Algorithm 1 converges to the minimizer at an accelerated linear rate.

Theorem 4. For L-smooth, � strongly-convex quadratics with � > 1, for T � �T := 3�28 p
�

ln(2) max
�

4�; e 2
	

,

Algorithm 1 with b � b� := n max
�

1
1+ n � 1

C � 2
; 1

1+ ( n � 1) a I
3

�
converges as:

E kwT � w� k � C7 exp
�

�
T

8
p

�

�
kw0 � w� k + C8

�
p

T

where C := 3 526 and C7; C8 are polynomial in � and poly-logarithmic in T.

From Theorem 4, we see that Algorithm 1 achieves a convergence rate ofO
�

exp
�

� Tp
�

�
+ �p

T

�
to the

minimizer. It is important to note that in comparison to Theorem 1, the sub-optimality above is in terms
of E kwT � w� k (instead of E kwT � w� k2). Hence, the above rate is optimal for strongly-convex quadratics
since the bias term decreases at an accelerated linear rate while the variance term goes down as1=

p
T . Unlike

in Corollary 4, Algorithm 1 does not require the knowledge of� and is hence noise-adaptive. When� = 0 ,
Algorithm 1 matches the rate of SHB in Corollary 1.

In concurrent work, Pan et al. (2024) design a similar multi-stage SHB algorithm. However, the algorithm's
analysis requires a bounded variance assumption which implies that for allk 2 [T], there exists a ~� < 1
such that E kr f (wk ) � r f ik (wk )k2 � ~� 2. For strongly-convex quadratics, this assumption implies that the
algorithm iterates lie in a compact set (Jain et al., 2018). Note that this assumption is much stronger than
that in Theorem 4 which only requires that the variance at the optimum be bounded. With this bounded
variance assumption, Pan et al. (2024) prove that their multi-stage SHB algorithm converges to the minimizer
at an accelerated ratewithout any condition on the mini-batch size. This is in contrast with our result
in Theorem 4 which requires the mini-batch size to be large enough. This discrepancy is because of the
di�erent assumptions on the noise. In Fig. 2a, we use the same feasible linear system as in Theorem 3 and
demonstrate that with a batch-size 1, the algorithm in Pan et al. (2024) can diverge. This is because the
iterates do not lie on a compact set and~� can grow in an unbounded fashion forO(T) iterations (see Fig. 2b),
demonstrating that the bounded variance assumption is problematic even for simple examples.

With this assumption, Pan et al. (2024) prove that their multi-stage algorithm converges at a rate of
~O

�
T � exp(� T=p

� ) + d~�p
T

�
(for a similar de�nition of suboptimality as in Theorem 4). The above upper-

bound implies that their algorithm can only achieve a sublinear rate even when solving feasible linear
systems with a large batch-size (Jain et al., 2018). In comparison, Algorithm 1 with a large batch-size can
achieve an accelerated linear rate when solving feasible linear systems. From a theoretical perspective, the
~O

�
� 1=4 exp(� T=p

� ) + �p
T

�
bound in Theorem 4 is better in the bias term (by a factor of T) and hence

requires fewer �warmup� iterations. It is also better in the variance term in that it does not incur a dimension
dependence. While the bound established by Pan et al. (2024) holds forT � 
(

p
� ), our analysis requires

T � 
( �
p

� ) to achieve the convergence guarantee. This additional dependence on� is an artifact of our
simpli�ed proof that analyzes each stage independently. Speci�cally, we use the result from Wang et al.
(2021) that introduces an additional

p
� �warm-up� iterations. These additional

p
� iterations in each stage

introduce the additional � dependence. To conclude, compared to Pan et al. (2024), we achieve better
convergence guarantees with a simpler analysis under more realistic assumptions for larger iterations.

Finally, we note that if the variance is guaranteed to be bounded for some problems, the proposed algorithms
can exploit this additional assumption and achieve rates comparable to Pan et al. (2024)without a large
batch-size requirement. Please refer to App. G for a detailed analysis.

In Theorem 4, we observe that the batch-size thresholdb� depends onaI = 2 � I = O(1=T ). In order to
understand the implications of this requirement, consider the case whenT =  n (for some  > 0). In this

case,b� = n max
�

1
1+ n � 1

C � 2
; 1

1+ 1
4 

�
. For practical problems, n is of the order of millions compared toT which

8
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(a) Multi-stage SHB (Pan et al., 2024) with b = 1 diverges
exponentially fast in the �rst few thousands iterations.

(b) The variance ~� 2 is increasing.

Figure 2: Divergence of Multi-stage SHB (Pan et al., 2024) withb = 1 on the synthetic example in Theorem 3
with � = 5000. We set w0 = ~100 and run the algorithm in (Pan et al., 2024) with C = 2 . We consider5
independent runs, and plot the average gradient normkr f (wk )k against the number of iterations. In Fig. 2b,

we plot the (log) variance log
�

E kr f (wk ) � r f ik (wk )k2
�

against the number of iterations. We observe that

multi-stage SHB diverges and the variance~� 2 increases, showing that the bounded variance assumption
in Pan et al. (2024) is problematic.

is in the thousands and hence << 1. Furthermore, when n >> O (� 2), b� is predominantly determined by
the condition number.

An alternative way to reason about the above result is to consider a �xed batch-sizeb as input. In this
case, the following corollary presents the accelerated convergence of multi-stage SHB but only for a range of
feasibleT.

Corollary 2. For L -smooth, � strongly-convex quadratics with � > 1, Algorithm 1 with batch-size b such

that b � b� := n 1
1+ n � 1

C � 2
attains the same rate as in Theorem 4 forT 2

h
3�28 p

�
ln(2) max

�
4�; e 2

	
; C1

q
(n � 1)b
3(n � b)

i
,

where C := 3 526 and C1 is de�ned in the proof of Theorem 4 in App. F.

We have seen that a complicated algorithm can result in the optimal accelerated rate for a range ofT. Next,
we design a simple-to-implement algorithm that attains partially accelerated rates for all T .

4.4 Two-phase SHB

We design a two-phase SHB algorithm (Algorithm 2) that has a convergence guarantee for allT , but can
only obtain a partially accelerated rate with a dependence on� q for q 2 [ 1

2 ; 1]. Here q = 1
2 corresponds to the

accelerated rate of Section 4.1, whileq = 1 corresponds to the non-accelerated rate of Section 3. Algorithm 2
consists of two phases � in phase 1 consisting ofT0 iterations, it uses Eq. (1) with a constant step-size
and momentum parameter (according to Theorem 2); in phase 2 consisting ofT1 := T � T0 iterations, it
uses Eq. (2) with an exponentially decreasing� k sequence and corresponding� k (according to Theorem 1).
The relative length of the two phases is governed byc := T0=T . In App. H, we analyze the convergence
of Algorithm 2 with general c and prove Theorem 11. For a speci�c setting whenc = 1

2 , we prove the following
corollary.

Corollary 3. For L -smooth, � strongly-convex quadratics with � > 4, Algorithm 2 with batch-size b such
that b � b� = n 1

1+ n � 1
C � 2

and c = 1
2 results in a rate of O

�
exp

�
� T

� 0: 7

�
+ �p

T

�
for all T .

We observe that Algorithm 2, with a sub-optimal convergence rate ofO (exp (� T=� 0: 7 ) + � =
p

T ), is faster than
SGD and the non-accelerated SHB algorithm in Section 3. Compared to the accelerated SHB in Section 4.1,

9
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the two-phase algorithm converges to the minimizer (instead of the neighbourhood). However, even in the
interpolation setting when � = 0 , the two-phase algorithm (without any knowledge of � ) can only attain a
partially accelerated rate.

5 Experimental Evaluation

(a) � = 1000 and r = 10 � 2 (b) � = 500 and r = 10 � 2 (c) � = 200 and r = 10 � 2

(d) � = 1000 and r = 10 � 4 (e) � = 500 and r = 10 � 4 (f) � = 200 and r = 10 � 4

(g) � = 1000 and r = 10 � 6 (h) � = 500 and r = 10 � 6 (i) � = 200 and r = 10 � 6

Figure 3: Comparing SHB, Multi-SHB , Multi-SHB-CNST, 2P-SHB, SGD, Nesterov-EXP, for the squared loss
on synthetic datasets with di�erent � and noiser . Both SGDand SHBconverge to the neighborhood, butSHB
attains an accelerated rate.Multi-SHB , Multi-SHB-CNSTand 2P-SHBresult in smaller gradient norms and
have similar convergence asNesterov-EXP.
For our experimental evaluation3, we consider minimizing strongly-convex quadratics. In particular, we
generate random synthetic regression datasets withn = 10000 and d = 20. For this, we generate a random
w� vector and a random feature matrix X 2 Rn � d. We control the maximum and minimum eigenvalues
of the resulting X T X matrix, thus controlling the L-smoothness and� -strong-convexity of the resulting
quadratic problem. The measurementsy 2 Rn are generated according to the model:y = Xw � + s where
s � N (0; rI n ) corresponds to Gaussian noise. We vary� 2 f 1000; 500; 200g and the magnitude of the
noiser 2 f 10� 2; 10� 4; 10� 6g. These choices are motivated by Aybat et al. (2019). By controllingr , we can
control the variance in the stochastic gradients. Using these synthetic datasets, we consider minimizing
the unregularized linear regression loss:f (w) = 1

2 kXw � yk2. In this case, A = X T X , d = 2 yT X and
A i = X T

i X i , di = 2yT
i X i .

We compare the following methods: SHB with a constant step-size and momentum (set according to Theorem 2)
with a = 1 (SHB), Multi-stage SHB (Algorithm 1) ( Multi-SHB ), Two-phase SHB (Algorithm 2) with c = 0 :5
(2P-SHB), and use the following baselines � SGD (SGD), SGD with Nesterov acceleration and exponentially
decreasing step-sizes (Vaswani et al., 2022) (Nesterov-EXP). Additionally, we consider a heuristic we refer
to as Multi-stage SHB with constant momentum parameter (Multi-SHB-CNST). The heuristic has the same
structure as Algorithm 1, but the momentum parameter in each stage is �xed i.e. � i = (1 � 1=2

p
� )2. We will

3The code is available at https://github.com/anh-dang/accelerated_noise_adaptive_shb
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see that this heuristic can result in better convergence thanMulti-SHB . However, analyzing it theoretically is
nontrivial. For each compared method, we use a mini-batch sizeb = 0 :9n to ensure that it is su�ciently large
for SHB to achieve an accelerated rate for our choices of� . We note that using b = 0 :9n on a noisy regression
problem has enough stochasticity to meaningfully compare optimization methods. We �x the total number of
iterations T = 7000 and initialization w0 = 0. For each experiment, we consider3 independent runs, and plot
the average result. We will use the full gradient norm as the sub-optimality measure and plot it against the
number of iterations.

From Fig. 3, we observe that: (i) both SGDand SHBconverge to the neighborhood of the minimizer which
depends on the noiser . However, SHBattains an accelerated rate, thus converging to the neighborhood faster.
(ii) Multi-SHB , Multi-SHB-CNSTand 2P-SHBcan better counteract the noise, and result in smaller gradient
norm after reaching the neighborhood at an accelerated rate. (iii) TheMulti-SHB-CNST heuristic results
in slightly better empirical performance than Multi-SHB when � is relatively small. (iv) 2P-SHBresults in
consistently better performance compared toMulti-SHB . (v) Across problems, the SHB variants have similar
convergence asNesterov-EXP.

(a) � = 2048 (b) � = 1024 (c) � = 512

(d) � = 256 (e) � = 128 (f) � = 64

(g) � = 32 (h) � = 16 (i) � = 8

Figure 4: Comparison of SHB-� , NON-ACC-SHB, SGDand baselinesKAP, SQRT-KAPfor the squared loss on
synthetic datasets with di�erent � . For large � , SHB can converge in an accelerated rate if the batch-size is
larger than the threshold b� . The performances ofSGDand NON-ACC-SHBare similar and signi�cantly slower
than SHB when � is large.

Next, we consider solving synthetic feasible linear systems with di�erent values of� , and examine the
convergence of SHB with di�erent batch-sizes. The data generation procedure is similar as above, however,
there is no Gaussian noise (s = 0 ) and hence interpolation is satis�ed. In particular, the measurementsy 2 Rn

are now generated according to the model:y = Xw � . We vary � 2 f 8; 16; 32; 64; 128; 256; 512; 1024; 2048g
and batch-sizeb = �n for � 2 f 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0g. We �x the total number of iterations
T = 2000. For each experiment, we consider5 independent runs, and plot the average result. We will use the
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full gradient norm as the performance measure and plot it against the number of iterations. We compare the
following methods: accelerated SHB with a constant step-size and momentum (set according to Theorem 2)
with a = 1 and varying batch-size � (SHB-� ), non-accelerated SHB with a constant step-size and momentum
(set according to Theorem 1) and a �xed batch-sizeb = 0 :3n (NON-ACC-SHB), SGD with a constant step-size
and a �xed batch-size b = 0 :3n (SGD). We also add the following baselines to understand the dependence

of � : line proportional to exp
�

� T
�

�
(KAP) and line proportional to exp

�
� Tp

�

�
(SQRT-KAP). The baselines are

calculated by multiplying the initial gradient norm with the corresponding exponential term calculated at
each iteration.

From Fig. 4, we observe that (i) when � is large, using SHB with smaller batch-sizes can result in divergence,
(ii) SHB can only attain acceleration when the batch-size is larger than some� -dependent threshold, and
the extent of acceleration depends on the batch-size, (iii) across problems, the performance ofSGDand
NON-ACC-SHBis similar and slower than SHB when� is large, (iv) the larger batch-size, SHB converges at
a rate similar to the SQRT-KAPbaseline, (v) across problems, SGD converges at a rate similar to theKAP
baseline. This veri�es our theoretical results in Sections 4.1 and 4.2.

Finally, in App. I.2, we consider the algorithm proposed in Pan et al. (2024). We observe that with a su�ciently
large batch-size, the method converges and has similar performance to the proposed SHB variants.

6 Conclusion

For the general smooth, strongly-convex setting, we developed a novel variant of SHB that uses exponentially
decreasing step-sizes and achieves noise-adaptive non-accelerated linear convergence forany mini-batch size.
This rate matches that of SGD and is the best achievable rate for SHB in this setting (given the negative
results in Goujaud et al. (2023)). For strongly-convex quadratics, we demonstrated that SHB can achieve
accelerated linear convergence if its mini-batch size is above a certain problem-dependent threshold. Our
results imply that for strongly-convex quadratics where n >> O (� 2), SHB (and its multi-stage and two-phase
variants) with a nearly constant (independent of n) mini-batch size can be provably better than SGD, thus
quantifying the theoretical bene�t of SHB. In the future, we aim to close the gap between the upper and
lower-bounds on the mini-batch size required for SHB to attain an accelerated rate. Furthermore, we aim to
improve our lower-bound and characterize the behaviour of SHB with any step-size and momentum parameter.
On the more practical side, we hope to develop SHB variants that can attain an accelerated rate when the
batch-size is large, and automatically default to non-accelerated rates for smaller batch-sizes.
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Supplementary Material

Organization of the Appendix

A De�nitions

B Proofs for non-accelerated rates

C Proofs for non-accelerated rates with misestimation

D Proofs for upper bound SHB

E Proofs for lower bound SHB

F Proofs for multi-stage SHB

G Proofs for SHB with bounded noise assumption

H Proofs for two-phase SHB

I Additional experiments

A De�nitions

Our main assumptions are that each individual function f i is di�erentiable, has a �nite minimum f �
i , and is

L -smooth, meaning that for all v and w,

f i (v) � f i (w) + hr f i (w); v � wi +
L
2

kv � wk2 ; (Individual Smoothness)

which also implies that f is L -smooth. A consequence of smoothness is the following bound on the norm of
the stochastic gradients,

kr f i (w)k2 � 2L (f i (w) � f �
i ):

We also assume that eachf i is convex, meaning that for all v and w,

f i (v) � f i (w) � hr f i (w); w � vi : (Convexity)

We will also assume thatf is � strongly-convex, meaning that for all v and w,

f (v) � f (w) + hr f (w); v � wi +
�
2

kv � wk2 : (Strong Convexity)
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B Proofs for non-accelerated rates

We will require (Sebbouh et al., 2020, Theorem H.1). We include its proof for completeness.

Theorem 5. For L-smooth, � strongly-convex functions, suppose(� k )k is a decreasing sequence such
that � 0 = � and 0 < � k < 1

2L . De�ne � k := 1� 2�L
� k �

�
1 � (1 � � k � )k

�
, Ak := kwk � w� + � k (wk � wk � 1)k2,

Ek := Ak + 2 � k � k (f (wk � 1) � f (w� )) , � k := � k
1+ � k +1

, � k := � k
1� � k �

1+ � k +1
, � 2 := Ei [f i (w� ) � f �

i ] � 0. Then SHB
Eq. (1) converges as

E[Ek+1 ] � (1 � � k � )E[Ek ] + 2L�� 2� 2
k � 2 (3)

where � =
q

n � b
(n � 1)b.

Proof. We will �rst expand and bound the term Ak+1 ,

Ak+1 = kwk+1 � w� + � k+1 (wk+1 � wk )k2

= kwk � w� � � k r f ik (wk ) + � k (wk � wk � 1) + � k+1 [� � k r f ik (wk ) + � k (wk � wk � 1)]k2

(SHB step)

= kwk � w� � � k (1 + � k+1 )r f ik (wk ) + � k (1 + � k+1 )(wk � wk � 1)k2

= kwk � w� � � k r f ik (wk ) + � k (1 � � k � )(wk � wk � 1)k2 (de�nition of � k and � k )

= kwk � w� + � k (wk � wk � 1) � � k [�� k (wk � wk � 1) + r f ik (wk )]k2

= Ak + � 2
k k�� k (wk � wk � 1) + r f ik (wk )k2

� 2� k hwk � w� + � k (wk � wk � 1); �� k (wk � wk � 1) + r f ik (wk )i

= Ak + � 2
k kr f ik (wk )k2 + � 2

k � 2

| {z }
� � k �

� 2
k kwk � wk � 1k2

+ 2 � 2
k �� k hwk � wk � 1; r f ik (wk )i � 2� k �� k hwk � w� ; wk � wk � 1i

� 2� k hwk � w� ; r f ik (wk )i � 2� k � k hwk � wk � 1; r f ik (wk )i � 2� k �� 2
k kwk � wk � 1k2

� Ak � � k �
�

� 2
k kwk � wk � 1k2 + 2 � k hwk � w� ; wk � wk � 1i

�
� 2� k hwk � w� ; r f ik (wk )i

+ � 2
k kr f ik (wk )k2

| {z }
� 2L� 2

k [f ik (wk ) � f �
ik ]

+2 � 2
k �� k hwk � wk � 1; r f ik (wk )i � 2� k � k hwk � wk � 1; r f ik (wk )i :

(by L-smoothness off ik )

Add Bk+1 = 2 � k+1 � k+1 (f (wk ) � f � ) on both sides,

Ak+1 + Bk+1 � Ak � � k �
�

� 2
k kwk � wk � 1k2 + 2 � k hwk � w� ; wk � wk � 1i

�
� 2� k hwk � w� ; r f ik (wk )i

+ 2L� 2
k [f ik (wk ) � f �

ik ] + 2 � 2
k �� k hwk � wk � 1; r f ik (wk )i

� 2� k � k hwk � wk � 1; r f ik (wk )i + 2 � k+1 � k+1 (f (wk ) � f � )

� Ak � � k �
�

� 2
k kwk � wk � 1k2 + 2 � k hwk � w� ; wk � wk � 1i

�
� 2� k hwk � w� ; r f ik (wk )i

+ 2L� 2
k [f ik (wk ) � f �

ik ] � 2� k � k (1 � � k � )hwk � wk � 1; r f ik (wk )i

+ 2 � k+1 � k+1 [f (wk ) � f � ]:

Taking expectation w.r.t i k , f ik (wk ) � f �
ik = [ f ik (wk ) � f ik (w� )] + [ f ik (w� ) � f �

ik ] then

E[Ak+1 + Bk+1 ] � E[Ak ] � E
h
� k �

�
� 2

k kwk � wk � 1k2 + 2 � k hwk � w� ; wk � wk � 1i
�i

� 2� k E[hwk � w� ; r f (wk )i ] + 2L�� 2� 2
k � 2 + 2L� 2

k E[f (wk ) � f � ]

� 2� k � k (1 � � k � )E[hwk � wk � 1; r f (wk )i ] + 2 � k+1 � k+1 E[f (wk ) � f � ]:
(Using Lemma 2)
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Sincef is strongly-convex, � 2� k hwk � w� ; r f (wk )i � � � k � kwk � w� k2 � 2� k [f (wk ) � f � ], then

E[Ek+1 ] � E[Ak ] � � k � E[kwk � w� k2 + � 2
k kwk � wk � 1k2 + 2 � k hwk � w� ; wk � wk � 1i

| {z }
A k

]

+ 2L�� 2� 2
k � 2 + 2L� 2

k E[f (wk ) � f � ] � 2� k � k (1 � � k � )E [hwk � wk � 1; r f (wk )i ]

� 2� k E[f (wk ) � f � ] + 2 � k+1 � k+1 E[f (wk ) � f � ]

� (1 � � k � )E[Ak ] + 2L�� 2� 2
k � 2 + 2L� 2

k E[f (wk ) � f � ]

� 2� k � k (1 � � k � )E [hwk � wk � 1; r f (wk )i ]

� 2� k E[f (wk ) � f � ] + 2 � k+1 � k+1 E[f (wk ) � f � ]:

By convexity, �hr f (wk ); wk � wk � 1i � f (wk � 1) � f (wk ) = [ f (wk � 1) � f � ] � [f (wk ) � f � ], then

E[Ek+1 ] � (1 � � k � )E[Ak ] + 2L�� 2� 2
k � 2 + 2L� 2

k E[f (wk ) � f � ]
| {z }

� 4L� 2
k E[f (wk ) � f � ]

+2 � k � k (1 � � k � )E[f (wk � 1) � f � ]

� 2� k � k (1 � � k � )E[f (wk ) � f � ] � 2� k E[f (wk ) � f � ] + 2 � k+1 � k+1 E[f (wk ) � f � ]

� (1 � � k � )E[Ak + 2 � k � k [f (wk � 1) � f � ]
| {z }

B k

] + 2L�� 2� 2
k � 2 + 4L� 2

k E[f (wk ) � f � ]

� 2� k � k (1 � � k � )E[f (wk ) � f � ] � 2� k E[f (wk ) � f � ] + 2 � k+1 � k+1 E[f (wk ) � f � ]

� (1 � � k � )E[Ek ] + 2L�� 2� 2
k � 2

+ 2E[f (wk ) � f � ]
�
2L� 2

k � � k � k (1 � � k � ) � � k + � k+1 � k+1
�

: (Theorem 5 �rst part)

We want to show that 2L� 2
k � � k � k (1 � � k � ) � � k + � k+1 � k+1 � 0 which is equivalent to

� k+1 � k+1 � � k (1 � 2L� k + � k (1 � � k � )) .

RHS = � k (1 � 2L� k + � k (1 � � k � ))

= � k (1 � 2L� k ) + � k � k (1 � � k � )

= � k (1 � 2L� k ) +
1 � 2�L

�

�
1 � (1 � � k � )k �

(1 � � k � ) (de�nition of � k )

= � k (1 � 2L� k ) �
1 � 2�L

�
� k � +

1 � 2�L
�

�
1 � (1 � � k � )k+1 �

=
1 � 2�L

�

�
1 � (1 � � k � )k+1 �

+ 2L� k (� � � k| {z }
� 0

) (since � � � k )

�
1 � 2�L

�

�
1 � (1 � � k � )k+1 �

�
1 � 2�L

�

�
1 � (1 � � k+1 � )k+1 �

(since � k � � k+1 )

= � k+1 � k+1 = LHS:

Hence,
E[Ek+1 ] � (1 � � k � )E[Ek ] + 2L�� 2� 2

k � 2
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Theorem 1. For L-smooth, � strongly-convex functions, SHB (Eq. (2)) with � � 1, � = 1
4L , 
 =

�
�
T

� 1=T
,


 k = 
 k+1 , � k = � 
 k , � = � 0 and � k := 1� 2�L
� k �

�
1 � (1 � � k � )k

�
converges as:

E kwT � 1 � w� k2 � C4 kw0 � w� k2 exp
�

�
T
�



4 ln(T=� )

�
+ C4 C5

� 2

T

where � =
q

n � b
(n � 1) b and C4; C5 are polynomial in � and poly-logarithmic in T.

Proof. From the result of Theorem 5 we have

E[Ek ] � (1 � � k � )E[Ek � 1] + 2L�� 2� 2
k � 2

Unrolling the recursion starting from w0 and using the exponential step-sizes
 k

E[ET ] � E[E0]
TY

k=1

�
1 �

�
 k

4L

�
+ 2L�� 2� 2

TX

k=1

"
TY

i = k+1


 2k
�

1 �
�
 i

4L

� #

� k w0 � w� k2 exp

0

B
B
B
B
@

� �
4L

TX

k=1


 k

| {z }
:= C

1

C
C
C
C
A

+ 2L�� 2� 2
TX

k=1


 2k exp

 

�
�

4L

TX

i = k+1


 i

!

| {z }
:= D

(� 0 = 0 and 1 � x < exp(� x))

Using Lemma 3 to lower-boundC then the �rst term can be bounded as

kw0 � w� k2 exp
�

� �
4L

C
�

� k w0 � w� k2 c2 exp
�

�
T
4�



ln(T=� )

�

where � = L
� and c2 = exp

�
1

2�
2�

ln( T =� )

�
. Using Lemma 4 to upper-boundD, we haveD � 32� 2 c2 (ln( T =� )) 2

e2 
 2 T

then the second term can be bounded as

2L�� 2� 2D �
64L� 2c2� 2� 3

e2

(ln( T=� ))2


 2T

Hence

E[ET ] � k w0 � w� k2 c2 exp
�

�
T
4�



ln(T=� )

�
+

64L� 2c2� 2� 3

e2

(ln( T=� ))2


 2T

By Lemma 1, then

E kwT � 1 � w� k2 �
c2

cL
kw0 � w� k2 exp

�
�

T
�



4 ln(T=� )

�
+

� 2

T
64L� 2� 3(ln( T=� ))2

e2 
 2

c2

cL

Let C4(�; T ) :=
exp

�
1

2 �
2 �

ln( T =� )

�

4(1 � 
 )
� 2 [1� exp( � 


2 � )]
and C5(�; T ) := 64L� 2 � 3 (ln( T =� )) 2

e2 
 2 , then

E kwT � 1 � w� k2 � C4 kw0 � w� k2 exp
�

�
T
�



4 ln(T=� )

�
+

� 2

T
C4 C5
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B.1 Helper Lemmas

Lemma 1. For ET := kwT � w� + � T (wT � wT � 1)k2 + 2 � T � T (f (wt � 1) � f (w� )) , ET � cL kwT � 1 � w� k2

where cL = 4(1 � 
 )
� 2

�
1 � exp

�
� � 


2L

��

Proof.

E[ET ] = E[AT ] + E[BT ] � E[BT ] = 2 � T � T E[f (wT � 1) � f � ]

Hence, we want to lower-bound� T � T and we do this next

� T � T =
1 � 


�

"

1 �
�

1 �
� 
 T +1

2L

� T
#

(Using the de�nition of � k and � k )

�
1 � 


�

h
1 � exp

�
� T 
 T � 


2L

�i
(Since 1 � x � exp(� x))

=
1 � 


�

h
1 � exp

�
�

� 

2L

�i
(Since 
 =

�
1
T

� 1=T
)

Putting everything together, and using strong-convexity of f

E[ET ] �
4(1 � 
 )

� 2

h
1 � exp

�
�

� 

2L

�i

| {z }
:= cL

E kwT � 1 � w� k2

We restate (Vaswani et al., 2022, Lemma 2, Lemma 5, and Lemma 6) that we used in our proof.

Lemma 2. If
� 2 := E[f i (w� ) � f �

i ];

and each function f i is � strongly-convex andL-smooth, then

� 2
B := EB [f B (w� ) � f �

B ] � �
n � b

(n � 1)b
| {z }

:= � 2

� 2:

Lemma 3. For 
 =
�

�
T

� 1=T
,

A :=
TX

t =1


 t �

T

ln(T=� )
�

2�
ln(T=� )

Lemma 4. For 
 =
�

�
T

� 1=T
and any � > 0, with c2 = exp

�
1
�

2�
ln( T =� )

�
,

TX

k=1


 2k exp

 

�
1
�

TX

i = k+1


 i

!

�
4� 2c2(ln( T=� ))2

e2
 2T

19



Published in Transactions on Machine Learning Research (03/2025)

C Proofs for non-accelerated rates with misestimation

A practical advantage of using Eq. (2) with exponential step-sizes is its robustness to misspeci�cation ofL
and � . Speci�cally, in App. C.1, we analyze the convergence of SHB (Eq. (2)) when using an estimatêL
(rather than the true smoothness constant). In App. C.2, we analyze the convergence of SHB when using an
estimate �̂ for the strong-convexity parameter.

C.1 L misestimation

Without loss of generality, we assume that the estimateL̂ is o� by a multiplicative factor � i.e. L̂ = L
� L

for

some� L > 0. We note that L̂ is a deterministic estimate of L . Here � L quanti�es the estimation error with
� L = 1 corresponding to an exact estimation ofL . In practice, it is typically possible to obtain lower-bounds
on the smoothness constant. Hence, the� L > 1 regime is of practical interest.

Similar to the dependence of SGD on smoothness mis-estimation obtained by Vaswani et al. (2022),
Theorem 6 shows that with any mis-estimation onL we can still recover the convergence rate of
O

�
exp

�
� T
�

�
+ � 2

T

�
to the minimizer w� . Speci�cally, Theorem 6 demonstrates a convergence rate of

O
�

exp
�

� min f � L ;1gT
�

�
+ max f � 2

l ;1g( � 2 +� f max f ln( � L ) ;0g)
T

�
. The �rst two terms in Theorem 6 are similar to

those in Theorem 1. For � L � 1, the third term is zero and the rate matches that in Theorem 1 upto a
constant that depends on� L . For � L > 1, SHB initially diverges for k0 iterations, but the exponential
step-size decay ensures that the algorithm eventually converges to the minimizer. The initial divergence and
the resulting slowdown in the rate is proportional to � L . Finally, we note that Vaswani et al. (2022)
demonstrate similar robustness for SGD with exponential step-sizes, while also proving the necessity of the
slowdown in the convergence.

Theorem 6. Under the same settings as Theorem 1, SHB (Eq. (2)) with the estimated̂L = L
� L

results in
the following convergence,

E kwT � 1 � w� k2

� k w0 � w� k2 c2

cL
exp

�
�

minf � L ; 1gT
2�



ln(T=� )

�

+
c2

cL

32L� 3� 2 ln(T=� )
e2
 2T

�
� �

max
�

1;
� 2

L

4L

�
ln(T=� )� 2

�

+
�

maxf 0; ln( � L )g
�

� 2 + 2� f
� L � 1

� L �

�� �

where c2 = exp
�

1
2�

2�
ln (T =� )

�
, k0 = T ln( � L )

ln( T =� ) , and � f = max i 2 [k0 ] E[f (wi ) � f � ] and

cL = 4(1 � 
 )
� 2

�
1 � exp

�
� � 


2L

��

Proof. Suppose we estimateL to be L̂ . Now rede�ne

� k =
1

2L̂

 k

�̂ k =
1 � 2� L̂

� k �

�
1 � (1 � � k � )k �

Âk =





 wk � w� + �̂ k (wk � wk � 1)








2

B̂k = 2 � k �̂ k (f (wk � 1) � f (w� ))

Êk = Âk + B̂k
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Follow the proof of Theorem 5 until Theorem 5 �rst part step with the new de�nition,

E[Êk+1 ] � (1 � � k � )E[Êk ] + 2L�� 2� 2
k � 2 + 2E[f (wk ) � f � ]

�
2L� 2

k � � k �̂ k (1 � � k � ) � � k + � k+1 �̂ k+1

�

| {z }
G

(4)

G can be bound as

G = 2L� 2
k � � k �̂ k (1 � � k � ) � � k + � k+1 �̂ k+1

= � k (2L� k � 1) � � k �̂ k (1 � � k � ) + � k+1 �̂ k+1

= � k (2L� k � 1) + � k (1 � 2L̂� ) �
1 � 2� L̂

�

�
1 � (1 � � k � )k+1 �

+ � k+1 �̂ k+1 (de�nition of �̂ k )

� 2� k (L� k � L̂� ) �
1 � 2� L̂

�

�
1 � (1 � � k+1 � )k+1 �

+ � k+1 �̂ k+1 (� k+1 � � k )

= 2 � k (L� k � L̂� ) � � k+1 �̂ k+1 + � k+1 �̂ k+1

= 2 � k (L� k � L̂� )

Hence Eq. (4) can be written as

E[Êk+1 ] � (1 � � k � )E[Êk ] + 2L�� 2� 2
k � 2 + 4E[f (wk ) � f � ]� k (L� k � L̂� )

First case if � L � 1 then L� k � L̂� � 0 and we will recover the proof of Theorem 1 with a slight di�erence
including � L .

E[Êk ] � k w0 � w� k2 c2 exp
�

�
� L T
2�



ln(T=� )

�
+

32L�� 2� 2c2� 2

e2

(ln( T=� ))2


 2T

Second case if� L > 1
Let k0 = T ln( � L )

ln( T =� ) then for k < k 0 regime, L� k � L̂� > 0

E[Êk+1 ] � (1 � � k � )E[Êk ] + 2L�� 2� 2
k � 2 + 4E[f (wk ) � f � ]� k (L� k � L̂� )

Let � f = max i 2 [k0 ] E[f (wi ) � f � ] and observe that L� k � L̂� � L� k
� L � 1

� L
then

E[Êk+1 ] � (1 � � k � )E[Êk ] + 2L�� 2� 2
k � 2 + 4L� 2

k � f
� L � 1

� L

= (1 �
�� L

2L

 k )E[Êk ] + 2L(�� 2� 2 + 2� f

� L � 1
� L

)
| {z }

c5

� 2
k

Since� L > 1

E[Êk+1 ] � (1 �
�

2L

 k )E[Êk+1 ] + c5� 2

k

Unrolling the recursion for the �rst k0 iterations we get

E[Êk0 ] � E[Ê0]
k0 � 1Y

k=1

�
1 �

�
2L


 k
�

+ c5

k0 � 1X

k=1


 2
k

k0 � 1Y

i = k+1

�
1 �

�
2L


 i

�

Bounding the �rst term using Lemma 3,

k0 � 1Y

k=1

�
1 �

�
2L


 k
�

� exp
�

�
�

2L

 � 
 k0

1 � 


�
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Bounding the second term using Lemma 4 similar to (Vaswani et al., 2022, Section C3)

k0 � 1X

k=1


 2
k

k0 � 1Y

i = k+1

�
1 �

�
2L


 i

�
� exp

�

 k0

2� (1 � 
 )

�
16� 2

e2
 2

k0 ln(T=� )2

T2

Put everything together,

E[Êk0 ] � k w0 � w� k2 exp
�

�
�

2L

 � 
 k0

1 � 


�
+ c5 exp

�

 k0

2� (1 � 
 )

�
16� 2

e2
 2

k0 ln(T=� )2

T2

Now consider the regimek � k0 where L� k � L̂� � 0

E[Êk+1 ] � (1 �
�

2L

 k )E[Êk ] + 2L�� 2� 2 � 2

L

4L

 2

k

� (1 �
�

2L

 k )E[Êk ] +

� 2
L � 2

2L

 2

k

Unrolling the recursion from k = k0 to T

E[ÊT ] � E[Êk0 ]
TY

k= k0

(1 �
�

2L

 k ) +

� 2
L �� 2� 2

2L

TX

k= k0


 2
k

TY

i = k+1

(1 �
�
L


 i )

Bounding the �rst term using Lemma 3,

TY

k= k0

�
1 �

�
2L


 k
�

� exp
�

�
�

2L

 k0 � 
 T +1

1 � 


�

Bounding the second term using Lemma 4 similar to (Vaswani et al., 2022, Section C3)

TX

k= k0


 2
k

TY

i = k+1

�
1 �

�
2L


 i

�
� exp

�

 T +1

2� (1 � 
 )

�
16� 2

e2
 2

(T � k0 + 1) ln( T=� )2

T2

Hence, put everything together

E[ÊT ] � E[Êk0 ] exp
�

�
�

2L

 k0 � 
 T +1

1 � 


�
+

� 2
L �� 2� 2

2L
exp

�

 T +1

2� (1 � 
 )

�
16� 2

e2
 2

(T � k0 + 1) ln( T=� )2

T2

Combining the bounds for two regimes

E[ÊT ] � exp
�

�
�

2L

 k0 � 
 T +1

1 � 


� �
kw0 � w� k2 exp

�
�

�
2L


 � 
 k0

1 � 


�
+ c5 exp

�

 k0

2� (1 � 
 )

�
16� 2

e2
 2

k0 ln(T=� )2

T2

�

+
� 2

L �� 2� 2

2L
exp

�

 T +1

2� (1 � 
 )

�
16� 2

e2
 2

(T � k0 + 1) ln( T=� )2

T2

= kw0 � w� k2 exp
�

�
�

2L

 � 
 T +1

1 � 


�
+ c5 exp

�

 T +1

2� (1 � 
 )

�
16� 2

e2
 2

k0 ln(T=� )2

T2

+
� 2

L �� 2� 2

2L
exp

�

 T +1

2� (1 � 
 )

�
16� 2

e2
 2

(T � k0 + 1) ln( T=� )2

T2

Using Lemma 3 to bound the �rst term and noting that 
 T +1

1� 
 � 2�
ln( T =� ) , let c2 = exp

�
1

2�
2�

ln (T =� )

�

E[ÊT ] � k w0 � w� k2 exp
�

�
T
2�



ln(T=� )

�
+ c5

16c2� 2

e2
 2

k0 ln(T=� )2

T2 +
� 2

L �� 2� 2

2L
16c2� 2

e2
 2

(T � k0 + 1) ln( T=� )2

T2
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Substitute the value of c5 and k0 we have

E[ÊT ] � k w0 � w� k2 exp
�

�
T
2�



ln(T=� )

�
+

� 2
L �� 2� 2

LT
8c2� 2 ln(T=� )2

e2
 2

+ 32
�

�� 2� 2 + 2� f
� L � 1

� L

�
L
T

c2� 2 ln( � L ) ln( T=� )
e2
 2

Combining the statements from � L � 1 and � L > 1 gives us

E[ÊT ] � k w0 � w� k2 c2 exp
�

�
minf � L ; 1gT

2�



ln(T=� )

�

+
32Lc2� 2 ln(T=� )

e2
 2T

�
max

�
1;

� 2
L

4L

�
ln(T=� )�� 2� 2 + max f 0; ln( � L )g

�
�� 2� 2 + 2� f

� L � 1
� L

��

The next step is to remove theL̂ from the LHS, and obtain a better measure of sub-optimality. By Lemma 1,

E[ÊT ] �
4(1 � 
 )

� 2

h
1 � exp

�
�

� 

2L

�i

| {z }
:= cL

kwT � 1 � w� k2

Note that cL > 0 is constant w.r.t T . Hence,

E kwT � 1 � w� k2 � k w0 � w� k2 c2

cL
exp

�
�

minf � L ; 1gT
2�



ln(T=� )

�

+
c2

cL

32L� 2 ln(T=� )
e2
 2T

�
max

�
1;

� 2
L

4L

�
ln(T=� )�� 2� 2 + max f 0; ln( � L )g

�
�� 2� 2 + 2� f

� L � 1
� L

��

C.2 � misestimation

Next, we analyze the e�ect of misspecifying� , the strong-convexity parameter. We assume we have access to
an estimate �̂ = � � � where � � is the degree of misspeci�cation. We note that�̂ is a deterministic estimate of
� . We only consider the case where we underestimate� , and hence� � � 1. This is the typical case in
practice � for example, while optimizing regularized convex loss functions in supervised learning,̂� is set to
the regularization strength, and thus underestimates the true strong-convexity parameter.

Theorem 7 below demonstrates anO
�

exp
�

� � � T
�

�
+ 1

� 2
� T

�
convergence to the minimizer. Hence, SHB with

an underestimate of the strong-convexity results in slower convergence to the minimizer, with the slowdown
again depending on the amount of misspeci�cation.

Theorem 7. Under the same settings as Theorem 1, SHB (Eq. (2)) with the estimated̂� = � � � for � � � 1,
results in the following convergence,

E kwT � 1 � w� k2 � k w0 � w� k2 c2

c�
exp

�
�

� � T
2�



ln(T=� )

�
+

32L� 2c2� 3

� 2
� e2
 2c�

(ln( T=� ))2

T
� 2

where c2 = exp
�

1
2�

2�
ln( T =� )

�
and c� = 4(1 � 
 )

� 2
� � 2

�
1 � exp

�
� � � � 


2L

��

Proof. Suppose we estimate� to be �̂ . Now rede�ne

�̂ k =
1 � 2�L

� k �̂

�
1 � (1 � � k �̂ )k �

; Âk =





 wk � w� + �̂ k (wk � wk � 1)








2
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B̂k = 2 � k �̂ k (f (wk � 1) � f (w� )) ; Êk = Âk + B̂k

Follow Theorem 5 �rst part steps with the new de�nition, the only di�erence was at the step where we use
strongly-convex on f for � 2� k hwk � w� ; r f (wk )i � � � k � kwk � w� k2 � 2� k [f (wk ) � f � ].

E[Êk+1 ] � (1 � � k �̂ )E[Êk ] + 2L�� 2� 2
k � 2 + � k (�̂ � � ) kwk � w� k2

= (1 � � k � � � )E[Êk ] + 2L�� 2� 2
k � 2 + � k (�̂ � � ) kwk � w� k2

� (1 � � k � � � )E[Êk ] + 2L�� 2� 2
k � 2 + � k � (� � � 1)

2
�

[f (wk ) � f � ] (since f is strongly-convex)

= (1 � � k � � � )E[Êk ] + 2L�� 2� 2
k � 2 + 2 � k (� � � 1)[f (wk ) � f � ]

Since� � � 1 then 2� k (� � � 1)[f (wk ) � f � ] � 0 so

E[Êk+1 ] � (1 � � k � � � )E[Êk ] + 2L�� 2� 2
k � 2

Hence, following the same proof as Theorem 1

E[ÊT ] � k w0 � w� k2 c2 exp
�

�
� � T
2�



ln(T=� )

�
+

32L� 2� 2c2� 3

� 2
� e2

(ln( T=� ))2


 2T

By Lemma 1,

E[ÊT ] �
4(1 � 
 )

� 2
� � 2

h
1 � exp

�
�

� � � 

2L

�i

| {z }
:= c�

kwT � 1 � w� k2

Note that c� > 0 is constant w.r.t T . Hence,

kwT � 1 � w� k2 � k w0 � w� k2 c2

c�
exp

�
�

� � T
2�



ln(T=� )

�
+

32L� 2c2� 3

� 2
� e2
 2c�

(ln( T=� ))2

T
� 2

D Proofs for upper bound SHB

Lemma 5. For L -smooth and� strongly-convex quadratics, SHB (Eq.(1)) with � k = � = a
L and a � 1,

� k = � =
�
1 � 1

2
p

��
� 2

, batch-sizeb satis�es the following recurrence relation,

E[k� T k] � C0 � T k� 0k + 2aC0 � (b)

"
T � 1X

k=0

� T � 1� k E k� k k

#

+
aC0 � � (b)

L

"
T � 1X

k=0

� T � 1� k

#

;

where � k :=
�

wk � w�

wk � 1 � w�

�
, C0 � 3

p �
a , � (b) =

q
3 n � b

(n � 1)b and � = 1 �
p

a
2

p
�

Proof. With the de�nition of SHB (1), if r f ik (w) is the mini-batch gradient at iteration k, then, for
quadratics,

�
wk+1 � w�

wk � w�

�

| {z }
� k +1

=
�
(1 + � )I d � �A � �I d

I d 0

�

| {z }
H

�
wk � w�

wk � 1 � w�

�

| {z }
� k

+ �
�
r f (wk ) � r f ik (wk )

0

�

| {z }
� k

� k+1 = H� k + �� k
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Recursing from k = 0 to T � 1, taking norm and expectation w.r.t to the randomness in all iterations.

E[k� T k] �



 H T � 0




 + � E

" 










T � 1X

k=0

H T � 1� k � k












#

Using Theorem 8 and Corollary 6, for any vectorv,



 H k v




 � C0 � k kvk where � =

p
� . Hence,

E[k� T k] � C0 � T k� 0k +
C0 a

L

"
T � 1X

k=0

� T � 1� k E k� k k

#

(� = a
L )

In order to simplify � k , we will use the result from Lemma 7 and Lohr (2021),

Ek [k� k k2] = Ek [kr f (wk ) � r f ik (wk )k2] =
n � b

(n � 1) b
Ei kr f (wk ) � r f i (wk )k2

(Sampling with replacement whereb is the batch-size andn is the total number of examples)

=
n � b

(n � 1) b
Ei kr f (wk ) � r f (w� ) � r f i (wk ) + r f i (w� ) � r f i (w� )k2 (r f (w� ) = 0 )

� 3
n � b

(n � 1) b

h
Ei kr f (wk ) � r f (w� )k2 + Ei kr f i (wk ) � r f i (w� )k2 + Ei kr f i (w� )k2

i

( (a + b+ c)2 � 3[a2 + b2 + c2])

� 3
n � b

(n � 1) b

h
L 2 Ei kwk � w� k2 + L 2 Ei kwk � w� k2 + Ei kr f i (w� )k2

i

(Using the L smoothness off and f i )

� 3
n � b

(n � 1) b

h
2L 2 kwk � w� k2 + � 2

i

(wk is independent of the randomness and by de�nition� 2 = Ei kr f i (w� )k2)

� 3
n � b

(n � 1) b

h
2L 2[kwk � w� k2 + kwk � 1 � w� k2] + � 2

i
(kwk � 1 � w� k2 � 0)

=) Ek [k� k k2] � 3
n � b

(n � 1) b

h
2L 2 k� k k2 + � 2

i
(De�nition of � k )

=) Ek [k� k k] �

s

3
n � b

(n � 1) b
| {z }

:= � (b)

hp
2L 2 k� k k + �

i

(Taking square-roots, using Jensen's inequality on the LHS and
p

a + b �
p

a +
p

b on the RHS)

=) Ek [k� k k] �
p

2L � (b) k� k k + � (b) �

Putting everything together,

E[k� T k] � C0 � T k� 0k +
p

2aC0 � (b) E

"
T � 1X

k=0

� T � 1� k k� k k

#

+
aC0 � � (b)

L

"
T � 1X

k=0

� T � 1� k

#
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Theorem 2. For L-smooth, � strongly-convex quadratics, SHB (Eq. (1)) with � k = � = a
L for a � 1,

� k = � =
�
1 � 1

2
p

��
� 2

, batch-sizeb s.t. b � b� := n max
�

1
1+ n � 1

C � 2
; 1

1+ ( n � 1) a
3

�
converges as:

E kwT � w� k �
6
p

2
p

�
p

a
exp

�
�

p
a T

2
p

�
max

�
3
4

; 1 � 2
p

�
p

�
��

kw0 � w� k +
12

p
a�

�
min

�
1;

�
p

a

�

where � :=
q

E kr f i (w� )k2, � =
q

3 n � b
(n � 1) b and C := 3 526.

Proof. Using Lemma 5, we have that,

E k� T k � C0 � T k� 0k +
p

2aC0 �

"
T � 1X

k=0

� T � 1� k E k� k k

#

+
aC0 � �

L

"
T � 1X

k=0

� T � 1� k

#

We use induction to prove that for all T � 1,

E k� T k � 2C0

h
� +

p
�
p

a
i T

k� 0k +
2C0 � a �
L (1 � � )

where � +
p

�
p

a < 1.

Base case: By Theorem 8, C0 � 1 hencek� 0k � 2C0 k� 0k + 2C0 a� �
L (1 � � )

Inductive hypothesis : For all k 2 f 0; 1; : : : ; T � 1g, k� k k � 2C0
�
� +

p
�
p

a
� k

k� 0k + 2C0 a� �
L (1 � � ) .

Inductive step : Using the above inequality,

E k� T k � C0 � T k� 0k +
p

2aC0 �

"
T � 1X

k=0

� T � 1� k E k� k k

#

+
aC0 � �

L

"
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p

�
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p
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"
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#

+
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L

"
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� k

#

(Since �; a > 0)

� C0 [� +
p

�
p
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p
2aC0 �

�
� T

"
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k=0

� � k
�

2C0

h
� +

p
�
p

a
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k� 0k +
2C0 a� �
L (1 � � )
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+
aC0 � �

L
1 � � T

1 � �
(Sum of geometric series and using the inductive hypothesis)

= C0 [� +
p

�
p

a]T k� 0k +
2
p

2aC2
0 �

�
� T

"
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k=0

�
� +

p
�
p

a
�

� k
#

k� 0k

+
2
p

2a2C2
0 � 2�

�L (1 � � )
� T

"
T � 1X

k=0

�
1
�

� k
#

+
aC0 � �

L
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1 � �

First, we need to prove that 2
p

2 aC 2
0 �

� � T

"
P T � 1

k=0

�
� +

p
�

p
a

�

� k
#

k� 0k � C0
�
� +

p
�
p

a
� T

k� 0k.

2
p

2aC2
0 �

�
� T

"
T � 1X

k=0

�
� +

p
�
p

a
�

� k
#
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2
p
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0 �

�
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�
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p
�

p
a

�

� T

� 1
�

� +
p

�
p

a
�

�
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k� 0k

(Sum of geometric series)
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� 2
p

2
p

aC2
0

p
�

�
� +

p
�
p

a
� T

k� 0k

Hence, we require that,

2
p

2
p

aC2
0

p
� � C0 =) � �

1
8C2

0

1
a

Hence it su�ces to choose � s.t.

=) � �
a

3223�
1
a

(Since C0 � 3
p �

a )

=) � �
1

3223�

=)
n � b

(n � 1) b
�

1
3526 � 2 =)

b
n

�
1

1 + n � 1
35 26 � 2

(Using the de�nition of � )

Since the batch-sizeb satis�es the condition that: b
n � 1

1+ n � 1
C � 2

for C := 15552 = 3526, the above requirement

is satis�ed, and � � 1
32 23 � .

Next, we need to showD := 2
p

2a2 C 2
0 � 2 �

�L (1 � � ) � T

�
P T � 1

k=0

�
1
�

� k
�

+ aC 0 � �
L

1� � T

1� � � 2C0 a� �
L (1 � � )

D =
2
p

2a2C2
0 � 2�

�L (1 � � )
� T

"
T � 1X

k=0

�
1
�

� k
#

+
aC0 � �

L
1 � � T

1 � �

=
2
p

2a2C2
0 � 2�

�L (1 � � )
� T

�
1
�

� T
� 1

�
1
�

�
� 1

+
aC0 � �

L
1 � � T

1 � �
(Sum of geometric series)

<
2
p

2a2C2
0 � 2�

�L (1 � � )
� T 1 � � T

1 � �
�

� T +
aC0 � �
L (1 � � )

<
2
p

2a2C2
0 � 2�

L (1 � � )2 +
aC0 � �
L (1 � � )

Since we wantD � 2aC 0 � �
L (1 � � ) , we require that

2
p

2a2C2
0 � 2�

L (1 � � )2 �
aC0 � �
L (1 � � )

=)
2
p

2C0a �
1 � �

� 1

Ensuring this imposes an additional constraint on� . We require � such that,

� �
1 � �

2
p

2C0 a
=) � �

1

4
p

2
p

a
p

�

1
C0

(Since � = 1 �
p

a
2

p
� )

Hence it su�ces to choose � such that,

� �
1

12
p

2�
(Since C0 � 3

p �
a )

Since the condition on the batch-size ensures that� � 1
32 23 � , this condition is satis�ed. Hence,

E k� T k � 2C0

h
� +

p
�
p

a
i T

k� 0k +
2C0 a � �
L (1 � � )
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This completes the induction.

In order to bound the noise term as 12
p

a�
� min

n
1; �p

a

o
, we will require an additional constraint on the

batch-size that ensures� �
p

a. Using the de�nition of � , we require that,

s

3
n � b

(n � 1)b
�

p
a

=)
b
n

�
1

1 + (n � 1)a
3

;

which is satis�ed by the condition on the batch-size. From the result of the induction,
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h
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p
�
p

a
i T

k� 0k +
2C0 a � �
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2
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p
�
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a
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2
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�
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a

2
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a

2
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�
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p
�
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�
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2C0 a � �
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2
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�
p
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3
p

2
�

�
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p
�

p
�
�

� 1 because of the constraint on batch-size)

� 6

r
�
a

�
1 �

p
a

2
p

�
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�
3
4
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p

�
p

�
�� T
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2a � �

L
3

r
�
a

2
p

�
p

a
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p �
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�
6

p
a

p
�

�
1 �

p
a

2
p

�
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�
3
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p

�
p

�
�� T
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p
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�
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1;

�
p

a

�
(� �

p
a)

=) E kwT � w� k �
6
p

2
p

a

p
� exp

�
�

T
p

�

p
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2
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�
3
4
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p

�
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�
��

kw0 � w� k +
12

p
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�
min

�
1;

�
p

a

�

(for all x, 1 � x � exp(� x))

Corollary 1. For L-smooth, � strongly-convex quadratics, under interpolation, SHB (Eq. (1)) with the
same parameters as in Theorem 2 and batch-sizeb s.t. b � b� := n 1

1+ n � 1
C � 2

(where C is de�ned in Theorem 2)
converges as:

E kwT � w� k �
6
p

2
p

a

p
� exp

�
�

T
p

�

p
a

2
max

�
3
4

; 1 � 2
p

�
p

�
��

kw0 � w� k

Proof. Under interpolation � = 0 . This removes the additional constraint on b� that depends on the constant
a, �nishing the proof.

Corollary 4. Under the same conditions of Theorem 2, for a target error� > 0, setting a := min
n

1; ( �
24 � )2�

o

and T � 2
p

�
p

a
�

1� 2
p

�
p

�
� log

�
12

p
2

p
� kw0 � w � kp

a�

�
ensures thatkwT � w� k �

p
� .

Proof. Using Theorem 2, we have that,
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6
p

2
p

a

p
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�

p
a

�
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p
�

p
�
�

2
T

p
�

!
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p
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�
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�
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�
p

a

�
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Using the step-size similar to that for SGD in (Gower et al., 2019, Theorem 3.1), we see that to get
p

�
accuracy �rst we consider 12

p
a�

� �
p

�
2 that implies a � ( �

24 � )2� .

We also need6
p

2p
a

p
� exp

�
�

p
a
�

1� 2
p

�
p

�
�

2
Tp
�

�
kw0 � w� k �

p
�

2 . Taking log on both sides,

 

�

p
a

�
1 � 2

p
�

p
�
�

2
T

p
�

!

� log
� p

�
2

p
a

6
p

2
p

�

1
kw0 � w� k

�

=) T �
2
p

�
p

a
�
1 � 2

p
�

p
�
� log

�
12

p
2

p
� kw0 � w� k
p

a�

�

D.1 Helper Lemmas

We restate (Wang et al., 2021, Theorem 5) that we used in our proof.

Theorem 8. Let H :=
�
(1 + � )I d � �A �I d

I d 0

�
2 R2d� 2dwhere A 2 Rdn � d is a positive de�nite matrix. Fix

a vector v0 2 Rd. If � is chosen to satisfy

1 � � � max
� �

1 �
p

�� min (A)
� 2

;
�

1 �
p

�� max (A)
� 2

�
then




 H k v0




 �

� p
�

� k
C0 kv0k

where the constant

C0 :=

p
2(� + 1)

p
min f h (�; �� min (A)) ; h (�; �� max (A))g

� 1

and h (�; z ) := �
�
� � (1 �

p
z)2

� �
� � (1 +

p
z)2

�
.

Lemma 6. For a positive de�nite matrix A, denote � := � max (A )
� min (A ) = L

� . Set � = a
� max (A ) = a

L for a � 1 and

� =
�

1 � 1
2

p
�� min (A)

� 2
=

�
1 �

p
a

2
p

�

� 2
. Then, C0 :=

p
2( � +1)p

min f h( �;�� min (A )) ;h ( �;�� max (A )) g
� 3

p �
a and

h (�; z ) := �
�
� � (1 �

p
z)2

� �
� � (1 +

p
z)2

�
.

Proof. Using the de�nition of h (�; z ) with the above setting for � and simplifying,

h(�; �� ) = 3 ��
�

1 �
1
2

p
�� �

3
16

��
�

= 3
a
�

�
1 �

p
a

2
p

�
�

3a
16�

�
(� = a

L )

� 3
a
�

�
1 �

1
2
p

�
�

3
16�

�
(a � 1)

� 3
a
�

�
1 �

1
2

�
3
16

�
=

15
16

a
�

(� � 1)

=)

p
2(1 + � )

p
h(�; �� )

�
2
p

2
q

15
16

a
�

=
8
p

2
p

�
p

15a
� 3

r
�
a

(� � 1)

Now we need to bound
p

2(1+ � )p
h( �;�L )

. Using the de�nition of h (�; z ) and simplifying,

h(�; �L ) = (2
p

�L �
p

�� � �L +
1
4

�� )(
p

�� + 2
p

�L + �L �
1
4

�� )
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= 4a �
a
�

� 2
a3=2
p

�
+

1
2

a3=2

� 3=2
� a2

�
1 �

1
2�

+
1

16� 2

�
(setting � = a=L and expanding above)

= a
�
4 �

1
�

� 2
a1=2
p

�
+

1
2

a1=2

� 3=2
� a

�
1 �

1
2�

+
1

16� 2

��

= a
�
4 �

1
�

�
p

a
�

2
p

�
�

1
2� 3=2

�
� a

�
1 �

1
2�

+
1

16� 2

��

Since� � 1, 2p
� � 1

2� 3= 2 > 0 and 1 � 1
2� + 1

16� 2 > 0, hence

h(�; �L ) � a
�
4 �

1
�

�
�

2
p

�
�

1
2� 3=2

�
�

�
1 �

1
2�

+
1

16� 2

��
(a �

p
a � 1)

= a
�
4 �

�
2

p
�

�
1

2� 3=2

�
�

�
1 +

1
2�

+
1

16� 2

��

Both 2p
� � 1

2� 3= 2 and 1 + 1
2� + 1

16� 2 are decreasing functions of� for � � 1.

Hence, RHS(� ) :=
h
4 �

�
2p
� � 1

2� 3= 2

�
�

�
1 + 1

2� + 1
16� 2

� i
is an increasing function of� . Since,

h(�; �L ) � RHS(� ) � RHS(1) for all � � 1,

h(�; �L ) � a
�
4 � 2 +

1
2

� 1 �
1
2

�
1
16

�
=

15a
16

(� � 1)

Using the above lower-bound for
p

2(1+ � )p
h( �;�L )

we have

p
2(1 + � )

p
h(�; �L )

�
8
p

2
p

15a
�

3
p

a

Putting everything together we get,

C0 � max
�

3

r
�
a

;
3

p
a

�
=) C0 � 3

r
�
a

Lemma 7. For batch sampling method where each batch is sampling without replacement from the dataset.

E
h
kr f b(wk ) � r f (wk )k2

i
=

n � b
(n � 1)b

E
h
kr f i (wk ) � r f (wk )k2

i

where r f b(wk ) = 1
b

P
i 2B r f i (wk )

Proof. First, E[r f b(wk )] = E
�

1
b

P
i 2B r f i (wk )

�
= 1

b

P
i 2B E[r f i (wk )] = 1

b

P
i 2B r f (wk ) = r f (wk ). Then

we will calculate the variance ofr f b(wk ),

Var ( r f b(wk )) = Var

 
1
b

X

i 2B

r f i (wk )

!

=
1
b2 Var

 
X

i 2B

r f i (wk )

!

=
1
b2 Var

 
nX

i =1

r f i (wk )X i

!

where X i is an indicator if sample i is in the batch B

=) Var ( r f b(wk )) =
1
b2

0

@
nX

i =1

Var [r f i (wk )X i ] + 2
j;k 2NX

j 6= k

Cov [r f j (wk )X j ; r f k (wk )X k ]

1

A
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Denote r f i (wk ) = r i and r f b(wk ) = r b for simpli�cation, hence

Var [r i X i ] = r 2
i Var [X i ] = r 2

i
b
n

n � b
n

(a sample is in the batch with probability b
n )

Cov [r j X j ; r k X k ] = E[r j X j r k X k ] � E[r j X j ]E[r k X k ]

= r j r k (E[X j X k ] � E[X j ]E[X k ])

SinceE[X j X k ] = Pr[ both samplesi; j are in the batch] =

�
n � 2
b� 2

�

=
�

n
b

�
and E[X j ] = E[X k ] = b

n ,

=) Cov [r j X j ; r k X k ] = r j r k

�
b(b� 1)
n(n � 1)

�
b2

n2

�

= r j r k
b(b� n)

n2(n � 1)

Plug back to Var ( r b) then,

Var ( r b) =
1
b2

0

@b(n � b)
n2

"
nX

i =1

r 2
i

#

+ 2
b(b� n)

n2(n � 1)

2

4
j;k 2NX

j 6= k

r j r k

3

5

1

A

=
n � b

(n � 1)b

0

@n � 1
n2

"
nX

i =1

r 2
i

#

�
2
n2

2

4
X

j 6= k

r j r k

3

5

1

A

=
n � b

(n � 1)b

0

@

"
1
n

nX

i =1

r 2
i

#

�
1
n2

2

4
nX

i =1

r 2
i + 2

X

j 6= k

r j r k

3

5

1

A

=
n � b

(n � 1)b

�
E[r 2

i ] �
�
E[r 2

i ]
� 2

�

=
n � b

(n � 1)b
Var ( r i )

=) E
h
kr f b(wk ) � r f (wk )k2

i
=

n � b
(n � 1)b

E
h
kr f i (wk ) � r f (wk )k2

i

E Proofs for lower bound SHB

Before looking at the general lower-bound forn samples, it is instructive to consider the lower-bound
arguments for a 2-sample example. The arguments for the generaln-sample example are similar.

Theorem 9. For a �L -smooth, �� strong-convex quadratics problemf (w) := 1
2

P 2
i =1

1
2 wT A i w with 2 samples

and dimensiond = n = 2 such that w� = 0 and eachA i is a 2-by-2 matrix of all zeros except at the (i; i )
position, we run SHB (1) with � k = � = 1

�L
, � k = � =

�
1 � 1

2

p
� ��

� 2
. With a batch-size 1, when � > 6, after

3T iterations, we have the following: if � k :=
�

wk

wk � 1

�
, for a c = 1 :1 > 1,

E[k� 3T k2] > c T k� 0k2

Proof. By de�nition, the 2 samples are: A1 =
�

� 0
0 0

�
A2 =

�
0 0
0 L

�
, and henceA = 1

2

�
� 0
0 L

�
.

Calculating the smoothness and strong-convexity of the resulting problem,�L = L
2 ; �� = �

2 ; � = L
� . By the
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de�nition of SHB (1), we have that,
�
wk+1 � w�

wk � w�

�
=

�
(1 + � )I d � �A k � �I d

I d 0

� �
wk � w�

wk � 1 � w�

�

Let w(1)
k ; w(2)

k be the �rst and second coordinate ofwk respectively, A ( i;j )
k is the element in (i; j )-position of

A. Sincew� = 0, the above update can be written as:

2

6
6
6
4

w(1)
k+1

w(2)
k+1

w(1)
k

w(2)
k

3

7
7
7
5

=

2

6
6
4

1 + � � �A (1 ;1)
k 0 � � 0

0 1 + � � �A (2 ;2)
k 0 � �

1 0 0 0
0 1 0 0

3

7
7
5

2

6
6
6
4

w(1)
k

w(2)
k

w(1)
k � 1

w(2)
k � 1

3

7
7
7
5

Hence, we can separate the two coordinates and interpret the update as SHB in 1 dimension for each
coordinate.

Subsequently, we only focus on the second coordinate which corresponds toL (A (2 ;2)
k ) in matrix A.

wk+1 = wk � �A 22
k wk + � (wk � wk � 1)

=)
�

wk+1

wk

�
=

 
1 + � � 2A 22

k
L � �

1 0

! �
wk

wk � 1

�
(� = 1=�L = 2=L )

Denoting � k :=
�

wk

wk � 1

�
, the above update is

� k+1 = H k � k

where H k is either H1 :=
�

1 + � � �
1 0

�
(corresponding to A22

1 = 0 ) or H2 :=
�

� 1 + � � �
1 0

�

(corresponding to A22
2 = L) with probability 0.5.

In order to prove divergence, we will analyze three iterations of the update in expectation. We enumerate
across8 possible sequences (depending on which sample is chosen):(1; 1; 1); (1; 1; 2) : : : (2; 2; 2). For example,
if the sequence is(1; 1; 2), the corresponding update (across 3 iterations) is:

� k+3 = H (1 ;1;2) � k whereH (1 ;1;2) := H2H1H1

We denoteH i to be the matrix corresponding to the i -th permutation. For example, H 1 := H (1 ;1;1) . Next,
we analyze the suboptimality k� k k2 in expectation.

E[k� k+3 k2] =
1
8

8X

i =1

kH i � k k2 (probability for each of the 8 sequences is1=8)

Representing� k in polar coordinates, for a � k 2 [0; 2� ], � k := r k � k where r k 2 R+ and � k =
�

sin(� k )
cos(� k )

�
,

E[k� k+3 k2] =
1
8

8X

i =1

kH i r k � k k2

=
r 2

k

8

8X

i =1

kH i � k k2
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In order to analyze the divergence of SHB, we de�ne thenorm square increase factor	 := E[k� k +3 k2 ]
k� k k2 ,

	 =
E[k� k+3 k2]

k� k k2

=
r 2

k
8

P 8
i =1 kH i � k k2

r 2
k k� k k2 (k� k k2 = kr k � k k2 = r 2

k k� k k2)

=
1
8

P 8
i =1 kH i � k k2

k� k k2

=
1
8

8X

i =1

kH i � k k2 (k� k k2 = 1 )

	 depends on� k and hence it is a function of � k . Using symbolic mathematics programming (Meurer et al.,
2017), we can calculate	 as an expression of�; � ,

	 =
1
8

8X

i =1








 H i

�
sin(� )
cos(� )

� 








2

= � � 6 sin(2� ) + � 6 + 3 � 5 sin(2� ) + � 5 cos(2� ) � 3� 5

� 5� 4 sin(2� ) � 2� 4 cos(2� ) + 6 � 4

+ 2 � 3 sin(2� ) + 3 � 3 cos(2� ) � 3� 3

� 2� 2 sin(2� ) � 3� 2 cos(2� ) + 5 � 2 � cos(2� ) + 1

We �rst verify that 	( �; � ) is monotonically increasing w.r.t � 2 [0; 1] by taking derivative of 	( �; � ) w.r.t � .
We plot the derivative for � 2 [0; 1] and � 2 [0; 2� ]. From Fig. 5a, we can see that the derivative of	( �; � ) is
positive for � 2 [0; 1] and � 2 [0; 2� ].
Choosing � = 0 :63 (corresponding to � = 6 ), we plot 	 against � in Fig. 5b and minimize 	 w.r.t � , �nding
the minimum to be 1:1. Sincemin(	) = 1 :1 > 1, the sub-optimality is increasing in expectation for any � k

when � = 0 :63. Hence, since	( �; � ) is monotonically increasing with respect to� (Fig. 5a), when � > 6
(correspond to � > 0:63), for an arbitrary � k ,

E[k� k+3 k2] > c E[k� k k2]

where c � 1:1 for all � > 6. Unrolling the recursion starting from 0 to 3T,

E[k� 3T k2] > c T k� 0k2

Sincec � 1:1 > 1, the second coordinate will diverge and SHB will diverge consequently (Fig. 5c).
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(a) 3D plot of derivative of 	( �; � )
with respect to � for � 2 [0; 1] and
� 2 [0; 2� ]. The whole plane is above
0 hence 	( �; � ) is monotonically in-
creasing for � 2 [0; 1] for any � .

(b) Plot of 	 against � for � = 0 :63 (c) Plot of SHB vs SGD for the 2-
sample case with b = 1 , � = 6 . SHB
diverges while SGD converges

Figure 5: Figures for 2-sample SHB lower bound proofs

Theorem 3. For a �L -smooth, �� strongly-convex quadratic problem f (w) := 1
n

P n
i =1

1
2 wT A i w with n

samples and dimensiond = n = 100 such that w� = 0 and eachA i is an n-by-n matrix of all zeros except
at the (i; i ) position, we run SHB (1) with � k = � = 1

�L
, � k = � =

�
1 � 1

2

p
� ��

� 2
. If b < 1

1+ n � 1
e3 : 3 � 0 : 6

n and

� k :=
�

wk

wk � 1

�
, for a c > 1, after 6T iterations, we have that:

E
h
k� 6T k2

i
> c T k� 0k2 :

Proof. Denote L = maxi 2 n A ( i;i )
i and � = min i 2 n A ( i;i )

i . For the strongly-convex quadratic objective function
f (w) := 1

n

P n
i =1

1
2 wT A i w, w� = ~0.

Since eachA i is diagonal, similar to Theorem 9, we can separate the coordinates and consider SHB in 1
dimension for each of the coordinates. Subsequently, we only focus on coordinateu that corresponds to the
largest A ( i;i )

i i.e. u = arg max i 2 n A ( i;i )
i . The update for this coordinate is given by:

wk+1 = wk � � r f ik (wk ) + � (wk � wk � 1) ;

where r f ik (wk ) = 1
b

P
i 2 B k

r f i (wk ) = 1
b

� P
i 2 B k

A (u;u )
i

�
wk . Hence,

wk+1 = wk � �
1
b

 
X

b

A (u;u )
ik

!

wk + � (wk � wk � 1)

Similar to Theorem 9, we calculate the smoothness off (w) as �L = � max
�
r 2f (w)

�
= � max

�
1
n

P n
i =1 A i

�
= L

n .
Hence� = 1

�L
= n

L and the full update can be written as:

wk+1 = wk �
n

b L

 
X

i 2 B k

A (u;u )
i

!

wk + � (wk � wk � 1)

=)
�

wk+1

wk

�
=

 

1 + � � n
b

P
i 2 B k

A ( u;u )
i

L � �
1 0

! �
wk

wk � 1

�

In each iteration, we randomly sample (without replacement) b examples. Hence, the probability that Au is
in the batch is b

n . When Au is in the batch,
P

i 2 B k
A (u;u )

i = L. On the other hand, when Au is not in the
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batch,
P

i 2 B k
A (u;u )

i = 0 . Similar to Theorem 9, we de�ne � k :=
�

wk

wk � 1

�
. Hence, the update can be

rewritten as:

� k+1 = H k � k

where H k is either H1 :=
�

1 + � � �
1 0

�
w.p � 1 := n � b

n (corresponding to whenAu is not in the batch) or

H2 :=
�

1 � n
b + � � �
1 0

�
w.p � 2 := 1 � � 1 = b

n (corresponding to whenAu is in the batch).

We will use the same technique as in Theorem 9 and analyze six iterations of the update in expectation using
symbolic mathematics programming (Meurer et al., 2017). For this, we denoteH i to be the matrix
corresponding to the i -th permutation of 26 possible sequences and�� i to be the probability of that sequence.
Therefore, �� i is a product of � 1; � 2 corresponding to matricesH1; H2 in the i -th sequence. For example,
when H 1 = H (1 ;1;1;1;1;1) = H1H1H1H1H1H1, �� 1 = � 6

1. Writing the suboptimality k� k k2 in expectation,

E k� k+6 k2 =
26

X

i =1

�� i kH i � k k2

Representing� k in polar coordinates, for a � k 2 [0; 2� ], � k := r k � k where r k 2 R+ and � k =
�

sin(� k )
cos(� k )

�
.

The norm square increase factor	 :=
E[k� k +6 k2 ]

E[k� k k2 ] is given by:

	 =
E k� k+6 k2

k� k k2

=
r 2

k

P 26

i =1 �� i kH i � k k2

r 2
k k� k k2

=
26

X

i =1

�� i kH i � k k2

Using symbolic mathematics programming, we write	 as a function of b; �; � (see Fig. 6 for the complete
expression) and analyze	( b; �; � ). Similar to Theorem 9, we �rst show that 	( b; �; � ) is monotonically
increasing w.r.t � . Using the expression of	

0

� (b; �; � ) = @	( b;�;� )
@� , for each b 2 [n � 1], we plot 	

0

� (b; �; � ) for

� 2 [0:25; 1), � 2 [0; 2� ] and observe that 	
0

� is positive. In Fig. 7a, we show an example plot of	
0

� (b; �; � )

when b = 70. Furthermore, we discretize � and � to numerically verify that for any b 2 [n � 1], 	
0

� (b; �; � ) is

greater than 0. In Table 1, we show an example for values of	
0

� (b; �; � ) when b = 70. Hence for every
b 2 [n � 1], 	( b; �; � ) is a monotonically increasing function in � .

Next, for each batch-sizeb 2 [n � 1], we minimize 	( b; �; � ) and �nd � � (b) as the smallest� such that
	( b; �; � ) > 1. In Fig. 7b, when b = 70, we plot minimum of 	( b; �; � ) w.r.t � and show the corresponding
� � (b). Since 	( b; �; � ) is monotonically increasing w.r.t � , we conclude that for a �xed batch-size b 2 [n � 1],
8� 2 [0; 2� ], 8� 2 (� � (b); 1), 	( b; �; � ) > 1.

From the de�nition of � , we can calculate the corresponding� for any � 2 [0:25; 1) as � =
�

1
2(1 �

p
� )

� 2

.

Hence, for a �xed batch-sizeb, the coordinate u (and hence SHB) will diverge if � > � � (b) (corresponding to
� � (b)).

From Theorem 2, we see that thebatch factor equal to n � b
(n � 1)b must be su�ciently small to ensure convergence

of SHB. In particular, SHB converges at an accelerated rate if n � b
(n � 1)b � 1

C� 2 . Hence, in order to derive the

lower-bound, we plot log
�

n � b
(n � 1)b

�
against log(� � (b)) in Fig. 7c. We observe that for larger � � (b), the batch

factor is smaller. In other words, when� is large, SHB requires a larger batch-size to avoid divergence.
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